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Self-organization and mechanical properties of active filament bundles
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A general framework for the description of active bundles of polar filaments is presented. The activity of the
bundle results from mobile cross-links that induce relative displacements between the aligned filaments. Our
generic description is based on momentum conservation within the bundle. By specifying the internal forces,
a simple minimal model for the bundle dynamics can be derived, capturing a rich variety of dynamic behaviors.
In particular, contracted states as well as solitary and oscillatory waves appear through dynamic instabilities.
We present the full bifurcation diagram of this model and study the effects of a dynamic motor distribution on
the bundle dynamics. Furthermore, we discuss the mechanical properties of the bundle in the presence of
externally applied forces. Our description is motivated by dynamic phenomena in the cytoskeleton and could
apply to in vitro experiments as well as to stress fibers and to self-organization phenomena during cell
locomotion.
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I. INTRODUCTION

The cytoskeleton of eucaryotic cells is a complex thr
dimensional network of protein filaments, most prominen
actin filaments and microtubules@1,2#. Its elastic and viscous
properties are essentially defining the mechanical or mate
properties of living cells. This network resembles in ma
aspects a polymer solution or a gel. The main differen
from usual polymer materials is its intrinsic activity. In fac
the cytoskeleton is constantly remodeled through the p
merization and depolymerization of filaments, as well
through the formation and breakup of cross-links. In ad
tion, the cross-links may be active, leading to further dyna
ics. Active or mobile cross-links are provided, for examp
by molecular motors that are specialized enzymes, wh
transduce the chemical energy of a fuel to motion along fi
ments @1–4#. All these activities are regulated by the ce
which is thus able to direct intracellular transport, to separ
its chromosomes and to cleave during cell division, to ex
forces on the environment, or to move on a substrate.

The study of active polymer systems requires comple
new tools and techniques as compared to the well develo
analysis of equilibrium properties, which relies on power
concepts of equilibrium statistical physics. Indeed, such s
tems are intrinsically far from equilibrium, and the dynami
at equilibrium, which is usually studied in polymer physi
@5–7#, is not sufficient for the description of active system
@8#. On the contrary, experimental studies of the cytoskele
under simplified conditions have revealed its ability to se
organize. Namely, the contraction of filament bundles@9#,
the formation of asters and vortices@10–13#, as well as the
formation of networks@14# were foundin vitro. Using a cell
extract, even the formation of bipolar spindles without m
crotubule organizing centers has been seen@15#. Cell frag-
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ments containing only the actin cytoskeleton, but neither
nucleus nor microtubules, can propagate on a substrate@16#,
where the locomoting state coexists with a stationary sph
cally symmetric state@17#. In a mixture of actin filaments
and myosin molecular motors, active reptation in a polym
solution has been observed@18#. Let us finally mention that
experiments probing mechanical properties of living ce
have revealed active responses of the cytoskeleton to e
nal forces, see, e.g., Ref.@19#.

First steps towards a theoretical understanding of ac
polymer systems have mostly aimed at describing patte
formation. In one-dimensional filament bundles, polar
sorting@20#, contraction@21,22#, and propagating waves@23#
have been observed. Self-organization has also been se
induce bending waves and complex motion in axonem
@24,25#. In higher dimensions, the effects of active cros
links on the formation of orientation patterns in systems
spatially fixed filaments have been studied@26,27# and the
generation of filament currents by active cross-links has b
discussed@28#. Furthermore, the viscoelastic response of
lutions of semiflexible polymers and active centers has b
studied@29#.

Active filament bundles provide very simple examples
active filament networks and can be discussed by a o
dimensional description. Note, however, that in addition
their simplicity, such filament bundles actually occur in an
mal cells. They are, for example, part of stress fibers t
generate contractile forces, and of the contractile ring in
viding cells @2#. In vitro, the contraction of actin bundles i
the presence of myosin motors has been observed@9#.

Motivated by the dynamics of the cytoskeleton, we d
velop a general framework based on momentum conse
tion to describe the physics of bundles of aligned filaments
the presence of active cross-links. Since actin filaments
microtubules are polar as they have two structurally differ
ends, we consider polar filaments. The cross-links are mo
and considered to be formed by small aggregates of mole
lar motors of one type. We discuss simple scenarios in or
©2003 The American Physical Society13-1
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to study the dynamic phenomena and mechanical prope
of such systems. A minimal model that has been introdu
in earlier papers@22,23# can be derived in our general fram
work using approximations and simplifications. This mod
already exhibits several phenomena that occur in such
tems. However, it neglects changes in the distribution of m
tors due to the dynamics of the system. This dynamics of
motor distribution can be taken into account within our ge
eral framework. Furthermore, we discuss the mechan
properties of active bundles in the presence and absenc
external forces.

The outline of our manuscript is as follows. In Sec. II, w
introduce the general description for active filament bund
based on momentum balance. Using this formalism, we
rive dynamic equations for the system. In Sec. III, we sh
how the minimal model can be derived from the gene
equations. We review its properties and extend previ
work towards a discussion of the full bifurcation diagram.
Sec. IV, we study the effects of the dynamics of the mo
distribution on the filament dynamics. The active mechan
properties of a filament bundle can be derived systematic
in the framework introduced in Sec. II. We discuss t
bundle mechanics in Sec. V and study tense states bala
by external forces applied at the ends. The paper conclu
with a discussion of our results in Sec. VI, which relates o
theoretical framework to experimental situations. The app
dixes contain a detailed analysis of bifurcations in the m
mal model as well as the effects of filament adhesion t
substrate.

II. PHENOMENOLOGICAL DESCRIPTION
OF ACTIVE FILAMENT BUNDLES

We introduce a general description for the dynamics
active filament bundles. The bundle is described in one
mension using density profiles of filaments and motors. T
dynamics of these densities is governed by currents tha
generated by interactions between filaments and motors.
namic equations can be derived on the basis of momen
balance. This general procedure can be carried out most
veniently using simplifying assumptions. In particular, w
assume a low motor density or low duty ratio of motors su
that interactions between filament pairs dominate, we ass
local friction of filaments with the environment, and we n
glect the possibility of passive cross-linkers. Furthermo
we assume that filament lengths remain fixed, i.e., we neg
polymerization and depolymerization of filaments and
assume that filaments cannot change their orientation. H
ever, many of the qualitative behaviors displayed by the
sulting equations are more general and are also foun
purely phenomenological descriptions that are not based
these simplifying assumptions@30#. The dynamic equations
we discuss here represent a mean-field theory of filam
bundles, where fluctuations do not appear explicitly but g
rise to diffusive terms.

A. Densities of filaments and motors

The bundle is characterized by the number densities
filaments and of motor complexes projected on the bun
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axis, which leads to an effective one-dimensional desc
tion. Since filament bending and entanglements can be
nored in the bundle, we describe filaments as rigid rods. F
ments are aligned along thex axis and we distinguish the two
subpopulations of filaments with their plus ends pointing
wards the positive and negativex direction, respectively.
These populations are described by the densitiesc1 andc2

such that, e.g.,c1(x)dx gives the number of filaments with
their plus end in the positivex direction and their cente
located in the interval@x,x1dx#. We assume that motors ar
small as compared to the filament length and will be trea
as pointlike in our description. The number density of moto
is denoted bym.

The filament and motor densities satisfy the followin
conservation laws:

] tc
15D]x

2c12]xJ
1, ~1!

] tc
25D]x

2c22]xJ
2, ~2!

] tm5Dm]x
2m2]xJ. ~3!

Here, the currentsJ6 and J are generated by the active in
teraction between motors and filaments. The densitiesc1

andc2 are conserved separately since we do not allow fi
ments to change their orientation. Fluctuations in the sys
give rise to diffusive terms with diffusion coefficientsD and
Dm of filaments and motors. While the diffusion of moto
could be expected to result from thermal fluctuations,
diffusion of filaments is generated effectively by fluctuatio
of the forces induced by motor-filament interactions. F
long filaments, the contribution of thermal fluctuations to t
diffusion coefficientD is negligible. We return to this poin
in Sec. VI.

B. Momentum balance

In the absence of external forces, the total momentum
conserved in the filament bundle. Forces acting within
bundle lead to an exchange of momentum with the envir
ment or between filaments. Since filaments are treated
rigid, extended objects with momentum distributed along
full length of the filament, we introduce the momentum de
sities p6(x,y). These densities represent the momentum
positiony carried by all plus or minus filaments, respective
with their centers located at positionx. The momentum bal-
ance can then be expressed as

] tp
1~x,y!1]ys

1~x,y!2 f int
1 ~x,y!

5 f fl
1~x,y!1 f m

1~x,y!1 f ext
1 ~x,y!, ~4!

] tp
2~x,y!1]ys

2~x,y!2 f int
2 ~x,y!

5 f fl
2~x,y!1 f m

2~x,y!1 f ext
2 ~x,y!. ~5!

Here, momentum flux along filaments centered atx is given
by the tensionss6(x,y). Momentum exchange between fila
ments is nonlocal and described by the internal force de
ties f int

6 (x,y), which include all active filament interaction
3-2
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via motors. The force densitiesf fl
6(x,y), f m

6(x,y), and
f ext

6 (x,y) are source and sink terms, describing moment
exchange with the environment. They result from fricti
with the fluid (f fl), from motors moving along a single fila
ment f m, and from external forcesf ext. Here, x refers to
filaments with center at positionx, while y denotes a position
in space, where a force is acting and momentum is
changed. Momentum conservation in the absence of exte
forces requires, that

E dx@ f int
1 ~x,y!1 f int

2 ~x,y!#50. ~6!

This implies that any force generated by active cross-links
a filament is balanced by an opposite force acting on o
filaments, i.e., internal forces at a pointy are balanced when
integrated over all filaments. Therefore, the total moment
P5*dxdy(p11p2) changes according to~ignoring
boundary terms!

d

dt
P5E dxdy@ f ext

1 ~x,y!1 f ext
2 ~x,y!1 f fl

1~x,y!1 f fl
2~x,y!

1 f m
1~x,y!1 f m

2~x,y!#. ~7!

Inertial terms are negligible in a slowly moving bundle, su
that we can set] tp

650. Equations~4! and~5! then express
a balance of forces.

In the most simple case where friction is local, we c
write for the density of friction forces

f fl
6~x,y!5hJ6~x!R~x2y!. ~8!

Here,h is a friction coefficient per unit length andR(x) is a
function characterizing the distribution of energy dissipat
along moving filaments. If all filaments are of the sam
length ,, a simple choice isR(x)51 for uxu,,/2 and
R(x)50 otherwise. However, the functionR(x) can also
account for situations with a distribution of filament length
Then,R(x) is related to the probability that a given filame
is longer than 2uxu.

The forces exerted by motors moving along a single fi
ment are linear in the filament and motor densities,

f m
6~x,y!57hmGm~y!c6~x!R~x2y!, ~9!

wherehm is the friction coefficient corresponding to sing
motors and the coefficientG characterizes the binding to an
motion on filaments of individual motors.

C. Currents of filaments and motors

While the internal forces are balanced at a pointy when
integrated over all filaments, the total force*dy fint

6 (x,y) act-
ing on filaments centered at a given positionx does not van-
ish in general. Integration of Eqs.~4! and~5! with respect to
y reveals that this force is balanced by friction forces:

h,J6~x!52E dy@ f int
6 ~x,y!1 f m

6~x,y!#, ~10!
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where,5*dxR(x) is the average filament length and whe
we have assumedf ext50. Since friction of motors is small a
compared to filament friction,hm!h,, the contribution of
f m

6 can be neglected in most practical cases, in particular,
low motor densities. In the following, we therefore sethm
50.

In order to write explicit expressions for the currents, w
need a model for the internal forces in the bundle. We c
sider the case when clusters of three or more cross-lin
filaments form rarely enough, such that their contribution
the internal forces can be neglected. This holds in the cas
a low motor density or for motors with a low duty ratio
which is the fraction of time a motor spends attached to
filament @31#. If interactions between filament pairs dom
nate, we can split the internal forces into those between
ments of the same and those of opposite orientation.
write

f int
1 5 f int

111 f int
12 ~11!

and analogously forf int
2 . A motor may link two filaments and

thus exert forces of opposite sign on each of them, whene
they overlap. Assuming that the probability for two filamen
to interact increases quadratically with filament density,
write

f int
67~x,y!5E dz c6~x!c7~z!R~y2x!R~y2z!

3m~y!F67~z2x,y2x! ~12!

and corresponding expressions forf int
66 . Here,F12(j,z) is

the average force acting on plus filaments at a distancz
from the center exerted by motors that interact with oth
minus filaments located at a distancej from the first, see Fig.
1. The essential feature of motor-filament interactions is t
the direction of the force applied by a motor on a filament
uniquely determined by the orientation of the filament@32#.
The productR(y2x)R(y2z) gives the probability that a
filament atx has an overlap aty with a filament atz. Here,

FIG. 1. Schematic representation of the forces exerted by
active cross-link on two filaments of opposite orientation. The c
ters of the filaments are indicated by the dashed lines, wherea
dotted-dashed line marks the position of the active cross-link.
arrows indicate the direction of the forces applied by motors on
filaments.
3-3



e
n

e

iv

i

o

d
th
t
s
m

m
b

-
re
d
dy

nt

,
ten

ac-

e-
ll

ith

-
al
m-
n-
an

tate
on-
ar,
e
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the position of a filament is given by the position of th
filament’s center. Analogous expressions hold for the inter
forces between filaments of the same orientation.

The forcesF66 and F67 obey the following symmetry
relations. Momentum balance demands that under an
change of filaments, the force changes sign:

F66~j,z!52F66~2j,z2j!, ~13!

F67~j,z!52F76~2j,z2j!, ~14!

see Fig. 1. Using relation~12!, the internal forces satisfying
the above equations verify Eq.~6!, which assures momentum
conservation. Space inversion symmetry requires

F11~j,z!52F22~2j,2z!, ~15!

F12~j,z!52F21~2j,2z!. ~16!

Momentum conservation also determines the nondiffus
motor currentJ with

2hmJ~y!5E dx@ f m
1~x,y!1 f m

2~x,y!#. ~17!

Here, the forces of individually bound motors are defined
Eq. ~9!.

The continuity Eqs.~1!–~3! for the densities together with
defining Eqs.~10! and~12! of filament currents and Eq.~17!
for the motor currents provide the full dynamic equations
active filament bundles. The functionsF66 depend on the
details of the motor-filament interactions and could be mo
fied by further proteins bound to the filaments. However,
large scale behaviors of the system do not depend on
detailed form of these functions. In the following section
we will therefore make simple choices which obey the sy
metry relations discussed above.

III. THE MINIMAL MODEL

The minimal model has been introduced in Ref.@22# as a
simple model for filament dynamics. It can be obtained fro
the general equations derived in the preceding section
choosingR(x)51 for uxu,,/2 andR(x)50 otherwise. The
forcesF66 are chosen to behave as

F66~j,z!;sgn~j!,

F67~j,z!;71, ~18!

where sgn(j)51 for j.0 and21 otherwise, which repre
sents the simplest choice compatible with the symmetry
quirements. Furthermore, we assume in the minimal mo
that the motor distribution is homogeneous and that its
namics can be neglected.

The resulting dynamical equations are most convenie
expressed in dimensionless form. We definex̃5x/, and
measure lengths in units of the filament length,, and a di-
mensionless time variablet̃ 5tD/,2. Furthermore, we intro-
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the dynamic equations of the minimal model can be writ
as

] tc
1~x!5]x

2c1~x!

2a]xE
0

1

dj@c1~x1j!2c1~x2j!#c1~x!

1b]xE
21

1

djc2~x1j!c1~x!, ~19!

] tc
2~x!5]x

2c2~x!

2a]xE
0

1

dj@c2~x1j!2c2~x2j!#c2~x!

2b]xE
21

1

djc1~x1j!c2~x!, ~20!

wherea andb are dimensionless coupling constants char
terizing the strength of the motor forces defined in Eqs.~18!.
It follows from the dynamical equations that the homog
neous statec6(x)5c0

65const is a stationary solution for a
values of the parameters.

A. Oriented bundles: Contraction

If all filaments are of the same orientation, one is left w
a single equation

] tc~x!5]x
2c~x!2a]xE

0

1

dj@c~x1j!2c~x2j!#c~x!.

~21!

Here,c represents eitherc1 or c2, depending on the orien
tation of the filaments. This nonlinear integro-differenti
equation is the most simple description of the active dyna
ics of a filament bundle. Many of the basic physical pri
ciples underlying self-organization of filament bundles c
already be discussed using this equation.

1. Linear stability

We consider a system of lengthL with periodic boundary
conditions and study the stability of the homogeneous s
with respect to small perturbations. Periodic boundary c
ditions imply that the bundle forms a ring. Such rings appe
e.g., in eucaryotic cells in the late stages of cell division. W
represent the filament density by a Fourier expansion

c~x!5(
k

cke
ikx, ~22!

with k52pn/L, n50,61, . . . andwherec2k5ck* . Up to
first order in the Fourier componentsck , the dynamics~21!
reads
3-4
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d

dt
ck52@k222ac0~12cosk!#ck ~23!

[l~k!ck ~24!

for all k. This relation implies that forac0<k2/2(12cosk),
the modeck decays in time because thenl(k)<0. It follows
that the most unstable mode is the one corresponding to
smallest nonzero wave numberk52pn/L with n51. This
can be demonstrated using (2p/L)2/2@12cos(2p/L)#
<((2pn/L)2/2@12cos(2pn/L)# for all n.1, which can be
verified by induction using the equivalent conditionn2

2n2cos(2p/L)211cos(2pn/L)>0. Therefore, the homoge
neous state is linearly stable as long asa<ac , where the
critical valueac is determined byl(2p/L)50. Explicitly,

ac5
2p2

c0L2@12cos~2p/L !#
. ~25!

The critical valueac is positive and decreases with in
creasingc0 and L ~for L>1). Note that for bundle sizesL
>1, we have 0,ac,`.

2. Contracted states

If the homogeneous state is unstable, the system evo
to an inhomogeneous steady state. We can calculate this
by numerically solving the dynamic equations or, in the
cinity of the bifurcation, by using a systematic expansion
Fourier modes. To the third order inc1, the equation for the
steady state] tc50 reads

F~a!c12G~a!uc1u2c150, ~26!

with F(a)5l(2p/L) and G(a) given by Eqs.~B6! and
~B7!, see Appendix B. Note thatF(ac)50. ExpandingF
andG at a5ac , we find expressions for the Fourier amp
tudesc1 andc2 given by Eqs.~B8! and ~B9!. This solution
represents a localized distribution of filaments, i.e., a c
tracted bundle.

It follows from Eq. ~26! that this contracted steady sta
exists if F(a)/G(a).0. Depending on whether the rati
F/G is positive fora.ac or for a,ac , the bifurcation is
supercritical and subcritical, respectively, see Fig. 2. Fr
Eq. ~B8! one deduces that the bifurcation is supercritical
system sizes falling within particular intervals for whic
4/(4n21),L,4/(4n23), n51,2, . . . .

Figure 3 presents numerical solutions of the dynam
equations using an Euler algorithm with spatial discretizat
D50.1. Displayed is the modulus of the first Fourier co
ponentuc1u of the attractors as a function ofa for a system
of length L510. A region of coexistence extends froma
5ad up to ac , where the homogeneous state becomes
stable.

For largea we find numerically that transient states co
sisting of several contracted packets can occur, which h
ever decay for long times to a steady state with one m
mum. Their lifetime increases with increasinga.
05191
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3. Contraction dynamics

The contraction of the bundle is most conveniently d
cussed in an infinite system using the variance of the fi
ment distribution

s25
1

NE2`

`

dx x2c~x!, ~27!

whereN5*2`
` dxc(x) is the total number of filaments as

measure of bundle contraction. Since the center of mas
the distribution is immobile due to momentum conservatio
we have chosen without loss of generalitŷx&
5*2`

` dx xc(x)50. The variance changes in time as

FIG. 2. Schematic representation of the amplitudeuc1u of the
first spatial Fourier component of stationary states as a functio
the coupling strength between equally oriented filamentsa. Pre-
sented are the cases of a supercritical and a subcritical bifurca
Solid lines represent stable sdutions and dashed lines unstabl
lutions. In both cases, the homogeneous state is stable fora,ac

and unstable otherwise. In the supercritical case, i.e., ifF/G.0 for
a.ac , the bifurcating solution exists fora.ac and is stable,
while in the other case it exists fora,ac and is unstable. In the
latter case, one usually finds inhomogeneous solutions coexis
with the homogeneous state in an interval@ad ,ac#.

FIG. 3. The amplitude of the first Fourier component of sta
stationary solutions of the minimal model for an oriented bundle
a function of the interaction strengtha. The average filament con
centration isc050.7 and system sizeL510. The inset presents th
nonhomogeneous stationary solution fora51.5 . The scenario
shown corresponds to a subcritical bifurcation, see Fig. 2.
3-5
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d

dt
s25

1

NE2`

`

dx x2] tc~x,t !

5
2

NE2`

`

dx c~x,t !1
2

NE0

1

djF E
2`

`

dx xc~x1j!c~x!

2E
2`

`

dx xc~x2j!c~x!G
522

2

N
aE

0

1

dj jE
2`

`

dx c~x1j!c~x!. ~28!

The final expression reveals two opposing effects. The p
tive constant describes the spreading of the bundle du
fluctuations, while the second term takes into account
effect of the active interactions. The interaction between p
allel filaments tends to contract the bundle. Note that dis
butions for whichds2/dt50 do not necessarily correspon
to stationary solutions of the dynamics~21!.

B. Bundles of mixed orientation: Solitary waves

1. Linear stability

The linearization of Eqs.~19! and~20! around the homo-
geneous statec6(x)5c0

65const reads in the Fourier
representation

d

dt S ck
1

ck
2D 5S L11 L12

L21 L22D S ck
1

ck
2D , ~29!

where the elements of the matrixL(k) are given by

L66~k!52k222a„cos~k!21…c0
662ibkc0

7 ,

L67~k!562ib sin~k!c0
6 . ~30!

For a system of lengthL with periodic boundary conditions
the wave numbers arek52pn/L with n50,1, . . . . Inpres-
ence of the coupling between the filaments of opposite
entation, the matrixL is not diagonal. The stability of the
modes is determined by the larger of the real partsl(k) of
the complex eigenvalues of this matrix which are given
Appendix A.

We find again that the mode with the smallest wave nu
ber k52p/L is the most unstable and there exists a criti
valueac where the homogeneous state becomes linearly
stable. Furthermore,ac>0, independent of the values of th
other parameters, see Appendix A. The critical value

ac[
1

c
gS b,

dc

c
,L D ~31!

is a function of the remaining parameters, wherec5c0
1

1c0
2 and dc5c0

12c0
2 . Here,g is a dimensionless scalin

function. In some limiting cases, explicit expressions forac
can be obtained. For example, fordc50 one finds g
54p2/L2@12cos(2p/L)# and in the limitL→` g51 if b
Þ0, whereasg52/(11udcu/c) for b50, see Eq.~25!.
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These expressions reflect some interesting properties ofac ,
e.g., it decreases monotonically withudcu/c, L, andubu @22#.

2. Solitary waves

For bÞ0, the eigenvalues ofL(k) are complex and the
homogeneous state loses stability through a Hopf bifur
tion, leading to solutions that oscillate in time. We find that
the bifurcation, a solitary wave of the formc6(x,t)5u6(x
2vt) occurs. From momentum conservation, it follows th
the total filament current

I 5E dx~J11J2! ~32!

vanishes. This implies that the propagating filament patt
is not accompanied by a net filament transport. However
soon as filament adhesion to a substrate is introduced,
total filament current associated with a solitary wave
longer vanishes and self-organized filament transport oc
@23#, see Appendix C.

For weak interactions between filaments of opposite o
entation, ubu!1, solitary waves can be understood int
itively. They emerge from the interaction of a contracted d
tribution of filaments of one orientation with a homogeneo
distribution of filaments of opposite orientation. This pictu
suggests a systematic procedure for determining soli
waves. Writingc6(x,t)5u6(x2vt), we can expandu6(x)
in powers ofb. For b50, we start from steady states a
discussed above, which we denote asc6(x,t)5u0

6(x). Soli-
tary waves are obtained by assuming that, e.g.,u0

1 is a con-
tracted steady state, whileu0

2 is homogeneous. We can no
write

u6~x!5u0
6~x!1u1

6~x!b1u2
6b21•••, ~33!

v5v1b1v3b31•••. ~34!

The even terms in the expansion forv vanish by symmetry.
To the lowest order, we obtain

v152c0
2 , ~35!

u1
150, ~36!

u1,k
2 52

2i sinkc0
2u0,k

1

k222a~12cosk!c0
2

for kÞ0. ~37!

This result agrees with numerical solutions of Eqs.~19! and
~20!, see Ref.@23#. For anyb, solitary wave solutions can b
obtained near the instability via a systematic expansion
Fourier modes, see Appendix B 2.

3. Bifurcation diagrams

The arguments of the preceding subsection suggest a
eral scenario of bifurcations as the interaction strengtha is
increased. This scenario emerges from the situation witb
50, where the two subpopulations evolve independently
b becomes nonzero. For smalla, the homogeneous state
3-6
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stable. At the critical valueac , corresponding to the insta
bility of one filament population atb50, a solitary wave
occurs. Furthermore, a second bifurcation where the soli
wave loses its stability occurs atac8 . This second bifurcation
is related to the point where the second filament popula
becomes unstable forb50. This bifurcation leads to an os
cillating wave solution that consists of two oscillating dist
butions, which periodically traverse each other. An exam
of such an oscillating wave is shown in Fig. 4. It is chara
terized by propagating filament profiles that oscillate.

These arguments allow us to derive the full bifurcati
scenario for small values ofb. For ad,a,ac , homoge-
neous distributions and solitary waves coexist. Similarly,
find a coexistence of oscillating and solitary waves forad8
,a,ac8 . Depending on the ratio of plus- and minu
filament numbers,c0

1/c0
2 , we find different bifurcation sce

narios, see Fig. 5. For large ratios,ac,ad8 and the coexist-
ence regions are separated. In the second case of si
filament numbers shown in Fig. 5,ad8,ac and multiple co-
existence occurs, in particular, a coexistence of two differ
solitary waves indicated asS1 and S2. These waves move
into opposite directions. For the special casec0

15c0
2 , the

system is symmetric underx→2x and the coexisting wave
S1 andS2 occur via spontaneous symmetry breaking.

For three different values ofb, numerically obtained bi-
furcation diagrams are displayed in Fig. 5. Shown is^uc1

1

u1uc1
2u&, i.e., the time-averaged sum of the amplitudes of

first spatial Fourier components of both distributions as
function ofa. Forb50.001, the diagram follows closely th
curves shown in the bottom panel corresponding to the li
of smallb. As b is increased, the coexistence regions shr
and the solitary waveS2 disappears. The bifurcation from
solitary waves to oscillating waves becomes supercritical
largeb.

IV. DYNAMIC MOTOR DISTRIBUTIONS

Motors are actively transported along filaments. This,
general, leads to dynamic changes in the motor distribu

FIG. 4. Total filament concentrationc5c11c2 as a function of
positionx and timet for an oscillating wave solution of the minima
model for coupling parametersa52.5 andb51, average filament
densitiesc0

150.7 andc0
250.3, and system sizeL510.
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@27,33#. In the preceding section, we have assumed that
motor distribution remains homogeneous, which implies t
motors diffuse infinitely fast. We will now discuss the effec
of the dynamics of the motor distribution using the sam
choices for the motor forces as given by Eqs.~18! and we
assume that filaments are of the same length,.

A. Dynamic equations

The dynamic equations, including the dynamics of t
motor density, have been derived in Sec. II. As in the p
ceding section, we use dimensionless space and time co
nates,x̃5x/, and t̃ 5tD/,2 as well as dimensionless dens
ties c̃6. We introduce a dimensionless motor densitym̃
5m/m0, where m05(1/L)*0

Ldxm(x) and L is the system
size. Furthermore, we define the dimensionless parame
G̃5G,/D and D̃m5Dm/D. Suppressing the tildes, we ob
tain

] tc
65]x

2c62]xJ
662]xJ

67, ~38!

] tm5Dm]x
2m2]xJ, ~39!

with

FIG. 5. Asymptotic solutions of the minimal model represent
by the time-averaged total amplitudeuc1

1u1uc1
2u of the first spatial

Fourier components as a function of the interaction strengtha for
different values of the interaction strengthb. The homogenous stat
is indicated byH, solitary waves byS, and oscillatory waves byO.
Panels~a!–~f! have been obtained by numerical integration of t
minimal model, whereb50.1 for ~a! and ~b!, b50.01 for ~c! and
~d!, andb50.001 for ~e! and ~f!. ~a!, ~c!, and ~e! are forc0

150.7
and c0

250.3, while ~b!, ~d!, ~f! and are forc0
150.55 andc0

2

50.45 . In all cases,L510. ~g! and~h! A schematic representatio
valid for ubu!1 derived from the bifurcation diagram forb50, as
explained in the text. Dashed lines indicate unstable solutions.
3-7
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J66~x!5AE
21

1

dj sgn~j!M ~x,j!c6~x1j!c6~x!, ~40!

J67~x!57BE
21

1

dj M ~x,j!c7~x1j!c6~x!, ~41!

J~x!5GE
2(1/2)

(1/2)

dj@c1~x1j!2c2~x1j!#m~x!. ~42!

Here, M is the number of motors present in the overl
region of two filaments withM (x,j)5*x21/21j

x11/2 dz m(z)
e
q

e
bl

u
or
n

on

05191
for j.0 andM (x,j)5*x21/2
x11/21jdz m(z) for j,0. Further-

more, the dimensionless coupling constantsA and B are
related to the parametersa andb of the minimal model and
describe effective interactions of a motor with a filame
pair.

B. Oriented bundles

We consider again a system of lengthL with periodic
boundary conditions and all filaments of the same orienta
characterized by the densityc(x). The dynamic equations
linearized at the homogeneous state withc(x)5c0 and
m(x)5m051 read in the Fourier representation
d

dtS ck

mk

D 5S 2k212AS 12
sink

k D c0 22AS cos
k

2
2

2

k
sin

k

2D c0
2

22iG sin
k

2
2Dmk22 iGkc0

D S ck

mk

D , ~43!
nt
s

ough

Fig.
f
ous
par-

e-
ous

n as
n-

ri-
re,
tory
ary
g of
bu-
the
nce
(
r
s

or
e-

f
-

with
where k52pn/L with n being integer. ForG/Dm→0, we
recover the minimal model discussed in the preceding s
tion. In contrast to the minimal model, the eigenvalues of E
~43! are complex ifGÞ0. The homogeneous state thus los
stability through a Hopf bifurcation, where the most unsta
mode occurs at a characteristic wave numberk0. As a con-
sequence, for larger system sizes, solitary waves with m
tiple maxima appear, see Fig. 6. Furthermore, oscillat
waves that can coexist with solitary waves have been fou
in contrast to oriented bundles in the minimal model.

C. Bundles of mixed orientation

In the case of mixed bundles, the linearized equati
read in the Fourier representation

d

dt S ck
1

ck
2

mk

D 5S L11 L12 L1m

L21 L22 L2m

Lm1 Lm2 Lmm
D S ck

1

ck
2

mk

D , ~44!

where the elements of the matrixL(k) are

L66~k!52k212AS 12
sink

k D c0
66 iBkc0

7 ,

L67~k!562iB
12cosk

k
c0

6 ,

L6m~k!522AS cos
k

2
2

2

k
sin

k

2D c0
6262iB sin

k

2
c0

1c0
2 ,

Lm6~k!572iG sin
k

2
,

Lmm~k!52Dmk22 iGk~c0
12c0

2!.
c-
.

s
e

l-
y
d,

s

Figure 7 displays the line in the (A,B) plane limiting the
region of stability of the homogeneous state for differe
values ofG. In contrast to the minimal model, it depend
nonmonotonically onB. This implies that upon increasingB,
the homogeneous state can be restabilized. For large en
G, we even find reentrant behavior with respect toA, i.e.,
increasingA can restabilize the homogeneous state, see
7. Furthermore, the figure shows that the critical values oA
can become negative. This implies that the homogene
state can become unstable even if interactions between
allel filaments are absent, i.e.,A50. Another interesting ob-
servation is that forc0

15c0
2 , the homogeneous state b

comes unstable with respect to stationary inhomogene
states in certain parameter ranges ofB. These inhomoge-
neous stationary states represent a new type of solutio
compared to the minimal model of bundles of mixed orie
tation.

Dynamic solutions to this model can be studied nume
cally. We find the three types of solutions discussed befo
namely, homogeneous states, solitary waves, and oscilla
waves. In addition, we obtain the inhomogeneous station
state mentioned above which is a one-dimensional analo
asters in higher dimensions and consist of localized distri
tions of motors and filaments, see Fig. 8. In contrast to
minimal model, solitary waves can exist even in the abse
of interactions between filaments of opposite orientationB
50) and stationary inhomogeneous states can exist foB
Þ0. Interestingly, the direction of motion of solitary wave
can be reverted by changingG.

In summary, the important effects of a dynamic mot
distribution are~i! the appearance of a characteristic wav
length independent of the system size,~ii ! the appearance o
asterlike solutions, and~iii ! that the existence of inhomoge
neous stationary states requires a symmetric situation
c0

15c0
2 .
3-8
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V. CONTRACTILE TENSION AND EXTERNAL FORCES

So far, we have been focusing on dynamical propertie
active bundles. We now discuss mechanical properties of
bundle such as bundle tension and the role of applied ex
nal forces. The total tensionS(y) at a pointy within the
bundle is obtained by integrating the contributions of all fi
ments, i.e.,

S~y!5E dx@s1~x,y!1s2~x,y!#, ~45!

wheres6(x,y) has been introduced in Eqs.~4! and~5!. Tak-
ing into account momentum conservation, Eq.~6!, one finds
in the absence of external forces

d

dy
S~y!5E dx@ f fl

11 f fl
21 f m

11 f m
2#. ~46!

This equation allows us to calculate the tension profile
means of Eq.~8! if the currentsJ6 are known.

For simplicity, we neglect againf m. The total tension in
the bundle can be written as

S~y!5S
¹

~y!1S�~y!. ~47!

FIG. 6. Examples of asymptotic solutions for an orient
bundle, where the dynamics of the motor distribution has b
taken into account.~a! A solitary wave with a spatial period of hal
the system size and~b! an oscillatory wave are shown. The sol
lines represent the filament distributions and the dashed lines
motor distributions.~b! Distributions at four different times are
shown. They have been shifted in they direction for better visibility
and in thex direction such that the positions of the maxima co
cide. The two solutions in~a! and~b! exist for the same parameter
which areA51.5, G51.5, Dm51, c051, m050.5, andL510.
05191
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Here, we have introduced the tension due to interactions
tween filaments of the same orientation,S

¹
, and those of

opposite orientation,S� . From Eq.~46!, we obtain

S
¹

~y!52hE dx~J11~x!1J22~x!!Q~x2y!1S
¹

(0) ,

~48!

S�~y!52hE dx~J12~x!1J21~x!!Q~x2y!1S�
(0) ,

~49!

n

he

FIG. 7. Regions of stability of the homogenous state for a fi
ment bundle with dynamic motor distribution.A andB characterize
the coupling of a filament pair via a motor, where the homogene
state is stable below the lines shown.~a! is for the symmetric case
c0

15c0
251 and~b! for c0

151 andc0
250.5. In both cases,L510

andDm51. Solid lines indicate oscillatory instabilities and dash
lines static instabilities. The inset presents a case where increa
A can restabilize the homogeneous state.

FIG. 8. Inhomogeneous steady state of a symmetric system
c0

15c0
2 where the dynamics of the motor distributionm has been

taken into account. The filament distributions are represented
dotted and dashed lines forc1 and c2, respectively, the full line
represents the motor densitym. The parameters arec0

15c0
251,

B5G5Dm51, andL510.
3-9
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where (d/dx)Q(x)5R(x) with Q(0)50, and S
¹

(0) and
S�

(0) are constants of integration. These expressions s
to imply that the tension at positiony depends on the globa
state of the bundle sinceQ(x)Þ0 for all xÞ0. However,
,
sin
it
u

n
n

ac
is
fil
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n-
ry
e
a

y

nd

05191
m
tension is a local quantity as can be seen by introduc
the function P(x,j)5Q(x1j)2Q(x). For the minimal
model withR(x)51 for uxu,,/2 andR(x)50 otherwise we
obtain
S
¹

~y!5
1

2
ahE

2,

,

djE dx c1~x1j!c1~x!P~x2y,j!sgn~j!1
1

2
ahE

2,

,

djE dx c2~x1j!c2~x!P~x2y,j!sgn~j!

~50!
.

nts
an

ile,

ap-
and

S�~y!5
1

2
bhE

2,

,

djE dx c2~x1j!c1~x!P~x2y,j!

2
1

2
bhE

2,

,

djE dx c1~x1j!c2~x!P~x2y,j!.

~51!

In contrast to the nonlocal functionQ, P is a local function,
with P(x,j)50 for uxu.2,. In writing the above equations
we have dropped constant contributions to the tension ari
from the boundaries. Indeed, if we consider a situation w
periodic boundary conditions, such boundary terms m
vanish. The integration constantsS

¹

(0) andS�
(0) are therefore
g
h
st

determined by the condition that in the final expressions~50!
and ~51!, constant contributions to the tension are absent

The tension in the homogeneous statec6(x)5c0
6 is given

by

S5
1

2
h,3a~c0

121c0
22!. ~52!

In this case, only the interaction between parallel filame
contributes to the active part of the bundle tension. For
oriented bundle, the tension is positive, i.e., contract
whenevera.0.

More compact expressions can be obtained by the
proximation P(x,j)5j for uxu,,/2 and P(x,j)50 else-
where. Then
S
¹

~y!'
1

2
ahE

y2,/2

y1,/2

dxE
2,

,

djuju@c1~x1j!c1~x!1c2~x1j!c2~x!# ~53!

and

S�~y!'
1

2
bhE

y2,/2

y1,/2

dxE
2,

,

djj@c1~x1j!c2~x!2c2~x1j!c1~x!#. ~54!
in-

ion
les.
m-
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ults
the
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ntly
ity
For filament distributions that vary weakly over a filame
length, this result corresponds to the expressions give
Ref. @22#, with h̄5h/2 andh̃5h/4.

Contractile tension in the bundle can give rise to contr
tile forces exerted by the bundle. In order to illustrate th
consider a homogeneous oriented bundle with constant
ment densityc(x)5c0 inside a box 0<x<L of sizeL, while
c(x)50 elsewhere. In order to stabilize this state, we imp
boundary conditions that immobilize filaments within the i
tervals @0,,# and @L2,,L# near the ends. Such bounda
conditions could be realized by attaching the filaments n
the end to a substrate. This filament distribution is station
and fora,ac stable in the interval@,,L2,#. At the ends,
the force balance, Eq.~7!, is satisfied only if the force densit
f ext(x)5ah,c0

2(,2x) is applied for xP@0,,# and corre-
spondingly at the right end. The total force acting on the e
t
in

-
,
a-

e

ar
ry

s

is thus F5*0
, f ext(x)dx5S. This result indicates that the

generated force is independent of the bundle length and
creases with the square of the filament density.

VI. DISCUSSION

In this paper, we have developed a physical descript
for the dynamics and mechanics of active filament bund
In this one-dimensional description, we describe the dyna
ics of the filament densities projected on an axis which
parallel to the filaments. The activity in these bundles res
from active cross-links that create relative forces between
filaments. Our approach is based on momentum conserva
within the bundle and momentum exchange via exter
forces. Dynamic equations can be derived most convenie
using simplifying assumptions such as a low motor dens
3-10
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or low duty ratio, local friction, the absence of passive cro
linkers, and the assumption that filaments do not change t
lengths. At low motor densities, the filament currents
dominantly generated by interactions of filament pairs. Us
this approach, we systematically derive the minimal mo
introduced in earlier works. In general, the filament dyna
ics in the active bundle is described by nonlinear integ
differential equations. The nonlocal character of these eq
tions reflect the finite filament length.

The bundle dynamics on scales much larger than the
ment length alternatively can be described phenomenol
cally in a continuum limit, leading to a nonlinear descriptio
in the form of partial differential equations@30#. Such an
approach is not limited by the above mentioned simplifyi
assumptions. However, the origin of the different terms t
appear in the equations cannot be systematically relate
more microscopic mechanisms. Interestingly, the main f
tures found in phenomenological descriptions are alre
captured by the more specific models described here, w
are derived using simple approximations. This suggests
the main features obtained from our models can still hold
situations where our approximations are no longer valid.

The equations discussed in this paper describe the ave
behavior of the bundle and thus represent a mean-fi
theory, where fluctuations are captured by effective diffus
terms but do not explicitly appear in the description. In p
ticular, the coefficientD of filament diffusion is effectively
generated by motor-filament interactions. In the absenc
such interactions, thermal fluctuations would lead to a dif
sion coefficientD.kT/h,, which becomes small for long
filaments. The effective diffusion coefficient due to acti
interactions between parallel filaments, which do not gen
ate a net current in the homogeneous state, can be estim
as D.Dx2v. Here,Dx is the run length of a motor on
filament andv;, denotes the rate of generation of mob
cross-links, which grows linearly with the filament lengt
As a consequence,D;, and for long filaments the diffusion
is dominated by active cross-links. Numerical simulations
computer models, which take into account fluctuations sh
that the phenomena described in the previous sections pe
qualitatively in the presence of fluctuations@22#. A thorough
analysis of the effect of fluctuations will be the subject o
separate paper@30#.

The minimal model that neglects the dynamics of the m
tor distribution already exhibits a complex scenario of b
haviors. We discuss the full bifurcation diagram of th
model that involves homogeneous solutions, contrac
steady states, solitary waves, and oscillatory waves. Th
states are separated by bifurcations and can partly co
depending on parameter values.

Taking into account the dynamics of the motor distrib
tion does again generate the types of solutions present in
minimal model. Furthermore, new inhomogeneous ste
states occur which are the one-dimensional analog of as
In addition, the bifurcation diagrams are modified and
considerably richer. Contracted steady states are destabi
by the motor dynamics and in many cases become soli
waves. Furthermore, instabilities of the homogeneous s
already occur in the absence of interactions between
05191
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ments of the same orientation, i.e.,A50. The bifurcation
diagrams exhibits for certain parameter ranges reentrant
havior, i.e., the homogeneous state is restabilized by incr
ing A or B.

External forces modify the filament dynamics in intere
ing ways. Using the momentum balance in the filame
bundle, we studied active mechanical properties of
bundle. In general, the bundle generates mechanical ten
Applying external forces to the bundle ends, a station
state of a contractile bundle can be attained.

It is interesting to compare our results to experimen
where purified filaments interact with motor molecules
small aggregates of such motors. There is onein vitro experi-
ment involving filament bundles@9#, where the contraction
accompanied by polarity sorting of disordered bundles
actin filaments in the presence of adenosine triphosphate
myosin II molecules~more specifically heavy meromyosin!,
which presumably spontaneously form small aggregates,
been observed. Qualitatively, this corresponds to the s
shown in Fig. 8. However, this experiment has not been
peated and a systematicin vitro study exploring all the re-
gimes discussed in this paper is lacking and would be v
valuable. Experiments on filament bundles could also be
formed using microtubules, however, suitable preparat
techniques to generate aligned filaments have to be de
oped. Artificially constructed kinesin aggregates would
natural candidates for mobile cross-links used in such
study.

As mentioned above, our results are expected to be m
general and could also apply to situations where additio
components are present. For example, it may be more
venient to prepare filament bundles using the help of pas
cross-linking or bundling proteins such asa-actinin. For a
large cross-linker density or a long lifetime of such pass
cross-links we expect qualitatively new behaviors. Howev
for low concentrations or short lifetimes of passive cro
links, they are expected to mainly modify the effective fri
tion coefficient and possibly other parameters of our mod
Even in the presence of passive cross-links, we expect
main results of our work to apply in certain regimes.

A similar modification of model parameters can be e
pected, in general, if other proteins are present which inte
with motors and/or filaments. For example, the interact
strengtha between equally oriented filaments could be s
nificantly enhanced by proteins bound to filaments wh
affect the speed of motors. In fact, it might seem odd at fi
glance that filaments of the same orientation exhibit sign
cant interactions via motors at all. As a motor advances
both filaments with the same speed, no relative motion
generated. Interactions between filaments of the same o
tation are induced by motors that do not move with the sa
speed on two cross-linked filaments. This happens, e
when a motor arrives on one filament at the end towa
which it moves. In this case, the motor stops on one filame
whereas it continues for a while to move on the second fi
ment. This induces relative filament sliding via an end effe

The interaction strengtha between equally oriented fila
ments can be enhanced if the motor speed varies along
whole filament. For example, the speed of motors can
3-11
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affected by the presence of other motors on the same
ment. Such crowding would typically lead to a slowing dow
of motors as they approach the filament end@34#, generating
relative motion of filament pairs. Furthermore, one cou
imagine specific proteins bound to the filaments which aff
the speed of motors. If such proteins had a graded distr
tion linked to the filament polarity, they would lead to stron
interaction terms between filaments of the same orientat
These examples illustrate that in more complex situati
where additional proteins are present, the main results of
work could still apply, however, with effective parameters

This suggests that the essential properties of active
ment bundles found in our work might be even more gene
and could also apply to more complex situations foundin
vivo. For example, our results could apply to stress fibe
These are contractile actin bundles in cells lacking the ob
ous periodic organization of muscles@1# but containing myo-
sins and other proteins. As we have demonstrated in Se
the generation of tension and contraction is possible thro
the interaction of filament pairs without the need of
musclelike sarcomere structure. The periodic boundary c
ditions that we use in several examples correspond to
situation, where the bundle forms a ring and could apply,
example, to contractile rings that cleave a cell during c
division.

Interestingly, the types of dynamic behaviors that we o
serve also include qualitatively the symmetry breaking p
sented by fragments of fish keratocytes@16,17#. These frag-
ments consist of the lamellipodium, which is the flatten
leading margin of these cells, responsible for their migrati
Notably, they do contain neither the nucleus nor micro
bules. These fragments exist in a symmetric stationary s
as well as in an asymmetric locomoting state, where one
change between these states through sufficiently strong
ternal perturbations@17#. Even though the active bundle
studied in the present work are far from giving a descript
of moving keratocyte fragments, our results clearly indic
that viewing the cytoskeleton as a dynamical system i
valuable concept for understanding such phenomena.
description of active bundles provide a firm basis for t
development of more profound theories of active filam
systems, which could help understanding the s
organization and dynamic behaviors in living cells such
cell locomotion. Moving on into this direction will require
number of important additional ingredients. A thre
dimensional description should, for example, incorporate
fects, such as the polymerization and depolymerization
filaments, nonmobile cross-linkers, capping proteins, and
interaction of filaments with a membrane.
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APPENDIX A: EIGENVALUES OF THE LINEARIZED
TIME-EVOLUTION OPERATOR

Here, we give the complete eigenvalues of the lineari
time-evolution operatorL(k) of the minimal model given in
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Eq. ~29! and show thatac.0.
The two eigenvalues ofL(k) are

l652k21a~12cosk!c22ibkdc

6$a2~12cosk!2dc22b2k2c21b2sin2k~c22dc2!

12iabk~12cosk!cdc%1/2. ~A1!

In this expression,c5c0
11c0

2 and dc5c0
12c0

2 . The real
part of l1 , which determines the stability of the homog
neous state against small perturbations, is

l~k!52k21a~12cosk!c1H 1

2
Aa21b21

1

2
aJ 1/2

~A2!

with

a5a2~12cosk!2dc22b2k2c21b2sin2k~c22dc2!,
~A3!

b52abk~12cosk!cdc. ~A4!

For a50, this impliesl(k)52k2. The derivative ofl with
respect toa is of the form

]l

]a
5A01A1a1A2a3, ~A5!

with Ai.0, i 50,1,2. It then follows that there is a uniqu
critical value ac.0, determined byl(k52p/L;a5ac)
50, such that the homogenous state is linearly stable, un
a.ac and that the longest wavelength fitting in the syste
becomes unstable.

APPENDIX B: NONHOMOGENEOUS SOLUTIONS
CLOSE TO ac

We calculate the asymptotic solutions of the minim
model close to the critical valueac for arbitraryb and com-
pare it with the expressions for smallb discussed in Sec. III.

1. Oriented bundles

In the Fourier representation, the stationary solution
Eq. ~21! is given by

ck52
2a

k (
p

cosp21

p
cpck2p , ~B1!

wherec2k5ck* . In particular,

c152
2aL2

4p2 H Fcos
2p

L
21Gc1c01

1

2 Fcos
4p

L
21Gc2c21

2Fcos
2p

L
21Gc21c21•••J , ~B2!

c252
aL2

4p2 H Fcos
2p

L
21Gc1c11

1

2 Fcos
4p

L
21Gc2c01•••J .

~B3!
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Close toa5ac , we expand the solution in terms ofc1 using
the ansatzck}c1

k . Ignoring higher modes, we obtain

c252
1

11
aL2

4p2

1

2 Fcos
4p

L
21Gc0

aL2

4p2 Fcos
2p

L
21Gc1

2 .

~B4!

Up to the third order inc1, we find

F~a!c12G~a!uc1u2c150 ~B5!

with

F~a!511
2aL2

4p2 Fcos
2p

L
21Gc0 ~B6!

and

G~a!5
2aL2

4p2 H 1

2 Fcos
4p

L
21G2Fcos

2p

L
21G J

3

aL2

4p2 Fcos
2p

L
21G

11
aL2

4p2

1

2 Fcos
4p

L
21Gc0

. ~B7!
05191
The Fourier coefficients of the stationary solution are giv
by

c15
Lc0

2pA 22c0

cos
2p

L

F12cos
2p

L G~a2ac!
1/2

1O„~a2ac!
3/2
… ~B8!

and

c252
2L2c0

2

4p2

12cos
2p

L

cos
2p

L

~a2ac!1O„~a2ac!
2
….

~B9!

2. Bundles of mixed orientation

We determine solitary waves that appear at the bifurca
point a5ac using the ansatz

c6~x,t !5( ck
6eik(2px/L1vt). ~B10!

The Fourier coefficients satisfy the following equations:
ivc1
152

4p2

L2
c1

112aH F12cos
2p

L G~c1
1c0

12c21
1 c2

1!1
1

2 F12cos
4p

L Gc21
1 c2

11•••J
12ibH 2p

L
c0

2c1
11sin

2p

L
~c1

2c0
11c21

2 c2
1!1

1

2
sin

4p

L
c2

2c21
1 1•••J , ~B11!

2ivc2
152

16p2

L2
c2

114aH F12cos
2p

L Gc1
1c1

11
1

2 F12cos
4p

L Gc2
1c0

11•••J
14ibH 2p

L
c0

2c2
11sin

2p

L
c1

2c1
11

1

2
sin

4p

L
c2

2c0
11•••J , ~B12!

ivc1
252

4p2

L2
c1

212aH F12cos
2p

L G~c1
2c0

22c21
2 c2

2!1
1

2 F12cos
4p

L Gc21
2 c2

21•••J
22ibH 2p

L
c0

1c1
21sin

2p

L
~c1

1c0
21c21

1 c2
2!1

1

2
sin

4p

L
c2

1c21
2 1•••J , ~B13!

2ivc2
252

16p2

L2
c2

214aH F12cos
2p

L Gc1
2c1

21
1

2 F12cos
4p

L Gc2
2c0

21•••J
24ibH 2p

L
c0

1c2
21sin

2p

L
c1

1c1
21

1

2
sin

4p

L
c2

1c0
2
•••J . ~B14!

A
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We assume without loss of generalityc0
1.c0

2 and expand
in c1

1 , which leads to

F~a,b,v!2G~a,b,v!uc1
1u250, ~B15!

where the expressions forF andG to the first order inb are
given by

F52
4p2

L2
12aF12cos

2p

L Gc0
11 i F4p

L
bc0

22vG
~B16!

and

G58a2
L2

4p2 F12cos
2p

L G H F12cos
2p

L G2
1

2 F12cos
4p

L G J
3H 1

D
2

2i

D2S v12
4p2

L
c0

2DbJ . ~B17!

Here,

D516p2/L222aF12cos
4p

L Gc0
1 .

At the bifurcation pointa5ac , we haveF(ac ,b,v0)50.
In the first order ina2ac , we obtain for the frequency an
the amplitude ofc1

1

v5v01v1~a2ac!1•••, ~B18!

uc1
1u25

]aF~ac ,v0!1v1]vF~ac ,v0!

G~ac ,v0!
~a2ac!1•••.

~B19!

The right hand side of the last expression needs to be
and positive such that we obtain the condition
Se
lu

dy
im

05191
al

Im
]aF~ac ,v0!

G~ac ,v0!
5v1Im

]vF~ac ,v0!

G~ac ,v0!
. ~B20!

Furthermore, the sign of the prefactor ofa2ac will deter-
mine if the bifurcation is supercritical or subcritical.

The bifurcation conditionF(ac ,v0)50 leads to

ac5
4p

L2

1

2F12cos
2p

L Gc0
1

, ~B21!

v05
4p

L
bc0

2 . ~B22!

This implies

]aF~ac ,v0!5
2L2

4p2
@12cos 2pL#c0

1 , ~B23!

]vF~ac ,v0!52 i
L2

4p2
, ~B24!

G~ac ,v0!52
1

c0
22

cos
2p

L

12cos
2p

L

, ~B25!

andv150.
The velocity of propagation is given byv5v0L/2p

52bc0
2 . The componentsc1

1 and c2
1 are given by the ex-

pressions~B8! and ~B9! for c1 andc2, respectively. For the
distribution of minus filaments, we find
c1
2522ib

sin
2p

L
c0

2

4p2

L2
22aF12cos

2p

L Gc0
2

c1
1 , ~B26!

c2
25 ib

sin
2p

L F12cos
2p

L G2

c0
12c0

2

16p4

L4 H 12
1

2 F11cos
2p

L Gc0
11c0

2

c0
1

1
1

4 F11cos
2p

L G2 c0
2

c0
1J ~a2ac!1O„~a2ac!

2
…. ~B27!
be
-
are
These expressions are consistent with the results of
III B and provide analytic expressions of solitary wave so
tions for smallb.

APPENDIX C: FILAMENT ADHESION

In this section, we discuss the effects on the bundle
namics due to filament adhesion to a substrate in the min
c.
-

-
al

model. Adhering filaments are described by the densitiesa1

and a2, respectively. Attached filaments are assumed to
immobile, while they contribute to the motion of free fila
ments. The dynamic equations in dimensionless form
given by

] tc
15]x

2c12]xJ
112]xJ

122vac11vda1, ~C1!
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] tc
25]x

2c22]xJ
222]xJ

212vac21vda2, ~C2!

] ta
15vac12vda1, ~C3!

] ta
25vac22vda2, ~C4!

with

J665E
0

1

dj@ac6~x1j!1āa6~x1j!2ac6~x2j!

2āa6~x2j!#c6~x! ~C5!

and

J6757E
21

1

dj@bc7~x1j!1b̄a7~x1j!#c6~x!.

~C6!

Here,va andvd are rates of attachment and detachmen
filaments, respectively, whileā and b̄ characterize coupling
constants between free and attached filaments.

The homogeneous statec6(x)5c0
6 and a6(x)

5vac0
6/vd is stationary. It becomes unstable at a critic

valueac , which for oriented bundles is given by

âc5ac

va1vd

mva1vd
, ~C7!

where ac is the critical value in the minimal model with
va50 and form5ā/a. For bÞ0, a Hopf bifurcation oc-
curs, the dependence of the critical valueâc on the attach-
ment rateva is shown in Fig. 9 forā52a and b̄52b.

In the caseb50, the stationary distributions are give
by c6(x;va)5vdc6(x;0)/(mva1vd) and a6(x;va)
5vac6(x;0)/(mva1vd), where c6(x;0) denote the sta
tionary states of the minimal model. ForbÞ0, solutions can
be obtained in the limit of small attachment rates by expa
ing around solitary waves forva50. Consider a solitary
wave in the minimal model given byc6(x,t;0)5u0

6(x

FIG. 9. The effect of filament adhesion on the critical valueâc

of the minimal model. Displayed is the critical valueâc as a func-
tion of the adhesion rateva for different values of the coupling

strengthb and forc0
150.3, c0

250.7, ā52a, b̄52b, vd51, and

L510. Forva50, âc5ac , which is the critical value in the mini-
mal model in the absence of adhesion.
05191
f

l

-

2v0t) and a6(x,t;0)50. Assuming that for finiteva solu-
tions of the formc6(x,t;va)5u6(x2vt) and a6(x,t:va)
5r 6(x2vt) exist, we write

v5v01vav11•••, ~C8!

u65u0
61vau1

61•••, ~C9!

r 65var 1
61•••. ~C10!

The equations forr 1
6 can be solved explicitly. We find

r 1
6~x!5

1

evdT21
E

0

T

dt8evdt8u0
6~x2v0t8!, ~C11!

whereT5v0L.
This result can in turn be used to calculate in the fi

order inva the total net currentI associated with these sol
tary waves. Indeed, in the lowest order, this current is giv
by

I 52vaE
0

L

dxH aE
0

1

dj$@r 1
1~x1j!2r 1

1~x2j!#u0
1~x!

1@r 1
2~x1j!2r 1

2~x2j!#u0
2~x!%

1bE
21

1

dj@r 1
1~x1j!u0

2~x!2r 1
2~x1j!u0

1~x!#J , ~C12!

where, for simplicity, we have chosenā52a and b̄52b.
Evaluating this expression using Eq.~C11! and u0

6(x)
5(n52`

` u0,n
6 ei2pnx/L, we obtain

I 58vaL3v0a (
n51

`

An~ uu0,n
1 u21uu0,n

2 u2!1O~va
2!,

~C13!

where

FIG. 10. The total filament currentI of propagating filament
patterns with filament adhesion as a function of the adhesion
va . Symbols represent numerically obtained results for differ

detachment ratesvd . Parameters area51.5, b52, b̄52b, c0
1

50.3, c0
250.7, andL510. The maximal current decreases and

reached at larger ratios ofva /vd asvd is increased.
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An5

cos
2pn

L
21

vd
2L214p2n2v0

2
, ~C14!

with v0 and u0
6 depending onb as described in Sec. III B

This result shows that solitary waves are accompanied wi
P

S.

ate

.

re

05191
a

net filament transport if filament adhesion occurs. SinceAn
,0 for all n, this transport occurs in the opposite direction
wave propagation. Remarkably, as indicated by the prefa
a, it is the interaction betweenparallel filaments that gener-
ates the current. Note that forb50, we havev050 and thus
I 50. Numerical results forI as a function ofva are shown
in Fig. 10.
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