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Short Communication

Pulling on a Filament
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Abstract. — We propose a simple scaling argument to describe the propagation of tension
along a filament suddenly pulled by one of its ends, a problem recently considered by Seifert,
Wintz and Nelson (Phys. Rev. Lett. 77 (1996) 5389-5392).

1. Introduction

Seifert, Wintz and Nelson (SWN) [1] have recently analyzed the propagation of a strong tension
along a filament of length L when a force f is suddenly applied to one of its ends, the other
end being fixed. The filament is initially almost straight with slight undulations described by
equilibrium statistics with a Hamiltonian of the form (kBT/2)

∫
dqA2b−3q2bû(q)û(−q), where

û(q) is the Fourier transform of the displacement u(x) perpendicular to a reference axis x. The
problem is thus different from the unwinding of a coily flexible polymer [2]. Cases of usual
interest are semi-flexible filaments (b = 2 and A is the persistence length, with L > A for
the filament to be straight), and strings under a weak initial tension (b = 1 and the initial
tension is kBT/A). The sudden application of a strong force f could in principle be realized
in a controlled manner with modern micro-manipulation techniques [3–6]. To simplify the
description of the propagation of this strong tension, SWN neglect thermal fluctuations and
the “curvature” energy described by the above quoted Hamiltonian, these two weak elements
contributing only in preparing the initial state. Hydrodynamic interactions are also neglected
as they are expected to contribute only through logarithms as is usually the case for quasi-linear
filaments [7].

The main result of SWN is that, in this intrinsically non-linear problem, the length ξ(t) of
chain along which the strong tension has propagated (and thus set into motion) after a time t
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Fig. 1. — A subsection of length l initially displays transverse excursions of order l⊥ and a projected
length l‖. Applying a tension f to the ends induces stretching in a time t(l).

behaves in scaling form as ξ ∼ tz with z ≤ 1/2. Two different scaling arguments lead them to
two different estimates for the dynamic exponent: z = (5−2b)/4 and z = 1/2. Their numerical
calculations then suggest that z crosses smoothly from the latter to the former as b is increased.

The aim of this Short Communication is to show how this picture can be obtained through a
single scaling argument. In addition to providing a derivation of the exponent as a function of
b, our procedure offers physical insight, in particular as to the relative importance of transverse
and longitudinal motions in the dissipation. Our argument is performed in two steps; we have
tried to stick to the notation of reference [1].

2. First Step: Stretching a Subsection

Take a subsection of length l initially at thermal equilibrium. Its typical transverse excursion
l⊥ and its projected length l‖ (see Fig. 1) can be derived from equipartition: l2⊥ = 〈u(x)2〉 '∫ Λ

2π/l
dqA3−2bq−2b and l‖ = l − δl with δl/l ' 〈12 (∂xu)

2
〉 '

∫ Λ

2π/l
dqA3−2bq−2b+2 where Λ is a

microscopic cut-off, and δl/l � 1 is a consistency requirement (so that l‖ ' l).
What time t does it take to stretch this subsection by pulling on both its ends with a force

f ? This stretching implies transverse displacements of order l⊥ and longitudinal ones of order
δl. Thus in scaling form the dissipation balance reads:

fv‖ ' Γ−1l(v2
‖ + v2

⊥) (1)

where Γ−1 is the friction coefficient per unit length, and v‖ = δl/t and v⊥ = l⊥/t are the typical
extensional and transverse velocities. From (1) we get the stretching time t as a function of l
or inversely the maximal length that has been stretched after a time t: l(t).

The dependency on b is quite rich:

- if 2b ≥ 3: transverse velocities are larger (v⊥ � v‖) so

l2 ' Γft; v‖ ' A
3−2b(Γft)b−1t−1 (2)

- if 3 ≥ 2b ≥ 1: the situation is more complex: for short subsections (l < lc = (AΛ2)−1),
v⊥ � v‖, whereas transverse effects are negligible for longer subsections.
Thus, for l(t)� lc

l2b−1 ' (Γft)Λ3−2b; v‖ ' A
3−2bl2b−2t−1 (3)

whereas for l(t)� lc,

l2 ' (Γft)(AΛ)2b−3; v‖ ' (AΛ)
3−2b

2 (Γf/t)1/2 (4)

- if 1 ≥ 2b: then transverse effects are always negligible and equation (4) applies.
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Fig. 2. — The right end of the filament of length L is pulled by a force f at positive times. After a
time t a section of length ξ has been set into motion. In the proposed scaling picture, this section can
be viewed as a sequence of stretched subsections of length l(t).

3. Second Step: Pulling the Whole Filament by One End

Let us return to the initial filament of length L, pulled by one end only, the other one being
fixed. After a time t, a tension of order f has propagated along a section of length ξ(t) which
moves at an average velocity vav. At the scaling level, we approximate this section by a simple
string of n(t) = ξ/l identical subsections of length l(t) achieving stretching, each extending
at a velocity v‖(l) (see Fig. 2). Then, as these extensions accumulate, the average velocity is
simply vav ' nv‖.
The global force balance on the filament reads:

f = Γ−1ξvav ' Γ−1n2lv‖. (5)

From equations (1, 5) two situations may arise:
i) Locally, longitudinal dissipation dominates (v‖ � v⊥), so (1) and (5) coincide with
n = ξ/l = 1: tension propagation and stretching occur at the same rate.
ii) Locally (in (1)), dissipation is dominated by transverse motions (v‖ � v⊥). In this case, one
gets a solution to (1) and (5) with n� 1: tension propagates faster than stretching is achieved.
Note: vav ' v⊥ so that the stretching of a subsection drifting at vav is described by the same
scaling law l(t) than the stretching of a non-drifting subsection (described by (1)). This gives
consistency to our argument. The global dissipation balance is fvav ' Γ−1ξ(v2

av + v2
⊥), so

globally, transverse and longitudinal motions contribute comparable amounts.

4. Conclusion

So how does the dynamic exponent depend on b? Estimates for both ξ and the typical velocity
of the pulled end vav = Γf/ξ follow directly from equations (2-5).
If 2b > 3, then

ξ2 ' A2b−3(Γft)
5−2b

2 , (6)

in agreement with the adiabatic “Scaling Argument I” in [1]. On the other hand, if 2b < 3,
then

ξ2 ' (AΛ)2b−3(Γft), (7)

in agreement with the “Scaling Argument II” in [1]. Note that quite surprisingly this last
formula holds for both short and long times for 3 > 2b > 1 (i.e. both for l(t) < lc and
l(t) > lc). Thus z = 1/2 is obtained when locally v‖ � v⊥, but not only in that case.

An additional remark: (5) is valid until ξ = L when tension reaches the fixed end. If
the chain is stretched at that time (n = 1 already) nothing more happens. Otherwise, elon-
gation of the chain proceeds with n(t) = L/l(t) and vav = nv‖. For 2b > 3 this leads to

vav ' (LΓf)(Γft)
2b−5

2 , which could be tested in simulations.
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In conclusion, our simple scaling argument allows to recover from a single approach the rich
behaviour described by SWN. This argument could be made more precise by the introduc-
tion of a tension profile, but we hope that its very simplicity can make it useful to address
more complex situations such as the stretching of membranes (as mentioned in [1]), where
hydrodynamic interactions should be taken into account.
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