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Self-organization and mechanical properties of active filament bundles

Karsten Krus&?®* and Frank Jlichert?"
IMax-Planck-Institut fu Physik komplexer Systeme, thoitzer Strasse 38, 01187 Dresden, Germany
2Institut Curie, Physicochimie, UMR CNRS/IC 168, 26 rue d’Ulm, 75248 Paris Cedex 05, France
3Max-Planck-Institut fu Stromungsforschung, Bunsenstrasse 10, 37078iG&®n, Germany
(Received 8 July 2002; revised manuscript received 21 January 2003; published 19 May 2003

A general framework for the description of active bundles of polar filaments is presented. The activity of the
bundle results from mobile cross-links that induce relative displacements between the aligned filaments. Our
generic description is based on momentum conservation within the bundle. By specifying the internal forces,
a simple minimal model for the bundle dynamics can be derived, capturing a rich variety of dynamic behaviors.
In particular, contracted states as well as solitary and oscillatory waves appear through dynamic instabilities.
We present the full bifurcation diagram of this model and study the effects of a dynamic motor distribution on
the bundle dynamics. Furthermore, we discuss the mechanical properties of the bundle in the presence of
externally applied forces. Our description is motivated by dynamic phenomena in the cytoskeleton and could
apply toin vitro experiments as well as to stress fibers and to self-organization phenomena during cell

locomotion.
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[. INTRODUCTION ments containing only the actin cytoskeleton, but neither the

nucleus nor microtubules, can propagate on a subgttaie
The cytoskeleton of eucaryotic cells is a complex three-where the locomoting state coexists with a stationary spheri-
dimensional network of protein filaments, most prominentlycally symmetric stat¢17]. In a mixture of actin filaments
actin filaments and microtubulé$,2]. Its elastic and viscous and myosin molecular motors, active reptation in a polymer
properties are essentially defining the mechanical or materiagolution has been observeti8]. Let us finally mention that
properties of living cells. This network resembles in manyexperiments probing mechanical properties of living cells
aspects a polymer solution or a gel. The main differencénave revealed active responses of the cytoskeleton to exter-
from usual polymer materials is its intrinsic activity. In fact, nal forces, see, e.g., Rgfl9].
the cytoskeleton is constantly remodeled through the poly- First steps towards a theoretical understanding of active
merization and depolymerization of filaments, as well aspolymer systems have mostly aimed at describing pattern-
through the formation and breakup of cross-links. In addi-formation. In one-dimensional filament bundles, polarity
tion, the cross-links may be active, leading to further dynamsorting[20], contractior{21,22], and propagating wavé&3]
ics. Active or mobile cross-links are provided, for example,have been observed. Self-organization has also been seen to
by molecular motors that are specialized enzymes, whiclinduce bending waves and complex motion in axonemes
transduce the chemical energy of a fuel to motion along filaf24,25. In higher dimensions, the effects of active cross-
ments[1-4]. All these activities are regulated by the cell links on the formation of orientation patterns in systems of
which is thus able to direct intracellular transport, to separatgpatially fixed filaments have been studie&b,27] and the
its chromosomes and to cleave during cell division, to exergeneration of filament currents by active cross-links has been
forces on the environment, or to move on a substrate. discussed28]. Furthermore, the viscoelastic response of so-
The study of active polymer systems requires completeljutions of semiflexible polymers and active centers has been
new tools and techniques as compared to the well developestudied[29].
analysis of equilibrium properties, which relies on powerful  Active filament bundles provide very simple examples of
concepts of equilibrium statistical physics. Indeed, such sysactive filament networks and can be discussed by a one-
tems are intrinsically far from equilibrium, and the dynamicsdimensional description. Note, however, that in addition to
at equilibrium, which is usually studied in polymer physics their simplicity, such filament bundles actually occur in ani-
[5-7], is not sufficient for the description of active systemsmal cells. They are, for example, part of stress fibers that
[8]. On the contrary, experimental studies of the cytoskeletoyenerate contractile forces, and of the contractile ring in di-
under simplified conditions have revealed its ability to self-viding cells[2]. In vitro, the contraction of actin bundles in
organize. Namely, the contraction of filament bundl@g the presence of myosin motors has been obs€@gd
the formation of asters and vortices0—13, as well as the Motivated by the dynamics of the cytoskeleton, we de-
formation of networkg14] were foundin vitro. Using a cell  velop a general framework based on momentum conserva-
extract, even the formation of bipolar spindles without mi-tion to describe the physics of bundles of aligned filaments in
crotubule organizing centers has been sgi5). Cell frag-  the presence of active cross-links. Since actin filaments and
microtubules are polar as they have two structurally different
ends, we consider polar filaments. The cross-links are mobile
*Email address: karsten@mpipks-dresden.mpg.de and considered to be formed by small aggregates of molecu-
TEmail address: julicher@mpipks-dresden.mpg.de lar motors of one type. We discuss simple scenarios in order
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to study the dynamic phenomena and mechanical propertiesis, which leads to an effective one-dimensional descrip-
of such systems. A minimal model that has been introducetion. Since filament bending and entanglements can be ig-
in earlier paper$22,23 can be derived in our general frame- nored in the bundle, we describe filaments as rigid rods. Fila-
work using approximations and simplifications. This modelments are aligned along tlxeaxis and we distinguish the two
already exhibits several phenomena that occur in such sysubpopulations of filaments with their plus ends pointing to-
tems. However, it neglects changes in the distribution of mowards the positive and negative direction, respectively.
tors due to the dynamics of the system. This dynamics of th&hese populations are described by the densitiesindc™
motor distribution can be taken into account within our gen-such that, e.g¢" (x)dx gives the number of filaments with
eral framework. Furthermore, we discuss the mechanicaheir plus end in the positive direction and their center
properties of active bundles in the presence and absence laicated in the intervdlx,x+dx]. We assume that motors are
external forces. small as compared to the filament length and will be treated
The outline of our manuscript is as follows. In Sec. Il, we as pointlike in our description. The number density of motors
introduce the general description for active filament bundless denoted bym.
based on momentum balance. Using this formalism, we de- The filament and motor densities satisfy the following
rive dynamic equations for the system. In Sec. Ill, we showconservation laws:
how the minimal model can be derived from the general

equations. We review its properties and extend previous dcT =Dt —a,7, (1)
work towards a discussion of the full bifurcation diagram. In
Sec. IV, we study the effects of the dynamics of the motor C™ = Daf(c‘—aXJ‘, (2
distribution on the filament dynamics. The active mechanical
properties of a filament bundle can be derived systematically Am=Dpnd2m—dyJ. ®)

in the framework introduced in Sec. Il. We discuss the

bundle mechanics in Sec. V and study tense states balancefére, the currentd= andJ are generated by the active in-
by external forces applied at the ends. The paper concludasraction between motors and filaments. The densttiées
with a discussion of our results in Sec. VI, which relates ourandc™ are conserved separately since we do not allow fila-
theoretical framework to experimental situations. The appenments to change their orientation. Fluctuations in the system
dixes contain a detailed analysis of bifurcations in the mini-give rise to diffusive terms with diffusion coefficienBsand

mal model as well as the effects of filament adhesion to @, of filaments and motors. While the diffusion of motors

substrate. could be expected to result from thermal fluctuations, the
diffusion of filaments is generated effectively by fluctuations

Il. PHENOMENOLOGICAL DESCRIPTION of the forces induced by motor-filament interactions. For

OF ACTIVE FILAMENT BUNDLES long filaments, the contribution of thermal fluctuations to the

. L ) diffusion coefficientD is negligible. We return to this point
We introduce a general description for the dynamics of, gac .

active filament bundles. The bundle is described in one di-
mension using density profiles of filaments and motors. The
dynamics of these densities is governed by currents that are
generated by interactions between filaments and motors. Dy- In the absence of external forces, the total momentum is
namic equations can be derived on the basis of momenturonserved in the filament bundle. Forces acting within the
balance. This general procedure can be carried out most cobundle lead to an exchange of momentum with the environ-
veniently using simplifying assumptions. In particular, we ment or between filaments. Since filaments are treated as
assume a low motor density or low duty ratio of motors suclrigid, extended objects with momentum distributed along the
that interactions between filament pairs dominate, we assunfall length of the filament, we introduce the momentum den-
local friction of filaments with the environment, and we ne- sities 7*(x,y). These densities represent the momentum at
glect the possibility of passive cross-linkers. Furthermorepositiony carried by all plus or minus filaments, respectively,
we assume that filament lengths remain fixed, i.e., we negleatith their centers located at position The momentum bal-
polymerization and depolymerization of filaments and weance can then be expressed as

assume that filaments cannot change their orientation. How-

ever, many of the qualitative behaviors displayed by the re- amt (X,y) +dyot (Xy) = FidX,y)

sulting equations are more general and are also found in n + +

purely phenomenological descriptions that are not based on =T () +HEn(GY) F e Y), )
these simplifying assumptiorf80]. The dynamic equations B B B
we discuss here represent a mean-field theory of filament dym (X,y) +dyo (X,y) — fin(X,y)
lr::ggtiloez,if\aljr;ie\;g Ileurcr:;l;?tlons do not appear explicitly but give — () Gy + Fo X Y). )

B. Momentum balance

- ) Here, momentum flux along filaments centerec & given
A. Densities of filaments and motors by the tensions = (x,y). Momentum exchange between fila-
The bundle is characterized by the number densities ofments is nonlocal and described by the internal force densi-
filaments and of motor complexes projected on the bundléies f;(x,y), which include all active filament interactions
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via motors. The force densities; (x,y), fo(x,y), and F(€,0=7F (-£,(-8)
foi(X,y) are source and sink terms, describing momentum

]
]
—_ ]
exchange with the environment. They result from friction O 7 :'
with the fluid (f;), from motors moving along a single fila- :
ment f,, and from external force$,,;. Here, x refers to '
filaments with center at positiog while y denotes a position + ' -
in space, where a force is acting and momentum is ex- 122220021 2332)322)
changed. Momentum conservation in the absence of external E P
forces requires, that > g < !
! b
_ ' !
f dxX] Find(X,y) + fin(x,y)]=0. (6) > & <

This implies that any force generated by active cross-links on G- 1. Schematic representation of the forces exerted by an
a filament is balanced by an opposite force acting on othe?cwe cross-link on two filaments of opposite orientation. The cen-
filaments, i.e., internal forces at a poinare balanced when ters of the filaments are indicated by the dashed lines, whereas the
integrated over all flaments. Therefore, the total momentu
II=fdxdy(w"+a~) changes according to(ignoring
boundary terms

dotted-dashed line marks the position of the active cross-link. The
Mirrows indicate the direction of the forces applied by motors on the
filaments.

d wheref = [dxR(x) is the average filament length and where
&H: f dxdy[ f (%, Y) + Fog(X, ) + i (X,y)+ 1 (X,y) we have assumefd;xt—o. _Sl_nce friction of motors is small as
compared to filament frictiony,,<n€, the contribution of
Gy + (G- @ f, can be neglected in most practical cases, in particular, for
low motor densities. In the following, we therefore sgt,
Inertial terms are negligible in a slowly moving bundle, such=0.

that we can se#, 7" =0. Equationg4) and(5) then express In order to write explicit expressions for the currents, we
a balance of forces. need a model for the internal forces in the bundle. We con-
In the most simple case where friction is local, we cansider the case when clusters of three or more cross-linked
write for the density of friction forces filaments form rarely enough, such that their contribution to
the internal forces can be neglected. This holds in the case of
fﬂi(x,y)z 7nI=(X)R(X—Y). (8) a low motor density or for motors with a low duty ratio,

which is the fraction of time a motor spends attached to a
Here,  is a friction coefficient per unit length arR(x) isa  filament[31]. If interactions between filament pairs domi-
function characterizing the distribution of energy dissipationnate, we can split the internal forces into those between fila-
along moving filaments. If all filaments are of the samements of the same and those of opposite orientation. We
length ¢, a simple choice isR(x)=1 for |x|<€/2 and write
R(x)=0 otherwise. However, the functioR(x) can also et el
account for situations with a distribution of filament lengths. fine= it  fint (17)
Then,R(x) is related to the probability that a given filament B ) ]
is longer than iX|. and analogously fof;,;. A motor may link two filaments and
The forces exerted by motors moving along a single filathus exert forces of opposite sign on each of them, whenever
ment are linear in the filament and motor densities, they overlap. Assuming that the probability for two filaments
to interact increases quadratically with filament density, we
fa(Y)=F 7l m(y)c* (X)R(x—y), (9  write

where 7, is the friction coefficient corresponding to single
motors and the coefficiert characterizes the binding to and
motion on filaments of individual motors.

fin (X,y)= f dz c"(x)c* (2)R(y—x)R(y—2)

Xm(y)F**(z—x,y—X) (12
C. Currents of filaments and motors and corresponding expressions gy~ . Here,F ™~ (&,) is
While the internal forces are balanced at a pginthen  the average force acting on plus filamer)ts at a d?sta‘che
integrated over all filaments, the total forfey fi-(x,y) act- ~ from the center exerted by motors that interact with other
ing on filaments centered at a given positiodoes not van-  minus filaments located at a distang&om the first, see Fig.
ish in general. Integration of Eq&}) and(5) with respect to 1. The essential feature of motor-filament interactions is that
y reveals that this force is balanced by friction forces: the direction of the force applied by a motor on a filament is
uniquely determined by the orientation of the filamgs&].
NN - + The productR(y—x)R(y—2z) gives the probability that a
I~ (%)= f A Fin(XY) + Fm(XY)1, (10 filament atx has an overlap at with a filament atz. Here,
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the position of a filament is given by the position of the quce dimensionless densities c¢. Suppressing the tildes,

filament's center._Anangous expressions.hold for the internaghe dynamic equations of the minimal model can be written
forces between filaments of the same orientation. as

The forcesF== andF~~* obey the following symmetry
relations. Momentum balance demands that under an ex-

change of filaments, the force changes sign:

1
FPR(E)=—F"7(-&(-9), 13 —aﬁxfo défe’ (x+§)—c  (x=&)]c" (x)

ac(x)=2d2c*(x)

Fi:(grg):_F:i(_Sag_g)y (14) 1 B

+ﬂ0xf déc™ (x+é&)c™ (%), (19)
see Fig. 1. Using relatiofil2), the internal forces satisfying -1
the above equations verify E(f), which assures momentum

conservation. Space inversion symmetry requires atc*(x)=a)2(c’(x)
+ + [ —— _ _ 1
. 15 ~ad, [ age k-0 - 916 00
F+_(§1g):_F_+(_§!_§)- (16) 1
Momentum conservation also determines the nondiffusive - '6‘9XJ,ld§C+(X+ e (), (20

motor current] with

wherea and B are dimensionless coupling constants charac-
—pnd(y)= J dxf o (x,y)+f L (xy)]. (17)  terizing the strength of the motor forces defined in E@8).

It follows from the dynamical equations that the homoge-
Here, the forces of individually bound motors are defined in1€0us state™(x) =G, =const is a stationary solution for all
Eq. (9). values of the parameters.

The continuity Eqs(1)—(3) for the densities together with

defining Eqs(10) and(12) of filament currents and Eq17) A. Oriented bundles: Contraction
gtit\?: friF;r;oerniut;Lennélses r?ﬁiefaiitﬁgg};n%ggeﬁgu:;'ciﬂz Of it all filaments are of the same orientation, one is left with
details of the motor-filament interactions and could be modi-a single equation
fied by further proteins bound to the filaments. However, the 5 1
large scale behaviors of the system do not depend on the 0tC(X)=0"xC(X)—0u?xf défe(x+ &) —c(x—§)]e(x).
detailed form of these functions. In the following sections, 0 21)
we will therefore make simple choices which obey the sym-

metry relations discussed above. ) . B ) )
Here,c represents eithez™ or ¢, depending on the orien-

tation of the filaments. This nonlinear integro-differential

equation is the most simple description of the active dynam-
The minimal model has been introduced in HéP] as a ics of a filament bundle. Many of the basic physical prin-

simple model for filament dynamics. It can be obtained fromciples underlying self-organization of filament bundles can

the general equations derived in the preceding section bglready be discussed using this equation.

choosingR(x)=1 for |x|<€/2 andR(x)=0 otherwise. The

Ill. THE MINIMAL MODEL

forcesF=* are chosen to behave as 1. Linear stability
pe _ We consider a system of lengthwith periodic boundary
(£,0)~sgné), conditions and study the stability of the homogeneous state
. _ with respect to small perturbations. Periodic boundary con-
F=r(&,0~+1, (18) ditions imply that the bundle forms a ring. Such rings appear,

e.g., in eucaryotic cells in the late stages of cell division. We

where sgn{)=1 for £>0 and—1 otherwise, which repre- renresent the filament density by a Fourier expansion
sents the simplest choice compatible with the symmetry re-

qguirements. Furthermore, we assume in the minimal model
that _the motor distribution is homogeneous and that its dy- c(x)=> c e, (22)
namics can be neglected. K

The resulting dynamical equations are most conveniently

expressed in dimensionless form. We defxex/¢ and  with k=2mn/L, n=0,+1,... andwherec_,=c} . Up to

measure lengths in units of the filament lengthand a di-  first order in the Fourier componentg, the dynamicg21)
mensionless time variable=tD/¢2. Furthermore, we intro- reads
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= —[k2—2acy(1—cosk)]c, (23) el

PR subcritical

=\(K)c, (24)

for all k. This relation implies that forrco<k?/2(1— cosk), S
the modec, decays in time because thefk)<O0. It follows N .
that the most unstable mode is the one corresponding to the supercritical
smallest nonzero wave numbkr27n/L with n=1. This '

can be demonstrated using #A.)%/2[1—cos(2/L)] oo .
<((2mn/L)%/2[ 1—cos(2m/L)] for all n>1, which can be Oq A Q.
verified by induction using the equivalent conditiorf

—n2cos(27/L)—1+cos(2m/L)=0. Therefore, the homoge- FIG. 2. Schematic representation of the amplitlidd of the
neous state is linearly stable as long@s a., where the first spatial Fourier component of stationary states as a function of

critical valuea, is determined by (27/L)=0. Explicitly, the coupling strength between equally oriented filament<re-
sented are the cases of a supercritical and a subcritical bifurcation.

2.2 Solid lines represent stable sdutions and dashed lines unstable so-
= ) (25) lutions. In both cases, the homogeneous state is stable<ox,
coL1—cog27/L)] and unstable otherwise. In the supercritical case, i.&/@>0 for
a>a., the bifurcating solution exists fow>a. and is stable,

The critical valuea, is positive and decreases with in- While in the other case it exists far<a. and is unstable. In the
creasingc, andL (for L=1). Note that for bundle sizels  latter case, one usually finds inhomogeneous solutions coexisting
=1 we have & q.<® with the homogeneous state in an interyal;, a.]-
= 4 c .

ac

2. Contracted states 3. Contraction dynamics

If the homogeneous state is unstable, the system evolves The contraction of the bundle is most conveniently dis-
to an inhomogeneous steady state. We can calculate this st#gssed in an infinite system using the variance of the fila-
by numerically solving the dynamic equations or, in the vi- ment distribution
cinity of the bifurcation, by using a systematic expansion in

Fourier modes. To the third order @, the equation for the , 1=
steady stat@,c=0 reads g :NJ_de Xe(x), (27)
F(a)c,—G(a)|eyf?c,=0, (26)

whereN= [7 _dxc(x) is the total number of filaments as a
with F(a)=\(27/L) and G(a) given by Egs.(B6) and tmheads_utrgboi_bur?dl_e conkt)r?cgon.tSmce thet center of mat_ss of
(B7), see Appendix B. Note tha(a,)=0. ExpandingF e distribution is immobile due to momentum conservation,

andG at = «, we find expressions for the Fourier ampli- Vi’ew r:jave ch_osen h W'thQUt Iois of _ge_nerahtjx)
tudesc, andc, given by Eqs.(B8) and (B9). This solution ~ —J -=dXxdx)=0. The variance changes in time as
represents a localized distribution of filaments, i.e., a con-

tracted bundle. [cil ! !

It follows from Eq. (26) that this contracted steady state E&o° 0990399000000000000
exists if F(a)/G(a)>0. Depending on whether the ratio 0.61 | 1
F/G is positive fora>a, or for a<a., the bifurcation is ' :
supercritical and subcritical, respectively, see Fig. 2. From 04} : : ¢ i
Eqg. (B8) one deduces that the bifurcation is supercritical for ' 110
system sizes falling within particular intervals for which : ' 5
4(4n—1)<L<4(4n—3),n=1,2, ... . 0.2 P 1

Figure 3 presents numerical solutions of the dynamical ' ' O %
equations using an Euler algorithm with spatial discretization 0.0 fooossscssoaoococs X
A=0.1. Displayed is the modulus of the first Fourier com- . : : .
ponent|c,| of the attractors as a function af for a system 0 02 olc 2 3 o

d c

of length L=10. A region of coexistence extends from

=aq Up 10 a, where the homogeneous state becomes un- g, 3. The amplitude of the first Fourier component of stable
stable. stationary solutions of the minimal model for an oriented bundle as

For largea we find numerically that transient states con- g function of the interaction strength The average filament con-
sisting of several contracted packets can occur, which howeentration isc,=0.7 and system size= 10. The inset presents the
ever decay for long times to a steady state with one maxinonhomogeneous stationary solution fa=1.5. The scenario
mum. Their lifetime increases with increasing shown corresponds to a subcritical bifurcation, see Fig. 2.
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d , 1= These expressions reflect some interesting properties. of
at? TN ax Xae(,t) e.g., it decreases monotonically witbc|/c, L, and| 3| [22].

2. Solitary waves

2 (= 2 (1 0
N %dx o(x,t)+ NJO dg[ J,wdx Xqx+£)c(x) For B#0, the eigenvalues ok (k) are complex and the
homogeneous state loses stability through a Hopf bifurca-
tion, leading to solutions that oscillate in time. We find that at
the bifurcation, a solitary wave of the foror(x,t) =u~(x
—uvt) occurs. From momentum conservation, it follows that
the total filament current

- ch dx xax—&)c(x)

2 1 %
=2—Naf0 dfgfiwdx c(x+&)c(x). (28

I=[ dx(J"+J3" 32
The final expression reveals two opposing effects. The posi- f ( ) (32

tive constant describes the spreading of the bundle due to . o . )

fluctuations, while the second term takes into account th¥@nishes. This implies that the propagating filament pattern
effect of the active interactions. The interaction between par'S N0t accompanied by a net filament transport. However, as
allel filaments tends to contract the bundle. Note that distriS00n as filament adhesion to a substrate is introduced, the

butions for whichda?/dt=0 do not necessarily correspond total filament current associated with a solitary wave no
to stationary solutions of the dynami¢&d). longer vanishes and self-organized filament transport occurs

[23], see Appendix C.

For weak interactions between filaments of opposite ori-
entation, |8|<1, solitary waves can be understood intu-
1. Linear stability itively. They emerge from the interaction of a contracted dis-
tribution of filaments of one orientation with a homogeneous
distribution of filaments of opposite orientation. This picture
suggests a systematic procedure for determining solitary
waves. Writingc™ (x,t) =u™(x—ut), we can expand~(x)

d (c;) (A** A*)(c;) in powers of 3. For =0, we start from steady states as

B. Bundles of mixed orientation: Solitary waves

The linearization of Eq919) and(20) around the homo-
geneous statec™(x)=c, =const reads in the Fourier-
representation

(29) discussed above, which we denotecdgx,t) =u, (x). Soli-
tary waves are obtained by assuming that, eig.js a con-
tracted steady state, whilg, is homogeneous. We can now
write

dtlcy) (A " A\

where the elements of the matrix(k) are given by

A=*(K) = —k2—2a(cog k) — 1)cg = 2i gkcg |

=+

U= (X)=Ugy (X)+uy (X)B+uy B2+ -, (33

AF7(k)==2iBsin(k)c; . (30) =m0 BB . (34

For a system of length with periodic boundary conditions, The even terms in the expansion fevanish by symmetry.

the wave numbers ate=2mn/L with n=0,1,.... Inpres- 14 the lowest order, we obtain

ence of the coupling between the filaments of opposite ori-

entation, the matrix\ is not diagonal. The stability of the v1=2c, , (35)
modes is determined by the larger of the real pafts) of

the complex eigenvalues of this matrix which are given in uj =0, (36)
Appendix A.

We find again that the mode with the smallest wave num-

e -t
berk=2#/L is the most unstable and there exists a critical 21 sinkcg Uy

, Up=—— — for k#0. (37
value o, where the homogeneous state becomes linearly un- ’ k“—2a(1—cosk)c,
stable. Furthermorey.=0, independent of the values of the . _ _
other parameters, see Appendix A. The critical value This result agrees with numerical solutions of E¢®) and

(20), see Ref[23]. For anyg, solitary wave solutions can be

1 éc obtained near the instability via a systematic expansion in
a=c9 AL (3D Fourier modes, see Appendix B 2.
is a function of the remaining parameters, wherecg 3. Bifurcation diagrams

+c, andsc=cy —c, . Here,g is a dimensionless scaling  The arguments of the preceding subsection suggest a gen-
function. In some limiting cases, explicit expressionsd@r eral scenario of bifurcations as the interaction strengtis

can be obtained. For example, faic=0 one findsg increased. This scenario emerges from the situation @&ith
=47%/L?[1—cos(27/L)] and in the limitL—o g=1 if B =0, where the two subpopulations evolve independently, if
#0, whereasg=2/(1+|éscl|/c) for =0, see Eq.(25). B becomes nonzero. For small the homogeneous state is
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FIG. 4. Total filament concentratim=c* + ¢~ as a function of 8% H_ H_
positionx and timet for an oscillating wave solution of the minimal 00 1. 2. 3 gl 15 2. 25
model for coupling parametes= 2.5 andB=1, average filament Ieted [ %)
densitiescy =0.7 andc, =0.3, and system size=10. it /’TS)_ /""'So—l
A1 I TN ]
stable. At the critical valuex,, corresponding to the insta- /’—_ S ( S
bility of one filament population aB8=0, a solitary wave IR A ------------ 2
occurs. Furthermore, a second bifurcation where the solitary e H L e H
wave loses its stability occurs af. . This second bifurcation T T — T T o
Olg O, O O Oy 04 OO

is related to the point where the second filament population
becomes unstable fg=0. This bifurcation leads to an 0s-  Fig. 5. Asymptotic solutions of the minimal model represented
cillating wave solution that consists of two oscillating distri- py the time-averaged total amplitudig; | +|c; | of the first spatial
butions, which periodically traverse each other. An exampléourier components as a function of the interaction streagthr
of such an oscillating wave is shown in Fig. 4. It is charac-different values of the interaction strengsh The homogenous state
terized by propagating filament profiles that oscillate. is indicated byH, solitary waves by, and oscillatory waves b.
These arguments allow us to derive the full bifurcationPanels(a)—(f) have been obtained by numerical integration of the
scenario for small values g8. For ay<a<a., homoge- minimal model, wherg8=0.1 for (a) and(b), =0.01 for(c) and
neous distributions and solitary waves coexist. Similarly, we(d), and 8=0.001 for(e) and (f). (a), (c), and(e) are forc{ =0.7
find a coexistence of oscillating and solitary waves éf  and ¢, =0.3, while (b), (d), (f) and are f0r03%0-55 andc,
<a<a/. Depending on the ratio of plus- and minus- =0.45 . In all cased, = 10. (g) and(h) A schematic representation

f||a.ment numberSC+/07 we f|nd dlf'fel’ent blfurcatlon sce- valid for |IB|<1 derived from the bifurcation diagram fqﬂ’=0, as

. . 070 . ; : explained in the text. Dashed lines indicate unstable solutions.
narios, see Fig. 5. For large ratias,<«; and the coexist-
ence regions are separated. In the second case of similg2z7,33. In the preceding section, we have assumed that the
filament numbers shown in Fig. &<, and multiple co- motor distribution remains homogeneous, which implies that
existence occurs, in particular, a coexistence of two differengnotors diffuse infinitely fast. We will now discuss the effects
solitary waves indicated aS; and S,. These waves move Of the dynamics of the motor distribution using the same
into opposite directions. For the special cage=c, , the  choices for the motor forces as given by E(E8) and we
system is symmetric under— —x and the coexisting waves 2SSume that filaments are of the same lerigth
S, andS, occur via spontaneous symmetry breaking.

For three different values g8, numerically obtained bi- ) ) ) ) )
The dynamic equations, including the dynamics of the

furcation diagrams are displayed in Fig. 5. Shown(|is] : . . .

T . . motor density, have been derived in Sec. Il. As in the pre-
|.+ o D), € the fume-averaged sum of the a.\mphtu.des of theceding section, we use dimensionless space and time coordi-
first spatial Fourier components of both distributions as a tesx=x/{ andi—tD/¢2 Il as di ionless densi
function of «. For 3=0.001, the diagram follows closely the r.'a ef’i(_x gn - a; we .as Imensioniess Snsr
curves shown in the bottom panel corresponding to the limiti€s ¢~. We introduce a (3|men3|onless motor density
of small 8. As 3 is increased, the coexistence regions shrink= "/Mo, Where my=(1/L)[cdxm(x) andL is the system
and the solitary waveS, disappears. The bifurcation from SiZ€ Furthermore, we define the dimensionless parameters
solitary waves to oscillating waves becomes supercritical fol =I'¢/D and D,=D,,/D. Suppressing the tildes, we ob-

large 3. tain

A. Dynamic equations

aCct=02cT— 3,5 —3,J°F, (38)
IV. DYNAMIC MOTOR DISTRIBUTIONS

: : o 9Mm=D dim—d,J, 39
Motors are actively transported along filaments. This, in i mx X 39

general, leads to dynamic changes in the motor distributiofvith
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. 1 . . for £>0 andM(x,&) = [ Y2 édz m(¢) for £€<0. Further-
J“(X)=Af désgnédM(x,§)c™(x+&)c™(x), (400 more, the dimensionless coupling constaAtsand B are
-1 L
related to the parametetsand 8 of the minimal model and
describe effective interactions of a motor with a filament

1 .
J T (x)= IBf déM(x,&)c™ (x+&)c™(x), (41  pair.
-1
B. Oriented bundles
1/2) . . : -
defet (x+ &) —c™ (x+ _ 42 We consider again a system of lendthwith periodic
1/2) fler(xré)—c (x+HImX) 42 boundary conditions and all filaments of the same orientation
characterized by the density(x). The dynamic equations

Here, M is the number of motors present in the overlaplinearized at the homogeneous state wifx)=c, and
region of two filaments withM(x,&)= ifﬂigdgm(g) m(x)=mg=1 read in the Fourier representation

J(x)=FJ(

c 2aoal 1 sink oA k 2 k|, .
g & + — |0 cos; — (sin; | ¢ k
my —2iT sin; —Dpk®=il'keg my

wherek=27n/L with n being integer. Fol'/D,—0, we  Figure 7 displays the line in theA(B) plane limiting the
recover the minimal model discussed in the preceding seaegion of stability of the homogeneous state for different
tion. In contrast to the minimal model, the eigenvalues of Eqvalues ofI". In contrast to the minimal model, it depends
(43) are complex ifl’ #0. The homogeneous state thus losesnonmonotonically oB. This implies that upon increasirig)
stability through a Hopf bifurcation, where the most unstablethe homogeneous state can be restabilized. For large enough
mode occurs at a characteristic wave numkerAs a con-  T° e even find reentrant behavior with respectAtoi.e.,
sequence, for larger system sizes, solitary waves with mulncreasinga can restabilize the homogeneous state, see Fig.

tiple maxima appear, see Fig. 6. Furthermore, oscillatory, Fyrthermore, the figure shows that the critical values of
waves that can coexist with solitary waves have been found,o pecome negative. This implies that the homogeneous

in contrast to oriented bundles in the minimal model. state can become unstable even if interactions between par-

allel filaments are absent, i.d=0. Another interesting ob-
C. Bundles of mixed orientation servation is that forc; =c, , the homogeneous state be-
In the case of mixed bundles, the linearized equationsgtoartn(fsS i#ncsé?g ien Wg?arf;[;?c:atno ;;g?_rrwgg;énir;%?;%er;ous
read in the Fourier representation P 9 9

neous stationary states represent a new type of solution as

g Crh ATT AT OAT™ (e compared to the minimal model of bundles of mixed orien-
e |=[A" A A ||, (ag WEOM- . . .
dt Dynamic solutions to this model can be studied numeri-
ATt AMT AMM m ) : ;
My k cally. We find the three types of solutions discussed before,

namely, homogeneous states, solitary waves, and oscillatory
waves. In addition, we obtain the inhomogeneous stationary
sink B state mentioned above which is a one-dimensional analog of
AT (k)= —k>+ ZA( 1- T) co +iBkcy , asters in higher dimensions and consist of localized distribu-
tions of motors and filaments, see Fig. 8. In contrast to the
minimal model, solitary waves can exist even in the absence
Co of interactions between filaments of opposite orientatiBn (
=0) and stationary inhomogeneous states can exisBfor
) #0. Interestingly, the direction of motion of solitary waves

where the elements of the matrix(k) are

1—cosk

A*F(K)==2iB =

cy2+2iB sinEcgcg, can be reverted by changiig _
2 In summary, the important effects of a dynamic motor
distribution are(i) the appearance of a characteristic wave-
M* () — = 9i T i K length independent of the system sige), the appearance of
A (k)==F2il sinz, k i i, ; .
2 asterlike solutions, andii) that the existence of inhomoge-

) neous stationary states requires a symmetric situation with
A™(k)=—Dk*—iTk(cs —¢cg). co=¢cgp .

ATM(k)=—2A| co « —zsinE
27K
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FIG. 7. Regions of stability of the homogenous state for a fila-
FIG. 6. Examples of asymptotic solutions for an oriented ment bundle with dynamic motor distributioA.andB characterize
bundle, where the dynamics of the motor distribution has beerthe coupling of a filament pair via a motor, where the homogeneous
taken into accounta) A solitary wave with a spatial period of half ~State is stable below the lines showa) is for the symmetric case
the system size antb) an oscillatory wave are shown. The solid ¢y =C, =1 and(b) for c; =1 andc, =0.5. In both cased, =10
lines represent the filament distributions and the dashed lines th@ndD,= 1. Solid lines indicate oscillatory instabilities and dashed
motor distributions.(b) Distributions at four different times are lines static instabilities. The inset presents a case where increasing
shown. They have been shifted in theirection for better visibility A can restabilize the homogeneous state.
and in thex direction such that the positions of the maxima coin-
cide. The two solutions ifa) and(b) exist for the same parameters,
which areA=1.5,T'=1.5, D=1, ¢c,=1, my=0.5, andL = 10. Here, we have introduced the tension due to interactions be-
tween filaments of the same orientatidh,., and those of

opposite orientation. .. From Eq.(46), we obtain
V. CONTRACTILE TENSION AND EXTERNAL FORCES

So far, we have been focusing on dynamical properties of
active bundles. We now discuss mechanical properties of the % _,(y)=— nf dx(J++(x)+J“(x))Q(x—y)+E(j°),
bundle such as bundle tension and the role of applied exter- (49)
nal forces. The total tensioB (y) at a pointy within the
bundle is obtained by integrating the contributions of all fila-

ments, i.e.,
So(y)=— nf dX(J7 () +I7T(0))Q(x—y) +3©,
(49

E(y):f dx{a"(xy)+ o (x,y)], (45)
whereo™(x,y) has been introduced in Eq#) and(5). Tak- 6
ing into account momentum conservation, E8), one finds
in the absence of external forces 4

d + — + - 2

O L * L
0 2 4 6 8 x
This equation allows us to calculate the tension profile by
means of Eq(8) if the currents]* are known. FIG. 8. Inhomogeneous steady state of a symmetric system with
For simplicity, we neglect agaifi,,. The total tension in ¢y =c, where the dynamics of the motor distributiomhas been

the bundle can be written as taken into account. The filament distributions are represented by

dotted and dashed lines forf andc™, respectively, the full line
represents the motor density. The parameters arej =c, =1,
2(y)=2o(y)+2=(y). (47)  B=T'=D,=1, andL=10.
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where @d/dx)Q(x)=R(x) with Q(0)=0, and 2(30) and tension is a local quantity as can be seen by introducing
3@ are constants of integration. These expressions seethe function P(x,&)=Q(x+¢&)—Q(x). For the minimal

to imply that the tension at positiondepends on the global model withR(x) =1 for |x|<€/2 andR(x) =0 otherwise we
state of the bundle sinc®(x)#0 for all x#0. However, obtain

1 4 1 ¢
2o(n)= Eanffgdff dx ™ (x+&)cT (X)P(x—y,§)sgr(é) + E“”Lgdff dxc”(x+¢)c” (X)P(x—y,£)sgré)
(50)

and determined by the condition that in the final expressi@s
and(51), constant contributions to the tension are absent.
The tension in the homogeneous statéx) =c, is given

1 ¢
Ea(y)=§BnJ%d§J dx ¢ (x+&)cT (X)P(x—y,§) by

1 ¢ N N 1
—Eﬁnf%dff dxc’(x+&)c (X)P(x—y,§). 2:§n€3a(cgz+ca2). (52

(51) . : . :
In this case, only the interaction between parallel filaments

In contrast to the nonlocal functio®, P is a local function, contributes to the active part of the bundle tension. For an
with P(x,£)=0 for |x|>2¢. In writing the above equations, oriented bundle, the tension is positive, i.e., contractile,
we have dropped constant contributions to the tension arisingghenevera>0.

from the boundaries. Indeed, if we consider a situation with  More compact expressions can be obtained by the ap-
periodic boundary conditions, such boundary terms musproximation P(x,&)=¢ for |x|<€/2 and P(x,&)=0 else-
vanish. The integration constari$? and=? are therefore ~where. Then

1 y+e2 1
E:(y)%zanfym dXL délél[c” (x+&)cT () +eT (x+E)c(X)] (53
and
1 y+e/2 ¢
Ea(y)~iﬂnfy€/2 dXL dégfc (x+&)e (x)—c (x+&)cT(x)]. (54)

For filament distributions that vary weakly over a filamentis thus F:fgfext(x)dxzz- This result indicates that the
length, this result corresponds to the expressions given igenerated force is independent of the bundle length and in-
Ref.[22], with = 5/2 and 7= 7/4. creases with the square of the filament density.

Contractile tension in the bundle can give rise to contrac-
tile forces exerted by the bundle. In order to illustrate this,
consider a homogeneous oriented bundle with constant fila-
ment densityc(x) = ¢, inside a box Bsx<L of sizeL, while In this paper, we have developed a physical description
c(x)=0 elsewhere. In order to stabilize this state, we imposéor the dynamics and mechanics of active filament bundles.
boundary conditions that immobilize filaments within the in- In this one-dimensional description, we describe the dynam-
tervals[0,(] and[L—¢,L] near the ends. Such boundary ics of the filament densities projected on an axis which is
conditions could be realized by attaching the filaments neaparallel to the filaments. The activity in these bundles results
the end to a substrate. This filament distribution is stationaryrom active cross-links that create relative forces between the
and fora<a, stable in the interval ¢,L — €]. At the ends, filaments. Our approach is based on momentum conservation
the force balance, Eq7), is satisfied only if the force density within the bundle and momentum exchange via external
fexd(X)=anlci(€—x) is applied forxe[0,] and corre- forces. Dynamic equations can be derived most conveniently
spondingly at the right end. The total force acting on the endsising simplifying assumptions such as a low motor density

VI. DISCUSSION
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or low duty ratio, local friction, the absence of passive crossiments of the same orientation, i.4=0. The bifurcation
linkers, and the assumption that filaments do not change thediagrams exhibits for certain parameter ranges reentrant be-
lengths. At low motor densities, the filament currents arehavior, i.e., the homogeneous state is restabilized by increas-
dominantly generated by interactions of filament pairs. Usingng A or B.
this approach, we systematically derive the minimal model External forces modify the filament dynamics in interest-
introduced in earlier works. In general, the filament dynam-ng ways. Using the momentum balance in the filament
ics in the active bundle is described by nonlinear integro-bundle, we studied active mechanical properties of the
differential equations. The nonlocal character of these equasundle. In general, the bundle generates mechanical tension.
tions reflect the finite filament length. Applying external forces to the bundle ends, a stationary
The bundle dynamics on scales much larger than the filastate of a contractile bundle can be attained.
ment length alternatively can be described phenomenologi- It is interesting to compare our results to experiments,
cally in a continuum limit, leading to a nonlinear description where purified filaments interact with motor molecules or
in the form of partial differential equations30]. Such an  small aggregates of such motors. There is ionétro experi-
approach is not limited by the above mentioned simplifyingment involving filament bundlef9], where the contraction
assumptions. However, the origin of the different terms thakiccompanied by polarity sorting of disordered bundles of
appear in the equations cannot be systematically related tactin filaments in the presence of adenosine triphosphate and
more microscopic mechanisms. Interestingly, the main feamyosin Il moleculegmore specifically heavy meromyogin
tures found in phenomenological descriptions are alreadwhich presumably spontaneously form small aggregates, has
captured by the more specific models described here, whicheen observed. Qualitatively, this corresponds to the state
are derived using simple approximations. This suggests thathown in Fig. 8. However, this experiment has not been re-
the main features obtained from our models can still hold inpeated and a systemaiit vitro study exploring all the re-
situations where our approximations are no longer valid. gimes discussed in this paper is lacking and would be very
The equations discussed in this paper describe the averageluable. Experiments on filament bundles could also be per-
behavior of the bundle and thus represent a mean-fielfbbormed using microtubules, however, suitable preparation
theory, where fluctuations are captured by effective diffusiortechniques to generate aligned filaments have to be devel-
terms but do not explicitly appear in the description. In par-oped. Artificially constructed kinesin aggregates would be
ticular, the coefficienD of filament diffusion is effectively natural candidates for mobile cross-links used in such a
generated by motor-filament interactions. In the absence dftudy.
such interactions, thermal fluctuations would lead to a diffu- As mentioned above, our results are expected to be more
sion coefficientD=kT/ ¢, which becomes small for long general and could also apply to situations where additional
filaments. The effective diffusion coefficient due to active components are present. For example, it may be more con-
interactions between parallel filaments, which do not genervenient to prepare filament bundles using the help of passive
ate a net current in the homogeneous state, can be estimatess-linking or bundling proteins such asactinin. For a
as D=Ax?w. Here, Ax is the run length of a motor on a large cross-linker density or a long lifetime of such passive
filament andw~ ¢ denotes the rate of generation of mobile cross-links we expect qualitatively new behaviors. However,
cross-links, which grows linearly with the filament length. for low concentrations or short lifetimes of passive cross-
As a consequenc®~ ¢ and for long filaments the diffusion links, they are expected to mainly modify the effective fric-
is dominated by active cross-links. Numerical simulations oftion coefficient and possibly other parameters of our model.
computer models, which take into account fluctuations shovEven in the presence of passive cross-links, we expect the
that the phenomena described in the previous sections persiwiain results of our work to apply in certain regimes.

gualitatively in the presence of fluctuatiof2]. A thorough A similar modification of model parameters can be ex-
analysis of the effect of fluctuations will be the subject of apected, in general, if other proteins are present which interact
separate papégB0]. with motors and/or filaments. For example, the interaction

The minimal model that neglects the dynamics of the mo-strengtha between equally oriented filaments could be sig-
tor distribution already exhibits a complex scenario of be-nificantly enhanced by proteins bound to filaments which
haviors. We discuss the full bifurcation diagram of this affect the speed of motors. In fact, it might seem odd at first
model that involves homogeneous solutions, contractedlance that filaments of the same orientation exhibit signifi-
steady states, solitary waves, and oscillatory waves. Thegmnt interactions via motors at all. As a motor advances on
states are separated by bifurcations and can partly coexiboth filaments with the same speed, no relative motion is
depending on parameter values. generated. Interactions between filaments of the same orien-

Taking into account the dynamics of the motor distribu-tation are induced by motors that do not move with the same
tion does again generate the types of solutions present in trepeed on two cross-linked filaments. This happens, e.g.,
minimal model. Furthermore, new inhomogeneous steadyhen a motor arrives on one filament at the end towards
states occur which are the one-dimensional analog of asterghich it moves. In this case, the motor stops on one filament,
In addition, the bifurcation diagrams are modified and arewhereas it continues for a while to move on the second fila-
considerably richer. Contracted steady states are destabilizegent. This induces relative filament sliding via an end effect.
by the motor dynamics and in many cases become solitary The interaction strengtlx between equally oriented fila-
waves. Furthermore, instabilities of the homogeneous statments can be enhanced if the motor speed varies along the
already occur in the absence of interactions between filawhole filament. For example, the speed of motors can be
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affected by the presence of other motors on the same fila=q. (29) and show that.>0.
ment. Such crowding would typically lead to a slowing down  The two eigenvalues ok (k) are
of motors as they approach the filament ¢84d], generating
relative motion of filament pairs. Furthermore, one could \.=—k>?+ a(1—cosk)c—2iBkdc
imagine specific proteins bound to the filaments which affect .
the speed of motors. If such proteins had a graded distribu- +{a?(1—cosk)?sc?— B2Kk*c?+ Bsintk(c?— oc?)
tion linked to the filament polarity, they would lead to strong +2i aBk(1— cosk)csct2 (A1)
interaction terms between filaments of the same orientation.
These examples illustrate that in more complex situation$, this expressiong=c¢ +¢, and sc=cg —c, . The real
where additional proteins are present, the main results of Ouﬁart of A, , which determines the stability of the homoge-
work could still apply, however, with effective parameters. neous st;t'e against small perturbations, is

This suggests that the essential properties of active fila- '
ment bundles found in our work might be even more general
and could also apply to more complex situations foumd AK)=—k?>+ a(1—cosk)c+
vivo. For example, our results could apply to stress fibers.
These are contractile actin bundles in cells lacking the ObViWith
ous periodic organization of musclg but containing myo-
sins and other proteins. As we have demonstrated in Sec. V, - 42(1— cosk)25c2— B2k2c2+ B2sintk(c2— 5¢?),

1/2

1 1
~JaZ+b’+Zap  (A2)

2 2

the generation of tension and contraction is possible through (A3)
the interaction of filament pairs without the need of a
musclelike sarcomere structure. The periodic boundary con- b=2aBk(1— cosk)csc. (A4)

ditions that we use in several examples correspond to the
situation, where the bundle forms a ring and could apply, fofFor a =0, this impliesk (k) = —k?. The derivative of with
example, to contractile rings that cleave a cell during cellrespect tow is of the form

division.
Interestingly, the types of dynamic behaviors that we ob- 22N 3
serve also include qualitatively the symmetry breaking pre- 2 Aot AratAzat, (A5)

sented by fragments of fish keratocyfd$,17. These frag-

ments consist of the lamellipodium, which is the flattenedwith A;>0, i=0,1,2. It then follows that there is a unique
leading margin of these_cells,_ responsible for their mig_rationcritica| value a.>0, determined by\(k=27/L;a=a.)
Notably, they do contain neither the nucleus nor microtu-— o, such that the homogenous state is linearly stable, unless

bules. Thege fragments e>.<ist ina symmetric stationary statg>ac and that the longest wavelength fitting in the system
as well as in an asymmetric locomoting state, where one ¢ ecomes unstable.

change between these states through sufficiently strong ex-
ternal perturbationg17]. Even though the active bundles
studied in the present work are far from giving a description
of moving keratocyte fragments, our results clearly indicate

that viewing the cytoskeleton as a dynamical system is @ we calculate the asymptotic solutions of the minimal
valuable concept for understanding such phenomena. Ohodel close to the critical value, for arbitrary 8 and com-

description of active bundles provide a firm basis for thepare it with the expressions for smgldiscussed in Sec. Iil.
development of more profound theories of active filament

systems, which could help understanding the self-
organization and dynamic behaviors in living cells such as
cell locomotion. Moving on into this direction will require a  In the Fourier representation, the stationary solution of
number of important additional ingredients. A three- EQ.(21) is given by
dimensional description should, for example, incorporate ef-

fects, such as the polymerization and depolymerization of Ck:_z_a 2
filaments, nonmobile cross-linkers, capping proteins, and the k %5
interaction of filaments with a membrane.

APPENDIX B: NONHOMOGENEOUS SOLUTIONS
CLOSE TO a,

1. Oriented bundles

cosp—1

G, (B1)

wherec_,=cf . In particular,
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APPENDIX A: EIGENVALUES OF THE LINEARIZED
TIME-EVOLUTION OPERATOR al? 20 1] 4nx
) ] ) . Ch=———j|C0s——1|CiC1+ 5|COS——1|CoCyt - .
Here, we give the complete eigenvalues of the linearized A [ L 2 L
time-evolution operatoA (k) of the minimal model given in (B3)
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Close toa= a., we expand the solution in terms of using
the ansatz:kocc'{. Ignoring higher modes, we obtain
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The Fourier coefficients of the stationary solution are given
by

1 al®[ 2w Lc —2c 2
Co=— cos——1|c _->0 L T PSR T
? al?1] 4m ] 4772 L C1= 5| 1—cos | (a—ay)
+ 222 cos;—— cos —
B4
B4 +0((a—ay)®? (B8)
Up to the third order irc,, we find
and
F(a)c;—G(a)|cyf’c;=0 (B5)
with 2
2,2 1—-cos—
2 2 Cy= —2L —L (a—ay)+O0(a—ay)?)
_ 7T_ 2 2 2 G —&c) )
Fla)=1+ cos — 1 (B6) 4 cos
B
and B9
2aL%(1 41 2 2. Bundles of mixed orientation
G(a)=——5|cos;.——1|—|cos——1 ) ) _ _
2 L L We determine solitary waves that appear at the bifurcation
point = « using the ansatz
al? 2 1}
—| coS— — _
5 4772 L (87) Ct(X,t):E Cl‘(_"elk(ZﬂTX/L+wt). (B].O)
al?1] 4z '
1+ — 5|cos——1|c . - ; i i
w2 L The Fourier coefficients satisfy the following equations:
- w2 N 2 4m|
Ia)C1=—?Cl+2a 1- cos (c;cg—cicy)+ > 1—cosT ci,Cp+---
27 1 4x
+2|B cO c; +sm—(cl Cog +C24Cy )+ 2smTc2 PR R (B11
A 2 4 2| 41 N
2iwCy =— C, +4ai|1—cos—|cic; +=|1—cos—|c, ¢y + -
2 L 2 L
2m 1 47
+4|,8 c0 c,y +S|nTc1 cy + 2smTc2 Cot+- 1, (B12)
L 42 2@ 4|
iwCy =— ?cl +2a 1—cosT (CiCop—C_4Cy)+ > 1—cosT C_,Cp+---
2w 1 47w
—2|,8 c0 Cq +S|n—(cl Cot+ciico)+ 2smTc2 C_,+--- (B13)
o 2 27| 1 |
2iwCy =— —C, +t4ay|1—cos—|c;cy + 5| 1—cos—|C,Cq + - - -
2 L 2 L
2w 1 47w
—4|,8 cO C, JrsmTc1 c, t 2smTc2 Co - (B14)
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We assume without loss of generality >c, and expand d.F(ae,wq) d F(ac,wg)
in ¢, which leads to M S(as.o9 "™ Glag.wg (B20)
F(a,B,0)—G(a,B,0)|c] |?=0, (B15)

Furthermore, the sign of the prefactor @f- o, will deter-
where the expressions férandG to the first order in3 are ~ mine if the bifurcation is supercritical or subcritical.

given by The bifurcation conditior(«a.,wg) =0 leads to
2
T 2 4 A 1
__ " _ o pas -
F= T +2a|l cosT Co ti 1 BCy —w ac= % o] (B21)
(B16) 2 1—cosT Co
and e
L2 2m 2m] 1 A @=L FCo - (822
G=8a?——|1—cos—|{|1—-cos—|—=|1—cos—
472 L L] 2 L o
This implies
X{l Zi( 472 )B] 19 ,
—— | w;— ———C¢C . 2L
A AT L 9.F(as w0) =" —5[1-cos2rLles,  (B23
aa
Here,
— 4m| | L2
A=1672/L2—2a|1—cos—|cg . d,F(ac,wo)=—i—7, (B24)
L 47
At the bifurcation pointa= a., we haveF(a.,B,wq)=0. 2
In the first order ine — @, we obtain for the frequency and 1 COST
the amplitude ofc; Glac,w0) =~ ——5— (B25)
w:w0+wl(a_a’c)+“'y (818) 0 1_COST
dF(ag,wp) + wd, F(ag,wq)
lc) 2= ©0 ! it (a—ag)+---. and w;=0.
Glac,wo) The velocity of fion is given by=weL/2
(B19) e velocity of propagation is given by=wglL/27

=2pc, . The components; andc, are given by the ex-
The right hand side of the last expression needs to be reg@ressiongB8) and (B9) for ¢, andc,, respectively. For the

and positive such that we obtain the condition distribution of minus filaments, we find
27
sin—¢o
Cp=—2i cy, (B26)
! '84772 2| _ !
F_Za 1—cosT Co
27 272 o
sin— 1—cosr Co “Co
Cy = 2 — Sy (a— ) +O((a—ac)). (B27)
L4 71 e W PSR e W e

These expressions are consistent with the results of Semodel. Adhering filaments are described by the densities
[l B and provide analytic expressions of solitary wave solu-anda™, respectively. Attached filaments are assumed to be
tions for smallg. immobile, while they contribute to the motion of free fila-
ments. The dynamic equations in dimensionless form are
given by

In this section, we discuss the effects on the bundle dy- e o i . . N
namics due to filament adhesion to a substrate in the minimal GCT =07 =TT —dJT T —wae” twga’, (Cl)

APPENDIX C: FILAMENT ADHESION
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DWW A

FIG. 9. The effect of filament adhesion on the critical vaﬂ{e
of the minimal model. Displayed is the critical valﬁg as a func-
tion of the adhesion rate, for different values of the coupling
strengthB and forcg =0.3,¢, =0.7, a=2a, B=28, wg=1, and
L=10. Forw,=0, a.=a., which is the critical value in the mini-
mal model in the absence of adhesion.

gC =0 —dd  —dJd T—w,c +wga, (C2)
da =w,ct—wqat, (C3
dd” = waC —wgd (C4

with
l J—
I Jo défac™ (Xx+ &) +aa™ (x+ &) —ac™ (x—§)

—aa®(x—&)]c*(x) (C5)

and

1 —_ _
Jﬂ:lLdsmcﬂﬁs>+ﬁa+<x+§>]ci<x>.
(C)
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FIG. 10. The total filament current of propagating filament
patterns with filament adhesion as a function of the adhesion rate
w, . Symbols represent numerically obtained results for different
detachment rates. Parameters are=1.5, =2, 8=28, c;
=0.3, ¢, =0.7, andL=10. The maximal current decreases and is
reached at larger ratios af,/wy aswy is increased.

—vot) anda™(x,t;0)=0. Assuming that for finitav, solu-
tions of the formc™ (x,t;w,)=u"(x—vt) anda™(x,t:w,)
=r*(x—ot) exist, we write

v=vgtwuit---, (C8
SN (C9)
r=wary+---. (C10

The equations for; can be solved explicitly. We find

. 1
ry(x)=
l( ) ewdT

T .
_1f0 dt’e“d ug (x—vet’), (C1l

whereT=v,L.
This result can in turn be used to calculate in the first
order inw, the total net current associated with these soli-

Here, w, andwg are rates of attachment and detachment of,y \yayes. Indeed, in the lowest order, this current is given
filaments, respectively, while and 8 characterize coupling by

constants between free and attached filaments.
The homogeneous statec*(x)=c, and a“(x)

L 1
= w,Colwy is stationary. It becomes unstable at a criticall =2waJ0 dX[aJO d&{lry (x+ &) —ri(x=§)Jug (x)

value a., which for oriented bundles is given by

~ wa-l— (OF]

Qe=Qg—————— (C7)

¢ TCuwyt oy’

where a, is the critical value in the minimal model with

w,=0 and for,uzzla. For B#0, a Hopf bifurcation oc-
curs, the dependence of the critical valug on the attach-
ment ratew, is shown in Fig. 9 fora=2a and 8=28.

In the caseB=0, the stationary distributions are given

by c*(X;w,)=wyc™(X;0)/(nwa+wg) and a*(X;w,)
=w,C"(X;0)/(nw,+ wy), Wherec™(x;0) denote the sta-
tionary states of the minimal model. FBr~ 0, solutions can

be obtained in the limit of small attachment rates by expand-

ing around solitary waves fow,=0. Consider a solitary
wave in the minimal model given bg~(x,t;0)=ug (x

H[ry(x+&) =1y (x=8)]ug (X)}

1
v delr{ o+ Oug 011 (cHUF 0T}, (€12

where, for simplicity, we have chosen=2a and E= 2.
Evaluating this expression using E¢C11) and Ug (X)
=3S7__Ug,e'?™ L we obtain

| =8waL3voan§1 An(Jugal?+ug,|?) +O(w3),

(C13

where
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2N net filament transport if filament adhesion occurs. SiAge
Cos—— 1 <0 for all n, this transport occurs in the opposite direction as
§=—, (C14  wave propagation. Remarkably, as indicated by the prefactor
wiL2+ 47wy a, itis the interaction betweeparallel filaments that gener-
. ates the current. Note that fgr=0, we havev =0 and thus
with vy andu, depending ong as described in Sec. lll B. |=0. Numerical results fof as a function ofw, are shown

This result shows that solitary waves are accompanied with m Fig. 10.

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P.[17] A.B. Verkhovsky, T.M. Svitkina, and G.G. Borisy, Curr. Biol.

Walter, Molecular Biology of the Cell4th ed.(Garland, New 9, 11 (1999.
York, 2002. [18] D. Humphrey, C. Duggan, D. Saha, D. Smith, and JsKa
[2] D. Bray, Cell Movements2nd ed.(Garland, New York, 2001 Nature(London 416, 744(2002.
[3] T. Kreis and R. ValeCytoskeletal and Motor Protein®xford [19] O. Thoumine and A. Ott, MRS BulR5, 22 (1999.
University Press, New York, 1993 [20] H. Nakazawa and K. Sekimoto, J. Phys. Soc. %#.2404
[4] F. Juicher, A. Ajdari, and J. Prost, Rev. Mod. Phy&9, 1269 (1996.
(1997. [21] K. Sekimoto and H. Nakazawa, @urrent topics in Physics
[5] F. Amblard, A.C. Maggs, B. Yurke, A.N. Pargellis, and S. edited by Y.M. Cho, J.B. Hong, and C.N. Yafg/orld Scien-
Leibler, Phys. Rev. Lett77, 4470(1996. tific, Singapore, 1998 p. 304; e-print physics/[0004044.
[6] F.C. MacKintosh and P.A. Janmey, Curr. Opin. Solid State[22] K. Kruse and F. Jicher, Phys. Rev. Let85, 1778(2000.
Mater. Sci.2, 350(1997. [23] K. Kruse, S. Camalet, and F.lither, Phys. Rev. Lett87,
[7] D.C. Morse, Macromolecule31, 7030(1998. 138101(2002.
[8] L. LeGoff, F. Amblard, and E.M. Furst, Phys. Rev. Le88, [24] S. Camalet, F. Jicher, and J. Prost, Phys. Rev. Le82, 1590
018101(2002. (1999.
[9] K. Takiguchi, J. Biochem(Tokyo) 109, 520(1991). [25] S. Camalet and F."llaher, New J. Phys2, 24 (2000.
[10] R. Urrutia, M.A. McNiven, J.P. Albanesi, D.B. Murphy, and B. [26] B. Bassetti, M.C. Lagomarsino, and P. Jona, Eur. Phys.1h B
Kachar, Proc. Natl. Acad. Sci. U.S.88, 6701(1991). 483(2000.
[11] F. Neddec, T. Surrey, A.C. Maggs, and S. Leibler, Nature [27] H.Y. Lee and M. Kardar, Phys. Rev. &, 056113(2001).
(London 389, 305 (1997. [28] T.B. Liverpool and M.C. Marchetti, Phys. Rev. Let®0,
[12] T. Surrey, M.B. Elowitz, P.-E. Wolf, F. Yang, F. Ndec, K. 138102(2003.
Shokat, and S. Leibler, Proc. Natl. Acad. Sci. U.S9A, 4293  [29] T.B. Liverpool, A.C. Maggs, and A. Ajdari, Phys. Rev. Lett.
(1998. 86, 4171(2001).
[13] F. Neddec and T. Surrey, C.R. Acad. Sci. ParisyisdV Phys.  [30] K. Kruse and F. Jicher (unpublishedl
Astrophys.2, 841 (2002. [31] J. Howard, NaturéLondon 389, 561 (1997).
[14] T. Surrey, F. Nddec, S. Leibler, and E. Karsenti, Scier2@2, [32] A. Ishijima, H. Kojima, H. Higuchi, Y. Harada, T. Funatsu, and
1167(2001). T. Yanagida, Biophys. J70, 383(1996.
[15] A.A. Hyman and E. Karsenti, Ce84, 401 (1996. [33] F. Neddec, T. Surrey, and A.C. Maggs, Phys. Rev. L&8,
[16] U. Euteneuer and M. Schliwa, Naturgondon 310, 58 3192(2001.
(1984. [34] K. Kruse and K. Sekimoto, Phys. Rev.@, 031904(2002.

051913-16



