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PACS. 87.16.Ka – Filaments, microtubules, their networks, and supramolecular assemblies.

PACS. 05.45.-a – Nonlinear dynamics and nonlinear dynamical systems.

Abstract. – The generation of contractile forces by living cells often involves linear arrange-
ments of actively interacting polar filaments. We develop a physical description of the dynamics
of active fibers based on a general expression for the tension in terms of the filament density
and the bundle polarisation. We discuss the long-time behaviour of oriented and of nonpolar
fibres, discuss effects of polymerization and depolymerization, and relate this continuum theory
to nonlocal descriptions of filament-motor systems. We show that a nonpolar arrangement of
filaments suppresses oscillatory instabilities which could be relevant for muscle fibers.

Important aspects of cellular dynamics depend on the cells’ ability to generate contractile
forces [1]. For example, in the late stage of cell division, eucaryotic cells are cleaved by
contracting a ring between the two newly formed nuclei, and during locomotion on a substrate
the cell body has to be dragged behind the advancing leading edge. Often, these contractile
forces are generated by fibres composed of cytoskeletal filaments, usually actin filaments, as
well as many other proteins including molecular motors [2].

Active cytoskeletal systems have recently attracted a lot of attention both experimen-
tally [3–7] and theoretically [8–15]. Theoretical descriptions of contractile fibres have typi-
cally been based on the specific interactions between filaments and motor proteins [8–11]. By
hydrolyzing adenosinetriphosphate (ATP), which is a chemical fuel, complexes of molecular
motors can induce relative sliding of aligned filaments. Indeed, in an in vitro experiment it
was found that disordered bundles of actin filaments can shorten after the mere addition of
the motor protein myosin and ATP [3]. The relative sliding due to molecular motors depends
crucially on the relative orientation of the filaments: filaments are polar as their ends, com-
monly denoted as plus- and minus-end, are structurally different. This polarity determines
in particular the direction of the forces applied by molecular motors on a filament. A phys-
ical description of the interactions between filaments mediated by motors leads to nonlocal
expressions, since filaments can transmit stresses over a finite distance [10,12].

The dynamics at length scales large compared to the filament length can be appropriately
described by a local theory. In the present work, we develop a continuum description of
the dynamics and mechanics of contractile fibres, which allows to extract generic features
without a detailed consideration of the underlying microscopic mechanisms. Since fibers are
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linear objects, we use a one-dimensional description where the fiber is aligned along the x-
axis. At any position, we define the local filament density c = c+ + c− and the polarization
p = c+ − c−. Here, c+ and c− denote the number of filaments per unit length, respectively for
the two possible filament orientations along the fiber axis. We will focus our analysis on two
simplified situations which provide particular insights in general properties of active fibers:
fully polarized and nonpolar fibers. In the first case, all filaments are oriented in the same
direction, p = ±c, while in the second case, there is an equal density of filaments of both
orientations everywhere along the fiber, p = 0.

In general, the filament dynamics can be written in the form of continuity equations:

∂tc+ ∂xj = s, (1)

∂tp+ ∂xjp = sp. (2)

In the absence of polymerization and depolymerization, the filament density c is a conserved
quantity and s = 0. If, in addition, we assume that filaments do not change their orientation,
p is conserved as well and sp = 0. In the absence of external forces, the currents j and jp
result from active interactions between filaments. We assume that the filament densities and
polarization locally define the state of the active material. As a consequence, the currents
j and jp depend on c and p and their derivatives only. Similarly, the mechanical tension σ
which is generated in the bundle by active processes is also fully determined by c and p. Note
that, in our one-dimensional description, σ has units of force.

Gradients in the tension are balanced by viscous forces that are due to filament currents
relative to the surrounding fluid. In the rest frame of this fluid and ignoring filament tread-
milling, the filament current can thus be expressed as

j = η−1∂xσ, (3)

where η is a friction coefficient. In the absence of external forces, or for periodic boundary
conditions, the total current I ≡ ∫ L

0
dxj = η−1(σ(L) − σ(0)) vanishes. Here L denotes the

system length.
The constitutive equation of the fiber relates the fiber tension to filament density and

polarization as well as their derivatives(1). Up to second order in c and p, and up to second-
order derivatives, the most general expression for σ is given by(2)

η−1σ = −Dc+A1∂xp+A2∂
2
xc+

+B1c
2 +B2p

2 + E1c∂xp+ E2(∂xc)p+

+F1c∂
2
xc+ F2p∂

2
xp+ F3(∂xc)2 + F4(∂xp)2. (4)

Here, we have written all terms which are permitted by symmetry. Indeed, under reflections
x→ −x, c and σ are even, while p is odd, which limits the possible terms.

The current jp is not induced by tension gradients. However, we also assume that it is
determined by the state of the system, given by c and p, alone. Retaining only those terms

(1)We obtain an expression for σ by expanding the tension in the variations δc = c − c̄ and δp = p − p̄ with
respect to a reference state of homogeneous filament density c̄ and polarization p̄. Finally, one can re-express
the result in terms of c and p to obtain eqs. (4) and (5).
(2)Nonlinearities are required to stabilize the dynamic equations. We can ignore higher-order terms if the
sign of the second-order terms is such that they are stabilizing.
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that satisfy the symmetry requirements, the most general form of jp reads

jp = ε
(
c2 − p2

) −D∂xp+A1∂
2
xc+A2∂

3
xp+

+B̄1c∂xp+ B̄2(∂xc)p+

+Ē1c∂
2
xc+ Ē2p∂

2
xp+ Ẽ1(∂xc)2 + Ẽ2(∂xp)2 +

+F̄1c∂
3
xp+ F̄2

(
∂3

xc
)
p+ F̄3(∂xc)∂2

xp+ F̄4

(
∂2

xc
)
∂xp. (5)

Here, we have used an additional constraint. In the case of a fully polarized fiber, polarization
and density are the same c = p, and consequently, j = jp. Comparing the expressions for j and
jp in the limit c = p requires the expression (5) and furthermore implies B̄1+B̄2 = 2(B1+B2),
Ē1 + Ē2 = Ẽ1 + Ẽ2 = E1 + E2, F̄1 + F̄2 = F1 + F2, and F̄3 + F̄4 = 2(F3 + F4) + F1 + F2.

The source and sink terms s and sp describe effects of filament polymerization and depoly-
merization. Using the same arguments as described above, we can write simplified expressions
for s and sp. Assuming for simplicity that polymerization and depolymerization rates only
depend on local densities, they are given by

s = c− µc2 − νp2, (6)

sp = p− (µ+ ν)pc. (7)

Again, we have used the constraint that s = sp for c = p. This constraint remains valid
if we neglect spontaneous changes of filament orientation and assume that filaments of one
orientation are generated by polymerization only if filaments of this orientation already exist.
Furthermore, we exclude situations where polymerization and depolymerization are controlled
externally. In order to ensure stability of the system we choose µ and ν to be positive.

We will now discuss the properties of contractile fibers governed by the dynamic equations
introduced above. First, consider the case of a fully polarized fiber in the absence of poly-
merization and depolymerization, i.e. p = c and s = sp = 0. In this case, we obtain a single
equation for the density c. The tension simplifies and reads

η−1σ = −Dc+A∂xc+
B

2
(
c2 − λ2(∂xc)2

)
+ Ec∂xc+ Fc∂2

xc, (8)

where λ2 = −(F3+F4)/(B1+B2), and λ is a length scale, A = A1, B = 2(B1+B2), E = E1+
E2, and F = (F1+F2). We assume F > 0 in order to avoid instabilities on small length scales.
Furthermore, we consider the simple case A2 = 0, as this term is irrelevant in the following.
Equation (1) together with the tension (8) describes the dynamic and mechanic behavior of
this system. The homogeneous state c(x) = c0 is a stationary solution where c0 = L−1

∫
dxc

and L is the system size. For periodic boundary conditions, this state is linearly stable for
B < Bc with Bc = D/c0 + 4π2F/L2. The tension in the homogeneous state is given by

σ0 = η

(
B

2
c20 −Dc0

)
, (9)

which is positive, i.e., contractile, for B > 2D/c0. As long as F > DL2/4π2c0, there exist
stable homogeneous states with contractile tension σ0. Provided A + Ec0 �= 0, the system
undergoes a Hopf bifurcation towards solitary-wave solutions at B = Bc. These solutions have
the form c(x, t) = u(x− vt). Inserting this ansatz into the dynamic equation ∂tc = −η−1∂2

xσ,
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we obtain an ordinary differential equation of third order for the density profile u. With
periodic boundary conditions, this equation has a discrete set of solutions with distinct values
of v. Note that a unique stationary solution with v = 0 always exists. As the system size is
increased, solitary waves maintain their shapes but cease to propagate in an infinite system.

It is interesting to consider the limit F = 0 where the differential equation is of second
order and can be represented by the pair of first-order equations

σ′ = vη(u− c0), (10)

u′ =
1

λ2B

(
Eu+A±

√
(Eu+A)2 + 2λ2B(Bu2/2−Du− σ)

)
, (11)

where the primes denote derivatives with respect to x. Here, we have used the condition
σ(0) = σ(L). The corresponding solutions u(x) exhibit discontinuities in the first derivative
at the extrema of u where the two branches of solutions to eq. (11) are connected. For finite F ,
solitary-wave solutions can be obtained from numerical integrations of the dynamic equations.
For small F these waves approach solutions to eq. (11). Numerical solutions to the dynamic
equations reveal that the stationary solution with v = 0 is unstable if solitary waves exist.

A particular example is the case A = E = 0, where the steady state for F = 0 in the
interval 0 < x < L with periodic boundary conditions is given by

cs(x) = H cosh
x− L/2

λ
+
D

B
, (12)

which has a discontinuity of c′ at x = 0 and x = L. The amplitude

H =
L(c0 −D/B)
2λ sinhL/2λ

(13)

is determined by the total number of filaments c0L. This state has a constant tension

σs = η

(
B

2
H2 − D2

2B

)
, (14)

which obeys σs < σ0 for B > Bc, indicating that tension is relaxed by the instability of the
homogeneous state.

Generically, the coefficients A and E are nonzero. For periodic boundary conditions such
as in the case of filament rings, we therefore expect propagating solutions to occur as soon as
the bundle becomes inhomogeneous.

Consider now the second important case of a nonpolar bundle with p = 0. Such a case
occurs if small groups of filaments of both orientations are linked rigidly such that they form
nonpolar aggregates. As a consequence, the polarization vanishes at all times. Again, we are
led to a single equation for c and tension

η−1σ = −Dc+ B̄

2
(
c2 − λ̄2(∂xc)2

)
+ F̄ c∂2

xc, (15)

which is of the same form as eq. (8) but with A = 0 and E = 0. Here B̄ = 2B1, F̄ = F1 and
λ̄2 = −F3/(2B1). We thus recover the special case discussed above where the homogeneous
state becomes unstable with respect to stationary contracted states. We thus find that in
nonpolar bundles propagating solutions are suppressed.
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Fig. 1 – Stability boundary of the homogeneous state of an active fiber in the presence of polymer-
ization and depolymerization of filaments. Insets indicate the density profiles of the corresponding
unstable modes. Along the solid line the homogeneous state loses stability via a Hopf bifurcation to-
wards solitary waves; the dotted line indicates a pitchfork bifurcation towards contracted states. The
bifurcations occur as the parameter B exceeds a critical value Bc. L is the system size, F characterizes
a stabilizing nonlinearity and µ characterizes depolymerization rates. Parameters are (A+E/µ)/L3 =
1.5 · 10−3, D/L2 = 0.01, ε/µL = 0.05, ν = µ, A = A1, A2 = 0, B = B1 = B2 = B̄1/2 = B̄2/2,
E = E1 = E2 = Ē1 = Ē2 = Ẽ1 = Ẽ2, 2F = F1 = F2 = F3 = F4 = F̄1 = F̄2 = F̄3/3 = F̄4/3.

Fig. 2 – Density profile (solid line) and polarization profile (broken line) of an unstable mode of an
active fiber with polymerization and depolymerization of filaments. The associated wavelength is
smaller than the system size, leading to a periodic modulation of the unstable mode. Density and
polarization display a relative phase shift of π/2. The mode thus corresponds to an arrangement of
filaments, as indicated schematically.

In a general situation, we have to take into account two coupled dynamic equations for c and
p. In this situation, homogeneous solutions are again stable for B smaller than a critical value.
Furthermore, stable inhomogeneous stationary solutions and solitary waves exist. For A +
Ec0 > 0, the homogeneous state becomes unstable through a Hopf bifurcation if ε < εc, where ε
has been introduced in eq. (5) and εc is a critical value. For ε > εc, the bifurcation is stationary.

So far, we have neglected the effects of polymerization and depolymerization of filaments
represented by the source terms given by eqs. (6) and (7). These terms control the average
filament concentration and polarization and lead to a coexistence of three different homoge-
neous steady states. These homogeneous states are given by i) c = p = 0, ii) c = p = 1/(µ+ν),
and iii) c = 1/µ and p = 0. States i) and ii) are unstable with respect to homogeneous pertur-
bations and will not be considered further. State iii) is stable against such perturbations. As
a consequence, a linear stability analysis of this state reveals a bifurcation with an unstable
mode of finite wave vector q which introduces a new length scale in the system, see fig. 1. As
above, this bifurcation is either stationary or of Hopf type, depending on the value of ε. We
find that the critical mode is characterized by a phase shift of π/2 between c and p. This mode
corresponds to a sarcomer-like periodic arrangement of filaments in the fiber, see fig. 2. It is
also similar to polarity sorting observed in ref. [3], which can be understood if the dynamics
of motor densities is taken into account [12].

The case of a fully oriented bundle needs to be discussed separately, Here, we assume
that filaments of one orientation only appear in the system and that filaments of opposite
orientation are not generated by polymerization events. Therefore, the dynamic solutions
satisfy the condition c = p for all times. In this situation, two homogeneous states with
c = p = 0 and c = p = 1/(µ+ν) exist. The former is always unstable while the latter becomes
unstable for B > B̄c, where B̄c = µ(2

√
F/µ+D). At the bifurcation, the characteristic wave
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vector is given by q4 = (µ+ ν)/F and the frequency is ω = A+ E/(µ+ ν). Therefore, as in
the absence of polymerization and depolymerization, the instability of the homogeneous state
occurs in general via a Hopf bifurcation.

In this paper, we have developed a generic continuum description of contractile fibers.
This description is based on the idea that the mechanical tension in the fiber as well as the
polarization current are fully determined by the local state of the material characterized by
its density and polarization. The resulting two coupled nonlinear equations for the density
and the polarization can be simplified in two limiting cases: a fully oriented bundle, where all
filaments have the same orientation, and a nonpolar bundle, with no average polarization.

The dynamic equations describe the contraction of a fiber resulting from tension generated
in the fiber by active processes. A fiber with constant tension and density can become unstable
with respect to contracted states and solitary waves. Contracted states are inhomogeneous
steady states where filaments accumulate in a region, while solitary waves occur via a Hopf
bifurcation. They are propagating density profiles and lead to time-dependent stress profiles
in the fiber.

If filaments polymerize and depolymerize, the density is no longer a conserved quantity. We
have added source and sink terms to the dynamic equations and have focussed for simplicity
on the simple case where polymerization and depolymerization depend only on the local state
of the fiber. In this case, the unstable mode near a bifurcation is characterized by a wave-
length which defines a new length scale in the problem. Again, both stationary contracted
states and solitary-wave solutions exist.

This continuum description can be compared to the results found in a more microscopic
description of filament bundles [10]. This description is based on the idea that active currents
arise from interactions between filament pairs via motors. A mathematical formulation of
the currents leads to nonlocal interaction terms represented by integrals over squares of the
filament densities. The strength of interactions mediated by molecular motors is characterized
by two coupling constants α and β. By taking the long-wavelength limit of the nonlocal
dynamic equations of this model, we obtain a continuum limit which corresponds to the
physical description derived here on symmetry grounds. We can calculate the coefficients of
the expansions (4) and (5) for this model. We recover all terms of the generic expansion
but find that A1 = 0 and A2 = 0, as well as Ẽ1 = Ẽ2 = 0 and F̄3 = F̄4 = 0. This
implies that the corresponding terms are generated by higher-order processes where three or
more filaments interact via motors. In addition, the microscopic model which is based on
interactions of filament pairs imposes relations between expansion coefficients. Therefore, the
resulting dynamic equations are of higher symmetry. For example, interactions of filament
pairs lead to B1 = B2, E1 = −E2, and F1 = F2 = −2F3 = −2F4. Furthermore, E1 ∼ β. As
a consequence, interactions between filament pairs do not generate oscillatory states in fully
polarized bundles. Three-body interactions and higher turn the stationary instability into a
Hopf bifurcation in the generic case. However, all other states that we have discussed above
are generated by the microscopic model, in particular solitary waves and contracted steady
states. Our microscopic model based on pairwise interactions of filaments via motors therefore
provides a possible microscopic mechanism for the terms in the generic expansion.

Our theory is motivated by active cellular structures which have the form of fibers. Ex-
amples are stress fibers, contractile rings and adhesion belts. Stress fibers are formed by cells
which adhere to a substrate or to neighboring cells under mechanical stimulation. They are
important elements for the force generation of cells and during cell locomotion. Contractile
rings are formed during cytokinesis during cell division. Finally, adhesion belts are formed in
epithelial cells and serve to deform the epithelium. Active fibers in cells typically consist of
actin and myosin motors. In addition, they contain other cytoskeletal proteins.
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Our work suggests that propagating density profiles are in general expected to occur in
active fibers and we expect such solitary waves in particular to be relevant for the dynamics
of contractile rings. Our study suggests that inhomogeneous states can be stationary or
propagating, depending on the values of parameters in the problem.

Oscillatory instabilities and propagating modes are suppressed in nonpolar fibers. Nonpo-
lar fibers made of cytoskeletal elements require an architecture where filaments are arranged
in such a way that the average polarization always vanishes. An example is the arrangement
of filaments in muscle sarcomeres. On scales which are large compared to the sarcomere length
of 2µm, the specific arrangement of actin filaments attached to Z-disks corresponds to an ef-
fectively nonpolar system. We can therefore conclude that the structure of muscle sarcomeres
has the ability to reduce the tendency of contractile fibers to oscillate. Muscle oscillations
have, however, been observed under specific conditions in skeletal muscles [16]. Furthermore,
the flight muscles of many insects generate spontaneous oscillations which are used to beat the
wings [17]. Our work indicates that such oscillations are rather a consequence of instabilities
of rigidly coupled myosin motors interacting with actin filaments [18, 19] than a result of the
solitary-wave solutions which we discuss here in active bundles.
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