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We present a theory of pattern formation in growing domains inspired by biological examples of tissue
development. Gradients of signaling molecules regulate growth, while growth changes these graded
chemical patterns by dilution and advection. We identify a critical point of this feedback dynamics, which is
characterized by spatially homogeneous growth and proportional scaling of patterns with tissue length. We
apply this theory to the biological model system of the developing wing of the fruit fly Drosophila
melanogaster and quantitatively identify signatures of the critical point.
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How tissues grow to their correct size and become
spatially patterned during development is a key question
in biology. Specific signaling molecules, called morpho-
gens, control tissue patterning and growth [1–3]. These
morphogens are locally produced and secreted. They
spread in the target tissues, where they form long-range
graded concentration profiles [4–14]. Control of tissue
growth by morphogens implies a self-organized feedback
between growth and chemical gradients, whereby morph-
ogen profiles instruct tissue growth, while growth in turn
feeds back on these chemical gradients, e.g., by advection
and dilution of morphogens. This mutual coupling between
the dynamics of morphogen profiles and tissue growth is
still poorly understood.
In several model organisms it was observed that morph-

ogen gradients scale proportionally with the size of the
growing tissues, maintaining a constant shape [2,15–20].
Scaling of morphogen gradients and growth control has
been studied in the fruit fly Drosophila melanogaster,
particularly in the precursor of the wing, the wing imaginal
disk [2,15,16,21]; see Fig. 1(a). Here, decapentaplegic
(Dpp) is one of the important morphogens implicated in
tissue growth [22–32]. Measurements at different stages of
development revealed scaling of the Dpp concentration
profile [2,16] see numerical examples of pattern scaling in
Figs. 1(b) and 1(c). Several mechanisms have been pro-
posed to explain scaling of the Dpp concentration profile
with respect to compartment size [2,33–37]. One major
class of mechanisms introduces an additional chemical
species, termed expander, whose concentration depends on
tissue size. It regulates morphogen dynamics and thereby
scales its pattern [2,33–35].
Several mechanisms of growth control have been pro-

posed [37–42]. One suggestion is that morphogen gradients

control growth by a “temporal growth rule” [2,43], where
the local growth rate in the target tissue is set by relative
temporal changes of the local morphogen concentration.
This growth rule in conjunction with an expander
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FIG. 1. Minimal model for growth control in biological tissues
by scaling morphogen gradients. (a) The wing imaginal disk of
the fruit fly is a two-dimensional epithelial sheet with a source
releasing Dpp molecules (red) at the anterior-posterior compart-
ment boundary (dark red). We consider a simplified morphogen
system with a source at the left boundary. Panels (b)–(f) show
numeric solutions of Eqs. (1) and (2) for k ¼ 0. Color code
defined in (b) applies to all panels [in (c) and (e) most lines
overlap]. (b) Spatial profiles for morphogen concentration C for
different tissue lengths. (c) Rescaled concentration profiles from
(b) collapse on a master curve, thus showing scaling (inset: log-
normal plot). (d) Amplitude C0 of the concentration profile obeys
a power-law relationship with tissue length l. (e) Self-consis-
tently regulated growth becomes spatially homogeneous after an
initial transient period. (f) Growth slows down inversely with
time [solid line: Eq. (10)]. Parameters are D ¼ 0.1 μm2=s [12],
ν ¼ 1 conc=s, w ¼ 0.1l, ε ¼ 0.83 [2], β ¼ 2=ð1þ εÞ.
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mechanism for gradient scaling can account for the
homogeneous growth observed in the wing imaginal disk
[2,35] and may also apply to other tissues [37,44]. It has
further been suggested that the temporal growth rule by
itself could yield gradient scaling, without the need of an
additional expander mechanism [35].
In this Letter, we propose a theoretical framework for the

interplay between gradient scaling and growth control. In
this framework, spatially homogeneous growth and exact
scaling of chemical gradients both emerge as features of a
critical point of the growth dynamics. This approach
provides a mechanism for the homogeneous growth and
gradient scaling observed during the growth of the wing
disk of the developing fly.
Morphogen dynamics and growth control.—We consider

a minimal two-dimensional system with morphogen of
concentration Cðx; tÞ as function of position x ¼ ðx; yÞ and
time t. Morphogen dynamics is governed by local pro-
duction in a specified source region sðx; tÞ > 0, by effec-
tive diffusion with diffusivity D, effective degradation with
rate k, as well as by advection and dilution of molecules
due to tissue growth. Further, we consider a temporal
growth rule by which the relative rate of change of the
morphogen concentration controls the local rate g of area
growth [2], characterized by the dimensionless parameter β.
Together, morphogen dynamics and growth control are
described by

DtC ¼ ∇ · ðD∇CÞ − ðkþ gÞCþ s; ð1Þ

g ¼ 1

β

DtC
C

; ð2Þ

where ∇ is the gradient operator. The convective time
derivateDt ¼ ∂t þ u ·∇ accounts for the local cell velocity
field uðx; tÞ of the growing tissue, which obeys g ¼ ∇ ·
u [2].
We consider a morphogen source aligned parallel to the y

axis with sðx; tÞ ¼ ν in the interval 0 ≤ x ≤ wðtÞ and
sðx; tÞ ¼ 0 elsewhere; see dark red region in Fig. 1(a).
The width of the morphogen source is denoted wðtÞ and ν is
a production rate. We consider morphogen profiles Cðx; tÞ
and growth profiles gðx; tÞ that only vary along the x axis.
We choose reflecting boundary conditions at the domain
boundaries, x ¼ 0 and x ¼ l. We account for a possible
intrinsic anisotropy of tissue growth by the anisotropy
parameter ε ¼ ð∂yuyÞ=ð∂xuxÞ. Thus, tissue area scales as
A ∼ l1þε, where isotropic growth corresponds to ε ¼ 1.
Scaling of morphogen patterns.—Scaling of concentra-

tion profiles is defined by the property that the time-
dependent concentration Cðx; tÞ can be written as

Cðx; tÞ ¼ C0ðtÞξðx=lÞ; ð3Þ
where ξðrÞ with r ¼ x=l is a scaling function that char-
acterizes a time-independent shape of the concentration
profile and C0ðtÞ is a time-dependent amplitude of the

profile. An example exhibiting this scaling property is
shown in Figs. 1(b) and 1(c). It has been suggested that
C0 in Eq. (3) obeys a power law [2] of the form

C0ðtÞ ∼ lðtÞq: ð4Þ

Scale invariance captured by scaling functions together
with power laws often occurs near critical points [45]. This
raises the question of whether a critical point is underlying
the scaling of morphogen patterns.
Growth control and conditions for scaling.—Dynamic

solutions of Eqs. (1) and (2) exist, which scale as described
by Eqs. (3) and (4) and for which growth is homogeneous,
as we show next. This requires that the source width scales
linearly with tissue length, wðtÞ ∼ lðtÞ.
Homogeneous growth with gðx; tÞ ¼ g0ðtÞ implies that

the relative position r ¼ x=l of a material point does not
change in time. In this case, the temporal growth rule
Eq. (2) simplifies to βg0 ¼ ∂t lnðC0Þ. By definition, g0 is
proportional to the relative change in tissue length,
g0 ¼ ð1þ εÞ∂t lnðlÞ. Thus, we obtain the power law of
Eq. (4) with exponent

q ¼ βð1þ εÞ: ð5Þ

This exponent takes a specific value, as we show now.
Combining Eqs. (1) and (2), we have

0 ¼ ∇ · ðD∇CÞ − ½kþ ð1þ βÞg�Cþ s; ð6Þ

which holds at all times. For homogeneous growth, the
time-dependent rate

kg ¼ kþ ð1þ βÞg ð7Þ

is position independent, and the solution to Eq. (6) reads

Cðx; tÞ ¼ ν

kg

8
<

:

1 − sinh ðl=λ−w=λÞ
sinh ðl=λÞ coshðxλÞ x ≤ w

sinh ðw=λÞ
sinh ðl=λÞ coshðl−xλ Þ x > w;

ð8Þ

where λ ¼ ffiffiffiffiffiffiffiffiffiffiffi
D=kg

p
is a decay length. The time dependence

of Cðx; tÞ arises from the time dependencies of l, w, λ, and
kg. From Eqs. (8) and (2), we find that growth is
homogeneous if and only if concentration profiles scale.
This is the case if λ ∼ l and w ∼ l. Such scaling occurs if
kg ∼ l−2. Hence, C0 ∼ ν=kg obeys the power law Eq. (4)
with q ¼ 2. Together with Eq. (5), we thus find that scaling
can occur if the growth feedback parameter β takes a critical
value βc ¼ 2=ð1þ εÞ.
Growth dynamics and the effect of morphogen degra-

dation.—The time dependence of homogeneous growth can
be found using kg ∼ l−2, Eq. (7), and g0 ¼ ð1þ εÞ∂t lnl,
which together defines a differential equation for lðtÞ. The
solution depends on the value and time dependence of the
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degradation rate k. For the simple case k ¼ 0, a numerical
solution to Eqs. (1) and (2) is shown in Fig. 1, highlighting
that for β ¼ βc, after a short transient, growth is indeed
homogeneous and concentration profiles scale.
We can obtain explicit expressions for the growth

dynamics at this critical point β ¼ βc, revealing that growth
is unbounded and the growth rate slows down as t−1:

lðtÞ ¼ lð0Þ½1þ 2g0ð0Þt=ð1þ εÞ�1=2; ð9Þ

g0ðtÞ ¼
g0ð0Þ

1þ 2g0ð0Þt=ð1þ εÞ ; ð10Þ

see Fig. 1(f) and Ref. [46]. Interestingly, the growth rate in
the long-time limit g0ðtÞ ≈ ð1þ εÞ=ð2tÞ becomes indepen-
dent of the initial conditions.
Exact scaling and spatially homogeneous growth is also

found at β ¼ βc for a finite but constant degradation rate
k ¼ k0 > 0. In this case, the growth rate decays exponen-
tially,

g0ðtÞ ¼
g0ð0Þe−t=τ

1þ 2τg0ð0Þð1 − e−t=τÞ=ð1þ εÞ ; ð11Þ

with characteristic timescale τ ¼ ð1þ βcÞð1þ εÞ=ð2k0Þ.
As a consequence, growth arrests at a final size l� [35,46],

l� ¼ lð0Þ½1þ g0ð0Þð1þ βcÞ=k0�1=2: ð12Þ

Note that for k0 → 0, final size l� diverges as l� ∼ k−1=20 .
Next, we consider the degradation rate as a function of

tissue length, k ¼ kðlÞ, e.g., regulated by an expander
[2,33,47–49]. Let us consider the case of exact scaling of
the degradation rate with tissue size in the form k ∼ l−2.
For β ¼ βc, we again find spatially homogeneous growth as
well as exact pattern scaling, which is again described by
Eqs. (9) and (10). In particular, growth is unbounded; see
Fig. 2. If, however, we add a small constant value k0 to the
degradation rate k − k0 ∼ l−2, growth arrests at a finite size
given by Eq. (12).
These cases illustrate that at β ¼ βc, we can find either

unbounded or bounded growth, depending on the behavior
of the degradation rate k. In general, growth arrest can be
observed if there exists a final size l� > lð0Þ, for which
kgðl�Þ ¼ kðl�Þ. This follows from Eq. (7) [46].
Critical point of growth control.—We now explore the

behavior for β ≠ βc. In this case, the system does not
exhibit exact pattern scaling and growth becomes spatially
inhomogeneous; see Figs. 2(a)–2(c) for an example. For
β < βc, gðr; tÞ is decreasing with r, while for β > βc, gðr; tÞ
is increasing with r; see Fig. 2(b) and Ref. [46]. As before,
the growth dynamics depends on the degradation rate; see
Fig. 2(d). Growth is always unbounded for k ¼ 0. For
k ¼ k0 > 0, growth arrests at a finite final size l� for all
values of β. In the case of k ∼ l−2, growth arrests for
β > βc and the growth rate gðtÞ decays exponentially with

characteristic time τ. The final size l� diverges as β
approaches the critical point βc from above. For β < βc,
growth is unbounded. Thus, β ¼ βc exhibits distinct
features of a critical point such as scale invariance of the
concentration profile and divergent length scales. For
k ∼ l−2 this critical behavior includes a transition between
bounded and unbounded growth.
Only at the critical point, exact pattern scaling and

homogeneous growth occurs. However, in the vicinity of
the critical point, patterns scale and growth is homogeneous

(a)

(b)

(c)

(d) (e)

FIG. 2. Critical point and growth dynamics for k ∼ l−2.
(a) Concentration profiles as a function of relative position
r ¼ x=l for different tissue length (color code) and different
values of β. Scaling of the concentration profiles at the critical
point with β ¼ βc results in a collapse of the normalized
concentration profiles for different tissue lengths. Above and
below the critical point (here, 0.8βc, 1.2βc) deviations from
scaling occur. (b) Growth rate profiles as a function of r for
different tissue length. At the critical point growth becomes
homogeneous. (c) Growth rate as a function of time. For β > βc,
the growth rate decreases exponentially with time, while for
β ≤ βc, a power-law behavior leads to unbounded growth [solid
line: Eq. (10)]. (d) Growth behaviors for super- and subcritical β
for different degradation scenarios. (e) Different growth regimes
as a function of the source scaling exponent γ for k ∼ l−2.
Regimes of unbounded growth (light red) and growth arrest (light
blue) are separated by the line γ ¼ 2β=βc − 1 for γ < 1. Numeri-
cal results (dots; see Ref. [46]), critical point with γ ¼ 1 (red dot),
parameters corresponding to fit to experimental data shown in
Fig. 3 (blue dot). A constant source width corresponds to γ ¼ 0.
Parameters are D ¼ 0.1 μm2=s [12], ν ¼ 1 conc=s, w ¼ 0.1l
[w ¼ 0.3 μmðl=30 μmÞγ in (e)], ε ¼ 0.83 [2], kl2 ¼ 9 μm2=s.
The color code defined in (a) also applies to (b) and (c).
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to a good approximation, reflecting signatures of the critical
point [46]. Interestingly, a control of the degradation rate by
an expander molecule can maintain approximate scaling
even away from the critical point if the growth rate is small
compared to the degradation rate. In this case, kg ≈ k ∼ l−2,
and growth inhomogeneities do not perturb scaling
strongly; see Fig. 2(a). Yet, even in this case of almost
exact gradient scaling, inhomogeneity of growth occurs
depending on β; see Fig. 2(b).
So far we have focused on the case where the source

width w grows proportional to tissue length l. We now
discuss situations where the source width is not propor-
tional to tissue length. To simplify the discussion, we
consider a source width w ∼ lγ with 0 ≤ γ < 1, which
interpolates between the cases of a constant source width
(γ ¼ 0) and a source width proportional to tissue length
(γ ¼ 1). Solving Eqs. (1) and (2) for different values of
γ < 1, we again find similar behaviors as described for
γ ¼ 1. For example, two growth regimes can be distin-
guished, depending on the value of β. For β < ðγ þ 1Þ=
ð1þ εÞ, growth is unbounded and the growth rate as a
function of time is well fit by a power law, while for
β > ðγ þ 1Þ=ð1þ εÞ, growth is bounded and the growth
rate is well fit by an exponential; see Fig. 2(e). Note that
along the line γ ¼ 2β=βc − 1 we observe signatures of the
critical point even for β < βc; see Fig. 3 and Ref. [46].
Homogeneous growth and gradient scaling in the wing

imaginal disk of the fruit fly.—Growth dynamics and spatial
profiles of the morphogen Dpp have been quantified in the
wing imaginal disk of the fruit flyD. melanogaster. Growth
of the wing disk is approximately homogeneous and the
growth rate decays exponentially with a timescale of
30–60 h [2,50]. Dpp profiles scale to a good approximation
and their amplitude C0 is well fit by a power-law relation
with tissue area with exponent β̃ ¼ q=ð1þ εÞ ranging from
0.5 to 0.7 depending on the data set [2,46]. Furthermore,
homogeneous growth can be accounted for by the temporal
growth rule Eq. (2) with scaling Dpp profiles [2]. We show
in Figs. 3(e)–3(g) experimental data on Dpp profile
amplitude C0, tissue area A and decay length λ [2] together
with numerical values obtained by solving Eqs. (1) and (2).
This comparison shows that the continuum model can
account for growth and Dpp concentration gradient dynam-
ics in the wing imaginal disk. The parameter values used in
Fig. 3 are indicated in Fig. 2(e) as a blue dot. Estimating the
growth anisotropy ε [2,50] suggests that the growth
parameter β ≈ 0.7 is smaller than βc ≈ 1.1. Thus, the wing
disk is not exactly critical. Deviations from criticality also
arise because the source width in the wing imaginal disk
increases less than linearly with tissue length. Experimental
estimates locate γ within the range 0.2–0.9 [2,46], and our
simulation fits experimental data of growth and morphogen
dynamics with γ ¼ 0.3; see Figs. 2(e), 3(e)–3(g).
Therefore, scaling and homogeneous growth are only
approximate, and result as signatures of the nearby critical

point. Interestingly, the fly mutant Hh-CD2 differs from
control animals in that its source width is constant [2].
Hh-CD2 can be represented here by exponents γ ¼ 0 and
β ¼ 0.7 [46], which locates its growth dynamics far from
the boundary line between unbounded growth and growth
arrest. From this observation we predict that scaling should
be less precise and growth nonhomogeneous for Hh-CD2
as compared to control fly wings. Indeed, our analysis of
Dpp-decay lengths is consistent with less precise scaling in
Hh-CD2 [46].
Conclusion.—We presented a theory for self-organized

growth of tissues regulated by a dynamic morphogen
profile and a temporal growth rule. We find that both
exact scaling of the morphogen profile and homogeneous
growth are mutually dependent and arise as features of a
critical point. We determine a concise condition for scaling

(a) (b)

(d)(c)

(e) (g)(f)

FIG. 3. Growth and gradient scaling in the fly wing. (a) Sche-
matic illustration of time-dependent morphogen profilesCðxÞ in a
growing posterior compartment of size lp regulated by an
expander mechanism. The morphogen is produced in a source
region of width w that increases with tissue length l as w ¼ w0lγ .
The expander is produced in a source of constant width wE,
located at the posterior end; see Ref. [46]. (b) Numerical solutions
for morphogen profilesCðxÞ. (c) Position and time dependence of
local growth rates g. Inset: Average growth rate in the posterior
compartment as a function of time. The growth rate relaxation
time, 48.2 h, is consistent with experiments [2,50]. (d) Collapse
of relative concentration profiles C=C0 as function of relative
position x=lp at different times. (e)–(h) Comparison of exper-
imental data (dots) [2] and numerical solutions (solid lines).
(e) Morphogen profile amplitude C0 as a function of posterior
tissue size lp. (f) Posterior tissue area A as a function of time.
(g) Decay length λ of the morphogen profile in the posterior
compartment as a function of lp. Boxed data points in (e) are
excluded from the fits. Initial conditions are steady state of
Eq. (1). Parameters estimated from experimental measurements
are D ¼ 0.1 μm2 s−1 [12], β ¼ 0.7, ε ¼ 0.83 [2]. Parameters
estimated by a fit to the data are γ ¼ 0.3, w0 ¼ 5.75 μm1−γ ,
wE¼2.5μm, ν=νE¼0.21, kE¼5×10−6 s−1, DE¼10μm2s−1,
ην2E ¼ 2.56 × 10−11 s−3.
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and homogeneous growth in terms of a critical feedback
strength. We reveal characteristic features of the presented
mechanism. First, the amplitude of morphogen profiles
obeys a power-law relationship with tissue length. Second,
there exist distinct regimes of growth arrest and unbounded
growth in which spatial profiles of growth differ. Third,
scaling itself is independent of many details of the dynamic
equations if the system is close to criticality. In particular,
scaling does, in principle, not require an expander mecha-
nism and could occur even in the absence of a feedback on
tissue length [35]. However, an expander can alter the
growth dynamics. Note that an expander regulation that
provides the relation k ∼ l−2 leads to unbounded growth at
the critical point. Reliable growth termination can be
achieved by an offset in the scaling relation, e.g.,
k − k0 ∼ l−2. Such behavior could occur, for example, in
the case of delayed expander regulation.
We applied our theory to the dynamics of morphogen

gradients and growth during the development of the wing
imaginal disks of the fruit fly. Chosen parameters, which
are consistent with previous experiments, correspond to
β < βc but are close to the boundary in parameter space
separating bounded from unbounded growth [Fig. 2(e)].
We find that nonlinear scaling behavior of the Dpp source,
as quantified in Ref. [2], may place the wing disk in the
regime of bounded growth even for a supercritical growth
parameter. Our work suggests that in the wing imaginal
disk an expander mechanism ensures that growth arrests,
while the scaling of Dpp profiles and the spatial homo-
geneity of growth result as robust signatures of a critical
point. The framework presented here could be applied to
other systems, such as the eye imaginal disk of the fly,
which is an example of a nonstationary Dpp source that
orchestrates growth [43].
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[1] F. A. Martín, A. Pérez-Garijo, E. Moreno, and G. Morata,

The brinker gradient controls wing growth in Drosophila,
Development (Cambridge, U.K.) 131, 4921 (2004).

[2] O. Wartlick, P. Mumcu, A. Kicheva, T. Bittig, C. Seum,
F. Jülicher, and M. Gonzalez-Gaitan, Dynamics of Dpp
signaling and proliferation control, Science 331, 1154
(2011).

[3] S. Restrepo, J. J. Zartman, and K. Basler, Coordination of
patterning and growth by the morphogen DPP, Curr. Biol.
24, R245 (2014).

[4] A. M. Turing, The chemical basis of morphogenesis, Phil.
Trans. R. Soc. B 237, 37 (1952).

[5] L. Wolpert, Positional information and the spatial pattern of
cellular differentiation, J. Theor. Biol. 25, 1 (1969).

[6] A. J. Koch and H. Meinhardt, Biological pattern formation:
From basic mechanisms to complex structures, Rev. Mod.
Phys. 66, 1481 (1994).

[7] M. Simpson-Brose, J. Treisman, and C. Desplan,
Synergy between the hunchback and bicoid morphogens
is required for anterior patterning in Drosophila, Cell 78,
855 (1994).

[8] P. A. Lawrence and G. Struhl, Morphogens, compartments,
and pattern: Lessons from Drosophila?, Cell 85, 951 (1996).

[9] J. Jaeger, S. Surkova, M. Blagov, H. Janssens, D. Kosman,
K. N. Kozlov, Manu, E. Myasnikova, C. E. Vanario-Alonso,
M. Samsonova, D. H. Sharp, and J. Reinitz, Dynamic
control of positional information in the early Drosophila
embryo, Nature (London) 430, 368 (2004).

[10] T. Bollenbach, K. Kruse, P. Pantazis, M. Gonzalez-Gaitan,
and F. Jülicher, Robust Formation of Morphogen Gradients,
Phys. Rev. Lett. 94, 018103 (2005).

[11] O. Wartlick, A. Kicheva, and M. González-Gaitán, Morph-
ogen gradient formation, Cold Spring Harbor Perspect. Biol.
1, a001255 (2009).

[12] A. Kicheva, P. Pantazis, T. Bollenbach, Y. Kalaidzidis,
T. Bittig, F. Jülicher, and M. González-Gaitán, Kinetics of
morphogen gradient formation, Science 315, 521 (2007).

[13] P. Müller, K. W. Rogers, S. R. Yu, M. Brand, and A. F.
Schier, Morphogen transport, Development (Cambridge,
U.K.) 140, 1621 (2013).

[14] D. Aguilar-Hidalgo, M. A. Domínguez-Cejudo, G. Amore,
A. Brockmann, M. C. Lemos, A. Córdoba, and F. Casares,
A Hh-driven gene network controls specification, pattern
and size of the Drosophila simple eyes, Development
(Cambridge, U.K.) 140, 82 (2013).

[15] T. Gregor, W. Bialek, R. R. de Ruyter van Steveninck, D. W.
Tank, and E. F. Wieschaus, Diffusion and scaling during
early embryonic pattern formation, Proc. Natl. Acad. Sci.
U.S.A. 102, 18403 (2005).

[16] D. Ben-Zvi, G. Pyrowolakis, N. Barkai, and B.-Z. Shilo,
Expansion-repression mechanism for scaling the Dpp acti-
vation gradient in Drosophila wing imaginal discs, Curr.
Biol. 21, 1391 (2011).

[17] N. Barkai and D. Ben-Zvi, ‘Big frog, small frog’– main-
taining proportions in embryonic development, FEBS J.
276, 1196 (2009).

[18] D. Ben-Zvi, A. Fainsod, B.-Z. Shilo, and N. Barkai, Scaling
of dorsal-ventral patterning in the Xenopus laevis embryo,
BioEssays 36, 151 (2014).

[19] S. Werner, T. Stückemann, M. Beirán Amigo, J. C. Rink, F.
Jülicher, and B. M. Friedrich, Scaling and Regeneration of
Self-Organized Patterns, Phys. Rev. Lett. 114, 138101
(2015).

PHYSICAL REVIEW LETTERS 120, 198102 (2018)

198102-5

https://doi.org/10.1242/dev.01385
https://doi.org/10.1126/science.1200037
https://doi.org/10.1126/science.1200037
https://doi.org/10.1016/j.cub.2014.01.055
https://doi.org/10.1016/j.cub.2014.01.055
https://doi.org/10.1098/rstb.1952.0012
https://doi.org/10.1098/rstb.1952.0012
https://doi.org/10.1016/S0022-5193(69)80016-0
https://doi.org/10.1103/RevModPhys.66.1481
https://doi.org/10.1103/RevModPhys.66.1481
https://doi.org/10.1016/S0092-8674(94)90622-X
https://doi.org/10.1016/S0092-8674(94)90622-X
https://doi.org/10.1016/S0092-8674(00)81297-0
https://doi.org/10.1038/nature02678
https://doi.org/10.1103/PhysRevLett.94.018103
https://doi.org/10.1101/cshperspect.a001255
https://doi.org/10.1101/cshperspect.a001255
https://doi.org/10.1126/science.1135774
https://doi.org/10.1242/dev.083519
https://doi.org/10.1242/dev.083519
https://doi.org/10.1242/dev.082172
https://doi.org/10.1242/dev.082172
https://doi.org/10.1073/pnas.0509483102
https://doi.org/10.1073/pnas.0509483102
https://doi.org/10.1016/j.cub.2011.07.015
https://doi.org/10.1016/j.cub.2011.07.015
https://doi.org/10.1111/j.1742-4658.2008.06854.x
https://doi.org/10.1111/j.1742-4658.2008.06854.x
https://doi.org/10.1002/bies.201300136
https://doi.org/10.1103/PhysRevLett.114.138101
https://doi.org/10.1103/PhysRevLett.114.138101


[20] T. Stückemann, J. P. Cleland, S. Werner, H. Thi-Kim Vu,
R. Bayersdorf, S.-Y. Liu, B. M. Friedrich, F. Jülicher, and
J. C. Rink, Antagonistic self-organizing patterning systems
control maintenance and regeneration of the anteroposterior
axis in Planarians, Dev. Cell 40, 248 (2017).

[21] D. M. Umulis, O. Shimmi, M. B. O’Connor, and H. G.
Othmer, Organism-scale modeling of early Drosophila
patterning via bone morphogenetic proteins, Dev. Cell
18, 260 (2010).

[22] J. Capdevila and I. Guerrero, Targeted expression of the
signaling molecule decapentaplegic induces pattern dupli-
cations and growth alterations in Drosophila wings, EMBO
J. 13, 4459 (1994).

[23] R. Burke and K. Basler, Dpp receptors are autonomously
required for cell proliferation in the entire developing
Drosophila wing, Development 122, 2261 (1996).

[24] C. Martín-Castellanos and B. A. Edgar, A characterization
of the effects of Dpp signaling on cell growth and pro-
liferation in the Drosophila wing, Development 129, 1003
(2002).

[25] G. Schwank, S. Restrepo, and K. Basler, Growth regulation
by Dpp: An essential role for Brinker and a non-essential
role for graded signaling levels, Development (Cambridge,
U.K.) 135, 4003 (2008).

[26] G. Schwank, S.-F. Yang, S. Restrepo, and K. Basler,
Comment on “Dynamics of Dpp signaling and proliferation
control”, Science 335, 401 (2012).

[27] O. Wartlick, P. Mumcu, F. Julicher, and M. Gonzalez-
Gaitan, Response to Comment on “Dynamics of Dpp
signaling and proliferation control”, Science 335, 401
(2012).

[28] T. Akiyama and M. C. Gibson, Decapentaplegic and growth
control in the developing Drosophila wing, Nature (London)
527, 375 (2015).

[29] S. Harmansa, F. Hamaratoglu,M. Affolter, and E. Caussinus,
Dpp spreading is required for medial but not for lateral wing
disc growth, Nature (London) 527, 317 (2015).

[30] L. Barrio and M. Milán, Boundary Dpp promotes growth of
medial and lateral regions of the Drosophila wing, eLife 6,
663 (2017).

[31] S. Matsuda and M. Affolter, Dpp from the anterior stripe of
cells is crucial for the growth of the Drosophila wing disc,
eLife 6, 663 (2017).

[32] P. S. Bosch, R. Ziukaite, C. Alexandre, K. Basler, and
J.-P. Vincent, Dpp controls growth and patterning in
Drosophila wing precursors through distinct modes of
action, eLife 6, 375 (2017).

[33] D. Ben-Zvi and N. Barkai, Scaling of morphogen gradients
by an expansion-repression integral feedback control, Proc.
Natl. Acad. Sci. U.S.A. 107, 6924 (2010).

[34] O. Wartlick, P. Mumcu, F. Jülicher, and M. González-
Gaitán, Understanding morphogenetic growth control—
lessons from flies, Nat. Rev. Mol. Cell Biol. 12, 594 (2011).

[35] I. Averbukh, D. Ben-Zvi, S. Mishra, and N. Barkai, Scaling
morphogen gradients during tissue growth by a cell division
rule, Development (Cambridge, U.K.) 141, 2150 (2014).

[36] P. Fried and D. Iber, Dynamic scaling of morphogen
gradients on growing domains, Nat. Commun. 5, 5077
(2014).

[37] M. Romanova-Michaelides, D. Aguilar-Hidalgo, F. Jülicher,
and M. González-Gaitán, The wing and the eye: A parsi-
monious theory for scaling and growth control?, WIREs
Dev. Biol. 4, 591 (2015).

[38] S. J. Day and P. A. Lawrence, Measuring dimensions: The
regulation of size and shape, Development 127, 2977
(2000).

[39] B. I. Shraiman, Mechanical feedback as a possible regulator
of tissue growth, Proc. Natl. Acad. Sci. U.S.A. 102, 3318
(2005).

[40] D. Rogulja and K. D. Irvine, Regulation of cell proliferation
by a morphogen gradient, Cell 123, 449 (2005).

[41] L. Hufnagel, A. A. Teleman, H. Rouault, S. M. Cohen, and
B. I. Shraiman, On the mechanism of wing size determi-
nation in fly development, Proc. Natl. Acad. Sci. U.S.A.
104, 3835 (2007).

[42] T. Aegerter-Wilmsen, C. M. Aegerter, E. Hafen, and
K. Basler, Model for the regulation of size in the wing
imaginal disc of Drosophila, Mechanisms of development
124, 318 (2007).

[43] O. Wartlick, F. Jülicher, and M. González-Gaitán, Growth
control by a moving morphogen gradient during Drosophila
eye development, Development (Cambridge, U.K.) 141,
1884 (2014).

[44] P. Fried, M. Sánchez-Aragón, D. Aguilar-Hidalgo,
B. Lehtinen, F. Casares, and D. Iber, A model of the
spatio-temporal dynamics of Drosophila eye disc develop-
ment, PLoS Comput. Biol. 12, e1005052 (2016).

[45] H. E. Stanley, Introduction to Phase Transitions and
Critical Phenomena (Oxford University Press, New York,
1971).

[46] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.120.198102, which in-
clude Refs. [2,12,19,33–35,47–49], for details on calcula-
tions, numerical results for two additional cases (absence of
morphogen degradation with k ¼ 0 and constant morph-
ogen degradation rate k ¼ k0), and analysis for the fly wing
mutant condition Hh-CD2.

[47] H. G. Othmer and E. Pate, Scale-invariance in reaction-
diffusion models of spatial pattern formation, Proc. Natl.
Acad. Sci. U.S.A. 77, 4180 (1980).

[48] A. Hunding and P. G. Sørensen, Size adaptation of turing
prepatterns, J. Math. Biol. 26, 27 (1988).

[49] S. Ishihara and K. Kaneko, Turing pattern with proportion
preservation, J. Theor. Biol. 238, 683 (2006).

[50] T. Bittig, O. Wartlick, M. Gonzalez-Gaitan, and F. Jülicher,
Quantification of growth asymmetries in developing epi-
thelia, Eur. Phys. J. E 30, 93 (2009).

PHYSICAL REVIEW LETTERS 120, 198102 (2018)

198102-6

https://doi.org/10.1016/j.devcel.2016.12.024
https://doi.org/10.1016/j.devcel.2010.01.006
https://doi.org/10.1016/j.devcel.2010.01.006
https://doi.org/10.1242/dev.025635
https://doi.org/10.1242/dev.025635
https://doi.org/10.1126/science.1210997
https://doi.org/10.1126/science.1211373
https://doi.org/10.1126/science.1211373
https://doi.org/10.1038/nature15730
https://doi.org/10.1038/nature15730
https://doi.org/10.1038/nature15712
https://doi.org/10.7554/eLife.22013
https://doi.org/10.7554/eLife.22013
https://doi.org/10.7554/eLife.22319
https://doi.org/10.7554/eLife.22546
https://doi.org/10.1073/pnas.0912734107
https://doi.org/10.1073/pnas.0912734107
https://doi.org/10.1038/nrm3169
https://doi.org/10.1242/dev.107011
https://doi.org/10.1038/ncomms6077
https://doi.org/10.1038/ncomms6077
https://doi.org/10.1002/wdev.195
https://doi.org/10.1002/wdev.195
https://doi.org/10.1073/pnas.0404782102
https://doi.org/10.1073/pnas.0404782102
https://doi.org/10.1016/j.cell.2005.08.030
https://doi.org/10.1073/pnas.0607134104
https://doi.org/10.1073/pnas.0607134104
https://doi.org/10.1016/j.mod.2006.12.005
https://doi.org/10.1016/j.mod.2006.12.005
https://doi.org/10.1242/dev.105650
https://doi.org/10.1242/dev.105650
https://doi.org/10.1371/journal.pcbi.1005052
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.198102
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.198102
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.198102
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.198102
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.198102
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.198102
http://link.aps.org/supplemental/10.1103/PhysRevLett.120.198102
https://doi.org/10.1073/pnas.77.7.4180
https://doi.org/10.1073/pnas.77.7.4180
https://doi.org/10.1007/BF00280170
https://doi.org/10.1016/j.jtbi.2005.06.016
https://doi.org/10.1140/epje/i2009-10507-6

