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ABSTRACT

Liquid-liquid phase separation (LLPS) has been proposed as the underlying physical prin-
ciple leading to the formation of membrane-less organelles in eukaryotic cells, following
advancements, in the last two decades, in experimental observations owing to progress in
confocal microscopy. These organelles can act as compartments in sequestering molecules
and tuning rates of biochemical reactions, among a repertoire of functions they serve.
Biochemical reactions are constantly in progress in living cells and are driven out of equi-
librium due to fuel consumption in the form of ATP or GTP molecules. Free diffusion
of reactive molecules through these compartments leads to their spatiotemporal seques-
tration and automatically implies an interplay between phase separation and chemical
reactions. In this work, we are specifically interested to understand how the two processes
closely affect each other and applying the understanding to tune better bottom-up design
principles for synthetic life, which involves coupling compartmentalization and chemical
reactions.

The first part of this work is devoted to studying the interplay between phase separation
and chemical reactions. To this end, we developed the theory of mass action kinetics of
equilibrium and out-of-equilibrium processes occurring at phase equilibrium in a multi-
component mixture. Phase equilibrium is imposed at all times, thus restricting the chemi-
cal kinetics to the binodal manifold. We learn more about circumstances in which reaction
rates can differ in coexisting phases. Next, we decouple the phase-forming components
(scaffolds) and the dilute reactive components (clients), which means that the reactive
dilute components respond to the heterogeneous profile in the system set by the scaffold
but do not affect it. This allows us to investigate to what extent compartments can affect
chemical reactions in terms of their yield at steady state for a bimolecular reaction or
initial reaction rate for a nucleation process compared to the absence of compartments.
We use the effective droplet model and mass reaction kinetics at phase equilibrium to
address the above questions. We can understand better how the properties of reactions
can be optimally tuned by compartment size.

Following the theoretical developments in the first part of this work, we proceed to use the
theoretical model of mass action kinetics at phase equilibrium to study emergent prop-
erties of parasitic behavior in a system composed of multiple fuel-driven reaction cycles,
which lead to the formation of so-called "building blocks" which can phase separate. This

study also helps us probe the buffering capacity of phase separation. It further provides



insights into how the lifetime of reactive "building blocks" can be tuned via phase separa-
tion.

Synthetic cells are generally realized by localizing minimalistic reactions in micron-scale
water-filled environments, thus mimicking compartmentalization. Here we apply our
model to understand how the localization of an autocatalytic process (PEN-DNA reaction)
inside proteinosomes affect the reaction rates compared to the reactions in a homogeneous
buffer solution.

To summarize, we developed theoretical approaches to study the interplay of chemical re-
actions with compartmentalization and apply such approaches to systems chemistry and
synthetic biology experimental studies to unravel how reactions can be controlled through

compartmentalization.
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Chapter 1

Introduction

"Wonder is the heaviest element on the periodic table. FEven a tiny fleck of it
stops time."
— Diane Ackerman, The Rarest of the Rare

1.1 Phase Separation - A brief overview of the development of the
field

Phase separation is essentially the creation of distinct phases from a single homogeneous
mixture. It has been well studied in the context of colloidal chemistry and polymer physics.
In colloidal chemistry, W.B. Hardy and E.B. Wilson were among the pioneers, back at the
end of the 19th century, who proposed the cytoplasm (then referred to as 'protoplasm’) as
a colloid [1, 2]. W.B. Hardy further linked the formation of biological colloids with phase
separation in his study of globulins, stating that: "The globulin is dispersed in the solvent
as particles which are the colloid particles and which are so large as to form an internal
phase”, and additionally attributed to the basic physical description of oil-water phase sep-
aration. Around the same time, the French biologist, Stephane Leduc, wrote in his book
"The Mechanism of Life (1911) [3]": "The liquids are the most important constituents of a
living organism since they are the seat of all the chemical and physical phenomena of life.
The junction of two liquids of different concentration is the arena in which takes place both
the chemical transformation of matter and the correlative transformation of energy.”

Meanwhile, in polymer physics, strides were made by M.L. Huggins and P.J. Flory to
study the thermodynamics of polymer solutions taking into account the dissimilarity in
the molecular sizes using a lattice model [4, 5, 6]. The concepts underlying the physics
of phase separation were strongly established, and later P.G. de Gennes was awarded the
Nobel prize in 1991 "for discovering that methods developed for studying order phenomena
in simple systems can be generalized to more complex forms of matter, in particular to
liquid crystals and polymers”. His article in Nature highlighted that despite displaying
similar phase separation attributes, polymers should be distinguished from other types of
colloids [7]. This has been reflected in the reduced usage of the term colloid to describe
the higher-order association behavior of biopolymers in modern cell biology and molecular
self-assembly. In other disciplines, around the 1970s, scientists had developed the colloidal
phase separation model for milk casein micelles [8]. In the following decades, the phase-

separation behavior of gamma-crystallin proteins from lens epithelial cells and cataracts



Chapter 1. Introduction

in solution [9] was identified, followed by the characterization of phase separation of starch

granules from the cytoplasm of plant cells [10].

Recent advancements and open questions
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Fig. 1.1: Illustrative examples of biomolecular condensates in eukaryotic
cells. These condensates are ubiquitous (brown hues), cell-type specific (green hues),
or condition-dependent (red hues). Source [11]

At the end of the 20th century, breakthroughs made in confocal microscopy led to the iden-
tification of various proteins, RNA, and carbohydrates clustering inside the cell cytoplasm
and nucleus to form membrane-less compartments (Fig. 1.1), which were then referred
to by a plethora of names, some being "punctas", "granules", "assemblies", "aggregates"
and "paraspeckles". The need to revisit the concepts of phase separation was strongly felt
and was thus reborrowed from colloidal chemistry, and polymer physics [12]. Since 2009,
multiple studies have provided further evidence of the existence of such compartments
formed via intracellular phase separation of biomacromolecules [13, 14, 15]. One of the
most prominent studies was the observation of localizing germline P granules in C. elegans
germ cells which exhibited all liquid-like attributes, viz., fusion, dripping, and wetting [13].
Besides in vivo studies, several reconstituted in vitro studies [16, 17, 18] strengthened the
evidence.

These compartments are also referred to as biomolecular condensates [19], which can be
misleading given condensation in physics solely refers to liquid-gas phase transition. How-
ever, the analogy holds due to the process of undergoing self-assembly, thus locally lead-
ing to an increase in the concentration of assembling components. Once the existence of
membrane-less compartments was established, the immediate questions that arose among
many were the functional purpose they serve. They are incredibly complex compartments
with hundreds to thousands of identified components per condensate [20, 21]. Therefore it

is natural that they mediate diverse tasks, and some of the functions stem from their abil-
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Fig. 1.2: Schematic representation of the functional repertoire of biomolecular
condensates. Buffering capacity of concentrations, activation, and inhibition of chemical
reactions via localization are some of the important functions of condensates that we study
in detail in this work.

ity to concentrate or exclude molecules at specific locations. One important consequence
of concentrating molecules is affecting biochemical reaction kinetics (Fig. 1.2).

Some examples include condensates of actin-signaling proteins LAT or nephrin concen-
trate actin [22, 23], and pericentriolar material condensates of SPD-5, ZYG-9, and TPXL-
1 localizing tubulin [24], enhancing actin or tubulin polymerization, respectively. Super-
enhancers enhance transcriptional output by concentrating transcription factors and RNA
polymerase II [25]. Conversely, condensates can inhibit reactions or organelle activity.
The phase separation of yeast translation termination factor Sup35 into reversible gels
corresponds to translation inhibition and protection against pH-induced stress [26]. Simi-
larly, condensates of the RNA transport granule protein FMRP concentrate translational
inhibitors and suppress translation in vitro [27]. Membrane-bound organelles such as
mitochondria are sequestered in an inactive state in dormant oocytes by rigid Balbiani
bodies [28] (green hue in Fig. 1.1).

In addition to controlling reaction kinetics, condensates also modulate reaction specificity
(e.g., by excluding inhibitory molecules). LAT signaling clusters exclude phosphatases
that suppress actin polymerization [22]. Different patterns of Caprinl and FMRP phos-
phorylation control their co-phase separation and sub-compartmentalization, modulating
the rate of mRNA deadenylation or translation [27]. Moreover, condensates control where
reactions occur by clustering molecules in specific locations. For example, the clustering of
synaptic vesicles and neurotransmitter receptors at presynaptic and postsynaptic regions
is mediated by the phase separation of proteins such as Synapsin in the presynapse and
SynGAP and PSD-95 in the postsynapse [29].

As listed above, there have been extensive experimental studies conducted to observe how,
in multiple ways, biochemical reactions are affected in phase-separated compartments. A
thorough theoretical understanding of how such reactions can be controlled and thus af-
fected using such compartments had been missing. Through this work, we wish to address
the two-way effects of these otherwise orthogonal mechanisms, viz., chemical reaction ki-
netics and phase separation. This understanding is important in the field’s development
because it helps decipher how cells’ biochemical reactions are localized and what key prop-

erties of the compartments modify their kinetics. Additionally, it also provides key insights
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into an important aspect of engineering synthetic life, which includes coupling compart-
mentalization and out-of-equilibrium chemical reaction networks.

The cell, despite being the smallest unit of life, is, in fact, the absolute example of com-
plexity. Isolating any intricately connected processes ongoing in a cell is very challenging,
showcasing the importance of a reconstituted "life-in-a-test tube" approach to finely dis-
tinguish the mechanisms leading to the formation of phase-separated compartments and
their downstream effects on chemical reactions. A major challenge in bottom-up syn-
thetic biology is designing and building synthetic cell-like entities with lifelike properties.
To generate such cell-like compartments, semipermeable protein-polymer microcapsules
(proteinosomes) [30, 31, 32] and membrane-less coacervate microdroplets [33, 34] are a
few of the candidates used. Multi-compartmentalization is one property in living systems
in which distinct subcompartments have specialized microenvironments which allow for
selective partitioning of biomolecules [35]. Spatiotemporal control of the formation of dif-
ferent subcompartments, such as membrane-less organelles, plays a key role in regulating
the localization of functional biomolecules, which can be used to control biochemical reac-
tions [19]. The programmable spatial organization of different sub-microcompartments was
realized upon the regulation of external environmental changes, which was used to control
the reaction rates of biochemical reactions or signaling processes in synthetic cells [36, 32].
In this work, we advance in this direction from a theoretical perspective expecting to
provide insights into new approaches for the hierarchical spatial organization of various
biomacromolecules and organelles inside synthetic cells. This would also contribute to
developing novel microreactors with the tunable release of various bio-macromolecular
cargoes and spatiotemporal regulation of biochemical reactions.

We now proceed to discuss the foundational concepts from statistical physics to lay the
groundwork for understanding the interplay between phase separation and chemical reac-

tions.

1.2 Thermodynamics of phase separation in a multi-component
mixture

1.2.1 Mean field free energy

It is well established that the cell is inherently multi-component in nature, and our objects
of interest, the membrane-less organelles are too [20, 21]. To study the thermodynamics
of phase separation of a multi-component mixture, we proceed to define the Gibbs free

energy (in an ({N;},p,T') ensemble) for (L + 1) components as follows,

L L L
vilNi Xij
G N,L T) = T Nil() 24 NZN wiNi s 1.1
({Nit,p. T) =kp LEO g< v >+D”§-02V0 j +i§O + pV (1.1)

where {N;} represents the set of particle numbers (we will use this notation for a set
throughout this work) of all components indexed by ¢ with (i = 0) index used explic-

itly for the solvent in this work (unless stated otherwise), p is the pressure, T' is the

temperature, and kp is the Boltzmann constant. The free energy is modeled following
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the mean-field Flory-Huggins lattice model [4, 5, 6], with the first term representing the
mixing entropy of all components with individual molecular volume v;, the second term
accounting for short-range interactions between components i and j parametrized by a
non-dimensional symmetric interaction parameter, Xl-jl (in general, they can originate
from various physical interactions that may include dipolar, van der Waals interactions,
screened electrostatic interactions between charged molecular groups, or entropy-driven
hydrophobic interactions [37]) and the third term corresponding to the internal energy, w;
of component 7 originating from its internal degrees of freedom.

The system volume is, V' = 0G/0p|(n,}r, the entropy is § = —0G /0T |(n,}, and the
chemical potential of component i is y; = G /IN; |y Njzi}pT

An incompressible system satisfies the condition —(1/V)0V/dp|(n,1,r = 0, implying that
the volume of the system is independent of pressure. The volume of the incompress-
ible mixture can therefore be written as V = Zfzo v;N;, where the molecular volume,
v; = OV/ON;|(n, ;3 is constant.

For the scope of this work, we restrict ourselves to incompressible systems. Thus we can
define the corresponding Helmholtz free energy, F' = G — pV/, in a canonical ensemble.
Given the system volume is independent of pressure and only depends on the number of
particles, we can eliminate one of the particle numbers while performing the corresponding
Legendre transformation, which changes the description from the ({N;},p,T) isothermal-
isobaric ensemble to the ({N;},V,T') canonical ensemble. A common choice, and one that
we also use throughout this work (except chapter 2), is to eliminate the solvent particle
number Ny and express it as a function of the volume and the rest of the particle numbers

as,
L

No == (V_ZViNi)/VO- (12)
i=1

An immediate consequence of eliminating the solvent component is the appearance of new
thermodynamic conjugate variables in the canonical ensemble. To understand this better,
we look at the differential of the Gibbs free energy, dG = —SdT+Vdp+YX , uidN; [38, 39]
and use it to read out the differential of the Helmholtz free energy dF' = d(G — pV) as,

L
dF({N:},V,T) = —SdT — pdV + podNo + Y _ pidN;
=1

av v L
= —-8dT — pdV + ,U()( ZdNi) + ZuidNi (1.3)

LR i=1

L .
= —SdT — < — “°>dv +> <,U«i - ro’)dNi.
IZ0) =1 140}

We can identify the new thermodynamic conjugate variables to volume and particle num-

ber, from above, as the osmotic pressure, II and exchange chemical potential, j1;, respec-

1, — z2eij—ciizejj
Xij = 3 EpT

are the self contact energies, also known as the Flory-Huggins interaction parameter [5, 4].

, where z is the lattice coordination constant, e;; is the cross contact energy and e;;, €;;
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tively,
M=p- Ko , (1.4a)
0
_ v
fii = i — o~ - (1.4b)
4]

The osmotic pressure, II is essentially the pressure that is required to be applied to the
mixture to prevent the solvent from flowing through the semi-permeable membrane [40,
41]. The exchange chemical potential of component i, fi; defines the free energy cost of
exchanging one particle of component i for a number of solvent particles occupying the
same volume.

For the purpose of this work, we choose to use a variable that can interchangeably be used

with concentrations n; = N;/V, which is the volume fraction. It is defined as,
bi = vin; . (1.5)

We can therefore write the bulk free energy density of a homogeneous system in the fixed
volume ensemble fo({¢i},T) = F({N;},V,T)/V as,

kT

L 4 L L
— log ¢ - i) - i
el PORRCTRE ;mog(l z¢)

+ i %ff%fﬁj +ZL1X2W¢1‘(1 - il%)] +iwi¢i +w0<1 - i%‘) ;
i= j= i= j=

,j=1

fo

(1.6)

having used the relation in Eq. (1.2) but with volume fractions as ¢g = (1 — 25:1 ®i),
which is a consequence of incompressibility of the system. Here we use r; = v;/1p as a
multiplicative factor to express the molecular volume of all components, v;, in terms of
the solvent molecular volume, 9. The interaction parameter matrix, x;;, is symmetric
with no self-interaction terms, i.e., x; = 0, as a choice we use throughout this work.! So
far, we have discussed the homogeneous bulk free energy density Eq. (1.6), which neglects
the contribution of interfacial free energy density. However, for a generalized treatment,

we define a total free energy density, including the interface contributions as,

L
f=h{o. 1)+ 3 5 (Vo). (1.7)
ij=1
We can approximate the free energy density as an expansion in terms of the volume fraction
gradient V¢;, a vector. Since the free energy density is a scalar and we are probing near
its minima, the term proportional to V¢; is negligible. The most general lowest-order
term is the quadratic expression x;jV@; - V¢;, a scalar [42]. Here k;; is a parameter that
controls the free energy cost of variations in volume fraction, ¢;. For the purpose of this

work, we consider x;; = 0 for i # j and Ky, simply used as x; (as in Eq. (1.7)), when we

!Note that the interaction parameter and internal energy in Eq. (1.1) have to be rescaled to XijVLj and
iV
“i respectively when used in Eq. (1.6), such that the interaction parameter remains dimensionless and
internal energy has dimensions [ML*T~2].
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take into consideration interfacial contributions.

1.2.2 Other possible free energy considerations: Beyond mean-field

It is important to note that in the biological context, it is usually intrinsically disordered
proteins (IDPs) and RNAs that constitute the membrane-less organelles [43, 44], and these

biomacromolecules are multivalent in nature.

Multivalency gives rise to interactions that are

Sequence type: A usually sequence-dependent to drive phase separa-

tion [14, 45]. The application of mean-field theory,

]zfiG I like the Flory-Huggins lattice model, which was de-

n=4 4 veloped originally to study chemically synthesized
o=1

homopolymers for which all monomers are identical,

Sequence type: B

does not consider effects on phase separation due to

N=24 @@ ®
L=6 .0. P

n=4 °®
oc=0.5
Fig. 1.3: Schematic of charged

sequence of polymers. Two sam-
ples of polymers with charged sequence,

charge sequence along the polymer. Therefore, as
far as interactions are concerned, the monomers are
treated as independent particles, and the quadratic
in volume fraction (¢?) formulation is appropriate
only for contact-like interactions within a short spa-

tial range. Since the inter-monomer interactions are

characterized by the total number of
monomers N (chain length), length of
an individual block L, the number of
charged blocks n, and the fraction of
monomers that are charged, o. The
unit or neutral charges are represented
by +1 (blue), —1 (red), and 0 (white),
respectively.

solvent-mediated, y contains enthalpic as well as en-
tropic contributions in general and is expected to
be sensitive to salt, pH [46], and other environmen-
tal conditions. As such, fitted x parameters can be
used to rationalize experimental data on biomolec-
ular condensates [47].

To demonstrate the effects of charge sequence on
phase diagrams, we also study in this work the random phase approximation (RPA) for-
mulation for interaction energy by considering the spatial correlation of local variations
in polymer density [48, 37]. By treating a part of this correlation that arises from chain
connectivity, RPA accounts approximately for the sequence dependence of liquid-liquid
phase separation. In technical terms, the interaction free energy in RPA, which involves a
statistical mechanical integration over polymer density variations, is a sequence-sensitive

function of polymer volume fraction ¢ [49, 50]. The free energy density is,

JrPA = (1.8a)

L b
> o6 + fi.
o Li33 T
where the entropic contribution is similar as in Eq.(1.6), and the interaction enthalpy
contribution f;,; = f¢ originates due to Coulombic interaction potential with a physical
short-range cutoff at monomer size, b, given by,
(1 —exp(—r/b
Uy — B0 = e (cr/h)

r

(1.8b)
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where Ig = €% /4mege, kpT is the Bjerrum length, e is the electronic charge, r is the spatial
distance between electric charges, ¢y is the vacuum permittivity and e is the dielectric
constant. Using the RPA approximation, after the elimination of the electrostatic self-

energy (for details, see Appendix.A),

31(n)3 o .
fo = ;/d(];i)%) {log [det(1 + GiUyg)] — Tr(p Uk)] ; (1.8¢)

where p is a diagonal matrix that contains the densities of the charged components,

b= ((pm/N)fN ?) ’ (1.84)
0 pI

with p,, being monomer density, Iy is an N dimensional identity, pr is a 2 x 2 diagonal
matrix for the charge of the positive and negative monovalent ions (salt or counterion to

account for electro-neutrality) and Uy, is the k-space representation of Eq. (1.8b),

O = 5B lov (gl = A(R)a) al (1.8¢)

TR+ (kb)?]
where |¢) is the column vector for the charges of the monomers and the monovalent
ions. The bare correlation matrix G’k combines the monomer-monomer correlation for a

Gaussian chain, and the density matrix for the small monovalent ions is,

ék _ ((pm/N)éM(k) ?) , (1.8f)
0 pI

where Gpr(k) is a matrix of size (N x N), where N is the number of monomers in
the polymer, which is treated as a Gaussian chain with the elements as C;'M(k:)ij =
exp(—(kb)?|i — j|/6) [48]. For regular block polymers with repeated units as in Fig. 1.3,
we can proceed to study the sequence properties dependent phase diagrams using a re-
duced temperature, T* as a thermodynamic variable, defined by rescaling temperature

with electrostatic energy. It is defined as follows,

T = b . (1.9)
Ip

1.2.3 Exchange chemical potential, chemical activity and osmotic pres-
sure

The exchange chemical potential, j1; emerges as the conjugate thermodynamic variable to
particle numbers N;, as identified in Eq. (1.4b). It is defined as j1; = (riyo)(% and following
from the free energy density definition in Eq. (1.7), we can calculate the exchange chemical
potential as,

fii = kpTlog(Fi¢:) + Y — 1V ;, (1.10)
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where (9;¢;) is the exchange chemical activity [51, 52, 53, 54], 4; is the exchange chemical

activity coefficient [55, 56] which is constant in the absence of interactions (all x;; = 0),

1
(1- Z;;:l ¢j)

L
i = —exp | > ri(xij — Xoi — X0); | (L.11)
=1

and i) is the exchange reference chemical potential,
fi; = kpT [1 — i + rixoi] + rivo(wi — wo) . (1.12)

The osmotic pressure is calculated as,

. & (1.13)

II = 90

oV {ni}T

Corresponding to the free energy density calculated using RPA, in Eq. (1.8a), there is no
closed-form expression of the exchange chemical potential and osmotic pressure. However,
it can be computed numerically for the purpose of visualization and further analysis.

1.2.4 Thermodynamic instability leads to phase separation

The onset of phase separation can be understood by

Component studying the nature of the free energy densities, be it
.
Z -1 00 mean field Eq. (1.6) or beyond mean field Eq. (1.8).

Due to interactions among the components, the sys-

) tem tends to separate into two homogeneous liquid
Increasing Xo1

or phases with different compositions® if the sum of the

L. decreasing T free energies of both phases is lower than that of the

well-mixed homogeneous phase. The previous state-
ment can be expressed in terms of the free energy

density as,

. . I 11
Fig. 1.4: Onset of phase separation Kf({@}l T) + 14 f({(,bz}II T) <f ({d;z} T)
in Flory Huggins lattice model. In- \%4 ’ V ’ ’ & 1’4)

creasing enthalpic contribution by in- -
creasing Xo1) or reducing entropic con- where {¢;} is the average volume fraction of all com-
tribution by lowering T can lead to

phase separation. Here, we change xo1
to observe the same in a two-component inequality in the thermodynamic limit where inter-

ponents in the system. In Eq. (1.14), we study the

system. facial contributions are negligible in comparison to

the bulk free energy density, or in other words when
system size V3 becomes large compared to the lengthscales over which gradients occur
in the system.

For specific interaction parameters, x;; or temperature 7" (Fig. 1.4), the free energy density

IFor the purpose of this work, we assume the presence of a maximum of two coexisting phases, which is
ensured by a specific choice of interaction parameters x;; among the components. The solvent poor phase
is labeled as phase I and the solvent-rich "dilute" phase is labeled as phase II.
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Fig. 1.5: Phase separation in a binary mixture. (a) Free energy density is concave
between the spinodal points (blue dots) for xo1 = 2.5 (brown), unlike for xo1 = 1 (orange),
which is convex in the whole domain. The binodal volume fractions (purple dots) can
be connected by the common tangent (solid gray), and Laplace pressure effects shift the
binodal volume fractions (light green dots). Asymmetry in free energy density can stem
from the difference in molecular volumes or internal energies. (b) The exchange chemical
potential at the binodal volume fractions for both the thermodynamic limit (purple dots)
and finite system (light green dots) are equal at phase equilibrium. Parameters are listed
in the L.O.F section.

can exhibit two local minima (binodal points) and two other points in composition space

(spinodes or inflexion points) corresponding to which,

82 f

detff:O, fij:ia(b'agb"
i0Qj

(1.15)
where F is the Hessian matrix of the free energy density. The concavity of the free energy
density (det]:" < 0) condition defines the spinodal phase separation region in which the
demixed state is globally more favorable. It is because the determinant of a matrix is equal
to the product of all its eigenvalues, and this instability condition indicates that one, but
not both (since binary mixture), of the eigenvalues of Fis negative. This means that
second-order perturbations of free energy density with respect to ¢;’s along the direction
of the corresponding eigenvector diverge, signaling that the system cannot maintain a
homogeneous phase. For volume fractions within the spinodal region, a homogeneous
solution is unstable against infinitesimal fluctuations in density or composition. There is
no thermodynamic barrier to the growth of a new phase. Thus, the spinodal represents
the limit of physical and chemical stability. To reach the spinodal region of the phase
diagram, a transition must take the mixture through the binodal region or the critical
point. Often phase separation will occur via nucleation during this transition, and spinodal
decomposition will not be observed. To observe spinodal decomposition, a very fast quench
in the control parameters xg; or 1" is required to move from the stable to the spinodal

unstable region of the phase diagram.

1.2.5 Phase equilibrium conditions

As is conventional, the phase boundaries are coexistence curves satisfying the binodal

condition, which corresponds to the equality of exchange chemical potentials and osmotic

10
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pressure across phase boundaries. They, therefore, may be determined graphically by
constructing a common tangent (also referred to as Maxwell’s tangent construction or
construction of the convex hull) [57]. In an (L + 1)- component mixture at phase equilib-
rium, the number of unknown variables is (2L +2), being the equilibrium volume fractions
of all components in the two coexisting phases.! The minimum of the free energy density
defines the phase equilibrium for finite systems with system size V. This minimization is
subject to (L 4 1) constraints, namely conservation of material (V¢; = V¢! + Vg for
i = 1,..,L and incompressibility (V! + V!l = V).

Imposing the constraints reduces the unknown variables to (L + 1), and we, therefore,
require an equal number of conditions to determine the equilibrium volume fractions. The

conditions are as follows,

pi({e1}) = mi({¢i'}), (L conditions) (1.17a)
I =11t + % ; (1 condition) (1.17b)

where (2£/R) is the additional correction to the pressure balance condition due to Laplace
pressure which is proportional to the interface curvature R~! and thus disappears in the
thermodynamic limit (R — 00). £ is the measure of surface tension in the system (for
details, see [59, 57]).

The equilibrium volume fractions, {¢!} and {#!'}, obtained on solving Eq. (1.17) make
up the binodal manifold in the phase diagram. Equivalently, (L + 1) conditions using
chemical potentials, p;({¢r}) = wi({¢r}) can be simultaneously solved. For instance,
Fig. 1.6 depicts the phase diagram of a binary and ternary mixture. Equation (1.17a) can

be equivalently expressed as equality of exchange chemical activities in both phases [56],
Tidi = Tidr - (1.18)

The components can partition unequally in the two phases, which is described by its

partition coefficient, defined as

90

ol
(2

At phase equilibrium Eq. (1.17), the partition coefficients can be expressed in terms of the

(1.19)

[

exchange activity coefficients in both phases, ’_yg/ H, by using Eq. (1.18) as

p=2

(2

(1.20)

This expression reveals that partitioning is governed by the composition dependence of

/11

exchange activity coefficients 7}/,} in phase separating systems (Eq. (1.11)).

The maximum number of possible coexisting phases can be determined by the Gibbs phase rule for an
incompressible non-reacting multicomponent mixture [58, 40],

ng=nc—mnp+1. (1.16)

For n. = (L + 1) component mixture, the maximum number of possible phases, corresponding to ng = 0
max

degrees of freedom, is ny™* = (L + 2).

11
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Fig. 1.6: Phase diagrams for mean field models. Phase diagrams corresponding to
(a) binary (L = 1) and (b) ternary (L = 2) mixtures. In the shaded domain, the demixed
state is preferred. An average volume fraction {¢;} (red dot) decomposes to equilibrium
volume fractions {¢!} and {¢!'} on the binodal manifold (purple dots for binary and dark
green dots for ternary). The phase volume V!/V is set by the lever rule originating due to
material conservation. For binary mixture, we can also identify the critical point (black
dot). Parameters are listed in the L.O.F section.

(a) (b)
: n=4 oc=1 : N=320 o=1
&~ 60 T T ] &~ 60 T T O’I T
® N ] ® n _
E — 320 A z — 4
& = Bl —
= 120 ] = ]
S 20 . 2 92 ]
o 1 o
] — 5] —
Q Y ] Q
% 0 I I I I . % 0 I ! ! ! o
& 0.00 0.02 0.04 0.06 0.08 0.10 £ 0.00 0.02 0.04 0.06 0.08 0.10
Volume fraction ¢1 Volume fraction ¢

Fig. 1.7: Phase diagrams for beyond mean-field models. Phase diagrams corre-
sponding to binary mixtures of charged sequence polymers and solvent, with free energy
density calculated as in Eq. (1.8a). We see that the sequence parameters affect the binodal
manifold and also the critical points (black dots). (a) Longer charged sequences (larger
N) with (b) fewer blocks (smaller n) have stronger tendencies to phase separate.

Interpretation of a phase diagram

Both from a theoretical and experimental perspective, the construction and understanding
of phase diagrams are crucial [47, 60]. In a binary mixture, one axis is for the volume
fraction, and the other axis can correspond to the concentration of salt, pH [46], interaction
strength, or temperature [47]. In Fig. 1.6(a), we use the interaction parameter xp;. On
the contrary, a ternary phase diagram (Fig. 1.6(b)) is spanned by the volume fractions of
two components for a fixed temperature or interaction parameter. It, therefore, provides
the information that, given all other conditions are fixed, how we can locate the demixed
region in the volume fraction space.

The common aspects for both cases are as follows: Corresponding to any unstable average
volume fraction (red dots in Fig. 1.6) in the green shaded domain; one can read out the
equilibrium volume fractions and also the phase volumes of the coexisting phases. Each

pair of equilibrium volume fractions, {¢}} and {¢!'}, are connected by a tie-line (solid

12
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green in Fig. 1.6). In the binary phase diagram, we also depict the spinodal (dashed green
line) and the spinodes (dark blue dots).

For completion, we also study phase diagrams of charged sequence polymers in binary mix-
tures using RPA (Fig. 1.7). The free energy density is simplified and analytically tractable
for periodic block-charged sequences. However, it is not possible to derive the analytic
form of the exchange chemical potential and osmotic pressure. We, therefore, proceed
to calculate these quantities numerically. As a downstream consequence, calculating the

equilibrium volume fractions is numerically expensive.

1.2.6 Relaxation dynamics to phase equilibrium

To study the relaxation of the system to its phase equilibrium state, we proceed to write

down the conservation equation given by,

0
=-V ' j, 1.21
where j; is the linear response diffusive flux of component ¢ and is defined as,
(1.22)

ji=—>_ My Viy.
k

Here, M. is the volume fraction dependent
Component non-diagonal mobility matrix, with the following
Y form [61]:
L+1 L+1
Mi; = moidi(1 — ¢1 — > di) + > Mg,
i=2 lz;izl

M, = —mp i, Vi # k|
(1.23)

with m;, being constant diffusion coefficients. Us-
ing the exchange chemical potential as obtained in

Fig. 1.8: Spinodal decomposition Eq. (1.10) and substituting in Eq. (1.21), we ob-

and nucleation. Transient snapshots

of (i) spinodal decomposition and (ii)
nucleation in a binary mixture. In
the latter case, the solvent is less
abundant in the system and therefore
forms the spherical solvent-rich "dilute"
phase. These regions are highlighted in
Fig. 1.6(a) in the phase diagram for a
binary mixture with the interaction pa-
rameter choice xo1 = 2.5. Parameters
are listed in the L.O.F section.

tain a modified Cahn-Hilliard equation tailored for
the Flory-Huggins free energy density. When one
phase is significantly more abundant, this equa-
tion can show the phenomenon known as Ostwald
ripening, where the minority phase forms spheri-
cal droplets (as in Fig. 1.8(ii)), and the smaller
droplets are absorbed through diffusion into the
larger ones. It is important to note here the well-
known Cahn-Hilliard equation [42] is specifically
obtained in a binary mixture with the Ginzburg-

Landau bi-quadratic free energy density of the form

13
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f=1300" =1+ 5(Ve)*

1.3 Thermodynamics of chemical reactions in homogeneous mix-
tures

In an (L + 1) homogenous mixture, we consider chemical reactions oo = 1, ..., R,
L L
ZU{ZC% = ZUZ»;CI', (1.24)
i=1 i=1

of chemical species C;, where O'i are stoichiometric matrices. In Eq. (1.24), reactants
are on the left side (+), while reaction products are on the right side (—). Given (L) !
chemical species undergoing R linearly independent reactions, there exist (L— R) conserved
quantities 1;, where ¢ = 1, ..., L — R. The reaction free energies corresponding to reaction
o are
L
Ao =Y oiafii, (1.25)
i=1
where we abbreviate ;o = 0;, — Ufa. The basis vectors spanning the nullspace of the

matrix v;0;, define linearly independent conserved quantities 1); [62].

1.3.1 Chemical equilibrium conditions

The condition for chemical equilibrium reads [40]

Component
i:0 Apg =0. 1.2
B @
Together with maximal R conditions as Eq. (1.26)
and (L—R) conserved quantities, a simultaneous so-
A=1B . . . S
lution provides L chemical equilibrium volume frac-
tions.
2:Fe At chemical equilibrium, the volume fractions reach
=2
3 | e equilibrium values that can be used to define the
equilibrium reaction coefficients as
Fig. 1.9: Conversion between I
chemical species allows the onset K. = \Cia 1.27
of chemical equilibrium. Chemi- o _221_[1(@) ’ (1.27)

cal reactions minimize free energy by
proceeding toward the conversion to
species with less internal enthalpies,
thus satisfying the conditions governed
by Eq. (1.26) . concentrations or volume fractions [55].

which are distinct from the equilibrium reaction con-

stants that include the chemical activities instead of

At chemical equilibrium Eq. (1.26), the equilibrium

reaction coefficients K, can be expressed in terms of the stoichiometric coefficients, ex-

IFor the purpose of this work, we assume that the solvent (i = 0) is a non-reactive component. A general
treatment is performed in Ref. [56]. We also assume that the reactions conserve volume, Zle oiaV; = 0.

14
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Fig. 1.10: Chemical equilibrium and conserved quantities. For a unimolecular
reaction A = B, we depict the conserved quantity ;. The intersection of mono-nodal
along which condition g4 = i1p is satisfied with ¢¥; = 0.4, allows determination of volume
fractions at chemical equilibrium as seen on the (a) phase diagram (both finite and zero
interactions) and at the (b) steady state of reaction kinetics, in the case for x;; = 0.
Parameters are listed in the L.O.F section.

change activity coefficients, and exchange reference chemical potentials as,

L Uiaﬂ[‘)

Ko= 1|7 e — Ol 1.28

o= 17" exp | =700 (1.28)
=1

The equilibrium reaction coefficients thus describe relationships between volume fractions

at chemical equilibrium. These coefficients depend on composition via the exchange ac-

tivity coefficients 7; [53, 54].

In general, for given conserved quantities v);, there exist a unique set of volume fractions
¢; that satisfy Eq. (1.27) and therefore correspond to chemical equilibrium. Figure 1.10(a)
shows the example of a ternary mixture (L = 2) with a unimolecular reaction (Fig. 1.9),
where the conserved quantity ¢n = (¢4 + ¢p) is constant along the thin straight lines
(light orange). The volume fractions at chemical equilibrium lie on the intersection of a
line with constant 11 with the line on which chemical equilibrium holds and Eq. (1.26) is
satisfied (thick orange lines) in Fig. 1.10(a). We refer to this line as mono-nodal since it
describes a single set of equilibrated volume fractions, as opposed to the binodal of phase

separation, which characterizes pairs of equilibrated volume fractions.

It is interesting to note that in Fig. 1.10(a), the effect of finite interactions among the
components. Strong repulsive interactions (any one y;; > 2) impart a concavity to the
mono-nodal (thick orange line), implying that the system also phase separates (thick light
orange), unlike when interactions are attractive (all x;; < 0) which implies a mixed state
but the mono-nodal is convex (thick dark orange (Fig. 1.10). In the absence of inter-
actions, the mono-nodal is a straight line passing through the origin (thick yellow line).
We demonstrate that for a ternary mixture with a unimolecular reaction, the components

approach chemical equilibrium (yellow dots in Fig. 1.10(b)).
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1.3.2 Relaxation to chemical equilibrium

As we studied in Sec. 1.2.6 for phase equilibrium, similarly, we can also study the dynamical
equations that dictate the approach to chemical equilibrium. It is often referred to as mass-
action kinetics. The conserved quantities v; do not change as a function of time, unlike
the quantities called reaction extents, £,, which measure the cumulative number density

of reaction events [63],
d

dt

where s, is the net reaction rate defined as,

§a = Sa (1.29)

S0 = 85 — 5. (1.30)

It is, however, important to realize that the forward and backward reaction rates, s& would

satisfy the detailed balance of reaction rates,

+
Sa exp <—A'MO‘> , (1.31)

where we can make a symmetric choice and write,

_ +

st =ko({¢i},p, T) exp Ho , (1.32)
kT

where p are introduced as the forward (4) and backward (—) reaction free energies

defined as,

L
Ha =D Opailic (1.33)
i=1

This also provides the relation Ap, = p, — pt. Here we also introduce the reaction
rate coefficients k, (referred to as rate constants in literature) in a similar spirit as the
diffusion coefficients m;; Eq. (1.23) in Sec. 1.3.2. These reaction rate coefficients are not of
thermodynamic origin as they may depend on pressure, temperature, or they can be phase
dependent in the presence of coexisting phases due to differences in the physicochemical
environment between the two phases. This property we use in subsequent chapters 4 and
5 to see how reactions can be suppressed in one phase or the other, thus localizing them to
a specific physicochemical environment. Given the composition dependence of the phases,
we can assume they make for different environments (discussed in detail in chapter 2).

It is therefore implied at chemical equilibrium, following Eq. (1.26), st = s . The kinetic
equation, therefore, for a chemically reacting component i can now be written as ¢; =

2521 ViTiaSa explicitly as,

d & puh T
—@; = E iTiaka <) — & ) 1.34
a’ =" [eXp (kBT> exPp (kBT (1.34)

For the unimolecular reaction example where phase separation doesn’t occur (no inter-

actions, x;; = 0), it can be straightforwardly shown following Eq. (1.34) that the rate is
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linear in the volume fractions as exchange activity coefficient is a constant,

980 = ~oa®) _
() -en )

For this simplified case, we have chosen, j1; = kgT [log (¢i/(1 — ¢pa — ¢B))] + (wi — wo)-

(1.35)

1.4 Thermodynamic equilibrium

"It may be noted that the condition.. (as in Eq. (1.26)) ..retains its form even when the
reacting substances are distributed in the form of solutes in two different phases in contact.
This follows from the fact that in equilibrium the chemical potentials of each substance in
either phase must be equal, in accordance with the conditions for phase equilibrium.” -
Pg.306, Chp.X- Chemical Reactions, Statistical Physics, Part I, Vol.5; L.D. Landau and
E.M. Lifshitz [40]
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Fig. 1.11: Thermodynamic equilibrium. In a ternary mixture with a unimolecular
reaction, the thermodynamic equilibrium for this system is depicted on a phase diagram.
(a) In the white domain, the system remains mixed as it approaches its chemical equilib-
rium, dictated by the intersection of the conservation line with the mono-nodal (orange).
In the green domain, the equilibrium is dictated by the green tie line on which lies the
average volume fractions {(;752} and the thermodynamic equilibrium volume fractions (or-
ange dots) in the coexisting phases, obtained by the intersections of the binodal (dashed
green) and the chemical equilibrium mono-nodal, (b) Different thermodynamic equilibria
can be reached for three parameter choices of internal energies (Aw = wp — w4 ). While
the binodal remains affected under these parameter changes, the mono-nodal gets shifted.
Parameters are listed in the L.O.F section.

If a system is at thermodynamic equilibrium and two phases coexist, both chemical re-
actions and phases are equilibrated. In this case Eq. (1.26) and Eq. (1.17) are obeyed
simultaneously. As a consequence, thermodynamic equilibrium imposes a relation between
equilibrium reaction coefficients and partition coefficients. In fact, equilibrium reaction
coefficients, K and K, differ in the two coexisting phases, I and II. At thermodynamic

equilibrium, their ratio obeys

K L
Fﬁ = g(ﬂ) o (1.36)

Equation (1.36) can select a subset of coexisting volume fractions on the binodal man-
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Fig. 1.12: Phase separation tunes chemical equilibrium. (a) Varying the difference
of internal energies (w;, in turn reference chemical potential) between components B
and A, Aw, leads to different chemical equilibrium lines (shades of orange mono-nodals)
in the phase diagram. The orange lines in the shaded domains (b) characterize the
difference between the phase-separated system at thermodynamic equilibrium and the
corresponding mixed system (gray arrow), indicating that phase separation can control
chemical equilibrium and hence the volume fractions at equilibrium. Parameters are listed

in the L.O.F section.

ifold if both equilibria are compatible. Combining the binodal and mono-nodal within

one phase diagram represents a new concept that allows us to discuss how phase sep-

aration affects chemical reactions at equilibrium. The case of compatible equilibria is

illustrated in the example of a ternary mixture shown in Fig. 1.11(a), where a unique

pair of volume fractions coexist at thermodynamic equilibrium for a large range of con-

served quantities (orange circles).

Chemical and phase equilibria can also be incom-

patible. In this case, thermodynamic equilibrium corresponds to a homogeneous state

that satisfies only chemical equilibrium Eq. (1.26); top orange solid lines in Fig. 1.11(a).

0.04

&
0.02
<

0.00

0.0 0.5 1.0
conserved quantity ¥

Fig. 1.13: Difference in average
volume fractions due to mixing.
A{¢;} varies with the value of the con-
served quantity 1, which is depicted
by the compositional change of the B-
component, A¢g, due to mixing. Pa-
rameters are listed in the L.O.F section.

An important implication of our concept to com-
bine the binodal together with the mono-nodal in
one phase diagram is that phase coexistence leads
to different equilibrium states compared to the cor-
responding mixed system. To illustrate this effect,
we compare the average composition ¢; of a system
at phase coexistence to the same mixed system but
at chemical equilibrium. Mixing can be realized by
stirring, for example.

In the phase diagram, this comparison amounts to
the deviation between the line of chemical equilib-
rium (dashed orange line in Fig. 1.12(a) and the
tie-line (solid green line in Fig. 1.12(a), which is de-
picted by the orange domains in Fig. 1.12(b)).
Since the mixed case is only partially equilibrated,
its composition is different from the composition at

thermodynamic equilibrium. This difference varies

with the value of the conserved quantity v (Fig. 1.13). This dependence on ) solely
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stems from mixing since for the considered ternary mixture with one chemical reaction at
thermodynamic equilibrium, changing ¢ only affects the phase volumes and not compo-
sition in each phase. The difference between the homogeneous, partially equilibrated state
and the phase-separated, thermodynamic state reflects the influence of phase coexistence

on chemical reactions.

1.5 Scope of the thesis

In this work, we will proceed to study how compartmentalization, primarily driven by
phase separation, affects chemical reactions, both equilibrium and out-of-equilibrium. To
this end, we have laid down the thermodynamic framework required to tackle the subse-
quent questions in this introduction. With this knowledge, we proceed with organizing

the remaining chapters of this work as follows.

Broadly, we divide this work into two parts. The first part, including chapters 2 and 3,
proposes comprehensive theoretical formulations to study chemical reactions and phase
separation. Specifically, in chapter 2, we will study the mass action kinetics at phase equi-
librium. This assumes that the diffusion of all components is instantaneous and chemical
reactions are rate-limiting, establishing phase equilibrium at all time points. Therefore,
the kinetic trajectory of the components lies on the binodal manifold. This separation of
time scales implies that the size of each phase is smaller than the reaction-diffusion length
scales, which are set by the reaction rate coefficients and the diffusion coefficients. It is
easy to follow that, given the system is always at phase equilibrium, the coexisting phases
are homogeneous, and the whole formulation is based on solving ordinary differential equa-
tions of mass action kinetics at phase equilibrium. We also introduce out-of-equilibrium
chemical processes and how we theoretically introduce implicit external energy sources to
drive the system to non-equilibrium steady states (NESS) and further analyze these states.
This chapter effectively incorporates studies when components react and phase separate

simultaneously in the infinite diffusion limit.

In chapter 3, we decouple the dominant phase separating components (scaffold and sol-
vent) from the reactive components (clients) on the basis of their composition, meaning
the clients are much dilute compared to the scaffold and solvent. We then try to quantify
observables like yield, initial rates, and throughput of three types of chemical reactions
and ask the question: How are these observables controlled due to phase separation,
specifically, the compartment volume, partition coefficients, phase-dependant external en-
ergy sources, reaction rate coeflicients, and diffusion coefficients. For the last scenario,
this effectively implies we study the clients’ dynamics in a spatial system (finite diffusiv-
ities) and also at phase equilibrium (infinite limit of diffusivities). Given the diluteness
of the clients, the spatial system reduces to solving coupled reaction-diffusion equations
in the coexisting phases. We use these formulations then to quantify to what extent the

aforementioned observables are affected by the presence of phase-separated compartments.
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The second part includes chapters 4 and 5. It focuses on the applications of the theoreti-
cal frameworks developed in the first part to experimental problems addressing bottom-up

approaches to design synthetic life-like systems.

Chapter 4 specifically deals with a systems chemistry experimental study involving a chem-
ical reaction network (CRN) that consumes chemical fuel and forms phase-separating
building blocks which are usually short-lived and sustained only in the presence of the
chemical fuel. We apply the mass action kinetics theory at phase equilibrium for this
study, subject to specific assumptions tailored to the system at hand. We unravel inter-
esting emergent properties leading to control of the lifetime of the building blocks in the
system, reminiscent of a "host-parasite" like behavior, and additionally draw conclusions
related to the buffering capacity of phase separation in the system. Specific to this chap-

ter, we refer to multicomponent phase separation (ternary) as co-phase separation.

In chapter 5, we investigate a systems biology experimental study wherein proteinsosomes
(micron-sized membrane-bound compartments formed from covalently linked protein-polymer
conjugates) serve as reactors to localize the PEN DNA toolkit (out-of-equilibrium auto-
catalytic process). In this study, encapsulation of the DNA template sequence imparts a
unique biochemical identity on the compartment. We compare the initial reaction rates for
the CRN localized in the proteinosomes to that in the buffer solution and conclude that,
indeed, the different physicochemical environment affects the kinetic reaction coefficients,
which can lead to, therefore, increased efficiency of proteinsomes to act as reactors for
autocatalytic processes. We finally conclude by summarizing the key results of this work

and highlighting the outlooks in this area of research in chapter 6.
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Chapter 2

Chemical reaction kinetics at phase equilibrium

"Everything should be made as simple as possible, but not simpler."
— Unverified

The motivation for this chapter relies on understanding the physicochemical principles
that could shed light on how reaction rates can increase or decrease inside condensed
phases as observed in recent experimental studies [64, 65, 66]

The objective of this chapter is to develop the theoretical model to study chemical reaction
kinetics at phase equilibrium. This implies that we restrict ourselves here to the case where
the reaction rate coefficients are smaller compared to the diffusion coefficients. Infinitely
fast diffusion and slow reactions lead to suppression of gradients at relevant system size
length scales, meaning the volume fractions are homogeneous in the coexisting phases at all
time points, and their dynamics can be solved numerically by obtaining solutions of coupled
non-linear ordinary differential equations. First, we introduce the kinetic equations and
do case studies on a unimolecular reaction in a ternary mixture and a bimolecular reaction
in a quaternary mixture. We follow this up with the introduction of out-of-equilibrium
chemical reactions and the investigation of non-equilibrium steady states. This study was
performed in collaboration with Jonathan Bauermann and Patrick McCall. The exact
figures and results discussed in this chapter were developed and verified independently
by Jonathan Bauermann and myself as co-authors and can be found in Ref.[56]. The
plotting routine for Fig. 2.4 was provided by Jonathan Bauermann. This framework will

be adapted for later implementation in chapter 4.

2.1 Kinetics of chemical reactions relaxing to thermodynamic equi-
librium

We have discussed the thermodynamic equilibrium state and its properties in detail in
the introduction (Sec.1.4). We proceed to study the kinetics of chemical reactions for
systems composed of two homogeneous coexisting phases that are maintained at phase
equilibrium but are not at chemical equilibrium. This condition of partial equilibrium
holds when chemical reactions are slow compared to phase separation and corresponds to
the case of reaction-limited chemical kinetics [67, 68]. We will discuss the implications of
our theory for systems that can relax toward chemical equilibrium and systems that are
maintained away from equilibrium. In this chapter, we assume solvent is non-reactive, but

we do not replace the solvent volume fraction in the formalism, and it is only replaced
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Chapter 2. Chemical reaction kinetics at phase equilibrium

during numerical implementation (Appendix. B) using ¢o = (1 — 32,20 ¢:)-

2.1.1 Volume fraction field and phase volume kinetics

The rate of change of particle number N; of all components (¢ = 0, .., L) in each phase due

1/11

to chemical reactions occurring with the rate S, and the exchange rate Jz-I/ I between

the phases is given by (SI/ = 0 due to non-reactivity),

d NV SI/II Jym

2.1
dt 7, K3 ( )

Due to the conservation of the number of particles of individual components during the
exchange between phases, JZ-I = —JiH.
Each phase volume is deﬁned as the total volume occupied by all the components in each

phase, VI = ZL . Therefore, the dynamic equation for the phase volume is,

d L om, IH ynd ym
%VI/II _ Z”i/ (MM gimy ZN / = /1 (2.2)
i=0

We assume that the molecular volumes v; = v;(p,T') are only functions of pressure p and
temperature 7" and are not dependent on composition. In that case, they are constant and
equal in both phases at isobaric and isothermal conditions and therefore dyg/ = /dt = 0.
Now, dividing both sides of Eq. (2.1) with the respective phase volumes, multiplying with
the molecular volume, and using the definition of volume fraction Eq. (1.5), we obtain
Eq. (2.3a). In each phase, the kinetics of the respective volume fraction of component i,
¢I/ T for i = 0, .., L is governed by,

d aym_ oy ¢>£/H d 1
@ i =S5 —J VI/H dtv ) (23&)
where SI/H = ZR 1 I/ZO'Z(XS};V/H and s, is as defined in Eq. (1.30), each with the units of

particle number per time. Reaction rates are also defined with the extensive rate, SI/ =

as, SI/H = (1S, I/H)/VI/II in the phases with phase volume V! and jI/H (vid, Z-I/H)/VI/II
are the diffusive exchange rates between phases. These rates maintain phase equilibrium
at all times. Note that in this work, rates have units per time.

The last term of Eq. (2.3a) accounts for changes in volume fractions due to the changes

of the respective phase volumes VI, The kinetics of these phase volumes follow,

1 d I/11 L I/11 /11
VI/Hav / 2%(31 —Ji ) : (23b)

For volume conserving reactions with ZZ»L:O oV = 0.

2.1.2 Diffusive exchange rates between phases

To maintain phase equilibrium while chemical reactions occur, components need to be

exchanged between the phases. This exchange conserves the total number of components
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Chapter 2. Chemical reaction kinetics at phase equilibrium

in the system, which implies for the diffusive exchange rates jg/ I,

vl =yt (2.4)

As a result, for systems with composition independent molecular volumes and volume
conserving reactions, the total system volume V = V! 4+ VIl is constant in time (see
Eq. (2.3b). The condition of phase equilibrium (Eq. (1.18)) at all times during the reaction

kinetics implies that

d d
i) = 2 (i) (2:5)
Using Eq. (2.3) in Eq. (2.5) together with Eq. (2.4), gives a set of (2L + 2) equations that

/

. . P /11 U
are linear in the diffusive exchange rates j;” . Therefore, the diffusive exchange rates can

be written in closed-form expressions jZ-I/ H({s}g, si}, VI VID | which depend only on the

chemical rates 5}9/ T and the phase volumes V! (Appendix. B).

2.1.3 Reaction rates at phase equilibrium

Note that thermodynamics does not determine the value of the reaction rate coefficient as
discussed in Sec.1.3.2. Rather, it only constrains the coefficient to be positive and thereby
guarantees that the entropy of the system increases.

Using Eq. (1.32), the chemical reaction rate of component i can be written as,

R
Sg/H = Z Vidmk(ll/HHa s (26)

a=1

where we introduce the chemical reaction force,

+ —
H, =exp (kf:T) — exp (k't;‘”‘ ) . (2.7)

Here, we have also introduced the forward and backward chemical reaction free energies

pE via Apg = p — pt. The chemical reaction force, H,, is by definition phase indepen-
1/11

dent, and reaction rates s,/ can only owe their phase dependence to the reaction rate
coefficients. Egs. (2.3) together with the phase equilibrium conditions (Eq. (1.17)) and the
chemical rates described by Egs. (2.6) and (2.7), govern the kinetics of chemical reactions
at phase equilibrium. These kinetic equations represent a key result of our work since
they extend the chemical laws for dilute (as will be discussed in the following chapter 3)
and homogeneous systems with reactions [69, 51, 53] to non-dilute and phase-separated
systems. For systems that can relax to thermodynamic equilibrium, the chemical reaction

force can thus be expressed in terms of the chemical activities as,

L 20 Tha L 70, Tma
H, = H (ekBT’YmQZ)m) - H <ekBT'7m¢m> . (2.8)
m=1 m=1

This form of the chemical reaction force is specific to systems that can relax to thermo-
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dynamic equilibrium and imply various properties for chemical reactions at phase equi-
librium. It is interesting to note that the reaction force, H,, even for a linear reaction
(unimolecular), is highly non-linear owing to the interactions in the free energy density

from where the non-linear activity coefficients originate.

2.1.4 Properties of chemical reactions at phase equilibrium

First, at phase equilibrium, the chemical activities 7;¢; are equal in both phases. For
chemical reactions that can relax to thermodynamic equilibrium, equal chemical activities
between the phases imply that the chemical reaction forces H, (Eq. (2.7)) are equal in both
phases as well. Note that the reaction forces are equal despite the composition difference
between the phases. This key result emerges because chemical activities (or equivalently,
chemical potentials) govern both the chemical kinetics of the components in the phases
and their diffusion between the phases. Equal reaction forces H, between phases imply
that the component reaction rate sg/ " shown in Eq. (2.6) is different between the phases
only due to the composition dependent reaction rate coefficients k:,Il/ H.

Second, due to phase equilibrium, the rate of change of the volume fraction of a reactive
/11

molecule in one of the phases, dqﬁy 1 /dt, is not equal to the chemical reaction rate s;

of the component. The reason is that, in addition, the exchange of reactive components

M and changes in phase volumes dV1/1 /dt contribute to volume

between the phases j;
fraction changes in each phase; see Eq. (2.3a). Both contributions are crucial since they
maintain phase equilibrium during the chemical kinetics, i.e., the volume fractions qby 1
remain on the binodal manifold, which is defined by the condition for phase equilibrium
(Eq. (1.17)). Thus, determining reaction rates in each phase requires the knowledge of
both the diffusive exchange rates between the phases and how the phase volume changes
with time.

Third, the chemical kinetics at phase equilibrium differs from the kinetics of the corre-
sponding mixed system. We already discussed in Figs. (1.12-1.13) that the thermodynamic
state is distinct from the corresponding well-mixed system. In contrast to such well-mixed
systems where the composition of the mixture governs the chemical kinetics, the chem-
ical kinetics at phase equilibrium is determined by the chemical activities (or chemical
potentials) along the binodal manifold together with the phase-dependent reaction rate
coefficients. This difference can be illustrated when, for example, considering the kinetics
of the average volume fractions, ¢; = (VI¢!l + VII¢!)/V. Using Eqgs. (2.3), the corre-

sponding kinetics is given by,

Iy R I I
do; Vv v
$i _ Rz (k; + Vk;g> OiaHy (2.9)
for volume-conserving reactions. We find that in systems with coexisting phases I and II,
the time evolution of the average composition is determined by the kinetics of the phase
volumes VI the phase-dependent reaction rate coefficients k'(lx/ T and a phase-independent

reaction force H,.
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2.2 Unimolecular chemical reactions in coexisting phases

(a> | — Initial cond. 1 — Initial cond. 2 | (b)
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Fig. 2.1: Mass action kinetics of a unimolecular reaction at phase equilibrium.
In a ternary mixture with a unimolecular reaction, for two choices of initial conditions,
originating in the mixed phase (blue dot) and in the demixed phase (red dot), respectively,
the kinetic trajectory evolves along the binodal manifold to approach thermodynamic
equilibrium (Fig. 1.11(a)). (b) The kinetic trajectories of the average volume fraction ¢p,

and phase volume fractions (bIB/H. Parameters are listed in the L.O.F section.

In this section, we discuss an example of a ternary mixture with chemically reactive
components A, B and a non-reactive solvent (0). For simplicity, we assume identical
molecular volume vy(r4,p = 1) for all components. We consider a transition-like reaction
whereby solute A can spontaneously convert to the product B and vice versa without the
participation of any additional components. We refer to this reaction as a unimolecular

chemical reaction,

A=B. (2.10)

Note that for systems that chemically react via unimolecular reactions and that can phase-
separate, component reaction rates Eq. (2.6) are generally non-linear in the solute volume
fractions. For such a unimolecular reaction in a ternary mixture, we can define one con-
served quantity, 1 = (¢4 + ¢p). We numerically solve the governing kinetic equations
of the unimolecular chemical reaction Eq. (2.10) at phase equilibrium; for details, see Ap-
pendix B.

The kinetics of a unimolecular chemical reaction at phase equilibrium can be illustrated
as a chemical trajectory in a simple phase diagram spanned by two reactive components A
and B (Fig. 2.1(a)). For an initial composition within the binodal (red dot in Fig. 2.1(a)),
the volume fractions in each phase follow a flow field along the binodal lines (solid red
lines in Fig. 2.1(a)). The corresponding average composition moves along the conserved
quantity 11 while crossing different tie lines (dotted red line in Fig. 2.1(a)). Changes in tie
line as the chemical reaction proceeds imply corresponding compositional changes in the
coexisting phases. For an initial composition outside the binodal (blue dot in Fig. 2.1(a)),
the initially well-mixed system moves along 1, and phase separates into coexisting phases
when the composition hits the binodal line (solid blue lines in Fig. 2.1(a)). The onset of
phase separation leads to a discontinuity of the volume fractions, which otherwise evolve

smoothly in time (Fig. 2.1(b)). Then, similar to the previous initial condition, the phase

25



Chapter 2. Chemical reaction kinetics at phase equilibrium
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Fig. 2.2: Effects of dissimilar reaction rate coefficients between phases - I.
Difference in reaction rate coefficients between phases affects (a) reaction rates (in both
phases and average) but not the thermodynamic equilibrium state. The average volume
fraction of product B changes continuously at the onset of phase separation for initial
condition 1. (b) The average reaction rate of product B, sp has a kink at the onset of
phase separation. Parameters are listed in the L.O.F section.

composition follows the flow along the binodal lines. Since both cases are identical except

for their initial conditions, both relax to the same thermodynamic equilibrium state.
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Fig. 2.3: Effects of dissimilar reaction rate coefficients between phases - II. Dif-
ference in reaction rate coefficients between phases affects (a) the phase fraction (V1/V),
sp has a kink at the onset of phase separation, implying that (b) average reaction accel-
eration of product B, 5p, jumps at the onset of phase separation. Please note that the
kink and the jump require that phase equilibrium is established quasi-instantaneously on
the time scales of chemical reactions. Parameters are listed in the L.O.F section.

Varying the reaction rate coefficients kg "in the phases can strongly alter the chemical
kinetics (Fig. 2.2(a)). When the reaction rate coefficient is increased in the B product-rich
phase (k. /kll = 10), the product B relaxes more quickly towards thermodynamic equilib-
rium. The same holds true for the average volume fraction of product B. Interestingly, at
the onset of phase separation, the average reaction rate 5; = (V!s! + Vs /V (vhs. of
Eq. (2.9)) is continuous but can kink for reaction rate coefficients that are unequal between
the phases (kL # kII); see Fig. 2.2(b) and inset for average reaction rate of product B,
sp. Average reaction rate $p can even initially increase before relaxing to thermodynamic
equilibrium (s = 0). This increase is a result of an initial very fast growth of phase I,
which increases due to the fast formation of product B in phase I (Fig. 2.3(a)). The low

internal energy of product B and a higher value of reaction rate coeflicient facilitate its
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higher production in phase I.

The kink of the average reaction rate sp at the onset of phase separation implies a jump
in the acceleration of the chemical reaction, 55 (Fig. 2.3(b)). In other words, as coexisting
phases form, there is a drastic change in the average reaction rate of the system. This

change reflects the effect of phase separation on the kinetics of chemical reactions.

2.3 Bimolecular chemical reactions in coexisting phases

As a further example of a chemically reactive system at phase equilibrium, we study a
four-component system that contains three reactive solutes i = A, B, C' and a non-reactive

solvent (0). In this example, the solutes undergo a bimolecular chemical reaction,
A+ B= C, (2.11)

which conserves volume (molecular volumes, (—v4 —vp+vc = 0), such that 74,5 = 1 and
rc = 2). For such a bimolecular chemical reaction in a four-component incompressible
mixture, there exist two conserved quantities (L = 3, R = 1) (as explained in Sec. 1.3).
FEach conserved quantity is represented by a plane in a three-dimensional phase diagram
spanned by the volume fractions of the reactive solute components A, B,C. The three
conserved quantities are 1 = (¢4 + ¢p + ¢c) and Y2 = (¢4 — ¢p) and the intersection
of the planes corresponding to conserved quantities ¢); and vy yields a line in the phase

diagram.
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Fig. 2.4: Mass action kinetics of a bimolecular reaction at phase equilibrium.
(a) Phase equilibrium and chemical equilibrium are represented by two surfaces (green
and orange, respectively). The closed line given by the intersection of these two surfaces
depicts the thermodynamic equilibria states (dashed green line). The solid blue and
red lines correspond to the trajectories of two systems with different values of conserved
quantities (see (b)). We have chosen ¥; = 0.42 with ¥ = 0.05 for the blue trajectory
and 19 = 0.1 for the red trajectory. (b) Two planes of conserved quantities defined by
(light blue plane) and s (gray plane) intersect to uniquely define a line (solid red as in
(a)) along which the trajectory of the average volume fractions progresses during kinetics.
At the intersection of this unique line with the manifold of thermodynamic equilibrium,
the compositions in each phase (red dots) are also uniquely selected. Parameters are
listed in the L.O.F section.

The chemical kinetics of a bimolecular reaction at phase equilibrium can be depicted as

a chemical trajectory in the three-dimensional phase diagram. Figure 2.4(a) shows two
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chemical trajectories corresponding to systems with two different values of conserved quan-
tities. For both cases, the kinetics of the average composition follows the intersection of
the respective conserved planes, 1 and 19, which is illustrated for one initial condition
in Fig. 2.4(b). As phase separation occurs, the volume fractions in each phase move along
the binodal surface (green). The chemical kinetics stop when the volume fractions in
the coexisting phases reach the thermodynamic equilibrium (green-orange dashed line in
Fig. 2.4(a-b)). The thermodynamic equilibria lie on a closed line is given by the intersec-
tion between the binodal surface and the chemical equilibrium surface with the condition,
ia + g = pe. The steady state values of the product can differ since the thermody-
namic equilibrium state depends on the conserved quantities (shown by the tie lines in
Fig. 2.4(b)).

2.4 Chemical reactions maintained away from chemical equilib-
rium

Chemical reactions can also be maintained away from thermodynamic equilibrium. This
is common in living cells, where the consumption of biochemical fuel like ATP or GTP
chemically drives biochemical reactions. Maintaining reactions away from chemical equi-
librium can lead to non-equilibrium steady states (NESS) with non-vanishing diffusive
exchange rates between the phases.
Here we consider systems at phase equilibrium that are maintained away from chemical
equilibrium by fuel components which provide an external reaction free energy for the
chemical reaction o, Afi, = fi,, — fi, which stems from differences in the external reaction
free energies in the respective phases, /I;F /=, The reaction free energy in Eq. (1.25) thus
reads
L
Ao =Y Giafii + Afia (2.12)
i=1
which can again be written as the difference between forward (4) and backward (—)
reaction free energies .
it =S ok i (213)
i=1
In certain cases, these systems reach an effective equilibrium state even if Aji, # 0 and
Eq. (2.12) can be recast in the form of Eq. (1.25): (i) Afiq = Zle 0iaCi, Where ¢; are
constants and the system can phase-separate; (ii) the chemical potential shifts ¢;(¢;) cor-
responding to Afi, depend on composition but the system is spatially homogeneous (no
phase separation). Case (i) maintains thermodynamic consistency of phase and effec-
tive chemical equilibria by defining effective reference chemical potentials ji{ in Eq.(1.12),
which do not affect phase equilibrium.
In contrast, case (ii) does not have phase equilibrium but maintains reaction networks,
driving just one reaction and approaching effective chemical equilibrium [70, 71]. If these
conditions are not satisfied, the system cannot reach a thermodynamic equilibrium.
Here, we focus on systems with phase/composition dependent Afi,, in the presence of coex-

isting phases. Thus, neither case (i) nor case (ii) applies, and it is truly out-of-equilibrium.
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Under these circumstances, the intersections between the binodal manifold with the ef-
fective chemical equilibrium manifold, Afi, = 0 (e.g., yellow and red lines in Fig. 2.5(a)),
will not be connected by a tie line. Therefore, there can be non-equilibrium steady states,
where dqﬁi/ "/dt = 0 and dVV/"/dt = 0 with non-zero reaction rates Sg/ 1

exchange rates j;/ I between the coexisting phases.

and diffusive
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Fig. 2.5: Unimolecular chemical reaction maintained away from chemical equi-
librium.(a) Depending on the value of the chemostat potential i~ different coexisting
phases are selected (green tie line for i~! = 1.3 and light blue-gray line for = = —3).
The color bar represents the chemical potential difference between the components B
and A along the binodal line, where the lower/upper bound corresponds to the critical
point/binary B0 mixture. (b) Chemical trajectories for product B, where solid and dotted
lines correspond to volume fractions in phase I/II and averages, respectively. Chemical
kinetics and non-equilibrium steady states vary with the value of the chemostat potential,
fi~L. Parameters are listed in the L.O.F section.

A measure of the deviation of the chemical reaction « from thermodynamic equilibrium

is the reaction free energy in the non-equilibrium steady state,

where ,uNESS are steady state chemical potentials. Since ji; are identical in the two phases

due to phase equilibrium, the non-equilibrium reaction free energy,

kI Vlexp < ) + k:HVH exp <“a I)

—I —,II ’
> + kv exp < )

is phase-independent. Equation (2.15) results from the balance of reaction and diffusive

exchange rates SI/ = jI/ T which corresponds to the steady state condition of Eq. (2.3a)

NESS can
/1

ApYESS kT = log (2.15)

kLV1exp <

together with dV/1/dt = 0. The non-equilibrium reaction free energies, Apul
be interpreted as susceptibilities of the system to external reaction free energies fiq
The values of the non-equilibrium reaction free energies are dependent on the reaction
rate coefficients kL/ T and the phase volumes at steady state, VI To illustrate the ki-
netics of chemical reactions and steady states that are maintained away from chemical
equilibrium but are at phase equilibrium, we study the same unimolecular reaction in a

ternary mixture as in Sec. (2.2). To maintain the reaction away from chemical equilib-
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rium, we introduce a non-zero backward external reaction free energy ji~1. For simplicity,

®Iand gt! are chosen to be zero. Therefore, the

the other reaction free energies ji
effective chemical equilibrium line, Ay = 0, is only affected in phase I (solid red and
yellow lines compared to the gray line in Fig. 2.5(a). For a single reaction, however,

a non-equilibrium steady state can only be reached in systems with coexisting phases.

For such systems, an important finding is that by

choosing different values of the external reaction free

05 _—\O | e 1; energy ji~!, the chemical kinetics changes, and the
Z I | ;JE system relaxes to different non-equilibrium steady
Zi 00 100 é states. For each value of i™!, such steady states
I 1 5 have specific compositions in the coexisting phases
L J5 L OF —023 indicating that the chemical driving can select dis-
chemostat potential ji ! tinct states of the chemically reactive system. (solid
green and light blue, respectively, in Fig. 2.5(a-b)).
Moreover, the chemical trajectories of the volume

Fig. 2.6: Measure of non-

e fractions in each phase (solid lines) and the av-
equilibrium free energy. More

the chemostat potential, i !, deviates
from zero, the more the system is
maintained away from thermodynamic
equilibrium. The non-equilibrium

erage volume fractions (dotted lines) change when

I.

varying the external reaction free energy i~ ; see

Fig. 2.5(b). In particular, the jump of the average

steady state is characterized by the
non-equilibrium reaction free energy,
ApNESS | The gray dot corresponds to
the reference system at thermodynamic
equilibrium, while the red and orange
dots represent the two non-equilibrium
steady states depicted in Fig. 2.5(a,b).
Diffusive exchange rate jk at the NESS
(blue curve with the corresponding
axis at the r.h.s.)) is nonzero as
the system is maintained away from
thermodynamic equilibrium via the
chemostat potential %41, Results
here and in Figs. 2.5(a,b) are obtained
for ¢; = 0.55. Parameters are listed in
the L.O.F section.

acceleration 5; is also affected by the external reac-
tion free energy (not shown).

The reaction free energy in the non-equilibrium
steady state ApNFSS is used to characterise how
much the considered system deviates from thermo-
dynamic equilibrium for a given value of the back-
ward external reaction free energy ji~!. Around

NESS (5—1

linearly, while for large deviations, ApNFSS sat-

thermodynamic equilibrium, Apy ) varies

urates at two plateaus depending on the sign of
the backward external reaction free energy !
(Fig. 2.6). In particular, large and positive i~ fa-

vor the conversion from component B to A in phase

I. This trend is opposed by a decrease in the volume of phase I, therefore leading to the

=1 NESS is determined

plateau for i7'. Consistent with this, the value of the plateau of Au
by the volume of phase I, which is in turn set by the conserved quantity ;. Specifically,
the plateau value corresponds to the intersection of the line of conserved quantity ; (thin
gray line) and the binodal line; see Fig. 2.5(a). In contrast, small and negative values of
gt favor the conversion from component A to B in phase I. The full conversion is not
possible since chemical reactions are only maintained away from chemical equilibrium in
phase I, and thus the volume of phase I limits the selection of coexisting, non-equilibrium

steady states.
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For chemically driven systems, the phase volumes are strongly influenced by an external
supply of reaction free energy. This property is distinct to chemically driven systems since,
at thermodynamic equilibrium, the phase volumes are solely determined by the conserved
quantity. In particular, a ternary mixture with one chemical reaction at thermodynamic
equilibrium becomes an effective binary mixture of two conserved quantities. As a result,
varying these conserved quantities solely changes the phase volumes (Fig. 1.11(a)). In
contrast, for a chemically driven system, changing the conserved quantities also affects

phase composition.

2.4.1 Tie-line selecting curve
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Fig. 2.7: Selection of tie line for varying conserved quantity. In (a) and (b), we
show the two cases of the mono-nodal considered, where the yellow mono-nodal in (a)
corresponds to fi~' = —3, while the red mono-nodal in (b) corresponds to fi~' = 1.3. For
each value of the conserved quantity 1, a specific tie-line is selected, which is the tie-line
that contains the intersection point between the conservation line 7 (thin grey) and the
line of average volume fractions described by the steady state condition, d¢!/! /dt =0
and dV'/11/dt = 0 (thick black). Here the conservation line is shown for ¥; = 0.55. The
average volume fractions at steady state (thick black line) are drawn for all values of ¢,
for which a demixed NESS exists. For those, the range of v, is constrained between the
points at which the mono-nodal crosses the binodal. Parameters are listed in the L.O.F

section.

For systems maintained away from equilibrium, the composition at NESS depends on
the volumes of the coexisting phases VI ynlike the case of thermodynamic equilib-
rium (see Eq. (2.15)). Therefore, in our considered example of a ternary system with a
non-equilibrium chemical reaction, the composition at the non-equilibrium steady state
depends on the conserved quantity ;. Thus, the tie-line corresponding to the NESS also
varies with v; (Fig. 2.7) and the tie-line selecting curve for a choice of i~ allows selection
of the tie-line at NESS where it intersects the choice of conserved quantity ;. It is ob-
tained by simultaneously solving phase equilibrium conditions, material conservation, and
Eq. (2.15). As a measure of the deviation to thermodynamic equilibrium, we determined
the non-equilibrium reaction free energy (r.f.e) ApNPSS as a function of the conserved
quantity ¥ (Fig. 2.8). Due to the external supply of free energy via the chemostat poten-
tial in phase I, i1, the absolute value of the non-equilibrium reaction free energy ApNESS
increases for larger values of the conserved quantity. Increasing 1, the volume of phase I,

NESS

V1 grows. Ap is positive when A is favored over B ( ! > 0) by the non-equilibrium
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Chapter 2. Chemical reaction kinetics at phase equilibrium

reaction, and vice versa.

2.5 Summary and Discussion

In this chapter, we developed a theory of the chemical kinetics in phase-separated mixtures
at phase equilibrium. For simplicity, we considered homogeneous phases, applying to cases
where chemical reactions are slow compared to the phase separation kinetics and including
systems where chemical reactions are rate limiting, which is typical of biological enzymes
[67].
Furthermore, the kinetics of reactions approach-
ing chemical equilibrium also differs between phase-

separated and the corresponding well-mixed system.

2 T '—[I,_I’I —_ We showed that conservation laws play an impor-

Z _/ [[J:_g_ tant role in phase-separated systems. Quantities
7z, 0 . . .

S0 | conserved by the reactions define manifolds in com-

9L ] position space to which average compositions are

| | | confined, while the volume fractions in the phases

0.4 0.6 0.8 remain confined to the binodal manifold. We clar-

conserved quantity ¢ ified that the increased concentration of reactants

in a condensed phase does not by itself lead to in-

Fig. 2.8 Measure of non- ...5504 reaction rates. Rather, if the coexisting

equilibrium free energy. We

show the non-equilibrium reaction phases are at phase equilibrium, the reaction rates

free energy ApNFSS as a function of sy " of component i in each phase can only differ

the conserved quantity ¢ f.or :E\iv? due to different reaction rate coefficients ]ﬁIX/ T The
values of the chemostat potential g™

considered in Fig. 2.7. The chemostat speed-up or slow-down of reactions is solely deter-
potential values (dashed lines) are mined by the reaction rate coefficients in each phase,
limiting ~ApNFSS,  correspondingly.
Parameters are listed in the L.O.F
section. insights might be relevant to explain recent obser-

which can also decrease upon condensation. These

vations in coacervate emulsions with enzymatic re-
actions [66, 33, 72, 73]. Another important insight of our work to determine the reaction

1/1

rates s; Lof component %, the diffusive exchange rate between the phases and the changes
in phase volumes must be considered. To highlight this point, we note that the effect of
phase separation on chemical reactions in two coexisting phases cannot be inferred from
studying reactions in the two phases when they are isolated. We also discussed chemical
reactions at phase equilibrium but maintained away from chemical equilibrium via an ex-
ternal supply of free energy via a chemical fuel. We showed that the steady state volume
fractions in the two phases depend on the external reaction free energy. Thus, controlling
the external reaction free energy supply can be used to select distinct compositions of coex-
isting phases. For systems maintained away from chemical equilibrium, the reaction rates
sg/ I can be phase-dependent due to the supply of external free energy, which can differ
between the phases, in addition to phase-dependent reaction rate coefficients ka/ . Thus,
for such driven systems, reaction rates in the two phases can be controlled externally, even

allowing opposite net directions of chemical reactions between the phases.
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Chemical reactions of dilute clients in phase-separated

compartments

"Optimality is the study of superlatives. Nowadays, optimality plays two distinct
but interrelated roles in science: (1) in pure science, its impact is primarily
analytic or explanatory;, we use it to characterize the way in which a natural
process does occur, out of all the ways it could occur; and (2) in applied science
(technology or engineering in the broadest sense), we use it to decide how we
should do something, out of all the possible ways in which we could do it (here
the emphasis is primarily on design or synthesis)."

— Robert Rosen, Essays on Life Itself

It is known that phase separation is organized by multivalent interactions among disor-
dered proteins and RNA (also known as scaffolds) [19] that build up these compartments,
also referred to as the condensed phase as opposed to the dilute phase. These com-
partments provide different physicochemical environments for the occurrence of various
chemical reactions, which carry out particular functions for the smooth functioning of the
cell. Some examples include ribosome biogenesis in nucleoli [74] and mRNA splicing in
nuclear speckles [75, 76]. It cannot be claimed with certainty that all such processes are
optimized in the cell. However, when one reconstitutes such compartmentalized reactions
in vitro, there is more control on parameters while designing the system that can be tuned
to optimality. In the cell, the scaffold component is expected to be present at a more sig-
nificant concentration than the reactants (clients) [19, 77] that participate in the chemical
reactions. So to a reasonable extent, one can safely assume that the clients are dilute.
They usually do not affect the phase-separated compartment formed in the cell in terms of
modifying the compartment phase volume or the scaffold concentration in the respective
phases. They merely read out the concentration profile of the scaffold in the system and,
depending on their interaction strength with the scaffold and solvent, partition inside or
outside the condensed phase composed of the scaffold.

The objective of this chapter involves decoding the physicochemical parameters that can
control (bio)chemical reactions in phase-separated compartments (drops), understanding
the extent to which such reactions can be controlled as compared to a system where the
reaction proceeds in the absence of compartments, and defining observables for such reac-
tions which can then be optimized by tuning these parameters. The reason for calling the

reactions (bio)chemical, is because we assume that any true biochemical reaction in a cell
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Chapter 3. Chemical reactions of dilute clients

can be decomposed into simpler steps involving either two-state transition, bimolecular
reaction, or nucleation that can consume fuel (Fig. 3.1(b)) (however, throughout the chap-
ter we skip the use of (bio)). This framework will be adapted for later implementation in
chapter 5. This study was performed in collaboration with Jonathan Bauermann, Tyler

Harmon, and Thomas Michaels.

(a) (b) two state transition
0 =
~
bimolecular reaction
*® 1
* X
'3 11 <~
partitioning flux . .
° nucleation
scaffold-rich ~ @ reactant \
fuel ~—
scaffold-poor product

Fig. 3.1: Schematic representation of a system with dilute reactive clients
in presence of a drop. (a) The non-dilute scaffold component for a specific volume
fraction forms a spherical drop. The dilute chemical clients can partition into the drop
and can undergo chemical reactions in both phases, I and II. In addition, clients are
exchanged between two domains via diffusion to maintain partition equilibrium Eq. (3.5).
(b) Overview of the different (bio)chemical reactions studied in this chapter both in the
presence and absence of a drop. These reactions are driven out of equilibrium due to the
continuous consumption of energy via fuel-driven pathways(star markers).

3.1 Thermodynamics of a multicomponent mixture of scaffold and
clients

We consider here an (L + 2) component incompressible mixture composed of the non-
reactive solvent (0), non-reactive scaffold (1) (only one scaffold, for simplicity but can be
easily generalized for (¢ : ¢ > 1) number of scaffold components), and L reactive dilute
clients. The non-dilute theory of multicomponent mixtures is described in Sec. (1.2).
The non-approximated equilibrium volume fractions of all components are obtained by
simultaneously solving Eqgs. (1.17), and the phase fractions are additionally calculated by
including the conservation of all components i = 1,.., (L + 1),
Vi Gl

TS .

where ¢; is the average volume fraction of i-th component.

Component Diluteness Reactivity
Solvent (0) No No
Scaffold (1) No No
Clients

(i=2,..(L+1) | 7 Yes

Table 3.1 Classification of components based on composition and role.
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Chapter 3. Chemical reactions of dilute clients

3.1.1 Phase equilibrium conditions: Dilute client limit

The dilute limit is defined as the zeroth order of the expansion of certain thermodynamic
variables like exchange activity coefficients, equilibrium volume fractions (7;, {gbi/ H}) and
phase fraction (V!/V) in the average volume fraction of the clients {¢;}. Therefore, the
small parameter to expand around is the variable {¢;} = 0; i = 2,.., (L + 1). Its validity
is studied in detail in Appendix. C.

Firstly, the exchange activity coefficient of all components can be expanded as,

Vi = 7i(p1,{di} = 0) + O(ds) + .. (3.2)

following which truncating after zeroth order, we obtain in the dilute limit,

_ 1 7
Vi = o exp [T’i(Xli — X0i — X01)¢1} . (3.3)

For the scaffold, the above expression reduces to,

1 _
V1= = €xXp | —2r1 X091 - (3.4)

(1 — ¢1)7‘1 [ ]
This thermodynamic quantity for the scaffold is independent of the client volume fractions,
whereas, for the dilute clients, following Eq. (3.3), the exchange activity coefficient, 7; is a
constant depending on the scaffold volume fraction ¢, alone. Following from the definition
of the partition coefficient as in Eq. (1.20), it follows that in the dilute limit, it is a constant

for the clients (Fig. 3.2),

0,1\ 7
1 _ ) 7
1 0,1 0,11
P = (1 O,II) exp[ri(é1” — é17 ) (xo1 + Xoi — x14)] 5 (3.5)
!
(a) . (b)_
Qj 100 T T | — D~< 100
& = = . -
S 10 : &5 —10|
31071 Client molecular B 310 i
=] L volume 721 i : l IA\;g .Chcnti
S | - 1.0 8100k vol. fraction ¢
+~ ].O o _ —4
B= i — =100 pe! i =107
2 —  =100.0 £ [ |— =3
2, 10730 L . g107 | — =10
-
g - e __ . p=1 B
8 T{ | S —"————— B .g 10-40L L ,
O 10 107 10 107 10 10 ) 10 10 10

Avg. client vol. fraction ¢ Client molecular volume 21
Fig. 3.2: Partition coefficient of clients: Dilute limit. In a ternary mixture with
one client (i = 2) component, we study how client partition coefficient P (a) varies with
¢2 with the exact solution (solid green shade lines for varying client molecular volume
rovp) along with constant dilute approximation (black dashed using Eq. (3.5)), (b) varies
with its ro1 for different ¢;. Parameters are listed in the L.O.F section.

where we see an exponential dependence on the relative molecular volume parameter of
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Chapter 3. Chemical reactions of dilute clients

the client r;. Similarly, for the scaffold, the partition coefficient is,

1— 0"\ 00 01
Py = (1¢0H) exp[2rixor(¢1” — ¢17 )] (3.6)
— %

where qS(l]’I/ I are the equilibrium volume fractions of the scaffold at the dilute limit of
clients (in an effective binary mixture; derivation shown below). The partition coefficient
P; > 1 implies that the i-th component partitions preferentially in the drop phase (I) and
vice versa.

We express the equilibrium volume fractions in the phases and phase fractions as functions

of the average volume fractions of all components as,

d)%/n I/H(¢17 ¢27 X ¢L+1)
V1 - (3.7)
7 = g(¢l> ¢2> ) ¢L+1) :

The approximations to the scaffold (¢ = 1) equilibrium volume fractions can be written

as,
I/11 01/11 [aagy I/H n n
7= +Z 5 ¢ + O(i)* + .. (3.8a)
i @ (é1}=0

where the linear coefficients of the first order corrections are obtained using the partition
coefficient (Eq. (3.5)) and phase fraction (calculated subsequently Eq. (3.8h)),

(3.8b)

where (; is introduced as the partitioning degree,

1

TR VY

(3.8¢)

1/11

and a;" are expressed as (detailed calculation in Appendix. C),

1+ (Xli — X0i — Xo1 + 1011/Pon) (1 - ¢?’I)
ri(p7 —¢1)

— _¢07I
1 1— ¢1 0,1
+ <Z51 - 2XOI¢1 (1 — 1)

: (3.8d)

1+( o +1) T
X1i — X0i — Xo1 (¢(1)1 ¢?II) < ¢1 )
I T 11

+ 60— 2v0 00 (1 - o))

According to the definition of dilute limit above, we neglect first-order corrections and

0,11
I _ 49 — d)? _ (3.8e)

obtain,
o =o't (3.86)
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(a) (b)

010 T T T T 11 1.0 T T T T
- dilute limit I
0.09H.... first order correction 7 B |
exact solution 7 0.95
—_ 0.08F ) T
© e © 0.9 [ dilute limit
0.07F ] ---- first order correction
0.06 | 0.85 I+ |=— exact solution _
0.05 ! ! L L . I 1 L |
1075 1073 107! 0-8 1075 103 10!
Avg. client vol. fraction ¢o Avg. client vol. fraction ¢o

Fig. 3.3: Scaffold equilibrium volume fraction: Dilute limit. In a ternary mixture
with one client (i = 2), we study how the scaffold eq. volume fractions ¢11/ ™ are affected
in the respective phases (solid lines in shades of orange represent the exact solution, gray
dashed lines represent the linear corrections using Eq.(3.8)(a-d), and gray dotted lines
using Eq.(3.8f)). Parameters are listed in the L.O.F section.

Similarly, the approximation to the phase fraction is expressed as,

I L+1 ag

Y @By =0+

_ _y
v ¢i+O0(¢i)" + .., (3.8g)

= 09 {¢i}=0
where applying the definition of the dilute limit and using Eq.(3.8f), we obtain,
e

V - W . (3.8h)

The approximation to the client equilibrium volume fractions is expressed as (no zeroth
order contribution because the solution is known when clients are absent in the system
({¢i} = 0), i.e., binary system),

L+l gpl/mt L+l 42,1/
1/11 oh; _ 1 0%h! o . |
T 06, 3 > 9% ok + O(di)” + .. 3.8
¢Z ]z:; 8¢] {951}:0 ¢] 2 j,%::2 8¢j8¢k 5];0 ¢]¢k (¢ ) ( 1)
JFi

Only client variables of the form (0/0) are well defined. Hence we re-arrange Eq.(3.81) as,

qﬁ/n - Ry L+l thg/H

i -

& i 2= 0909,

¢+ O(i)” + .. (3.85)
{¢1}=0

Similar to above, we neglect beyond zeroth order and obtain,
1/11 0,1/11
o/ _ o

R

, (3.8k)

where we can obtain the client volume fractions in the respective phases using the condi-
tions from Egs. (3.1) and (3.5), which lead to the use of partitioning degree (Eq. (3.8¢))
as,

¢; = PiGidi , (3.92)
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Chapter 3. Chemical reactions of dilute clients

¢; = Gidi - (3.9b)

As the drop volume set by scaffold (Eq. (3.8h)) vanishes (i.e., VI/V — 0), ¢; — 1 and
P — ¢;. The other limit of V!1/V — 1 can be similarly calculated.

3.1.2 Relaxation dynamics to phase equilibrium: Dilute client limit

Continuum model

We recall the conservation equations discussed in sub-

Scaffold vol. fraction 5 section.(1.2.6). Firstly in the dilute limit of clients,
P ——— ()
00 02 04 06 08 094 the mobility matrix elements are as follows,
L+1 L+1
My =moipr(1— g1 — > &)+ > mied1on,
=2 k#1
k=2

My = —muii01,

Y M;; = moidi(1 — ¢1) + muididr,
— X
¢ M1 = —maipidn,

Mi‘ = 07

Fig. 3.4: Stationary profile for
scaffold in spherical geometry. (3.10)
Solution of Eq. (3.11) modified Cahn-

Hilliard equation in a binary system where we neglected quadratic terms in dilute
for interaction parameter yo; = 3.
The numerical implementation is dis-
cussed in Appendix. B. Parameters of diffusive fluxes, as in Eq. (1.22) and the ex-
are listed in the L.O.F section.

client volume {ractions. We use the definition

change activity coefficient in the dilute limit as
Eq. (3.4).

In the continuum model, the evolution of the scaf-

fold volume fraction is given by (full derivation in
App. D),

by (1) = —V - {mm[(l (= 1) — 2rxondi (1 — 61)) Ve — mvv%@ } .
(3.11)
We observe that for the scaffold, this is essentially the modified Cahn-Hilliard equation
for the free energy density of binary mixture (Eq. (1.7)) and is completely independent of
the client volume fractions.
For the clients, it is essentially it is diffusion in a potential (V¢;) [61], along with higher-

order gradient term that emerges since the scaffold (1) sets the interface width.
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(r1—mi)¢

Oi(r,t) =V - Hmoi (ri(x1i = X0i — Xo1) + 73) — M (1 T - 2T1X01¢1> }@V@bl

+ [mm(l —¢1) + mliﬁbl} Vi +miigid1k1V V3¢

(3.12)

Equations. (3.11) and (3.12), together account for the approach of this system to phase
equilibrium in the continuum model. Refer to Appendix. C for the exact expressions for
the diffusive fluxes, j;. Eq. (3.11) dictates the evolution of the scaffold. However, the

dynamical equations for the clients depend on the scaffold.

Thin interface model

In the stationary and thin interface approximation of the scaffold, we neglect the terms
proportional to V¢ and VZ2¢;, because the volume fraction profile of the scaffold is
homogeneous away from the interface. The scaffold volume fraction profile at equilibrium

close to the critical point has a sigmoidal profile at the interface given by,

P(r) = ¢1 + tanh (\/ beor = 2)ksTvoms 'r) , (3.13)

K1

where the interface length scale is ™ = /k1/(x01 — 2)kpTor1. The thin interface model
assumes that k1 — 0 and also that the scaffold equilibrates. (allowing the interface length
scale, AI"™* to be negligible in comparison to other relevant length scales like the radius of
drop Ry or system radius R). Each of the clients follows a diffusion equation in each of
the phases I/11,

By (mt) = DV 20, (1, 1) (3.14a)

where index i represents the individual clients in the system, and s; is the chemical flux for
the i-th client, which is, in general, a function of the fuel volume fraction in the respective

phase and other client volume fractions.

P _

)

mio(1 — ¢t) + mu¢t  forrin phase I,
{ o1 = 1) +mir 1 P (3.14b)

mio(1 — @) + mipl!  forrin phase IT,

denotes the diffusion constant of each dilute client in the respective phase. The diffusion
constant usually depends on the scaffold volume fraction in the respective phase, as seen
from Eqs. (3.12) having applied the stationary condition and thin interface limit.

Phase coexistence leads to specific boundary conditions for the clients right inside and
outside of the interface between the phases (Fig. 3.4a). For a single, spherical drop of
radius Ry in a radially symmetrical, spherical domain of diameter 2R (7 = (r,¢,0) in

spherical coordinates), the boundary conditions for Eq. (3.14a) are as follows:

o The flux across the interface instead of radial flux, e, - j;, right inside (r = Rq )
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(a) System boundary (b) = 0

f . b T _ |8 T T

Drop interface % 0.8 “g i
s 0.6F b = =
= 1 7 II
g 0.4 B E 7
= 02r .
&E':OS L 1 1 . 1 I 1 L 1 L
@ 00 02 04 06 08 1.0

Spherically symmetric Relative radius /R
Fig. 3.5: Schematic representation of the model geometry. (a) Spherical drop
phase of radius Ry, rich in scaffold components (I) coexists with scaffold-poor phase (II)
in a spherical system of radius R. (b) Stationary spatial profile of the scaffold ¢;(r)
in the dilute approximation of clients for the continuum model (grey dotted) and thin

interface model (solid orange). Distance from the drop’s center is measured using the
relative radius r/R. Parameters are listed in the L.O.F section.

and outside (r = Ry ) of the interface is equal,

€r - ji"/‘:Rdy_ =€ ji’T:Rd,+ ) (3140)
where j; = —e, D{*0,¢; is the flux and e, denotes the radial unit vector.

e The fraction of the client volume fractions right inside and outside of the interface

satisfy the partition coefficient,

o ¢z |7‘:Rd7,

P, =
' ¢i"":Rd,+

; (3.14d)

which is determined by the interaction strength of clients with scaffold and solvent

components, as well as the degree of scaffold phase separation.

o All clients obey a no-flux boundary condition at the system boundary,

e Jilr=r=0. (3.14e)
e In the center of the spherical drop, the flux vanishes for all clients,

e Jilr=0 =0. (3.14f)

3.1.3 Chemical equilibrium conditions: Dilute client limit

In subsection. (3.1.1), we obtained the expression for the exchange activity coefficients for
clients (Eq. (3.3)). To study chemical equilibrium, we only focus on clients as they are
the only reactive components. Assuming the scaffold and solvent are not varying, being

non-reactive and stationary, we can use the definition of equilibrium reaction coefficient
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Chapter 3. Chemical reactions of dilute clients

in Eq. (1.27) to show that,

K, = Lf[l Yi(¢1)” 7 exp _iall - (3.15)
i=2 kpT

K, is only dependent on scaffold volume fraction, which is fixed and, therefore, in this

case, they are referred to as equilibrium reaction constants.

3.1.4 Relaxation dynamics to chemical equilibrium: Dilute client limit

For the reactive dilute clients, the reaction rates s;, defined in Eq. (2.6), are reminiscent of
the dilute mass-action kinetics we are familiar with (Eq. (1.35)), given that higher-order
interactions are non-existent between clients. However, the only difference to the case
discussed in subsection. (1.3.2) is that s; depends on the constant scaffold volume fraction
¢1, through exchange activity coefficients obtained in Eq. (3.3). The chemical reaction

force H, defined in Eq. (2.7), used to obtain s; can be simplified as,
L1/ &) Tia L+l / a0 Tio
Ho =[] (ekBT%(ébl)ébi) - 11 (e’“BT%(qbl)cﬁi) : (3.16)
i=2 i=2

where 7;(¢1) is the constant exchange activity coefficient of client i as defined in Eq. (3.3).

We demonstrate this with the simple unimolecular (A = B) reaction example,

d d
Son(t) = —0a(t)

-0
' [exp (kﬁ;AT> (1 ng))A exp (rad1(Axa = xo1)) (3.17)

0
— exp (kiéf) i ?Bq(s?)rg exp (rpo1(Axs — Xo01))| »

where Ax; = (x1;— Xoi) is the relative interaction strength of the client with the non-dilute
components (i = 0,1). Given ¢ is a constant in the system, reaction rates sy /B are truly
linear in their reactants’ volume fractions, unlike the unimolecular reaction discussed in

Sec. 2.2 where the reactants were non-dilute.

Putting things together: Reaction-diffusion equations with stationary interface

Using client components’ reaction rates s; in the dilute limit in the respective phases to

1/11

obtain s;/ ", we use these in the thin interface model to obtain reaction-diffusion reactions

in the two phases coupled with the boundary conditions as discussed above (Eq. (3.14)).

1/11

at¢i(r7 t) = Dz vzd)i(r? t) + Si(ra t) : (318)

Reactions of dilute clients at phase equilibrium

In this chapter, we also explore the kinetics of reacting dilute clients under the assumption

that they can diffuse infinitely fast in the system. The reaction-diffusion length scales are
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Chapter 3. Chemical reactions of dilute clients

much greater than both the drop and system size. Using the evolution equation for the
average client volume fraction, ¢; as in Eq. (2.9) using average reaction rate, s; discussed

in the subsection. 3.1.4,
d

dt

At each time point, we can simultaneously obtain the client phase equilibrated volume

$i(t) = 5;(P;, VI, {r(t)}). (3.19)

fractions d)y H(t) using the partitioning degree as explained in Eq. (3.9) and the time

evolved average client volume fraction, ¢;(t).

3.2 Applications

We investigate simple chemical pathways when driven by fuel (Fig. 3.1(b)) as well as in the
absence of fuel (relaxation to thermodynamic equilibrium). The continuous consumption
of fuel drives the respective reactions out of chemical equilibrium, and this is maintained
by [L}i;’l/ T The (4) superscript is to designate if the fuel acts in the forward (4) or
backward (-) pathway. Therefore, the reaction rate constants can no longer be determined
by mass-action law, given detailed balance is no longer satisfied. These out-of-equilibrium
reactions can occur in both phases, I/II. However, in the results discussed below, for
simplicity, we specifically choose fi F’I # 0, and the other possible choices are set to zero.
Making this choice uniformly for the studies below, we’ll skip the (4) superscript and use
fi%-, implying that the reaction is driven asymmetrically only in the drop phase (I).

Given we try to address the question of how reaction-specific "observables" are affected in
presence of a drop relative to a no-drop system, we can imagine the no-drop (reference

system) in four possible ways:

i/ " such that
the system is composed of one homogeneous phase with average volume fraction of
scaffold either being ¢! (V1/V — 0) or ¢! (where the drop fills up the whole system

to have one effective phase (VI/V — 1)),

o (i-ii) the cases where the average scaffold volume fraction is ¢; = ¢

o (iii) the case where scaffold component does not exist é1 = 0. In this case, the
exchange activity coefficient is identically unity for all dilute, reactive components

following from Eq. (3.3), unlike the former case, where it is not equal to unity,

o (iv) the case where corresponding to an average scaffold volume fraction é; at which
phase-separation occurs, the demixed state is suppressed by continuous stirring to

have a no-drop reference state.

For the discussion of the applications, we choose case (i) as our preferred reference system,
where the scaffold is at, and what can be addressed as the threshold volume fraction where
the onset of phase separation has not yet occurred.

We would like to study the behavior of the so-called observables by changing the drop
size V1/V. This can be achieved by gradually changing ¢; from ¢ — #}. Varying the
average scaffold in the system does not affect the exchange activity coefficients of clients,

given those are solely dependent on the equilibrium phase volume fractions, gbIl/ H, which
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remain unaffected (refer to the interpretation of binary phase diagram in Fig. 1.6(a)).

Additionally, to define the observables, we use the average volume fractions computed by,

Gilt) = % /V Br di(r 1), (3.20)

We can have a generalized reaction scheme where H number of reactants A; can react in
the presence of fuel, F' to form product B, which can spontaneously decompose back to

the reactants,

s
spontaneous

7

H -
Ay —— B, (3.21)
=1

The possible variations of this process can be unimolecular (two-state) and bimolecular

reactions, with and without the presence of fuel. We discuss the two-state process first.

3.2.1 Two-state transitions controlled by a drop

The framework about to be discussed can be applied to different biologically relevant
transitions like protein misfolding between two states, referred to as activated B and
deactivated Aj.
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Fig. 3.6: Spatio-temporal and steady state spatial profiles of the clients. (a)
In the presence of fuel, the product is initialized at phase eq. (gray) evolves to the NESS
(blue) with pronounced gradients set by )\ién governed by Eq. (3.18), (b) The steady state
spatial profiles of the clients, where in the absence of fuel (color dashed) system relaxes
to thermodynamic equilibrium (flat profiles). Parameters are listed in the L.O.F section.

In general, for dilute reactive clients, we can write,

exp <kuBl) = exp (;;2)71(@?)1)@ - (3.22)

In this study, the observable we define is the relative yield or the relative steady state

average volume fraction of the product B,

_ ¢B()
y (EB(OO)‘VIZO . (3.23)

The numerator of the observable is equivalently, ¢ B(00)|drop Which is a function of drop
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Chapter 3. Chemical reactions of dilute clients

volume (in turn varying ¢1 (Eq. (3.8h))), and the denominator is similarly ¢z(00)|no drop
which is a constant evaluated at scaffold volume fraction, ¢; = i

The chemical reaction rates for product B and reactant A; are as follows,

I /I
Sp = S84,

B

kT

To obtain the average steady state volume fraction of the product for the reference state
using 1, = (¢4, + ¢B) as the conserved quantity, we obtain the steady state by solving

ftA, = B, since the external energy source of the fuel, ﬂ% disappears with the drop,
Fay \ 5 (gl
OXP | z5T | TAL (¢1)

¢B( )’VIZO = ﬁ% B I /10 _ o

exp (,@}) Y4, (¢1) + exp (;CBBT> Y(47)

In the thin interface model, one can obtain analytical solutions for the steady state spatial

b1 (3.25)

profile of clients (details in Appendix. E).
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Fig. 3.7: Relative yield is most significant in the presence of fuel and at infinite
diffusivity. (a) In the absence of fuel (black dashed), the system loses its optimality in
yield, and the yield is most amplified for higher fuel energy, jil.. (b) The yield is the
most amplified in the limit of infinite diffusivities of clients (black dotted). Parameters
are listed in the L.O.F section.

In the limit of infinite fast diffusion, the volume fraction in the respective phases is ho-
mogeneous, and we can obtain the average steady state volume fraction of the product

analytically as,

~T
S VKD exp (,;;F )

YPe¢B [Yor VIEY]
(3.26)

where I' = I, II is the phase index. To solve for the existence of optimality, we obtain the
slope of the Eq. (3.26) and get the conditions at the limits, V! — 0 and V! — 1, which

%\
exXp (k;BA%“) 7£1PA1CA1

) i, Pai Cay {ZF VTE exp < > Y1,

¢B(OO) = 0
exp< 2L

+exp< 2
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Fig. 3.8: Relative yield optimality for varying parameters. (a) Small drop size
best optimizes the relative yield, and not when the drop fills the whole system. (b) High
values of the reactant’s partition coeflicient, P4,, and slow kinetics in the dilute phase
allow for maximum relative yield. Parameters are listed in the L.O.F section.

are respectively,

E! (Pg — Py
i ~11) , (3.27a)
(e (4))
=1
k! PA1PB <1—exp (;5;%))
— > . (3.27Db)

If both the above conditions are satisfied, then optimality exists as a function of drop
volume. The other parameters that control the optimality conditions in Eq. (3.27), are the
partition coefficients P;, the reaction rate coefficients, &'/ and external fuel energy ik
Absence of /1% leads to loss of optimality as can be verified from the conditions, Eq.(3.27),
because the average volume fractions are linear functions in phase volumes and optimality
mainly arises from the dependence on the drop volume as a non-linear function.

In this study, we fix ﬁ%, partition coefficient of the product Pp. We analyze the optimal
relative yield, Vopt and the optimal drop volume VOIPt /V by varying the partition coefficient
of the reactant P4, and the reaction rate coefficient ratio, k' /k!. The maximum relative
yield observed for the studied range of parameters (Vopt ~ 30), implies that a drop with
a localized fuel source can lead to the formation of more product in the system at steady
state. We see in Fig. 3.8(b) that low k" /k! and high P4, have the highest optimal value
for relative yield. It is because the spontaneous conversion to A; of the product B needs
to be suppressed, and the reactant A; has to be more in the drop where the external fuel

can convert it actively to the product.

3.2.2 Bimolecular reaction controlled by a drop

The bimolecular reaction has 2 conserved quantities, ; = (q_SAl + <Z_3A2 + QEB) and Yy =

(pa, —da,) as had been discussed earlier in Sec. (2.3). For the most general case of active
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Fig. 3.9: Relative yield optimality is most significant in the presence of fuel
and high diffusivities. (a) Due to its bimolecular nature, optimality can exist even in
the absence of fuel (black dashed), and yield is more pronounced with more fuel energy
(blue shades). (b) Reaction proceeding at phase equilibrium has the highest yield (black
dotted) compared to when clients’ rescaled diffusivities, D;, are low (blue) and when
clients don’t diffuse (black solid). The last case implies they locally settle to their effective
chemical equilibrium in the respective phases, and therefore there cannot exist optimality
in this case. Parameters are listed in the L.O.F section.

bimolecular reaction, the reaction rate is given as,

/11

sh(rt) _ _n (r,t)
2 A\
A, + A +ﬂ+’I/H KB (3:28)
_ kI/II[ ( 1 2 F > _ ( )]
exp KT exp iaT

To solve for the steady state of the product B in the reference system (no drop), we can
solve for the physically valid root from the quadratic equation obtained from applying the

condition of chemical equilibrium ( Y2, fia, = fig),

$B(00)|y1—g = exp ('u%l +k;f412 _ “OB) (71“1(?2;;1112)( 111)) <¢1 + 2 ; ¢>B(OO)>
<¢1 — o — &B(oo)) .
2

(3.29)

For the system with a drop, in the infinite diffusion limit, we obtain the physically relevant

root as,
65(00) = 20 + 1 — \/4C? + 4Cn + 42, (3.30)
0 70 —i0 =1 r.r
where C = exp (MAlJr,:;AY% MB) 3 vaBfDB 2 VIE — . Similar to the two-

state transition (unimolecular), we also here investigate the relative yield (defined in
Eq. (3.23)) as in Fig. 3.9, where we conclude that relative yield is the highest correspond-
ing to high external energy supply and when the reactions proceed at phase equilibrium,
implying infinite limit of diffusivities for the clients.

As we observe from the expressions for the steady state, they tend to get less tractable

analytically with increasing reaction orders. However, in the limit of infinite diffusivities of
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Fig. 3.10: Relative yield optimality for varying parameters. (a) Medium drop
size best optimizes the relative yield, (b) Vopt ~ 80, for a high partition coefficient of the
product Pg and not too strongly varying with the reaction rate coefficients. Parameters
are listed in the L.O.F section.

clients or reactions at phase equilibrium, there is relatively more control and accessibility
with analytical expressions of the observables. For the bimolecular reaction, the steady
state spatial profiles as solutions of Eq. (3.18) can be only obtained numerically (scheme

discussed in Appendix. B).

3.2.3 Nucleation reaction controlled by a drop

We also apply the framework to study both thermodynamic and fuel-mediated nucleation
pathways. In this subsection, we look into the types of reactions that mimic the nucleation

of fibrils and filaments. The nucleation processes studied are primarily dictated as,

nA —==— 4,. (3.31)

suppressed
where n is the nucleation number of monomers A (or order of the process), essential to
undergo a nearly irreversible transition to form a dimer/trimer, A,, depending on the
value of n (here we focus on n = 2,3). The conserved quantity here is 11 = (¢4 + da,,).

The phase-dependent chemical reaction rate of this reaction scheme is given as,

Mty = =" 1)

_ _+1/11 - 3.32
ool () (g
B

For this reaction, the observable we wish to study is the relative initial rate of nucleation,

R— 040 (3.33)

$4(0)[y1g
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where the average initial rate at phase equilibrium (can be calculated analytically) is as
follows using Eq. (3.32) in Eq. (2.9),

+ V! 1-V!
$a(0) = VSIA(O) + (‘/)sﬁ(o) : (3.34)
T T T 1.0
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Fig. 3.11: Temporal traces for monomers with varying nucleation numbers. At
phase equilibrium, (a) for n = 2 and (b) n = 3, we study the temporal profiles for varying
fuel energy fil., with the fastest average initial decay rate corresponding to the highest
value of fil,. Here we fix a specific drop volume where the temporal profiles are studied.
We also recognize the long-time behavior of this process. For the decaying monomers, it
scales with the nucleation orders as oc t=2/(™=1: hence ¢t=! and ¢t~ for n = 2 and 3,
respectively. Parameters are listed in the L.O.F section.
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Fig. 3.12: Nucleation number, fuel, and diffusivity affect the relative average
initial rate. (a) For the initial parameters chosen here, the observable is higher for the
smaller nucleation number (n = 2, light green shades) and in the presence of fuel (solid
green lines). (b)In a fixed drop volume, infinite diffusivity of monomers D4 (black dotted)
have the highest average initial rate followed by low but finite diffusivites (solid green).
The average initial rate is the slowest in the limit of no diffusion. However, the long-time
scaling behavior remains unaffected, oc t=! for n = 2. Parameters are listed in the L.O.F
section.

Like the previous applications, we also study this system using the rates defined above
(Eq. (3.32)) in Eq. (3.18) using the numerical scheme discussed in Appendix. B to ob-
tain the average temporal profiles of the monomers for finite diffusivity of the monomers
(Fig. 3.12(b)).

The average initial nucleation rate studied here decreases with an increase in nucleation

number n because of the chosen parameters, but it usually depends on the initial volume
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Chapter 3. Chemical reactions of dilute clients

fraction of monomers. However, in the presence of a drop, this average initial nucleation
rate can be sped up depending on the diffusivity of the monomers Dy, their partition
coefficient Py, the reaction rate coefficients, k! and the drop volume V. However, the

long-time scaling of the average volume fraction profiles is robust in the system.
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Fig. 3.13: Relative yield optimality for varying parameters. Here, we analyze the
optimal behavior as functions of the monomer partition coefficient P4 and reaction rate
coefficients. (a) Higher partitioning of monomers is required in smaller drops to obtain
optimal relative initial rate, (b) which can be significantly high even for small partition
coefficient values of monomers P, and suppressed reaction rate coefficients outside the
drop. Parameters are listed in the L.O.F section.

3.3 Summary

In this chapter, we tried to develop the framework to understand scaffold-client systems,
where the scaffold is non-reactive. We defined the dilute limit of the clients, with an
estimate for the client volume fraction, discussed in Appendix. C, as a function of all
other thermodynamic parameters in the system. Beyond this threshold value of the client
volume fraction, the approximation fails to hold.

We are interested in the domain of the composition space of scaffold-solvent-clients, where
the approximation is valid. In this domain, we calculated the thermodynamic equilibrium
conditions and the kinetic equations originating from conservation laws. We can immedi-
ately simplify the kinetics by decoupling the clients’ evolution equations from that of the
scaffold, which we also assume is stationary and provides a heterogenous background for
the clients and can affect the kinetic coefficients, both for reaction and diffusion (/' and
DMy,

We study the spatiotemporal model as coupled reaction-diffusion equations in the two
phases and the temporal model, which is essentially the reaction kinetics at phase equilib-
rium discussed in chapter 2. We apply these models to three reaction processes to notice
a key property of optimizing an observable of the individual reactions by tuning the drop
volume V. We understand that non-linearity in the reaction scheme, either obtained via
higher-order reaction processes (not unimolecular) or coupling phase-dependent external
fuel energy sources to linear processes, is the key ingredient to observing optimality with
a certain choice of other parameters in the model that can tune the optimality, and also
lead to its suppression. This study can be useful to systems biology experimental design

to tune parameters in the model to optimize a certain functionality.
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Fuel-driven chemical reactions in the dilute phase at phase

equilibrium

"Living matter evades the decay to equilibrium. How does the living organism
avoid decay? The obvious answer is: By eating, drinking, breathing and (in case
of plants) assimilating. The technical term is metabolism."

— Erwin Schrédinger, What is Life?

In recent years, chemical reaction cycles driven by chemical fuel consumption have been
introduced that regulate the ability of molecules to assemble or phase-separate, resulting
in dynamic structures like colloids [78], fibers [79], supramolecular polymers [80], oil-based
droplets [78], coacervate-based droplets [81], and vesicles [82], to name a few. Due to
the transient nature of these so-called "building blocks" , these assemblies are endowed
with properties typically absent at thermodynamic equilibrium. For example, fibrils that
spontaneously self-divide. Moreover, the theory on active emulsions suggests that droplets
can self-divide [83]. More recently, examples of assemblies were observed that exert feed-
back over their chemical reaction cycle. The underlying mechanisms can result in exciting
behavior, like the spontaneous emergence of switches between the morphologies or the
ability of molecules to persist while others decay [78]. All these developments in the field
are incremental steps toward the synthesis of life, and a living system essentially represents
a complex nonequilibrium assembly of molecules that are regulated by chemical reaction
cycles.

The objective of this chapter is, therefore, to theoretically probe such a bottom-up ap-
proach in systems chemistry to couple a library of precursors that consume chemical fuel
to form hydrophobic oil-like drops in the system. The chemical reaction cycle transiently
forms these building blocks, which subsequently die in the system due to hydrolysis. The-
oretically, we can approach to understand this system using tools from chapter 2, given
the molecules are tiny and have high diffusion coefficients compared to reaction rate coef-
ficients, allowing us to assume that the system remains at phase equilibrium through its
kinetic evolution. Here, we use concentrations as variables since the experimental data is
available in concentration units, specifically millimolar, in this study.

The experiments in this work were carried out by Patrick Schwarz, Tabea Huss, and Job
Boekhoven at the Dept. of Chemistry, TU Munich. The theory was developed in collab-
oration with Jacqueline Janssen. The results discussed in this chapter can be found in
Ref. [60].
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Fig. 4.1: The design of chemically fueled reaction cycles. (a) The chemically
fueled reaction cycle used in this work. Succinate derivatives are converted into their
corresponding transient anhydrides by consuming the chemical fuel EDC. (b) Molecular
structures of the precursor, competitor 1, and competitor 2. The cycle column shows a
schematic representation of the cycle with the succinate derivative as an open circle and
the anhydride as a closed circle. Competitor 2 can form droplets. (c¢) Confocal microscopy
of 50 mM competitor 2 fueled with 100 mM EDC. The corresponding anhydride product
phase separates into micron-sized oil droplets.

4.1 Chemical reaction network and its properties

Similar to the fuel-driven reaction cycles in biological systems, the energy obtained from
the hydrolysis of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC, labeled F') is used
for the transient activation of the succinate derivative (labeled A; with i = P, C;, C3). In
this study, three succinate derivatives were used: (E/Z)-2-buten-1- ylsuccinate, which we
refer to as precursor (Ap), succinate (competitor 1, Ac, ), and (E/Z)-2-hexen-1-ylsuccinate
(competitor 2, Ac,, Fig. 4.1(a)).

The intermediate molecule, AF';, comprises fuel and the respective succinate derivative.
There are three corresponding anhydrides, abbreviated as B;, and referred to as product,
product of competitor 1, or product of competitor 2. The anhydride products used experi-
mentally are (F/Z)-2-buten-1-ylsuccinic anhydride (product), succinic anhydride (product
of competitor 1), and (F/Z)-2-hexen-1-ylsuccinic anhydride (product of competitor 2). In
our systems, the solvent is water (0).

The following reaction schemes can summarise all reactions in the cycle:

Reaction (0): F o w, (4.1a)
. kiinp ko
Reactions (1-3): A; AF; — B;, (4.1b)
3,1
ka;
Reaction (4): B; =5 A;. (4.1c)

The fuel F' can undergo two chemical reactions: F' can get slowly hydrolyzed to waste
W with a reaction rate coefficient ky (Reaction (0), Eq. (4.1a)), or the fuel F' drives
the transition from the succinate derivative A; to the intermediate AF; with a chemical
reaction rate that is proportional to the fuel concentration np with a rate constant £ ;
(Reaction (1), second order chemical reaction). This intermediate molecule, AF; can

spontaneously hydrolyze back to A; with a rate constant ks ;, or irreversibly turn over
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Chapter 4. Localized fuel-driven reactions at phase equilibrium

to the anhydride B; (Reactions (1-3), Eq. (4.1b)). The turn-over to the anhydride
(Reaction (2)) occurs spontaneously as an intramolecular reaction with a rate constant
ko; (first-order reaction).

In aqueous media, this anhydride hydrolyzes and thereby turns over to the initial succinate
derivative A; with rate coefficient k4 ; (Reaction (4)) (Eq. (4.1c)), which we shortly refer
to as the deactivation step. Considering a constant pH and approximately dilute conditions
relative to water, deactivation follows a first-order chemical reaction with a deactivation
rate constant k4 ;. The anhydride population can thus only be maintained when the rate

of activation equals the rate of deactivation.

4.1.1 Observations from individual reaction cycles
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Fig. 4.2: Individual reaction properties. The anhydride product concentration
profile of 50 mM precursor (a), competitor 1 (b), and competitor 2 (c¢) fueled with 100
mM EDC. Markers represent HPLC data; solid lines represent data calculated using the
theoretical kinetic model.

It was observed that the addition of fuel to competitor 2 made the solution turn turbid
due to the presence of oil droplets which was verified via confocal microscopy (Fig. 4.1(c)),
and is in line with previous work [82]. However, the emergence of droplets could not be
observed for the precursor and competitor 1.

To determine the kinetics of the three reaction cycles, 50 mM of each succinate derivative
was fueled with 100 mM EDC and the corresponding anhydride product concentration was
quantified by means of high-performance liquid chromatography (HPLC) [84]. On fueling
50 mM precursor with 100 mM EDC, the precursor was immediately converted to roughly
25 mM of the product (yield) and, after the depletion of the fuel, degraded rapidly with
a first-order decay within 24 minutes (lifetime)(Fig. 4.2(a)).

Next, fueling 50 mM of competitor 1 with 100 mM EDC, a similar observation was made
in terms of the yield and lifetime (Fig. 4.2(b)).

In contrast, under the same conditions, fueling competitor 2 resulted in 45 mM anhydride
product yield, which survived for over an hour (Fig. 4.2(c)).

The increased yield and lifetime of the droplet-forming anhydride product of competi-
tor 2 was previously described by a self-protection mechanism, i.e., the phase-separated
anhydride product is shielded from water and thus protected from hydrolysis [82]. Conse-

quently, hydrolysis occurs only on the anhydride molecules in the solution, which we refer
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to as the dilute phase equilibrium concentration of the anhydride product (nIBIZ) The
hydrolysis rate can then be calculated by o k47mgi, where k4 ; is the hydrolysis rate coef-
ficient. Since both k4 ¢, and ng o, ATe constant, the effective hydrolysis rate is a constant,
leading to a linear decay of the average anhydride product of competitor 2 concentration

when all fuel is consumed (Fig. 4.2(c)).

4.1.2 Observations from combined reaction cycles

The kinetics of the reaction cycles were tested and observed to be affected when the pre-
cursor competed with either competitor 1 or competitor 2 for fuel in terms of the yields
and lifetimes as observables. The lifetime was defined as the time period during which
the average product concentration exceeded a chosen threshold of 2 mM. The thresh-
old concentration of 2 mM was chosen as it was equal to the dilute phase equilibrium
concentration of competitor 2 (nIBl;CQ), meaning droplets dissolved below this threshold.
Moreover, the threshold value was not in the tailing regime of the exponential decay of

the anhydrides allowing to capture the effects of phase separation on product lifetime.
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Fig. 4.3: Competition between reaction cycles for a shared fuel - 1. (a) The
anhydride concentration profiles when 50 mM precursor (red) and 50 mM competitor 1
(green) compete for 100 mM EDC. (b) The lifetime of the product against the concentra-
tion of competitor 1. The lifetime decreases with increasing competition. (¢) Schematic
representation of the hydrolysis of anhydrides in the experiment in (a). Markers represent
HPLC data; solid lines represent data calculated using the theoretical kinetic model.

When equal concentrations of the precursor and competitor 1 were mixed and fueled with
100 mM EDC, it was found that it led to lower yields and shorter reaction cycles for each
of the anhydrides compared to their respective non-competing reaction cycles (Fig. 4.3(a)
versus Fig. 4.2(a-b)). To quantify this effect, the lifetime of the product was measured
as a function of competitor 1 concentration, keeping the precursor concentration fixed
at 50 mM (Fig. 4.3(b)). It was found that the lifetime decreased with increasing the
concentration of competitor 1, given the fact that the precursor and competitor 1 now
had less fuel at their disposal compared to their corresponding noncompeting reaction
cycles. The anhydrides of both reaction cycles were present side by side and hydrolyzed

in the aqueous media (Fig. 4.3(c)). In summary, both reaction cycles suffered from the
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competition for fuel.

Precursor vs Competitor 2
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Fig. 4.4: Competition between reaction cycles for a shared fuel - II. (a) The
anhydride concentration profiles when 50 mM precursor (red) and 50 mM competitor 2
(blue) compete for 100 mM fuel. (b) The lifetime of the product against the concentration
of competitor 2 (red). Using the theoretical kinetic model, we show that for the same
system, but in the absence of co-phase separation, the lifetime decreases (gray line).
(¢) Schematic representation of the hydrolysis of anhydrides in the presence of droplets.
Markers represent HPLC data; solid lines represent data calculated using the theoretical
kinetic model.

The relation between the lifetime and amount of competitor was very different when the
precursor competed with competitor 2, which could phase-separate. Despite the competi-
tion for fuel, the lifetime of the product increased with increasing competitor 2 concentra-
tion (Fig. 4.4(a)). When 50 mM of competitor 2 was added, the lifetime of the product
increased to 43 minutes, and the decay suddenly differed from the previously observed
first-order decay (Fig. 4.3(a)).

The increased lifetime was particularly surprising considering that the maximum yield
of the product decreased from roughly 25 mM to 10 mM when competitor 2 was added
(Fig. 4.2(a) versus Fig. 4.4(a)). In contrast, the lifetime of the product of competitor
2 decreased from 77 minutes when on its own to 43 minutes when competing with the
precursor for fuel (Fig. 4.2(c) versus Fig. 4.4(a)). Moreover, it was found that the maxi-
mum Yyield of the product of competitor 2 decreased from roughly 45 mM to 35 mM when

competing with the precursor for fuel.

In summary, the product of competitor 2 suffered whilst the product benefitted from
the competition for fuel between the reaction cycles. This behavior allows us to iden-
tify the product of competitor 2 host and the product as parasite. Interestingly, both
anhydrides had the same lifetime indicating a coupling between the two reaction cycles.
When the concentration of competitor 2 was further increased while fixing the precursor

concentration, the product’s lifetime increased even further (Fig. 4.4(b)).
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Chapter 4. Localized fuel-driven reactions at phase equilibrium

4.2 Kinetic equations at phase equilibrium

We propose a theoretical model to explain the above observations, which is based on
dilute mass-action kinetic equations which are valid when the system is homogeneous
(individual reaction cycles of precursor and competitor 1, and combined reaction cycle of
precursor with competitor 1). The fuel, succinate derivates, and intermediate components
are water-soluble (their interaction parameters with water and anhydride products can
be set to zero, implying constant activity coefficients as discussed in subsec. (1.2.3)).
Even though repulsive interaction exists between the anhydride products and water (0),
the operating average anhydride concentrations are dilute (np, < n%i), preventing phase
separation from occurring (ngp = 27.8 mM and nIBI,Cl ~ 3000 mM) and hence validate the

use of dilute limit of mass action kinetic equations. The equations are as follows,

d

%'FLF =— Z ki1inpna, —konr,
i=P,C1
d _ o _ _
A= —kiinpna, +k3inar, +kiing,, (4.2a)
d _ o _
AR, = kiinping, — (k3i+ ko) nar, ,
d

%ﬁBi = koinar, — kainp; .

The conserved quantity in this system is ¢); = (74, + nap, + np,), which holds for each
i with i« = P,C7,Cy. When the system phase separates, each individual phase (oil-like
drop phase and dilute aqueous phase) is treated as homogeneous (individual reaction cycle

of competitor 2, and combined reaction cycle of precursor with competitor 2).

This is supported by the experimental observation that droplets form very quickly on
the experimentally relevant time scales of minutes. The system undergoes fast phase
separation, and diffusion kinetics of the anhydrides are instantaneous relative to their
chemical reactions. Specifically, this treatment is valid if the inter-droplet distances do
not exceed the reaction-diffusion length scale |/ D;/k4 ; for both anhydrides. Using exper-
imental values, this reaction-diffusion length scale is in the order of a few hundred pm,
while inter-droplet distances are about a few tenths of ym, supporting the validity of this
approximation. This allows applying the above framework developed earlier in chapter 2

with certain modifications.

Before the onset of phase separation, the system is dictated by Egs. (4.2a). At the time
point in the reaction cycle when the average anhydride concentration reaches ng% =2
mM (in case of individual reaction cycle of competitor 2) or (nl CQ,ngp) in the dilute
branch in the ternary phase diagram (in case of combined reaction cycle of precursor
with competitor 2), the average concentrations in the system evolves with the following

equations (numerical implementation discussed in Appendix. B),
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Chapter 4. Localized fuel-driven reactions at phase equilibrium

d vi Z I, 10, 11 I, 11
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d V

%HAF V {kﬂ' fé{ - (k + k?z) nAF} )

d VH I

%”B V |:k’ ; /@“nB} .

Given we know that reaction rate coefficients can be phase dependent from chapter 2, in
this study, all such coefficients are set to zero identically in the oil droplet phase (kil =0),
suppressing the reactions inside the droplets. This can be justified owing to the dependence
of the coefficients on all non-anhydride components (water (0), F, A;, AF;, collectively
called the solvent), which are strongly excluded in the oil droplet phase. In the dilute
phase, due to zero cross interactions among all components except for the anhydrides with
the solvent (xop, and xo Be, ), in the dilute phase we still treat the kinetics as it would be
for dilute mass action. Here we also use the assumption that the reaction rate coefficients
in the dilute phase remain the same as it was before the onset of phase separation (mixed
system).

Under the valid assumption of fast diffusion kinetics compared to the slow chemical re-
actions outside the droplets, the average concentrations of the two anhydrides, npg,(t)
determine their equilibrium concentrations via Maxwell construction using Egs. (1.17) for
an incompressible binary (L = 1, for individual reaction cycle of competitor 2) and ternary
(L = 2, for combined reaction cycle of precursor and competitor 2) mixture. The volume

of the dense phase (oil droplets) at each time point t:

Maxwell construction: np,(t) — n%i(t) ngz(t) (4.2c)

Vi) _ np(t) — np,(t)
Voo () —np (1)

Volume dense phase: (4.2d)

Obtaining reaction rate coefficients for the kinetic equations

We study the individual reaction cycles of the three succinate derivatives and their cor-
responding anhydrides. We fit the experimental measurements with the kinetic traces of
each of the reaction cycles to determine the rate coefficients (Appendix. F, Figs. F.1, F.2
and F.3). The experimental measurements corresponding to the combined reaction cycles
are then studied and fitted to determine the rate coefficients in those composite systems
(Appendix. F, Figs. F.4 and F.6).

We summarise the reaction rate constants obtained from fits as mentioned above in Fig. F'.8
in Appendix. F. We observed that, in general, there are only little differences in the deacti-
vation rate constants of the single precursor system and the system where two components
compete for fuel. However, a noticeable effect is a reduction in the activation pathway

rate constant, primarily k; of competitor 1 (C4) in the competition system with precursor
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Chapter 4. Localized fuel-driven reactions at phase equilibrium

(P) and that of the precursor (P) in the competition system with competitor 2 (Cs). For
both singular and competition studies, we keep the solubilities of the product and prod-
uct of competitor 2 unchanged to values 2.01 mM and 27.8 mM, respectively. We thus
assumed that competition for the fuel affects the availability of fuel for specific succinate
derivatives. For periodic fueling studies, the lower value k4 was used for the product. For
Fig. F.3, we use the lower value of k4 and for Fig. 4.2(c) in the main text, we use the

higher value of k4 for the product of competitor 2 as it was obtained from fitting routine.

4.3 Construction of the ternary phase diagram

To estimate the co-phase separation properties of the two anhydrides of precursor and
competitor 2 with respect to the solvent, we consider the limit of excess fuel. In this
case, the system mostly comprises the two anhydrides, solvent, and fuel. Due to the hy-
drophilic property of the fuel, we neglect its effects on phase separation. Thus, we can
determine a ternary phase diagram for the remaining three molecules (product and prod-
uct of competitor 2, and solvent (0)). As a model for this phase diagram, we consider a
ternary, incompressible Flory-Huggins free energy density as in Eq. (1.6). We also apply
the conversion from volume fractions to concentrations following Eq. (1.5) using the molar
volume of the solvent as vy = 18.02cm?/mol. The other five unknown parameters (7,
TBoys X0Bp> X0Boys XBp 302) are solved for by fitting the theoretical phase diagram to the
experimental phase diagram.

The equilibrium concentrations in droplet phase (I), nIBP and nIBC , coexist with the
2

volume fractions in aqueous phase (II), ngp and nIBI,CQ. The volume fractions fulfill the

equilibrium conditions for phase coexistence:

e ({ns,}) = s, ({n5,}). (4.32)
ﬂBcz ({nIBZ}) = ﬁBCQ Gngz ) (4.3b)
I({nj,}) = I({nj,}). (4.3¢)

Obtaining interaction parameters from the experimental phase diagram

Using the observed molar masses (see SI of Ref. [60]), we find for the product (P) and
the product of competitor 2 (Cs), mp/my = 8.56 and mc,/mo = 10.11, respectively.
In the respective binary systems, we used the molar masses relative to water as initial
guesses for the fractions of the molar volumes, i.e., r; = v; /vy ~ m;/mgy, where m; denotes
the molar mass of molecule i. Given the experimental equilibrium concentrations of the
anhydride molecules i ({nIBZ}, {n%l ), in their respective binary system, i.e., product
(P) with solvent (0) and product of competitor 2 (Cy) with solvent (0), we solve the
binary phase equilibrium conditions separately to obtain rp = 6.44, xop, = 1.63 (in units
of kgT') and r¢, = 8.35, XoBe, = 1.76 (in units of kpT'), respectively. The fractions
of molar volumes we obtain are in good agreement with the mass fractions. Keeping

these interaction parameters and the fraction of molar volumes fixed, we have only one
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Fig. 4.5: Ternary phase diagram. (a) Ternary phase diagram (log-log representation)
depicting the equilibrium concentrations of the product and the product of competitor
2. The circles correspond to the experimental data, and the solid lines represent the
theoretical binodal and tie lines. The dashed lines represent the experimental tie lines.
(b) The trace of average concentrations of product and product of competitor 2 in the
ternary phase diagram (lin-lin representation) during the reaction cycle when 50 mM pre-
cursor and 10 mM (light hue), 50 mM (mid hue), and 125 mM (dark hue) of competitor 2
compete for 100 mM EDC. The arrows depict the direction in which the average concen-
trations move with time. The kinetic orbit crosses fewer tie-lines at maximal competitor 2
concentration (125 mM), suggesting the solubility change is not drastic and allows nearly
zeroth order decay for both anhydrides. Markers represent HPLC data; solid lines repre-
sent data calculated using the theoretical kinetic model.

undetermined parameter left, namely xg, Bo, - This parameter is obtained by solving
Egs. (4.3) and finding the best agreement with the binodal lines and tie line slopes. Very
good agreement is obtained for the value XBpBo, = 0, see Fig. 4.5. xBpp,, = 0 as
a parameter is consistent with the homotypic interactions and heterotypic interactions
between the two anhydrides being approximately of the same magnitude; a scenario that

is reasonable due to the similarity of the molecular structures of the two anhydrides.

4.4 Mechanism of co-phase separation

(@) e I . (b)
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o . o 1 i . o o = 3 — 50mM | |
p O s ¢ - O | — 125mM | |
T ' e ' Q: 4 |
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Fig. 4.6: Mechanism of co-phase separation and increased lifetime. (a)
Schematic representation of how increasing concentration of competitor 2 affects co-phase
separation and, thereby the hydrolysis rate of the product. (b) The dilute phase equi-
librium concentration of the product ngp over time for 10 mM, 50 mM, and 125 mM
of competitor 2. The course of ngp is dictated by the shape of the orbital in the phase
diagram and the tie lines it crosses (Fig. 4.5(b)). The stars denote the point of dissolution
of the droplets.
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Fig. 4.7: Total droplet volume increases and total hydrolysis rate decreases in
the dilute phase allowing longer survival of the parasite. (a) The total droplet
volume increases with increasing the competitor 2 concentration, and the product of
competitor 2 starts acting like a host to protect the parasite inside the droplets from
hydrolysis. (b) The hydrolysis rate of the product of competitor 2 in the aqueous phase
sets the offset of the total hydrolysis rate, and it increases with increasing competitor 2
concentration. (c) The total hydrolysis rate of both anhydrides outside the droplets. The
stars denote the point of dissolution of the droplets.

We hypothesized that the counterintuitive behavior of increasing lifetime of the product
with increasing the concentration of competitor 2, is related to the ability of the prod-
uct to co-phase separate with the product of competitor 2. Thus, the product benefitted
from the self-protection mechanism of the droplets formed by the product of competitor 2
(Fig. 4.4(c) and Fig. 4.6(a)). In other words, co-phase separation decreased the concentra-
tion of the product in the aqueous (dilute) phase (Fig. 4.6(b)) and, thereby, its hydrolysis
rate. The composition of the oil phase was investigated during the reaction cycle by cen-
trifugation and HPLC. It was found that the product was indeed part of the oil phase
(Fig. 4.8).

Moreover, when the concentration of competitor 2 was increased, it was found that the
composition of the oil phase changed, which suggested that the composition of the oil phase
was dictated by the two reaction cycles (Fig. 4.8). The composition of the dilute phase
was also measured after 16 minutes in the reaction for various competitor 2 concentra-
tions (Fig. F.9). Assuming that the system is close to local phase separation equilibrium,
the concentrations of the anhydrides in the dilute phase are approximately equal to their
dilute equilibrium concentration ngi. It was found an almost constant n%CQ of roughly 2
mM for the anhydride product of competitor 2 in the presence or absence of the precursor
(Fig. F.9(a)).

In other words, the n%CQ was hardly affected by the presence of the product. In contrast,
we found that ngp decreased drastically, ranging from roughly 28 mM without competition
to 0.6 mM with 125 mM concentration of competitor 2 (Fig. F.9(b)).

We assumed that competition affects the co-phase separation as it results in an increased
total droplet volume and a decreased hydrolysis rate of the product (Fig. 4.7).

The phase diagram also corroborates this where we see that if the average concentration
of product of competitor 2 increases (average concentration of product remaining constant

at 1 mM), the system shifts to another tie-line, and the concentration, ngp of the product
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Chapter 4. Localized fuel-driven reactions at phase equilibrium

decreases further (Fig. 4.5(b)). Each data point on such a kinetic orbit can be decom-
posed into concentrations of the anhydrides in the aqueous and in the oil phase. If an
orbit lies parallel to a tie line, the anhydride concentrations in the aqueous phase remain
almost constant over time. This implies that both anhydrides hydrolyze via kinetics close
to zeroth-order as long as droplets are present. However, if the orbit evolves through

several tie lines, the product concentration in the aqueous phase changes with time. In

I
Be,

barely changes and is independent of the shape of the orbit, i.e., hydrolysis occurs via

other words, the concentration, n of the product of competitor 2 in the aqueous phase
zeroth-order kinetics with or without the product. In contrast, the concentration, ngp of
the product changed drastically with the amount of competitor 2, and its time-dependent

evolution depends on the shape of the orbit through the phase diagram.

The theoretical kinetic model allowed us to calculate the outside equilibrium concen-
tration of the product, ngp as a function of time for different competitor 2 concentrations
(Fig. 4.6(b)). For low concentration of competitor 2, the concentration ngp varied dras-
tically from roughly 5 mM to 0.7 mM over the course of the reaction cycle. In contrast,
for high concentration of competitor 2, the concentration n%P varied only from roughly 2
mM to 0.5 mM (mid hue and dark hue in Fig. 4.6(b)).

In summary, we show that the orbit shape is influenced by the amount of competitor 2,
i.e., the more competitor is present, the more parallel the orbits are oriented with respect
to the tie-lines. However, due to adding fuel only at the beginning of the kinetics, all
systems show a single orbit that enters and leaves the domain of co-phase separation in

the phase diagram.

4.4.1 Composition of droplets

We quantified the percentage of the droplet material composed of the product for three

different conditions with increasing competitor 2 concentration.
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Fig. 4.8: Reduction in the composition of the product (parasite) in the
droplets with increasing product of competitor 2 (host) concentration. (a)
50 mM, (b) 75 mM, (c) 125 mM, respectively. Increasing the concentration of the host
reduces the maximum concentration of the parasite in the droplets. Also, the maximum
value of the product monotonically decreases with time as the total volume of droplets
keeps decreasing. Markers represent ratio calculated using HPLC data; solid lines repre-
sent data calculated using the theoretical kinetic model.
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4.5 Co-phase separation with periodic fueling
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Fig. 4.9: Schematic representa-
tion of co-phase separation facili-
tating the survival of the product
in repetitive fueling starvation ex-
periments. The precursor in periodic
fueling and starvation periods without
(a) and with (b) competitor 2.
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We tested how co-phase separation is affected when
the system is subject to periodic fueling and star-
vation periods. We chose the amount of fuel and
fueling frequency such that the product is depleted
during each starvation period (Fig. 4.9). We hy-
pothesize that competition with competitor 2 under
the exact same conditions lets the product survive
starvation (Figs. 4.9 and 4.10). Indeed, when we pe-
riodically fueled 50 mM precursor every 30 minutes
with 60 mM of fuel, we found that the corresponding
product completely hydrolyzed after each starvation
period (Fig. 4.10(a)). In contrast, when we period-
ically fueled 50 mM precursor and 100 mM com-
petitor 2 with the same amplitude and frequency,
we observed that co-phase separation protected the
product from hydrolysis and thereby helped it to
survive starvation (Fig. 4.10(b)).
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Fig. 4.10: Co-phase separation allows survival of parasite during periodic fuel-
ing. (a) Product when 50 mM precursor fueled with an amplitude of 60 mM EDC every

30 minutes. (b) 50 mM precursor
of 60 mM EDC every 30 minutes.

and 100 mM competitor 2 fueled with an amplitude
Markers represent HPLC data; solid lines represent

data calculated using the theoretical kinetic model. (¢) Calculation using the theoretical
kinetic model of long-time kinetics of the reaction cycle of the experiments in (a) and

(b). The gray and red dashed lines
steady state without and with co-
tions around the pseudo steady st
separation.

represent the mean concentrations achieved at pseudo
phase separation, respectively. Note that the oscilla-
ate concentration are severely damped with co-phase

Despite the competition and lower anhydride yield, the product’s survival during the star-

vation period resulted in a drastically increased yield over fueling and starvation periods

compared to a system without com

petitor 2 which did not show an increased yield. We

used our theoretical kinetic model to calculate the system’s response to hundreds of cycles

(Fig. 4.10(c) and 4.11(a-b)).

61



Chapter 4. Localized fuel-driven reactions at phase equilibrium

—
o
o

—~

Concentration [mM] £
[N} = D (o8]
o o o o

o
=) 3

1000
Time [min]

2000 3000 |

Fig. 4.11: Theoretical long-time behavior at periodic fueling. (a) Products when
50 mM precursor (red) and 100 mM competitor 2 (blue) fueled with an amplitude of 60
mM EDC every 30 minutes using the theoretical kinetic model of long-time kinetics of
the reaction cycle of the experiments. Inset shows the first three refueling steps. Markers
represent HPLC data; solid lines represent data calculated using the theoretical kinetic
model. (b) The representation of the kinetic traces of (a) in the ternary phase diagram.
At the pseudo steady state, the trace is a closed orbit (inset).

It is necessary to mention that this is a purely theoretical extension, given these long-time

studies are not experimentally feasible as it can lead to fuel build-up (in case the products

reach full turnover) or, in any case, the waste builds up, which is not ideal. We found that

co-phase separation of the product with the anhydride product of competitor 2 resulted

in a pseudo steady state of the product in which the concentration oscillated around a

mean concentration ((np,):) roughly 27 mM (red dashed line in Fig. 4.10(c)). In con-

trast, in the absence of competitor 2, the product oscillated around a mean concentration

of roughly 6 mM. It did not show any increase in concentration over time (gray solid line

in Fig. 4.10(c)).

o
oo

e
D
I

o
.

e
)

Buffer capacity B~ [mM ']
o
o

120
Conc. (Competitor 2) [mM]

(an)
e
=)
(0¢)
S

Fig. 4.12: The buffer capacity
against fuel oscillations increases
for the parasite with increasing
host concentration. The highlighted
value of buffer capacity corresponds to
the case in Fig. 4.10(c) for 100 mM
of competitor 2. Red (Bp) and blue

(BCQ)'

These observations support the idea that the prod-
uct of competitor 2 acts as a host, and the product
of the precursor thus survives longer, benefitting like
a parasite. Besides the anticipated result of survival
in the presence of a host, we found a surprising new
behavior, i.e., we observed that the oscillation in
the concentrations in pseudo steady state due to fu-
eling and starvation was dependent on the amount
of competitor in the system (Fig. 4.10). Specifically,
in the first experiment, the concentration oscillated
between a maximum of 18 mM and a minimum of
0 mM, i.e., the concentration variation is 18 mM
(Fig. 4.10(a) and gray solid line in Fig. 4.10(c)). In
the experiment with competitor 2, this measure B
(max-min) had drastically decreased to just 3 mM
when pseudo steady state was reached (red solid line
in Fig. 4.10(c)). The concentration variation, B was

quantified by the theoretical kinetic model for in-
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creasing competitor 2 concentrations and tended to decrease (Fig. 4.12). In other words,
co-phase separation protects the products from hydrolysis and buffers against fuel-driven
oscillations. A reminiscent observation was recently reported in a population of Hela cells

where phase separation was shown [85].

Buffer capacity

The buffer capacity is defined as the inverse of the deviation in concentration, i.e., (B~!)
increases for the parasite with the increasing competitor 2 (host) concentration. The
propensity to co-phase separate increases in the system with increasing the host concen-
tration, which allows for more protection of the parasite and, thus, less degradation. It
leads to smaller deviations around the mean pseudo steady state concentration. The host’s
buffer capacity decreases, making it more susceptible to fluctuations. The blue and red
solid lines in Fig. 4.12, represent the buffer capacity of the host and parasite, respectively.
Initially, the buffer capacity of the host is high due to the lower mean concentration of
the host and hence less deviation. As the mean concentration increases, the deviation
around it also increases, thus reducing its buffer capacity. The opposite trend occurs for
the parasite, up to 40 mM, following which the mean concentration of the product also

increases due to the protection from the host droplets.

(a) A Individual cycle @ Combined cycle (b)
60 T T T T T T T T 60 T T T T T T T T
w (co)phase separation
. I~ ..'... A AAAA A — g - "AAAAAA:‘...... Q @‘56 -1
EE 40t . g 1 E 4o g o &e‘j{%@o\* ]
s - f : E P L se¥ _
Soop [ ] < .
I\Q/ .. AA"AA |§ 20 .
0 L el 1 1 1 I I I O j’ K 1 1 1 1 1 I I
0 100 200 300 400 0 100 200 300 400
Amplitude of EDC [mM] Amplitude of EDC [mM]

Fig. 4.13: (Co) Phase separation allows buffering of concentration. The triangle
markers (colored) represent how, in their respective individual cycles at long time, the
products’ mean and deviation B (shaded domain) changes with varying the amplitude
of the fuel, EDC, keeping the periodicity of supply fixed to 30 mins. Given the lower
solubility of the product of competitor two ((b) blue) compared to the product ((a)
red), it reaches full turnover earlier with the least deviations. Co-phase separation in
the combined cycle (circle markers) allows the product of competitor 2 to suffer and
the product to benefit compared to the individual cycles (triangle markers). However,
on theoretically suppressing (co) phase separation in both the individual and combined
reaction cycles, we see the opposite effect, that neither manages to reach full turnover
in the studied range of EDC amplitudes, and individual cycles benefit both because the
competition for the fuel source is reduced.

4.6 Effects of activation rate constants on host-parasite identity

We have shown that the kinetic orbit of the average product concentrations in the phase
diagram determines the lifetimes of the products and the composition inside droplets.

The shape of the orbit is also affected by the rate constants. To illustrate this aspect, we
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considered, precursor concentration of 50 mM and competitor 2 concentration of 100 mM
fuelled with 100 mM EDC, as the experimental reference and swapped the rate constants
related to the activation reaction pathway,i.e., k23, (Fig. 4.14) to see if the host-parasite
identity can be affected. This is purely a theoretical extension of the study, given that
the reaction rate coefficients are chemical characteristics of the individual component and

cannot be swapped.
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Fig. 4.14: Host and parasite identity depend on the solubilities of the compo-
nents and initial precursor concentrations. (a) Kinetic orbits in the phase diagram
correspond to three different parameter sets in which we swapped the rate coeflicients
of the fuel-driven activation pathway (i.e.,all rate coefficients except for the deactivation
rate coefficients) and considered different concentrations of competitor 2 at a fixed EDC
concentration of 100 mM and precursor concentration of 50 mM. Markers represent HPLC
data ; solid lines represent data calculated using the theoretical kinetic model. (b) The
ratio of the product of precursor in droplets over time shows that the identity of the host
and parasite can change with swapped rates. Due to the higher solubility, the product is
typically the parasite, except when it is in excess. In this case, the product starts as a
host and transits to a parasite as long as droplets do not dissolve beforehand. The star
markers denote the time point of droplet dissolution.

4.7 Summary

In this chapter, we first recorded the key observations from the experimental studies.
Then we used the theoretical kinetic model developed to validate the observations and
also extended it to predict certain novel behaviors. The key property of the system is the
observation of exciting emergent trends that could be obviously predicted from merely the
individual reaction cycles. Phase separation in the individual reaction cycles itself affected
the observables in the study, i.e., the yield, lifetime, and buffering capacity. Additionally,
co-phase separation in the combined cycle also affected these observables, usually benefit-
ting the parasite component in all aspects while the host suffered.

Application of supramolecular systems chemistry here leads to observation of a few life-
like traits, like , the consumption of chemical fuel to produce waste to sustain itself while
demonstrating a host-parasite-like behavior. This leads to an incremental step in the

bottom-up design of synthetic life using the systems chemistry pathway.
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Chapter 5

Study of enzymatic kinetics in compartmentalized systems

"It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you
are. If it doesn’t agree with experiment, it’s wrong."

— Richard Feynmann

The motivation of this chapter lies in obtaining a minimalist description to understand
biochemical reactions connected via intra and intercellular communication that lead to
complex behaviors. The reactions are compartmentalized within cells and subjected to
external signals due to communication with neighboring cells in the population, for exam-
ple, by molecular diffusion [86]. To begin to reverse engineer the underlying architecture of
network-based population behaviors, it is crucial to determine how compartmentalization
will affect biochemical reaction rates in order to rationally design and build compartmen-
talized chemical reaction networks (CRNs).

The objective of this chapter is to apply the theoretical framework developed in chapter
3, with suitable modifications to take into account that the proteinosomes which form
the compartments are not formed via phase separation but instead, by covalently linked
protein-polymer conjugates thus serving as semi-permeable membrane-bound compart-
ments that allow selective partitioning of components. Following this, we theoretically
try to validate experimental observations and predict further trends in the chosen CRN’s
observables for this study in the presence and absence of compartmentalization.

The choice to study the PEN DNA reaction specifically is because utilizing the polymerase
(P), exonuclease (E), and nickase (N) enzymes, it is ideally suited for building out-of-
equilibrium information processing networks with different characteristics. Depending on
the sequence of the DNA template strand, autocatalytic, linear, and inhibitory reactions
can be programmed [87, 88, 89, 90]. For the purpose of this study, we focus on an au-
tocatalytic characteristic. We proceed to characterize the reaction in buffer solution (in
the presence and absence of exonuclease) for changing substrate DNA template concentra-
tions corresponding to fixed primer DNA concentrations. We proceed to study the same
in proteinosome populations of different number densities that attribute to different aver-
age substrate DNA template concentrations. We then try to address the question of how
compartmentalization affects the observable, which is the rate of reaction as a function of
template concentration. In this chapter, due to multiple species in the CRN, we represent

the concentration of the i-th component, n; as [i] instead.
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Chapter 5. Enzymatic kinetics in compartmentalized systems

5.1 Autocatalytic reactions and their properties

Autocatalysis is a fascinating natural phenomenon

in chemistry. From the most general definition of

A+B =28 autocatalysis, that is, a process in which a chem-
% Lo ' S ical compound called autocatalyst can catalyze its
0.8 A . .
2 . own formation, several different systems can be de-
S 0.6 ~ =
E 04- § b 1 scribed. There exist different categories of auto-
T 04r 5 i H
% 0l 5 Al catalysis, and they can be compared based on their
2 & — B[]
© 0 O'Lag ; : = mechanistic, kinetic, and dynamic properties. Dif-
0 5 10 15 20 25 . .
Time ¢ ferent systems of chemical reactions can generate
11m

autocatalytic patterns. With the notion of auto-

catalysis covering a large variety of mechanistic re-
Fig. 5.1: Kinetic autocatalytic
profiles. The kinetic profiles high-
light the lag, exponential and satura-
tion phases. The profile of the autocat- pattern expressed in a mathematical form. The gen-
alyst is sigmoidal. Parameters are listed
in the L.O.F section.

alizations with very similar behaviors, it is proposed

that the key signature of autocatalysis is its kinetic

eral definition of autocatalysis as a chemical process
in which one of the products catalyzes its own for-

mation can be mathematically generalized as [91],

d .. AN [ . .
Sl = kA [ + F{1}) , with k] > |f],a > Oand k > 0, (5.1)
where {[j]} implies the set of concentrations of other components, except the autocatalyst,
in the system, and k is the reaction rate coefficient.

We can use a straightforward example to demonstrate it, which is A+ B — 2B, for which

the conserved quantity is, 11 = ([A]o + [Blo). The mass-action kinetic equations are as

follows,
d
a[B] = k[A][B]
= k[B](¢1 — [B])
= ki1 [B] — k[B]?, o
B L
— 1Bl =1~ C1B) e (—kpt)

The appearance of sigmoidal characteristics, however, depends just on the parametric con-
ditions (initial concentrations, rate coefficients) applied. It thus provides a simple means
to decide whether the experimental system or the theoretical model has an autocatalytic
feature or not: if the accumulation of a product speeds up its own formation, then the
corresponding model or experimental system is indeed autocatalytic. If not, then the term
autocatalysis may not be appropriately used by any means.

The regions in an autocatalytic profile are not sharply characterized. The lag phase can
tentatively be the region where only a small fraction of the initial component is converted

to the product; the exponential phase is the region starting from the lag phase to the bend-
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Chapter 5. Enzymatic kinetics in compartmentalized systems

ing point of the sigmoidal curve where the acceleration of the reaction rate is obvious. The
saturation phase is the region from the bending point to the completion of the reaction.
Since many experimental autocatalytic systems are exponential and substrates are always
in limited supply in experiments, sigmoidal kinetics is usually expected from autocatalytic
reactions and is the first experimental signature of autocatalysis. Nevertheless, other pro-
cesses, like the accumulation of an intermediate, can cause a lag phase. Thus, to prove
the autocatalytic nature of a reaction, we need to verify that its rate increases with the
addition of products. This is usually done by measuring the initial reaction rate with

increasing initial concentrations of products.

5.2 PEN DNA mass action kinetics

PEN DNA . |

st reaction ST
H ka ka

% )‘ S2T

# = RNy

Fig. 5.2: Schematic representation of the autocatalytic PEN DINA reaction
and encapsulation in proteinosomes. (a) General description of PEN DNA reaction,
(1) primer S binds to its complementary template T; (2) polymerization by the polymerase
(P) of S along T or via strand displacement S binds in the wrong position, followed by
nicking with nickase (N) to produce 2S , (3) dissociation of 2S from the template T. (4)
Degradation of S by exonuclease (E) inside and outside the proteinosome maintains an
out-of-equilibrium state for the system. (b) Schematic of compartmentalized PEN DNA
reactions. Template DNA (T) is encapsulated within the water-in-water proteinosomes.
Substrate/primer DNA (S); dNTPs; polymerase, exonuclease, and nickase enzymes are
loaded outside of the proteinosome and diffuse into the proteinosomes to initiate the
reaction. For T and S sequence details, please refer to Ref. [90].

In buffer solution

First, the reactions are studied and characterized in the buffer solution (composition in
detail in Appendix. G ), which is also considered the reference system in this case. The
fuel, i.e., the limiting reactant in the system, are the dNTPs, which are provided in
excess since they are the basic monomers for the polymerization process. Running out of
dNTPs will prevent any polymerization process, leading to a gradual degradation of all
the dynamic DNA species by the exonuclease and, ultimately, to a flat fluorescence curve.
The main purpose of the reaction buffer is to provide suitable working conditions for the
three enzymes and therefore contains a consensual amount of mono- and bivalent ions.

It is worth noting that this reaction is susceptible to the formation of so-called "parasites"
which typically contain long AT repeats, interspaced by sequences that serve as a target for

the restriction enzyme (nickase) present in the buffer. It has been studied that Netropsin
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Chapter 5. Enzymatic kinetics in compartmentalized systems

(added in the buffer) at a concentration of a few uM tends to delay the development of
such species in a contaminated experiment while having, at most, a marginal effect on
the DNA reaction network. It is possible that Netropsin locally stabilizes such AT-rich
parasites and inhibits their polymerase-dependent growth. However, this phenomenon is
not investigated in depth.

The kinetic equations describing the scheme are as follows,

[S] = —ka(2[SI[T] + [SIST] + [S][S'T]) — ke[S] + ka([ST] + [S'T] + 2[S2T]) + kysp[S2T]
[T] = —2ka[S][T] + ka([ST] + [S'T))
[ST] = —k,[S][ST] — kq[ST] — kp[ST] + ka[S][T] + kq[S2T]
[S'T) = —~ka[S][S'T] — kalS'T] + ka[S][T] + ka[S2T]
2ST] = —ky[2ST] + kp[ST] + kpsp[S2T]
[S2T] = —2k4[S2T] — kpsp[S2T] + ka([S][ST] + [S][S'T]) + kn[2ST].
(5.3)

The conserved quantity in this reaction scheme is the net template concentration,i.e.,
1 = ([T] + [ST] + [S'T] + [28T] + [S2T)).

We observe that indirectly through the interwoven pathways, the reaction has signatures
of an autocatalysis process, falling under the classification of template autocatalysis with

an intermediate [91].

(@) 5 [So=01nM (b) [Slo = 1.00M (c) [SJo = 10.0uM
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Fig. 5.3: Readout of total primer kinetic profile in the absence of degradation.
[S]tot readout in the form of fluorescence at different average template concentrations for
initial primer concentrations (a) 0.1 nM, (b) 1.0 nM, and (c¢) 10 nM, in the absence of the
exonuclease enzyme. The fluorescence does not saturate and has a low, increasing slope
as a result. It is evident that for higher template concentrations, the maximum value
reached is highest and set by the template concentration since it does not appear to vary
with the initial primer concentration. Markers represent experimental data, and dashed
black lines represent data from the theoretical model.

We now proceed to solve the set of six coupled ordinary differential equations to obtain
the concentrations of the different species. The calibration curve to convert the total
concentration of the primers ([Slior = ([S] + [ST] + [S'T] + 2 x ([2ST] + [S2T)))), to the
fluorescence of Eva-green is given in Appendix. H. The autocatalytic profiles are studied

both in the absence and presence of exonuclease enzyme (Figs. 5.3 and 5.4, respectively).
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Chapter 5. Enzymatic kinetics in compartmentalized systems

Inside proteinosomes

The reactions proceed only in the proteinosomes, given the template DNA (T) is encap-
sulated within them. The only reaction that can proceed outside proteinosomes is the
degradation mediated by the exonuclease enzyme. The semi-permeable membrane of the
compartments allows the free diffusion of all the enzymes and the primer DNA (S). The
primer partitions equally in the system, implying its partition coefficient is unity. The
diffusion of the components is fast compared to the time scales of the reactions, and there-
fore the evolution of the reaction kinetics occurs homogeneously inside the compartment.
The calibration of the concentrations inside proteinosomes varies from the buffer solution
(details in Appendix. H).
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Fig. 5.4: Characterisation of PEN DNA reaction in proteinosome. (a) The
field of view in the template DNA channel, where the AF594 signal was used to localize
proteinosome. The proteinosome population here corresponds to 78 proteinosomes, each
of average radius 7.03 um and the total proteinosome volume in the system is NV! =
7.08x10~% yL. (b) The autocatalytic profiles as a readout of total primer concentration in
the proteinosome system without exonuclease. The template concentration is fixed inside

each psome. The effective average template concentrations are [T] = 0.163nM (orange
markers), = 0.074nM (blue markers), by varying N. Markers represent experimental
data, and dashed black lines represent data from the theoretical model.

The template concentration inside each proteinosome is constant ([T]! = 924nM), and
therefore to vary the average template concentration ([T]) in the system, we change the
number density of proteinosomes in a fixed volume [T] = (NV!/V)[T]!, where N is the
number of proteinosomes in the system. Given there is a narrow distribution of the pro-
teinosome’s radii due to bulk preparation, [30], here we use the average proteinosome
radius as 7.03 pm and 8.49 um (corresponding to orange and red data in Fig. 5.4(b) rep-
resenting two different proteinosome populations, with different average radii). The total
volume in the system is 4 uL.. In this study, we ensure that when we evaluate the total
primer concentration for applying the calibration coefficients to obtain the fluorescence,

we use the volume-weighted average concentrations of each species.

The kinetic mass action equations describing the evolution of the average primer concen-
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tration and all other species inside the proteinosome are as follows,

R NVI I I I I I Irq’ ml I I I I "1 I
8 = = ( — RAC2ASITIT! + [SPIST! + (S(STYY) - KLISI' + KA(STY + (8°T]"+ 2(5211)
_ I
+idspisrl') - EE (ki)

[T]" = =2k [S][T]" + K ((ST] + [S'T]")
[ST]' = —k3[S]'[ST]" — k4[ST]" — kL [ST) + Kki[S]'[T]" + ky[S2T]!
TJ' = —ky[S]'[S'T]" — k(S T]" + Ky[S]'[T]" + k§[S2T"
[2ST]" = —k}[2ST]" + kL [ST]' + kygp[S2TT'
[S2T]" = —2k4[S2T]" — klgp[S2T]" + KL([S][ST]" + [S]'[S'T]") + KL[2ST]".

o=

o

5.3 Proteinosomes affect the PEN DNA reactions

On globally fitting the data, we already observe (Appendix. H) that the reaction rate
coefficients are significantly high in the compartments. It is important to note that we
have simplified here the Michaelis-Menten enzymatic kinetics of each enzyme and used
an effective reaction rate coefficient for each enzymatic step. It is a plausible explanation
that the physicochemical environment within the proteinosome is different compared to

the buffer, leading to alterations in the reaction rate coefficients k.
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Fig. 5.5: Compartmentalization affects the rate of autocatalysis. For fixed
initial primer concentration, (a) in the buffer, we fit the initial rate of autocatalysis for
different template concentrations, and we do the same (b) in the proteinosome system to
characterize how compartmentalization affects the rate of formation of the primers in the
total system. The highest average template concentration is theoretically chosen as 1.03
nM, given experimental data was only available for the lower two sets as in Fig. 5.4. The
black dashed lines denote the fits. Please note that the systems studied here are without
exonuclease.

We use the function f(t) = a(—1+exp(rt)) to fit the initial rate in the exponential regime
of the autocatalytic profile and then record the fitted values in Appendix. H. The observ-
able that we define to compare between the buffer system and psome system is how the
rate 7 varies with template concentration, dr/d[T]. Using 3 data points to calculate the

observable is not optimal. We proceed with it nevertheless to get a quantitative predic-
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tion, and we find that the observable is X600 higher in the proteinosome system, implying
compartmentalization leading to localization of the reactions, allowing higher rates of auto-
catalysis for changing template concentration. This increase is over an order of magnitude
higher and qualitatively agrees with observations made in Ref. [90]. The reason behind
this is two-fold, an increase of the reaction rate coefficients inside the proteinosomes, and
the templates are localized in small compartments and hence are not diluted as it happens
in the buffer.

A major difference between compartments formed via phase separation and proteinosomes
is that the constraints due to phase equilibrium are not imposed on the reactants here,
given there exists a semi-permeable membrane. That leads to high reaction rates inside
the proteinosome, not only due to increased reaction rate coefficients (discussed in chap-
ter. 2) but also due to the increased local concentration of template and other species

inside.

5.4 Summary

Taken together, our results show that similar reaction rates are obtainable in buffer and
proteinosomes with an order of magnitude difference in the total template concentrations in
the proteinosomes (nM) compared to the buffer (xM). One explanation for this observation
could be that the local template concentration in the porous proteinosome is high, and
the DNA produced from the reaction can diffuse away from the reaction center. The rate
of reaction as a function of template concentration is increased by more than an order of
magnitude compared to buffer as the local build-up of primer is prevented, thus relieving
product inhibition. Our results show that spatial compartmentalization with free diffusion
of substrates and products offers several kinetic advantages compared to reacting in the
buffer. This includes increased and tuneable reaction rates based on varying the template
and enzyme concentrations. Overall, the results show that compartmentalization plays
a strong role in altering reaction landscapes, indicating that reaction networks based on
PEN DNA will have different behaviors in the buffer. There is further scope in this work,
where one can explore how the degradation is controlled in the two systems and possibly
observe how easily tuneable it is in proteinosomes instead of buffer solution. This control
in designing the reactions in compartments to tune communication among proteinosomes
which occurs via diffusion of the primer and enzyme components allows using synthetic
biology tools to design synthetic life, which possesses the properties of consuming fuel
(ANTPs in this case), replicating and communication in the proteinosome populations,

via diffusion.
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Conclusion and Outlook

In this work, we had proposed to tackle the question of how chemical reactions could be
controlled by compartmentalization. Compartmentalization, in this context, meant not
only membrane-less compartments formed via phase separation but also semi-permeable
compartments like proteinosomes. We started by laying the groundwork by introducing
the thermodynamic framework to understand the phenomena of phase separation and
chemical reactions separately. With respect to the theory of phase separation, we used
the Flory-Huggins theory, which is widely used still and has been successful, largely, in
describing the thermodynamics of polymer solutions.

It has some limitations, namely, one being its applicability only to solutions that are suffi-
ciently concentrated that they have uniform segment density. The other assumptions and
limitations of the theory are discussed in Ref. [5], and the applicability of Flory-Huggins,
mainly for biochemical applications, is discussed in Ref. [92]. We also discussed how
beyond mean-field theories can be used viz., random phase approximation [49, 50], to
account for sequence dependence of interactions leading to phase separation. This avenue
is interesting to explore, given biological examples of intrinsically disordered proteins that
undergo phase separation in vivo, besides having a disordered region, which is already
challenging to model, has additional modular binding domains, and these binding motifs
that also give rise to specific multivalent, solvent-mediated interactions. The proteins’
amino acid sequences entail the properties of the interactions. There has been promising
work in this direction in the group of Prof. Hue Sun Chan, affiliated with the University
of Toronto.

After discussing phase separation and, in its context, construction, and interpretation of
phase diagrams and then chemical reactions as two orthogonal phenomena, we then com-
bined the two processes to discuss what thermodynamic equilibrium conditions dictate in
a system undergoing the two processes simultaneously (chapter 1). Following discussions
on equilibria, we discussed the dynamical equations that govern the system’s relaxation
to the thermodynamic equilibrium.

In chapter 2, we introduced dynamical equations for the volume fractions of components
and phase volumes in phase-separated systems with chemical reactions. These phase-
separated compartments are formed due to the fast diffusion of components, allowing
us to consider the equilibrated phases to be homogeneous. In this framework, diffusion
is interpreted as an exchange flux between compartments that can grow and shrink in

size. Thus, ordinary differential equations are sufficient for describing these systems. We
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apply this framework in chapter 4, where the reactions are not diffusion-limited. These
equations also reveal why merely up-concentrating components in the solvent-poor com-
partment does not necessarily lead to an increased reaction rate, as expected from classical
mass-action laws in dilute systems. In other words, an increase in the local volume fraction
of a reactive component due to phase separation does not necessarily lead to an increase
in the rates of reactions in which it participates. Here, the reaction rate coefficients play
a key role in solely determining the speed-up or slow-down of reactions in each phase.
These insights might be applicable to explain recent observations of increased/decreased

enzymatic reaction rates in coacervate [64, 66, 65].

We introduce here how chemical reactions can be driven out of equilibrium and show
how non-equilibrium steady states can exist in these systems when chemical reactions are
driven differently between the phases. To illustrate these non-equilibrium states in the
phase diagram, we introduce the tie line selecting curve, which establishes a connection
between the conserved quantities in the system and the chosen phase equilibrium. An
extension to this study could involve investigating the role of interfacial resistance in these
systems where chemical reactions occur. The interface in our study always equilibrates

instantaneously, but that need not necessarily be the case always.

In chapter 3, we specifically look into systems where the reactive client components are
dilute and do not affect the phase separation properties in the system, which is then usu-
ally set by the non-dilute non-reactive components, the scaffold, and the solvent. This
demarcation among components based on their abundance and role in the system offers
some simplicities in tackling the problem. We first establish the dilute limit of the reactive
components and how all thermodynamic parameters are affected by this limit. We provide
a theoretical bound below which the dilute approximation holds as a function of the free
energy parameters. We provide here the dynamic equations for the scaffold and clients in
the continuum model, the thin interface limit, and in the limit of infinite diffusion. For
the continuum model, it is effectively a diffusion in a potential for the clients, which is
set by the scaffold volume fraction spatial profile. For the thin interface model, it is a
coupled reaction-diffusion problem in the two phases, which are coupled by the boundary
conditions at the phase boundary. Finally, for the infinite diffusion limit, the ordinary
differential equations mimic the dilute mass action kinetic equations.

After settling on the framework, we proceed to answer questions about optimizing observ-
ables of certain chemical reactions, like the relative yield at steady state for a unimolecular
and bimolecular process. We explain the possible reference systems to which we can com-
pare, and we choose one in which the compartment doesn’t exist, allowing better investi-
gation of how phase-separated compartments affect chemical reactions. For the nucleation
process, the observable is the relative initial rate of the reaction. We conclude from this
study that these observables can be optimized as a function of the compartment volume.
Additionally, thermodynamic parameters like partition coefficients and kinetic parameters

like reaction rate coefficients or external energy in the phases can tune this. The necessary
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ingredient required for the observation of optimality is non-linearity in the reaction rates.
This study can possibly help in engineering reactions in phase-separated compartments to
optimize certain observables as an experimentalist would choose to define in their system.
In chapter 4, we use the theoretical tools developed in earlier chapters to understand a
systems chemistry experimental study. This study not only highlights emergent properties
of chemical reactions and phase separation but also shows how phase separation (we use
the term co-phase separation in this chapter to imply the same) controls observables of the
reaction cycles like yield, the lifetime of building blocks, and buffering capacity of building
blocks against fluctuations in fuel concentrations. We see that phase separation allows
a parasite-like building block to survive longer than it would when it existed by itself
due to the protection mechanism offered in the system by a host-like building block while
competing for fuel resources. This property could be crucial for the control of downstream
chemical reactions of the competitors. We unravel the mechanisms allowing this by using
the theoretical model developed, which also allows us to make further predictions on what
leads to identification as a host or parasite entity and explore the buffering capacity of the
building blocks against periodic and Poissonian fueling of the system. Our results demon-
strate that parasitic behavior can already emerge in a simple non-equilibrium system that
can phase separate and is controlled by fuel-driven chemical reaction cycles. Our under-
standing of the underlying mechanism can be a step toward the design of more complex,
synthetic life-like systems. In the future, one can explore how co-phase separation affects
the selection of many chemically active molecules.

In the final chapter, we take up another experimental study, now using synthetic biology
components, with the broad goal of designing synthetic cell-like behavior by allowing com-
munication between compartments that are no longer formed via phase separation but are
still micro-droplets, based on bovine serum albumin and glucose oxidase conjugated to
PNIPAAm chains (details in Appendix. G), called proteinosomes. However, within the
broad goal, it still involves the control of a chemical reaction network when compartmen-
talized in such proteinosomes. Similar to before, we characterize the reaction network in
a buffer solution (reference system, without compartments) and then proceed to investi-
gate its properties in the encapsulated proteinosomes, which only allow partitioning of the
enzymes and the primer DNA (which is the substrate and product; given it is an autocat-
alytic process). The reaction then wholly proceeds inside the compartment. We observe
that the kinetic coefficients are different compared to the reference due to the physico-
chemical environment inside being a bit crowded. In this study, besides the reaction rate
coefficients, the up concentration of most species just being localized inside leads to an
increased readout of the observable, which is the rate of change of rate of autocatalysis
(obtained by fitting the exponential regime) with respect to varying template concentra-

tions.
Our study shows that we can use localized chemical reactions based on PEN DNA re-

actions within proteinosomes, where the proteinosomes encapsulate the template DNA

code for specific reactions (in this case, it was autocatalysis, but could be an inhibitor,
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oscillator, etc). The addition of enzymes greatly facilitates the ability to drive the systems
into an out-of-equilibrium state. Compartmentalization also offers the ability to spatially
localize, alter reaction kinetics and reduce the total amount of DNA templates required
for the reaction. Coupled with the coding ability of DNA, this medium allows access to a
large combinatorial space. The PEN DNA toolkit opens many possibilities for spatial mul-
tiplexing using a flexible and modular system, thus providing a general route for building
synthetic compartmentalized reaction networks based on reaction-diffusion mechanisms
and a minimal number of components.

Whilst it is still a challenge to investigate the effect of compartmentalization in biological
cellular systems, the ability to build micron-sized compartments encapsulating enzyme
reactions has offered a unique possibility to address this challenge without biological com-
plexity. This work depicts an important step in bottom-up synthetic biology approaches
by combining them with quantitative approaches. Our results show that it is crucial
that biological behaviours based on networks of chemical reactions have to be considered
within the context of compartmentalization. Simplified physical models of compartments
are ideal for exploring these fundamental questions. Moreover, these minimal models could
be effective as physical models of biological compartmentalization where membrane-bound
compartments which contain reactions allow the passive diffusion of molecules such as in
mitochondria.

In this work, we hope to have provided in the first part the essential theoretical framework
which can be used and built upon to tackle chemical reactions in compartments and to have
convinced the reader with the second part, the various applications of compartmentalized

chemical reactions in designing synthetic life.
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Appendix A

Free energy calculations for block charged polymers using
RPA

RPA formalism

Bare Correlations

RPA theory neglects all but the trivial zeroth-order and two-body correlation of density
fluctuation. The state of the system is completely parametrized by the spatially varying
densities p(i) (r) where i labels different monomer types (i = m, ¢, s represents monomers in
the charged polyampholyte of length N, counterions, and salt, respectively), the following
form of the partition function [49, 50],

1

2= [Dlpyesp | ~5p S to-rlulon) | (A1)
k0

as a path integral over all density profiles in terms of their Fourier-transformed fluctuations.

Here k is the wave number (for all three dimensions of reciprocal space of volume V). In

), and the matrix Ay accounts for two-body interactions
between Fourier-transformed densities pfj) and pg ). The path integral is over all monomer

the representation |pg); = p](;

types and over all wave numbers except k = 0, because it is a constant representing the

total number of type-i monomers that does not affect density fluctuation,

m

Dlpi) = [T [] dv) (A2)

i=1k£0

In the case of purely geometric interactions like chain connectivity, we have A = G,;l
where GG, is the bare two-body correlation matrix, itself defined as,
A _ (@ ()
v (Gr), =0 p%) (A.3)
where multiplication with V' is due to translational invariance. The form of G}, used in main
text (Eq. (1.8f)) is motivated by assuming there exist no monomer-ion correlations setting

all matrix elements of Gj;;r and Gjps to zero. Only the monomer-monomer correlation

matrix calculated using the structure factor of Gaussian chain [48] and the ion-ion self-
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correlation matrix py which is effectively a (2 x 2) diagonal matrix,

. (p+ O
m—(o p) (A4)

where py are the densities of positive and negative ions, (p4, p—) = (ps=+ pe, ps) or (ps, ps+
pc), when the net charge on the charged sequence is respectively, negative or positive, to

establish electroneutrality.

Electrostatic interaction as a perturbation

In the RPA theory of electrostatic interactions, it is assumed that the Gaussian chain
geometry remains a good approximation. The inter-monomer interactions beyond the
geometric ones are treated as a perturbation. The perturbative effect on the partition
function of an interaction matrix Uy, can be calculated as the average of exp(—(?k) over all

Gaussian chain configurations,

I Doy exp (=3 Lizolo-#l(G ' + Ti)low)) 1 . Lo
= - P xexp | =5 {pr=0lUk=olpr=0) | = 242,
I Dlpr) exp (= 55 Sizolo-4lCrow))
(A.5)
The neutrality of the system forces Z2 = 1 and Gaussian integrations on the path integrals

in Eq. (A.5) yield,

1 \det(GH+ T —
2= [izo ydet(C _ 2 T[T det(1 + Gr0y) . (A.6)
v [Tr0 det(Ggl) k#0

Recalling fint = fu = —(v0)?/VInZ! for Coulombic interactions, calculated as the loga-

rithm of Z, = Z! per lattice site, we obtain,

(

Y 3 A A
2[3 > In[det(1 + GUy)] . (A.7)
k#0

fel:

This summation is translated to an integral to obtain Eq. (1.8e). In the expression for the
Coulomb interaction in k—space, the column vector |¢) of monomeric and ionic charges
contains ¢; = 03, 1 <i < N and gy+1 = 1, gnv42 = —1 as components. Using Sylvester’s
identity: det(I, + XY) = det(I, + Y X), where X and Y are respectively a x b and b x a

matrices, provides the simplification from Eq. (A.7) to the form,

det(1+ Guh) = 1+ AR alGila) = L+ ME) (200 + pe+ 2201 Gu)e) ) (A9

An investigation into the details of the replacement of the trace term remains, otherwise

in conclusion, we obtain,

a= [ [Lrait 4] - 916 (A9

472
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where n = (b/vg)3, T* is the reduced temperature defined in the main text (Eq. (1.9))

and,

Q(l;:) _ 4m ( Pm

T 260+ 60+ 22 (0lGar(R)lo)) (A.10)

For highly regular sequences studied in Subsection. 1.2.2, the RPA contribution from G
can be calculated by summing all block elements with alternating + weight factors, leading

to,

(01Cu (B)lo) = nCRE* (K)o +2 32 3 ()" PR % (k)
B=1a=p+1

1+60 1 40 1— 0k
- — A1l
10 L(1-02 <1+¢9L0>1 (A.11)
20 1— 0t
(1-6)2\1+ 6L

=N

2
+ ) (1 - (=)o),
where 6 = exp(—(kb)?|i — j|/60). Using the formula above, we calculate total free energy
for globally neutral charged polymers in a salt, counterion-free solution (effective binary
solution) as defined in the main text (Eq. (1.8)) and then numerically compute the deriva-
tives to satisfy conditions as in Eq. (1.17) to obtain the binodal in the phase diagrams for

varying sequence parameters in Fig. 1.7.
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Appendix B

Numerical Methods

Chapter 1: Spectral method for modified Cahn-Hilliard dynamics

The transient snapshots used in Fig. 1.8 are obtained by solving the dynamic equation
(Eq. (1.21)) in a 2D box (256 x 256) geometry subject to periodic boundary conditions for
binary (L = 2) system with dissimilar molecular volumes (vy = 1 and 7 = 2). The spatial
part is dealt with using the spectral method with a snippet shown below for dealing with
the non-linear terms, and the time stepping is done using exponential time differencing-
RK4 (ETDRK4) [93]

1: procedure SPECTRAL

2 def nonlinear term(é) :

3 c = irfft2(¢)

4: e = 0.0000001

5: cle>1]=10—¢

6 cle<0l=c¢€

7 Xo1 = 2.5

8 k=30

9: i = rfft2(—1 + np. log(c) — 2 * np.log(1.0 — ¢) + 2 % xo1 * (1.0 — 2.0 x ¢))
10: m=10x%cx (1.0 —c¢)

11: k=k:+k]

12: T = rfft2(irfft2(15 * ky * (A + Kk x k% &) xm)
13: y = rift2(irfft2(15 « ky * (2 + K x k% €)) xm)
14: return  1j x kg % &+ 15 x ky x
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Chapters 2 and 4: Finite difference to solve reaction kinetics at
phase equilibrium

We obtain the evolution equation of the average volume fraction ¢; using Eqs. (2.3a) and
(2.3b)

d - 11 I 1d nd n
0= |G- e GV VIS4 v ol

dt
d . o1 d
I 11 I (.1 1 i I
= (- =VIgy il o 2 "y
V |:(¢’L qbz )dt + (S’L j’L VI dt )
o 4 (B.1)
VII( I VII>}
* Ty g
I
— (st — 4l I _
- V (Sz ]z) + < V ( .]z )
We use the relation, jiV! = —j1VI in the last expression to obtain,
diz VI VH
o Vg, Vo si! (B.2)

i vty

Chemical kinetics via determining the diffusive rates jZ-I /M between coex-
isting phases

For a system with two coexisting phases with (L + 1) components, the time evolution is
described by (2L + 2) equations of form Eq. (2.3a), for the (L + 1) concentrations in each
phase, and the kinetics of the phase volumes Eq. (2.3b). Therefore, we must solve in total
(2L + 4) equations. Expanding Eq. (2.5) and using Eq. (2.3a) and Eq. (2.3b) in it, we
obtain for the L.H.S,

L

d I I 1 IL I .1 IL 3%1 I .
dt(%é) (i_Jz‘_(z)iZ(Sk_]k))"i'@l;)aq%(sk_ Z —Jl) (B.3)

k=0 =0

. . . /11 .
For volume-conserving reactions, we can promptly use the condition ), 5@'/ = 0 in the
above expression. The expression obtained above is linear in jZI and we can therefore

proceed to collect the coefficients of j and le with [ # i as follows,

L

2t =i [hol - v+ ol (- Z)] + it otol + ol(= - 2]
= l (B.4)

g 2]

”I/ 1 =2>= 0(871/ 1 / 8(1)}! H) VI We can similarly proceed for the

R.H.S of Eq. (2.5) and collect coefficients of j!! and Jl I'with I # i. Using the conservation

where we abbreviated =

law for particle number Eq. (2.4), we can recast the dynamic constraint Eq. (2.5) as a

system of linear equations with a matrix of coefficients to solve for j! for all components
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(and in turn j!! using the previous relation):

[Coo Cor .. Corl [48] [Co |

_CL() Cri ... CLL_ _jIL_ CL_

o= [l - +al(2- 2] + L et - et (2 - 28] Baw

001)) TV =V o1

o} Vi '
O = |1 gl 1.(51_ )] [H i1 H(EH_ )] B.6b
J ['Yz ¢ + ¢i| =5 8¢>} + V V1 Vit ¢i + i 8¢}I ( )

L oI L I

0, v,

C; = I 1T HZ i II}_[II' I i 1]_ B.6

vV — VI |:% s + ¢z = 8¢}€I Sk ViSi T ¢z EZO: 6¢}€ Sk ( C)

Using the above procedure to obtain expressions for j} and in turn jZH, we can substitute
them in Eq. (2.3a) and Eq. (2.3b) and solve for the unknown variables using a forward
Euler method, having specified ¢}(t = 0), ¢!'(t = 0) (for i = 0,..., L) and V(¢ = 0) as the

initial conditions.

Chemical kinetics via determination of the average volume fractions

Using the kinetic equations for the average volume fractions, Eq. (B.2), we can solve for
the volume fractions of all components in each phase {¢£/ H} and the phase volumes V1/1I
at each time point via an iterative method. In particular, after initializing the system with
¢i(t =0), i (t = 0) (for i = 0,..., L) and V(¢ = 0), Egs. (1.17) can be used to obtain the
average volume fractions in each phase forward in time. Those forward average volume
fractions can be used to obtain the forward equilibrium volume fractions and phase volumes
of each phase via solving Eqs. (1.17) and using V! = V(Q_SZ — gZ)EI) / (gf){ — QSP) sequentially.
This is computationally efficient as the above method for a system with fewer components
(ternary L = 2) but becomes numerically expensive with increasing components. However,

it is straightforward to implement, and we use it in chapter 4.

Chapter 3: Numerical recipes for modified Cahn-Hilliard dynamics
in spherical geometry

We use the finite element method to study the evolution of a binary system (L = 2) to
study the stationary state profile of the scaffold volume fraction Fig. 3.4. The spherical
mesh is generated in Gmsh and implemented using an open-source and free software
FEniCS [94]. The modified Cahn-Hilliard equation is a fourth-order equation, so casting
it in a weak form would result in the presence of second-order spatial derivatives, and the

problem could not be solved using a standard Lagrange finite element basis. A solution is
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to rephrase the problem as two coupled second-order equations,

Oyp1 — V. (mO1Vﬂ1) =0 inQ)

_ o df 2 : (B.7)
- — =0 Q
1 o + k1Vog1 in
subject to boundary conditions,
mo1 (V <df — /€1V2¢1>) .n=20 in@Q
doy (B.8)

mmquﬁl.n =0 in8Q

where df /d¢; = log ¢1/1og (1 — ¢1) + x01(1 — 2¢1) and © and 92 represents the system

volume and boundary respectively.

Chapter 3: Finite difference methods for reaction-diffusion equa-
tions

To solve the coupled reaction-diffusion equations, we use finite difference methods in the
bulk spatial points of phases I/II. The stencil used for the finite difference method, in a
spherically symmetric geometry, is the same as in [95]. One has to be aware of the von-
Neumann stability condition, which can be a bottleneck given it constrains the choice for
time step according to the choice of diffusion coefficients given by the mesh Fourier number

to satisfy the inequality,

DYt
(G <05 (B.9)

As for the boundary conditions at the interface of the drop, we incorporate the conditions

explicitly by using floating spatial grid points, which then are coupled to the bulk spatial
grid points through the Laplacian discretization stencil. The time step is also incorporated
in an explicit forward Euler method. It looks as follows to obtain the volume fraction at
space point z; at time point %,,

¢ZL . Qszz—l n—1 _ 2¢?—1 + ¢n—1

Y= _ pPin =l g1 B.10
dt (do)? T (B.10)
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Appendix C

Linear first order corrections to scaffold equilibrium volume

fractions

The total number of components is (L + 2), which includes L dilute clients, the non-
dilute scaffold (1), and the non-dilute solvent (0). Given the incompressibility constraint,
one degree of freedom of the solvent volume fraction can be removed. Therefore, to
investigate the thermodynamical properties of the entire system, one has to study an
(L + 1)-dimensional phase diagram.

We start with a perturbation of the true equilibrium volume fractions in the (L + 1)
dimensional phase diagram,

I/11 eq,l/I1 I/11
1/ lL+1 = 1q / |L+1 +5¢1/ (C.1a)

o 1 = My + 09" (C.1b)

) 7

The aim is to derive the linear corrections a; to binary scaffold equilibrium concentrations
eq,1/11

i } represent the small variable

due to presence of L dilute client components, where {¢

around which we wish to expand,

L
1/10 1/11 /11 jeq,l/11
o / 141 > @7 / 1 +Za/ R / L1+ - (C.2)
i=1

The slopes in each phase due to the correction can be related to the perturbations as,

eq,l /11 eq,l /11 I/11
M N / lL+1— &1 / 1 5¢1/

i d)('aq,I/H|L+1 0 o 5¢1/H

)

(C.3)

To obtain the expressions for the linear corrections, we use the osmotic pressure equivalence

condition,

L+1 - eq,I/II
Ml({qbk‘ }) (Cb?q’l B ¢<ieq,H)7 (04)

FHah = e = 30 =k

i=1
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and expand it around the (L + 1)-dim equilibrium volume fractions,

Hlaf(e™') Hlordes*™y)
eq, Iy eq,1I J T J I
S = | 3 Sl - 3 ol
FART ({Qse%I/H}) el eql (AR 8ﬂk({¢§q’1/n}) I jeql  eqll
5Pt ap] « 8 GO (s

k=1
L+1

#30  nctatyonk - (oot
(C.5)

The first terms on the R.H.S and the L.H.S cancel due to the equality of osmotic pressure
being satisfied at {qbeq’l/ I

term from R.H.S in square brackets cancel too, being equal by definition of exchange

}. The second term from L.H.S in square brackets and the third

chemical potentials. The only surviving term is the second term from R.H.S which we can
re-arrange to obtain the slopes as Eq. (C.3)

The re-arranged formula is,

L+l op ({¢eq,1/11}) 1/11 R ({¢eq,1/11}) 1/11, eq,IT I
5 eq,I _ Aed, — 5 €q, €q,
” ]; o (17 — 1) 7 —8¢ o (o7 =)
k=1
- (C.6)

Collecting coeflicients of d¢; :

5 I/II[la,UIl/H( eq,l eq,H +LZ+1 1 8‘I/H qu ¢quI):|
Voly 99 ! 5 Uk 3¢1

(C.7)
_ jfégb;/ll {1 8/111/11( call _ gealy Lil 1 0n I/H (¢eq,II oo )]
The slopes are therefore,
oM eq,IT e , Ofi eq,I1 eq,
/I _ 5¢I/H 1,11 S;h (1" T )+Z£+21 ,,lk S(’;,Z (P — oy ) (C.8)

I/ _I/11
5 1 Of eq,l eq,1I 41 1 9" eql quI
(M R DA agl (5 )

Of all the derivatives of exchange chemical potentlal, 3 ¢ Li diverges as ¢; — 0 We divide

throughout by (¢S — ¢ to obtain, that lead to the expression of the slopes, ay T as,

eq,] eq 11

dfix, (9 ) | 1 9@
i 6¢I/II ‘ ,,k Zk: 1 8’;)’“ W + o 6/;)1
{ 6 I/H - eq,I/}%m 8# (¢>qu eq II) 1 aﬁ (Cg)
i ¢ Zfﬂ'“l_’o g Ek 1 a¢>]f W + 71*(%1
7
eq I/II|L *)Qﬁeq I/H‘

The expressions of derivatives of the exchange chemical potential of the scaffold with
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respect to all volume fractions are,

(9ﬁ1 1 1 1
et 3 - B .
6¢1 BT[¢1 + o (1 b1 — Zk ¢k) 2rq XOI} (C 10&)
aﬂl . 71 1 o o
% — "B % (1— 1 — > ) +71(X1i — Xoi X01)1| (C.10b)

The expressions of the derivatives of the exchange chemical potential of the clients with

respect to all other volume fractions are as follows,

o _ 1 ‘ o

8¢1 = kgT |:7'0 (1 — d>1 Zk (Z)k) + T'Z(Xlz X0i XOl):| (ClOC)
o kBT[cZ% * ro (1 —¢1 — ) br) 27 on] (C.10d)

% = ﬁ 1 . PR P .

09; - kBT|:7’0 (1—¢1 — X o) + T’Z(ij X0i XOJ):| (C.10e)

Using the expressions of the derivatives in Eq. (C.10) and the expression for constant

partition coefficient in Eq. (3.5) we obtain

_ P I
o Ly (Xu — Xo1 — Xoi + —(¢eq11| 1/ ey )>(1 — 1))
aj = -1y I I (C.11a)
! =11 | 1" h eq,l eq,I
1 + ro 2X01¢1 ’1(1 - (bl |1)
- I
" rol + (Xli_X(]l —X07;+(¢eqll|3;eqnl)>(1 _¢eq B
Ir _ _ seq,
a; ¢1 ‘ 1— ¢eq 11‘ eq 11|1 cq 11 eqll (Cllb)
- + 2 = 2x01 91 (=7 )

We can use this derivation to estimate the client’s critical average volume fraction,
beyond which the dilute approximation fails. We have to choose a threshold (here 1%)
such that the deviation due to the dilute approximation is less than the threshold,

qﬁeq’I/H]l < 0.01 (C.12)
1
which translates to
CLI/H /11
i /M <001 (C.13)

eq,l/II ?
¢1 / ‘1
I/II

Given we have closed-form expressions for @,/ and we know the binary scaffold eq. volume

fraction, we can obtain the client volume fraction in which the approximation holds.

In chapter 3, we use the above result, substituting ro = 1 and gzﬁeq’l/ =

0,I/II .
1

|1 is substituted as

in the main text as binary equilibrium volume fractions.

85



Appendix D

Dynamic equations in dilute limit

Using the definition of the dilute limit subject to which the exchange activity coefficient
and, therefore, the exchange chemical potential of the scaffold is independent of the clients.
With the end goal of computing the diffusive flux of the scaffold in the dilute limit, we
start by calculating the gradients of its exchange chemical potential Vi (diffusive force
in analogy to reaction force Hy/i1 in Eq. (2.7)), followed by multiplying with the diffusion
rate coefficients (mobility matrix).

For scaffold:

L+1

Vi = gfwl — k11 VV2¢1 + Z O wk [(;1 + Vllgm Vo1 — k11VV2¢p  (D.1)
L+1 L+1 L4l
1= {m01¢1 (I=d1—> di)+ > mlk¢1¢k} Vi + Y migd16xViik (D.2)
=3 2
o _ 1 1om _ 2
Jj1=—mo1 (1 </>1)[(¢1 + 5 (%1) Vo1 — k11 VV ¢1} .
= —mo1 [ (1 + ¢1 (7’0 - 1) —2r1x0101(1 — ¢1)) Vo1 — anvzqﬁl]
For clients:
— alu’z o 1 07
. _ Z D.4
Vi 901 5, 90y Vo1 + % V¢ (D.4)
L+1 L+1 L+1
Ji = = |moidi(1 = 1= Y o)+ 3 mzmzm} Vit Y madioiVie (D)
= =
1 9%; 1 10
Ji = — (moidi(1 — ¢1) + maididn) |:’_}/z 8(21 Vi + % V@} + miidid1 [ (¢> + — = 8;1> Vo
- /<611VV2¢1]
(D.6)
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We collect the coefficients in the flux of V¢; and re-arrange the equation as follows,

(ri—mri) ¢
ro 1—¢1

. rz
Ji = [ — Mo; (Ti(Xli — X0i — Xo1) + ?"o> + mi; (1 + - 2T1X01¢1> }Gbivﬁbl

- [mm(l — )+ mu«m} Vi — mudid1r1 VY21
(D.7)

Further simplifying the fluxes by maintaining O(QZ;Z-)O in the mobility scaling, maintaining
the dilute approximation for the scaffold leads to,

We have neglected here the terms r;|V¢;|? for the dilute clients because they are neg-
ligible compared to relevant length scales in the problem, and diluteness leads to these
terms not contributing to drop formation or affecting the drop interface.

Similarly, for the clients, we can proceed as above by neglecting orders O(¢;)! and

beyond by neglecting terms of the type ¢;Voy.
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Appendix E

Spatial solutions

We obtain the analytical steady state solutions for the clients A; and B, given their
dynamical equation governed by Eq. (3.18) is linear. The reaction rates are stated in the
main text. The system is spherically symmetric, and the Laplacian operator in spherically
symmetric coordinates can be mapped to the Laplacian in cartesian coordinates by variable
transformation.
u(r) =r¢(r) variable transformation
1d(,d . . . . .
[ﬂdr <r dr) :|(Z5(T‘) Laplacian operator in spherical symmetric coordinates
2 i)
rdr  dr?] r
2 du(r)  2u(r) 1d2u(7’) 1 du(r) N 2u(r) 1 du

r2 dr r3 r dr? r2 dr r3 rZ dr
1d2u(r)
r dr?

Solve for u(r) and divide by r to revert to ¢(r)

Laplacian operator in cartesian coordinates

The emergent reaction-diffusion length scales of the coupled PDEs are given by,

1/I1 5 1/11
i _ Dy,' D}

rd _ ~T/11 :
1/11 i _I/11 1/11 A9, +iig _I/1T
jAvast [DA1 exp (kBBT> g+ DB exp <}€BT VA,

(E.1)

The full solutions for the spatially dependent steady state volume fractions for A; and
B are given below. The non-dimensional length is r (rescaled by system size radius R)
and time is # (time scale is (k')~1). The volume fraction scale is conserved quantity
and the diffusion scale is R%(k!')~!. In terms of the non-dimensionalized parameters, the

solutions are as follows for the uni-molecular reaction scheme (assuming only [L% #0),

B (r00) = B(DY,C1 + D5Cy) D (aCyexp (% /ksT) = BCs) sinh(r/AL)
AT (aDg exp (fifp/kpT) + ’BDEM) (aD% exp (ik/kpT) + ﬁDill) /AL
(E.2a)

88



aexp (fil/kpT ) (DY, C1 + DECa) DY, (aCyexp (fik/kpT) — BC2) sinh(r/AL)

¢I (Ta OO) = = =
B (aDhexp (7 /bsT) + BDY,)  (aDhexp (A /ksT) + 6D%) /AL,
(E.2b)
¢g (r, 00) = PBﬂ(Dgl (Cg +7rCy) + Dg(C5 + TCG)) Dg(PAlaC;g — PpBCs) COSh(T/)\Hi)
L 7“(PAlozD}3I + PBﬂDgl) (PAlozD}BI + PBBDHI) T
DY (P4, aCy — PpBCg) sinh(r/AL)
(PraDf+ PopDl) /AL
(E.2¢)
g(r, Oo) _ PAla(Dgl (C3 + 7"04) + Dg(C5 + TCG)) _ Dg(PAlaC;g — PBBC{)) COSh(T//\Ei)

r(Pa,aD¥ + PpADY ) (Pa,aD% + PgBDY ) r
_ Dj5(Pa,aCy — PpBCs) sinh(r/Aly)
(Pa,aD3 4+ PpSDY ) r/A}

(B.2d)

where a = exp (1%, /ksT)7}, and 8 = exp (i%/kpT)7j. The six undetermined constants
C, are evaluated by solving six boundary value conditions (having used r = 0 boundary
conditions already to obtain Eqgs. (E.2)). The average volume fractions of A; and B are

determined using,

_ Rq/R
pj(00) = % (/0 dr ¢£ (r,00) + /Rl/L dr (ﬁ?(r, oo)) , (E.3)
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Appendix F

Fitting routine and extracted rate coefficients

We study three succinate derivatives, labeled as P, C1, and Cs and their corresponding
anhydrides. We fit the experimental measurements with the kinetic traces of each of the
reaction cycles to determine the rate coefficients (Figs.F.1, F.2 and F.3). The fitting is

obtained by minimizing the sum of squared residuals of [ data points,

l
2
S=>(yi— f(t:)) (F.1)
i=1
where y; are the experimental concentration values and f(¢;) are the theoretical predic-
tions from the kinetic model as described in Egs. (4.2a) and (4.2b). The minimization
is numerically done using optimize module of SciPy library and the method is truncated

Newton conjugate gradient (TNC).

Individual reaction cycles

— 30 100
=S —
§§ T 80
3T T 60
e Z
%3 = 40
g 2 10 8
SE | 5§ 20
SHI O ‘ L
0 20 40 00 20 40
Time [min] Time [min]

Fig. F.1: First order deactivation and short lifetime of the product of com-
petitor 1.50 mM competitor 1 fuelled with 100 mM EDC. The two curves, corresponding
to the time trace of the product of competitor 1 and fuel concentration, respectively, are
globally fitted to obtain the reaction rate coefficients. The concentration profile of the
product of competitor 1 shows an exponential decay as it is not able to phase separate
due to its high solubility of roughly 3000 mM. Markers represent HPLC data; solid lines
represent data calculated using the theoretical kinetic model.
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Fig. F.2: First order deactivation and short lifetime of the product.50 mM
precursor fuelled with 100 mM EDC. The three curves, corresponding to the time trace of
the product, precursor, and fuel concentration, respectively, are globally fitted to obtain
the reaction rate coefficients. The product concentration profile shows an exponential
decay as it is not able to phase separate due to its high solubility of roughly 27 mM.
Markers represent HPLC data; solid lines represent data calculated using the theoretical
kinetic model.
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Fig. F.3: Zeroth order deactivation and long lifetime of the product of com-
petitor 2. 50 mM competitor 2 fuelled with 50 mM EDC. The three curves, corresponding
to the time trace of the product of competitor 2, competitor 2, and fuel concentration,
respectively, are globally fitted to obtain the reaction rate coefficients. The concentra-
tion profile of the product of competitor 2 shows a linear decay as it is able to phase
separate due to its low solubility of roughly 2 mM. Markers represent HPLC data; solid
lines represent data calculated using the theoretical kinetic model. The concentration of
competitor 2 had to be re-adjusted to 57 mM in the theoretical kinetic model for the
fitting procedure due to inaccuracies in the stock solution.

Combined reaction cycle: Precursor Vs Competitor 1

Having obtained the reaction rate coefficients from the above fits in Fig. F.4, we proceed
to see how the traces change with changing competitor 1 (Cy) concentration and using
fixed precursor (P) and EDC concentrations (Fig.F.5).
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Fig. F.4: First order deactivation for the product and product of competitor
1. 50 mM precursor and 50 mM competitor 1 fuelled with 100 mM EDC. The three curves,
corresponding to the time trace of two anhydrides and fuel concentration, respectively,
are globally fitted to obtain the reaction rate coefficients. The concentration profiles of
the product and product of competitor 1 both show exponential decay as neither is able
to phase separate and competition for fuel results in reduced yields for both anhydrides.

Markers represent HPLC data; solid lines represent data calculated using the theoretical
kinetic model.
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Fig. F.5: Competitor 1 reduces the yield and lifetime of the product. Competi-
tor 1 concentration of (a) 25 mM, (b) 75mM, (¢) 100mM, and 50mM precursor fueled
with 100 mM EDC. Increasing the competitor 1 concentration reduces the maximum yield
of the product and also its lifetime. Markers represent HPLC data; solid lines represent
data calculated using the theoretical kinetic model.

Combined reaction cycle: Precursor Vs Competitor 2

Having obtained the reaction rate coefficients from the above fits in Fig. F.6, we proceed
to see how the traces change with changing competitor 2 (C3) concentration and using
fixed precursor (P) and EDC concentrations (Fig.F.7).
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Fig. F.6: Non-linear and linear deactivation for the product and product of
competitor 2 respectively. 50mM precursor and 50 mM competitor 2 fueled with
100mM EDC. We globally fit five curves corresponding to the time trace of two an-
hydrides, two succinate derivatives, and fuel concentration, respectively, to obtain the
reaction rate coefficients. The two outlier points in the precursor concentration trace
are omitted, however. The linear decay of the product of competitor 2 shows that it
phase separates, and the non-linear decay of the product implies that it partitions in the
droplets, which we refer to as co-phase separation. Markers represent HPLC data; solid
lines represent data calculated using the theoretical kinetic model.
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Fig. F.7: Competitor 2 reduces the yield but increases the lifetime of the prod-
uct. Competitor 2 concentration of (a) 5mM, (b) 10mM, (c) 25mM, (d) 75mM, (e)
100mM , (f) 125 mM and 50 mM precursor fueled with 100 mM EDC. Increasing competi-
tor 2 concentration reduces the maximum yield of the product but prolongs its lifetime,
allowing us to label competitor 2 as host and precursor as parasite. Markers represent
HPLC data; solid lines represent data calculated using the theoretical kinetic model.
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ko k1 k2 k3 k4

Name Condition
[s1 M-+*s1] [s] [s] [s1
Single 0.085 0.52 0.1 3.7e-3
Competitor 1 1.35e-5
w/ Precursor 0.037 0.58 0.23 4.2e-3
Single 0.20 0.63 0.52 2.7e3
Precursor |w/ Competitor 1 1.35e-5 0.21 0.37 0.28 3.2e-3
w/ Competitor 2 0.10 0.30 0.32 1.0 - 2.3e-3
Single 0.35 0.50 0.26 4.9 -6.8e-3
Competitor 2 1.35e-5
w/ Precursor 0.35 0.50 0.26 8.8e-3

Fig. F.8: Reaction rate coefficients. Readout for the reaction rate coefficients used
in the kinetic model as obtained from the global fits.
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Fig. F.9: Dilute phase concentrations. (a) The concentration of the product of
competitor 2 in the aqueous phase as a function of competitor 2 concentration.The
value remains nearly constant around 2 mM, (b) The concentration of the product
in the aqueous phase as a function of competitor 2 concentration. In the absence of
competitor 2, the value is 27.8mM (solubility), decreasing with increasing competitor 2
concentration. The measurements are performed 16 mins into the reaction cycle.
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Fig. F.10: Poissonian fuelling in individual reaction cycles. Varying amplitude
of EDC added in time points chosen from a Poisson distribution with fueling rate
(1/30) min~! to (a) 50 mM precursor (b) 50 mM competitor 2. The colored data
represents when the respective cycles can phase separate on reaching their solubilities
at 27 mM and 2 mM. In contrast, the gray data is when theoretically, we suppress
phase separation in the cycle. For the product, it doesn’t make much difference when
full turnover occurs. However, for the product of competitor 2, the turnover occurs
earlier, and the concentration is buffered since it has low solubility.
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Appendix G

Experimental methods

Chapter 4

The following experimental details are provided by our collaborator Patrick Schwarz affil-
iated with Prof. Boekhoven’s Lab in Dept. of Chemistry in TUM.

HPLC

A ThermoFisher Dionex Ultimate 3000 analytical HPLC with a Hypersil Gold 250 x 4.6
mm C18 column (5 mm pore size) was used to monitor the concentration profiles of each
reactant of the chemical reaction network. 1.0 mL samples was prepared according to the
sample preparation protocol described above into a screw cap HPLC vial. Samples were
injected directly from the HPLC vial without any further dilution. 25 mL was injected
for the detection of the succinates and anhydrides and 1 mL for the detection of EDC. A
UV/Vis detector was used at 220 nm for the detection. A linear gradient of MQ water :
ACN with 0.1 % TFA was used to separate the compounds. A linear gradient was used
from 98 : 2 to 2 : 98 in 10 minutes followed by 2 minutes at 2 : 98 for the separation.
The column was equilibrated for 2 minutes after each gradient. Calibration curves of the
compounds were performed in triplicates. Calibration values and retention times are given

in the supplementary information of Ref. [60].

Confocal fluorescence microscopy

The droplets were imaged using a Leica SP8 confocal microscope with a 63 x oil immersion
objective. Samples were prepared as described above but with 0.1 mM Nile Red added
before EDC addition. 5 mL sample was added to a silicon grease reservoir on a PEG-
coated glass slide covered with a 12 mm diameter coverslip. The samples were excited

with a 543 nm laser and imaged at 580—700 nm.

Chapter 5

The following experimental details are provided by our collaborator Mengfei Gao affiliated
with Prof. Tang’s Lab in MPICBG.
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Preparation of BSA-PNIPAAm conjugate and Streptavidin-biotin-DINA
conjugate

PNIPAAm with a mercaptothiazoline terminal group was synthesized via RAFT poly-
merization and structurally characterized with GPC and NMR as previously described
in Ref. [90]. The as-synthesized PNIPAAm chain had a M, of 14000 g/mol and M, of
17000 g/mol. BSA-nat-pni was prepared by directly mixing the native protein solution to
1 mg/mL with PNIPAAm in 0.2 M NaHCO3 solution at a molar ratio of 1:5. The mixture
was incubated with shaking at 4° C for 16 hours, then filtered with 0.22 pm PVDF filter
into a 25 kDa dialysis bag. The sample was then dialyzed against 0.2 x PBS, with the
buffer refreshed every hour for 3 hours in the cold room. After the dialysis, the conjugate
was then concentrated to 1/10 of the original volume, aliquoted, and snap-freezing with
liquid nitrogen.

Streptavidin-biotin-DNA was prepared as described before in Ref. [90]. In brief, biotinTEG-
ssDNA was prepared in MillQQ water to 100 M and added 4 aliquots into stretpavidin in
buffer (10 mM Tris, 1 mM EDTA, pHS8) to a final concentration of 10 M ssDNA and 5
pM stretpavidin. The mixture was vigorously shaken at 1000 rpm for 10 min at 25°C in

between each aliquots.

Proteinosome preparation

To generate proteinosome, BSA-PNIPAAm, and streptavidin-biotin-DNA were mixed on
ice in 0.1 M NaHCOg3 solution to a final concentration of 74 yM BSA-PNIPAAm and 1
or 2 uM ssDNA. BS(PEG)g was dissolved in anhydrous DMSO and mixed to 0.25 mM
in 2-ethyl-lI-hexanol at room temperature by vortexing. 1 mL mixture was transferred to
the aqueous solution with a long-tip 1 mL pipette tip and pipetted to generate emulsion.
After emulsification, another 1 mL of 2-ethyl-l-hexanol mixture was added to the top, and
the mixture was stored at 8" C overnight.

To wash the proteinosome from 2-ethyl-l-hexanol, the emulsion was centrifuged first with
a table centrifuge for 5 seconds, and the supernatant was removed. 1 mL of —20°C cold
75 % ethanol was added and pipetted cautiously until the pellet was fully resuspended.
The sample was transferred to a clean Eppendorf tube and left in the fridge for 2-3 hours.
After that, a series of centrifugation was applied with 3000 rpm, 3 minutes each at room
temperature for BSA. At the end of each centrifugation, the supernatant was removed and
replaced by 1 mL ice-cold 50%, 25% ethanol, and twice ultra pure water with cautious
pipetting mixing. The proteinosome was taken for quality control imaging and left in the

fridge until use.

PEN DNA assay

PEN DNA autocatalytic reaction was performed in buffer (20 mM Tris-HCl, 10 mM
(NH4)2S04, 10 mM KCI, 2 mM MgSO,, 50 mM NaCl, 6 mM MgSO,, 1 g/L Synperonic
F108, 1 uM Netropsin, 3 mM Dithiothreitol, 0.5 mg/mL native BSA, 3 uM EvaGreen dye,
0.1 mM dNTPs) containing (0.1, 1 or 10 nM) primer DNA/ (0 to 1000 nM) template DNA
400 units/mL Nb.Bsml nickase, 12.8 units/mL Bst DNA polymerase long fragments, and

96



0 or 1 nM ttRecJ exonuclease. Calibration samples were prepared in the same method
but replacing nickase, polymerase, and exonuclease with an equivalent buffer containing
an equivalent amount of glycerol. The exonuclease activity mixture was prepared in the
same buffer without template DNA, polymerase, and nickase.

The samples were prepared into a 384-well plate (Flat black, Greiner) on ice and imaged
with a SPARK 20 M well plate spectrophotometer (TECAN AG) at 42°C using 485/20
nm and 535/25 nm filter settings to illuminate the EvaGreen signal. Time-lapses were

prepared at 1 or 2 minutes intervals.

PEN DNA inside proteinosome assay

Template DNA contained proteinosome was mixed in the buffer mentioned above at dif-
ferent dilutions. The mixture was loaded to a 1536 well plate and centrifuged at 3000
rcf shortly before the imaging. The samples were imaged at 42°C with an Andor IX83
inverted microscope equipped with Yokogawa CSU-W1 spinning disk, an Andor iXon ul-
tra 888 Monochrome EMCCD camera, and Andor iQ3 (3.6.2) for imaging acquisition.
UPLFLN20x/0.5 NA objective (Olympus) was used for the time-lapse imaging together
with a Z-drift compensation system. Kinetics were performed at 2 minutes intervals. Cal-
ibration of the DNA inside the proteinosome was performed in the same manner with
either diluted template DNA alone or fixed amount of template DNA, primer DNA, and
EvaGreen. The calibration curve was extracted from the confocal images and used to

calculate the concentration of template DNA and synthesized primer DNA.

Image analysis

To analyze the time series, the stacks were first drift corrected using StackRecJ with *Trans-
lation’ mode. Then the proteinosomes were identified with the template DNA fluorescence
at the last frame of the image series. After a series of Gaussian blurry, thresholding, bi-
nary, and particle analysis, the size and fluorescence in all channels were extracted. The

following analyses were carried out with Matlab.
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Appendix H

Calibration constants and reaction rate coefficients of PEN
DNA study

b = —14710 * [T]? + 32310 * [T] + 505
Fre=bx*(1— exp(fc[S]w(,))

18000 2

<10

1M
05uM
16000 025 M
02uM
0.1uM
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¢ = 0.4216/[T] + 0.2757
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Fig. H.1: Calibration curve for bulk PEN DNA reactions. Obtaining the cali-
bration fitting constants, which are functions of average template concentrations in the
bulk system.

Here we show the calibration curve in the buffer solution (bulk) to allow conversion from
the numerically obtained concentration units to the arbitrary fluorescence units of Eva-
green. For the bulk system, the calibration constants depend on the template concentra-
tions in the system and therefore have to be adjusted accordingly. The functional form of

the calibration is valid in the region where [Sliot < 5[T].

Next, we show the calibration curve in the proteinosomes, which is independent of tem-
plate concentration, given the local template concentration in the proteinosome is fixed to

a certain value.
Calibration curves are obtained without the PEN enzymes in the system, which implies

that while taking the total primer concentration in these studies, the [2ST] species is miss-

ing. However, in the reaction assays, the [2ST] species is present, but the difference in the
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calibration due to this effect is negligible.

Fra = 917 % (1 — exp(—0.1351[SJot)) + 734.64

1800
1600 g |
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1200

1000 /|
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800 f

600 L L L L
0 10 20 30 40 50

Primer concentration [S]iot(nM)

Fig. H.2: Calibration curve for PEN DNA reactions in proteinosomes. Ob-
taining the calibration fitting constants in the proteinosomes system.

Fitted Parameters

(a) %103 [S]o =0.1nM (b) [Slo = 1.0nM (C) [Slo = 10.0nM
8 \

(T)(aM)

Fluorescence

Time (mins) Time (mins) Time (mins)

Fig. H.3: Readout of total primer kinetic profile in the presence of degra-
dation. [S]ioy readout in the form of fluorescence at different average template con-
centrations for initial primer concentrations (a) 0.1 nM, (b) 1.0 nM, and (c) 10 nM, in
the presence of the exonuclease enzyme. The fluorescence does not saturate because the
deactivation rate is not pronounced to induce a flat saturation. It is evident that for
higher template concentrations, the maximum value reached is highest and set by the
template concentration since it does not appear to vary with the initial primer concentra-
tion. Markers represent experimental data, and dashed black lines represent data from
the theoretical model.

The reaction rate coefficients in the bulk system (reference), as obtained by global fitting
(using the same method as in Appendix. F), are given in the table below. We also had
to add a lag time to the theoretical data to account for the initial equilibration time and

duration when photo-bleaching occurs in the experiments.
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Values in Values in
Symbols
buffer psome
k. 0.028 min~"'nM~! | 0.34 min~'nM~!
ka 0.3min"! 0.5min"!
kyp 5.2min"? 40.2min~!
kpsD 0.01 min—! 0.1 min~!
kn 2.0 min~? 30.45 min 1
ke 0.03 min~* -
Lagtime
Exonuclease | Initial primer | values (in
buffer)
0.1nM 16 mins
No 1.0nM 12 mins
10.0nM O min
0.1nM 9 mins
Yes 1.0nM 7 mins
10.0nM 0 min

The rates of autocatalysis obtained from fitting the exponential function are listed below.

Avg. tem-
System Rate
plate conc.
50 nM 0.146 min~!
Buffer 100.0 nM 0.159 min~!
250.0nM 0.168 min~!
1.03nM 0.178 min~"
Proteinosome | 0.1636 nM 0.055 min—1!
0.074nM 0.0285 min~!
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