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Abstract

Droplets form via phase separation and coexist with a dilute phase. After
nucleation and growth of droplets, the resulting emulsion of many droplets
undergoes coarsening kinetics to reach its thermal equilibrium state. Ost-
wald ripening describes the coarsening kinetics of emulsions for which the
total droplet material is conserved. During Ostwald ripening, the droplet
number density decreases, the average radius increases, and the droplet size
distribution function broadens in a universal manner.

Phase separation and kinetics of emulsions are relevant for the spatial orga-
nization of cells and synthetic chemical systems. In these systems, droplet
material is often not conserved due to the active production of droplet build-
ing blocks by fuel-driven chemical reaction cycles. In this thesis, we derive
the theoretical framework for coarsening in emulsions with matter supply.
The first part of this thesis is dedicated to droplet growth in binary mixtures,
where we consider deviations from local equilibrium at the phase boundary.
The resulting droplet growth law allows for multiple scenarios and asymp-
totically comprises two regimes: diffusion limited and interface-kinetics lim-
ited growth law. We derive the growth of an emulsion and learn how the
competition between the droplets and their growth are influenced by mat-
ter supply. Compared to emulsions without supply, we find an acceleration
in coarsening kinetics for constant matter supply. The scaling of the aver-
age radius differs through a fixed shift in the prefactor, which in some cases
can be supply-independent. The droplet size distribution can narrow but
only in the diffusion limited regime for increasing supply rates. For matter
supply that maintains the supersaturation constant, we find different scaling
laws than in emulsion without matter supply. The droplet size distribution
always narrows, even if the emulsion was initially in the interface-kinetics
limited regime. In the last part, we discuss emulsions in which matter is
supplied and removed from the system through a chemical reaction cycle.
We discuss the effect of the chemical reaction cycle on emulsions” transient
and longtime kinetics and the difference to passive emulsions. We discuss
experimental results, which show accelerated ripening in chemically-fuelled
emulsions. We study how the different fuel supply methods influence the
chemical reaction cycle and droplet kinetics.

The importance of this work is in understanding how matter supply can lead
to size control in chemically-active emulsions. Our work paves the way to
decipher regulatory mechanisms mediated by biomolecular condensates in
living cells and protocells at the origin of life.
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Chapter 1

Introduction to coarsening kinetics

of emulsions

A homogeneous mixture can undergo phase separation and separate into
phases of distinct compositions. A common type of phase separation is liquid-
liquid phase separation resulting in liquid condensed phases. The phase-
separated system can be organized into droplets forming an emulsion. We
study here binary mixtures, and droplets we consider are small condensed
phases coexisting with a large dilute phase. The evolution of an emulsion
toward its thermal equilibrium state is a process with nearly three separate
stages [1], Fig. 1.1: The first stage is nucleation of droplets, where the two dis-
tinct phases are formed from a homogeneous mixture. In the second stage,
droplets grow at the expense of the dilute phase, depleting the excess droplet
material in the dilute phase for overall growth. The measure of the excess
droplet material in the dilute phase is referred to as supersaturation. During
the growth stage, there is an increase in the total droplet phase volume. Upon
completion of this stage, the system has lowered its free energy, but the ef-
fect of the surface area at the interface of the two phases is still high enough,
such that thermodynamic equilibrium is not reached yet. Since the energy
associated with the total surface area is usually small [2] compared to the en-
ergetic contributions of the bulk phases, the effects of surface energy become
apparent at the last stage of a first-order phase separation kinetics. The total
energy of the two-phase system can be decreased further, via an increase of
the dense phase and thus a decrease in the total area of the interface between
the two phases [2]. The increase of the dense phase is manifested through
the increase in the average droplet radius. This happens through growth of
larger droplets and shrinkage followed by dissolution of smaller ones. Coars-

ening is this late stage evolution of the dense phase until it reaches minimum
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Nucleation Growth Coarsening

Time

FIGURE 1.1: Schematic of stages during the evolution of an emulsion:
During nucleation, which is the first stage of phase separation, droplets
form. After nucleation, due to high supersaturation, each droplet grows,
and no droplets dissolve. During growth, the supersaturation decreases
such that the concentrations approach the equilibrium values. When the su-
persaturation is low the size differences between the droplets drive coars-
ening. Smaller droplets dissolve, while larger ones grow on their expense.
If two droplets are in the physical vicinity, they fuse.

of its surface free energy [1]. The end of this process is associated with the

thermodynamic equilibrium.

This work is dedicated to the physics of emulsion coarsening kinetics. We
will discuss the effect of different conditions the system can be exposed to
and their impact on the longtime coarsening kinetics. In the introduction, we
will first discuss the possible kinetic pathways of coarsening and the differ-
ence between fusion and Ostwald ripening. Later, we will make an excursion
to the biology of the cell, to learn the importance of emulsions in biology and
what are the biologically relevant conditions emulsions can be exposed to.
In the second part of the introduction we will discuss the physics of phase

separation as well as coarsening kinetics of passive emulsions.

1.1 Kinetic pathways of coarsening: Fusion and

Ostwald ripening

There are two kinetic pathways of coarsening. If two droplets are in the phys-
ical vicinity, they can fuse into one droplet. The resulting droplet will have
approximately the same volume as the sum of the two original droplets.
Its surface area will be smaller than the combined surface areas of the two
droplets. The surface area contribution to the free energy will be thus low-
ered [3, 4]. If droplets are sparsely distributed in the solution, and do not
come into physical contact, there is a further mechanism of coarsening pos-
sible: Ostwald ripening, which is driven by gradients of concentration be-
tween the droplets.
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In 1897 Wilhelm Ostwald was the first to observe this coarsening phenomenon
in HgO droplets [5, 6]. The phenomenon of coarsening in which diffusional
growth of larger drops happens at the expense of smaller drops, which even-
tually dissolve, has been called by his name: Ostwald ripening. Besides
liquid-liquid systems, it is observed in liquid-vapor mixtures, such as droplets
in clouds, or solid-liquid mixtures found in metallurgy or geology. It has im-
portance in material sciences for processes like ageing of metallic alloys, lig-
uid and solid state sintering, deoxidation of steel melts or in geology when
studying aging or growth of phenocrysts and crystals in solid rock.

In the early 1960s, Ostwald ripening gained a lot of interest, through the
tirst quantitative description of this phenomenon by Lifshitz and Slyozov [7]
and independently by Wagner [8]. Their derivation of a unique self-similar
evolution of the droplet size distribution function and its moments for Ost-
wald ripening kinetics has been known as LSW-theory. Self-similar means
that the distribution function has the same shape at all times. In the same
paper Wagner [8] derived asymptotic solution for coarsening kinetics con-
sidering that growth might be limited by the interface-kinetics and not only
the process of diffusion. The theory of Ostwald ripening has been revisited
many times, the works of Vorhees [2, 9], Marquess and Ross [1, 10], and Ni-
ethammer [11, 12, 13, 14] explore the validity of assumptions made in the
LSW-theory from the experimental observations as well as its mathematical

rigorous.

Although there are many studies of the classical LSW-theory, coarsening ki-
netics for emulsions with matter supply has yet to be explored in detail. This
work aims to extend the theory of Ostwald ripening to systems with matter
supply in the dilute phase. Of particular interest is the application of such
coarsening theory to cell biology, where matter supply in the form of pro-
tein expression, chemical reactions or exchange of material with an external
reservoir can happen. In the last decade, droplets and the study of emulsions
became very important due to the discovery of membraneless organelles in
cells.
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FIGURE 1.2: Classification of membraneless organelles in cells: (a):
Schematic of the numerous condensates in the nucleus, cytoplasm, and
membranes of eukaryotic cells. Taken from [15]. (b): A montage of live
time-lapse imaging of P granules under shear force (arrows, top left). The
condensates behave like liquid droplets: They deform, drip and fuse around
a nucleus. Taken from [15]. (c): Examples of different condensates in cells,
P-bodies [16], Cajal-bodies [17], Nucleolus [18] and P-granules [19]. Modi-
fied from [20].

1.2 Emulsions in biology and at the molecular ori-
gin of life

In the following, we discuss the relevance of phase separation in cell biology
and at the molecular origin of life. In particular, we will introduce state-
of-the-art knowledge about coarsening kinetics of emulsions in cells and in

studying protocells.

1.2.1 Phase separation and its kinetics in cell biology

Cell biology faces the challenge of maintaining control over its complex cel-
lular processes in space and time, despite the diversity and richness of its
biochemical constituents. Cells localize their chemical components in dis-
tinct environments. These cellular subunits, called organelles, are differently
formed parts of the cell that coexist with the cell’s environment. There are
two types of organelles in cells: Membrane-bound organelles surrounded
by a selectively permeable membrane and membraneless organelles which
lack a physical barrier between their internal components and the surround-

ing medium. The classic membrane-bound organelles are e.g., endoplasmic
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reticulum, Golgi apparatus, nucleus. The examples of membraneless or-
ganelles, Fig. 1.2(a),(c), include RNA-protein granules as as nucleoli, Cajal
bodies, PML bodies in nucleus, as well as stress granules and germ granules
in the cytoplasm [15].

Membranes are impermeable to most biological macromolecules, and trans-
port through organelle’s boundaries is regulated by membrane channels [21,
Chapt. 11]. Membraneless organelles (biomolecular condensates) need an-
other way to maintain and control their composition. Liquid-liquid phase
separation is a mechanism that facilitates the formation, composition, physi-

cal and biochemical properties of membraneless organelles.

Biomolecular condensates are liquid-like [19], Fig. 1.2(b), and form by phase
separation from the cytoplasm [19, 22, 15, 23]. They control biochemical reac-
tions [24], biological signal control, and processing [25] in cells. Membrane-
less organelles typically comprise proteins and RNA [26], and despite their
dynamic nature, many of these condensates can maintain their overall size
and shape for minutes or hours while exchanging their components with the

surrounding cytoplasm or nucleoplasm on time scales of seconds.

It has been confirmed that droplets in cells coarsen through fusion and through
diffusion limited Ostwald ripening [27]. In experiments, the dissolution of
small droplets indicates Ostwald ripening that happens in parallel to fusion
[27, 28]. In cells, both processes are present and nonnegligible, and depen-
dent on the conditions inside the cell, their effect on the droplet coarsen-
ing kinetics may differ. For example, coarsening of droplets surrounded by
a chromatin network is highly influenced by the viscoelastic properties of
the surroundings. In some cases fusion can be completely inhibited by the
chromatin-dense environment, and droplet can only grow through diffusive
transport of molecules [29]. Another interesting example is for the P gran-
ules of Caenorhabditis elegans, which are coated by MEG-3 proteins, that form
a cluster on their surface. This local condition at the interface, changes the
coarsening behaviour of the droplets, which again slows down fusion [30].
Although fusion in such conditions is inhibited droplets still coarsen and we
should explore the theory of coarsening kinetics determined by the exchange
of droplet material in the absence of physical contact.

Studying the dynamics and morphology of the individual condensates in
cells is crucial to understand the biophysical properties of biomolecular con-
densates. However, it is a challenging task, since cells are very dynamic and

undergo division, which limits the observation times.
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FIGURE 1.3: Biophysical properties of condensates: (a): Analysis of
53BP1-GFP droplets in NIH2/4 cells. (i): Representative images from live-
cell microscopy of 53BP1-GFP condensate formation and kinetics (scale bar,
5um). (ii) Temporal evolution of the average radius. (iii): Temporal evo-
lution of the average number of droplets per nucleus. (iv): Temporal evo-
lution of the total volume of condensates per nucleus. (v): Probability dis-
tribution function PDF(R) of foci radius measured at different time points
(logarithmically spaced between 1min and 700min) (vi): PDF(R) as in (v),
with both axes rescaled with the average radius (R). Modified from [31]. (b):
Analysis of 2NT-DDX4 ¥ condensate kinetics in HeLa cells. (i): Time-lapse
microscopy of a typical cell initiating expression of 2NT-DDX4*F protein
and its phase separation after transfection and plasmid incorporation. (ii):
Mean and variance of 2NT-DDX4 """ total molecule numbers as a function
of time. Model parameters were estimated from the time-lapse data (blue)
by using statistical methods. Corresponding model behaviors are shown in
red. Modified from [25].

Pessina et al. in Ref. [31], studied the dynamics of condensates formed through
liquid-liquid phase separation of 53BPI protein into droplets in NIH2/4 cell
line. The cells in the experiment were irradiated, i.e., exposed to radiation
from an X-ray source to create enough DNA damage that the cells could no
longer divide. After the initial nucleation and growth stage, when the num-
ber and total volume of the condensed phase increase, it was possible to ob-
serve late-time coarsening, with a decrease in the total number of droplets,
but an increase in average radius while the total volume of 53BPI droplets



Chapter 1. Introduction to coarsening kinetics of emulsions 7

per nucleus was constant, Fig. 1.3(a). The estimated scaling laws of the num-
ber and the average radius were consistent with both Ostwald ripening and
fusion. Since the majority of droplets was disappearing without physical
contact, suggesting Ostwald ripening to be the dominant process [31]. What
is more, a collapse of all of the distribution function curves onto an invariant
distribution is observed for late times, ¢ > 100min, Fig. 1.3(a)(vi). The fea-
ture of self-similarity is a strong indication for Ostwald ripening driving the

coarsening process in the experiment.

The challenge in studying coarsening kinetics in cells is in deducing the pre-
cise scaling exponent and prefactor and whether they exist for the average
radius, the number density of droplets, or the total droplet phase volume.
Furthermore, the LSW-theory with the ¢'/3 scaling law of the average radius
[32] requires conditions of low volume density of the droplet phase and a
conservation of the total droplet material. The latter does not have to always
apply to cells.

For example, in Ref. [25] the liquid-like droplets, composed of 2NT-DDX4YF
proteins are formed inside the nuclei of HeLa cells. The total number of 2NT-
DDX4Y" protein molecules expressed in the total nuclei is increasing over
time, Fig. 1.3(b), which is an indication that cells in general do not have to
conserve the total amount of droplet material [33]. In general, cells are open
systems and we should include the changes of the total droplet material in
the studies of coarsening behaviour.

1.2.2 Model systems for membraneless organelles

To understand the physicochemical principles underlying the functioning of
membraneless organelles, we need detailed studies in both living cells and

model systems [34].

Complex coacervates have shown great potential as model systems in chem-
ical sciences for such active compartments [34]. In addition to being sta-
ble over a broad range of physicochemical conditions, coacervate droplets
are able to spatially localise and up-concentrate different molecules [35, 36]
and support biochemical reactions [37, 38, 39]. Coacervation describes the
condensation of polymeric molecules into a liquid state. The phenomenon
was first observed in mixed solutions of oppositely charged biopolymers
and in solutions of isoelectric proteins with (poly)phenols [26, 40]. Complex
coacervation is a process of condensation of oppositely charged molecules,

as opposed to simple coacervation, which involves a single self-associating
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FIGURE 1.4: A schematic of protocell cycle and active kinetics: (a): A min-
imal model of the protocell cycle necessary to give rise to evolution. A sys-
tem should be able to grow, replicate and divide. Evolution also requires
its response to the changes in the environment. (b): Passive growth kinetics
of coacervates. In passive systems coacervates can grow by fusion and Ost-
wald ripening. During passive growth, the number of protocells decreases,
which is not desired in order to sustain a population. (c): Active growth,
which uses an active reaction that converts precursor molecules to protocell
molecules after input of fuel. This coarsening pathway could facilitate the
robustness of the population. Taken from [44].

molecule [34]. The mechanism of coacervate formation is liquid-liquid phase
separation [41, 42]. The study of the physicochemical properties of coacer-
vates is currently at focus due to its accessibility in the lab and the possibility
for experimental studies of systems having features resembling membrane-
less organelles but in the setting outside of the cell. Already in the 1920’s
Oparin first suggested that coacervation could have been a way to bring pre-
biotic molecules together and form a protocell [43]. Thus, studying coacer-
vates can help elucidate the cellular evolution at the origin of life.

1.2.3 Emulsions in the study of protocells

Recently, researchers in Ref. [37] proved for the first time that coacervates fa-
cilitate RNA catalysis. This effect is coupled with selective recruitment and
release of RNA without additional energy input. These features could have
been significant on early Earth where concentrations of RNA, their building
blocks, and other molecules may have been low [37].

The defining life features of modern cells are often divided into hallmarks,

such as growth, division, information processing, and compartmentalization,
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Fig. 1.4(a), [44, 45]. In recent years, many chemical systems have been re-
ported in which one or more of these hallmarks have been reconstituted,
as steps on the way to creating a living, viable protocell (a primitive cell)
[44, 46]. The (proto)cellular growth, which happens due to the exchange of
reactants between the compartment and its surroundings, must be different
from coarsening kinetics of closed systems, like Ostwald ripening, where
there is no exchange of material with the environment. Moreover, during
Ostwald ripening and fusion, the total number of droplets decreases as the
average size increases, Fig. 1.4(b). In the model of protocells, the decrease in
the number of droplets, which model the protocells, is not desired. Protocells
need to survive and replicate, for their evolution the control of their sizes and

numbers are vital.

Active growth has been proposed as an alternative mechanism to passive
growth [44]. By keeping the system away from relaxing toward thermody-
namic equilibrium, protocells could grow while also controling their number
[47, 48]. The conditions for active growth could be achieved by an external
energy input, such as a chemical reaction or a concentration gradient [49],
e.g., a chemical reaction that converts precursor molecules to protocell mate-
rial after input of energy [44], Fig. 1.4(c). These conditions must be incorpo-
rated in the theoretical descriptions of the coarsening kinetics of emulsions to
study which processes and what kind of chemical reactions should be used

to achieve controlled growth.

We now understand why it is important to study droplet coarsening kinetics
under conditions of active growth. To discuss the theoretical descriptions of
coarsening kinetics of emulsions, we should first revisit the theory of liquid-
liquid phase separation.

1.3 Physics of liquid-liquid phase separation

In the following, we will introduce the basics of liquid-liquid phase separa-
tion, which we need in discussing coarsening kinetics of binary mixtures. We
will closely follow the work on the physics of active emulsions in Ref. [49].

1.3.1 Thermodynamics of phase separation

Phase separation refers to the spontaneous partitioning of a system into sub-
systems with distinct macroscopic properties [49]. We consider a binary mix-
ture of molecules A and B, with N, /g representing the total number of A and
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B molecules respectively. The Helmholtz free energy of a homogeneous bi-
nary mixture of volume V, can be expressed in the canonical ensemble by the
internal energy F and the entropy 5,

F=E-TS. (1.1)

The following thermodynamic quantities are related to the derivatives of the
free energy F:

The entropy S = — OF/9T|y, y, v, the pressure p = — OF/0V|; \ . and the
chemical potentials s = 0F/ONalry n, and up = OF/ONg| 1y v, -

For simplicity, we focus here on an incompressible binary system with con-
stant molecular volume v of the components. Together with constant volume
V, it implies the conservation of the sum of the total number of molecules A
and B. The relevant thermodynamic quantities are the exchange chemical
potential /i and the osmotic pressure II are [49, 50, 51],

oF OF

T I 12a

N ONalry  ONglpy (12a)

me 9F (1.2b)
WV |y,

Using the free energy density, f(¢) = F/V, with the volume fraction of A
molecules, ¢ = Nav/V, we can rewrite,

(1.3a)

= y—2 7
or

H:—f+¢ua¢

(1.3b)

T

The Flory-Huggins free energy density describes such binary mixture, and is
given by [53, 50]

kT

fuix(9) = == [¢In¢ + (1 - ¢)In(1 — &) + xo(1 - 9)] , (1.4)

where the volume fraction of B molecules is (1 — ¢). The Flory-Huggins
free energy density captures the competition between the mixing entropy
S = —kgV/v(¢Ing+ (1 — ¢)In (1 — ¢)) and the molecular interactions char-
acterised by the parameter x. The parameter x is the Flory—-Huggins interac-
tion parameter, which characterizes the molecular interactions between the

components A and B of the mixture. [54, 55].
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FIGURE 1.5: Schematic free energy and phase diagram for a binary mix-
ture: (a): Sketch of an asymmetric free energy density f(¢) for an incom-
pressible binary mixture as a function of volume fraction ¢. The gray line in-
dicates the common tangent method in the Maxwell construction. Modified
from [49]. (b): Schematic of a phase diagram indicated by the coexistence
line (black), which separates the one-phase and two-phase states as a func-
tion of conditions such as temperature, pH, etc. At volume fractions below
equilibrium value (1) or above (4), the system is in the one-phase regime. At
any condition within the two-phase regime (2,3), the system demixes into a

dilute phase ¢<(>?1)t/ and a dense phase qbi(g). All conditions on a single tie-line
(blue line) result in two phase systems with fixed conditions. Modified from
[52].

If the free energy density has a non-convex shape, the global free energy F
can be minimized by forming two different domains. The state for a given
volume is thermodynamically stable, if it corresponds to a minimum of the
global free energy F'. If the molecular interactions, captured by parameter x
in Eq. (1.4), dominate the entropic terms, the free energy density is concave,
f"(¢) > 0, with a shape as in Fig. 1.5(a). Within this range, the homogeneous
state is not stable. On the other hand, a state with two coexisiting different

domains is stable [49].

The realization of an inhomogeneous system is a state of two different vol-
ume fractions corresponding to in/out phases, ¢in, ¢out- The free energy can
be rewritten as, F' >~ Vin f(¢in) + Voutf(Pout), with the volumes of the phases,
Vin, Vout, satisfying the volume conservation, V' = Vi, + Vo, and the particle
number conservation implying further ¢i,Vin + ¢outVour = ¢V. The inhomo-
geneous state is stable if it corresponds to a minimum of the free energy F'
consistent with the imposed constraint. To find this minimum, we take a
derivative of F' with respect to ¢;, and Vi, Fig. 1.5(a). Setting the expressions

to zero, we obtain:

0= f(6) — f(e), (1.5a)
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0= F(@0) = £(6) + (6% — ) £ (850 . (1.5b)

The equilibrium volume fractions of the two coexisting phases are denoted
by Qbi(r?}our Comparing Eq. (1.5) with Eq. (1.3b), we see that equation Eq. (1.5a)
corresponds to the balance of the exchange chemical potentials between phases,
fin | =@ = fout| =g where Eq. (1.5b) is the balance of the osmotic pressures

between the two phases, I, = Tloutl PO These conditions graphi-
— Yout

|y
¢:¢ir\
cally correspond to a common tangent to the two points of the free energy
density. The method of finding the equilibrium volume fractions is known
as Maxwell’s construction or construction of the convex hull [49]. The gray

line in Fig. 1.5(a) visualises this construction.

Each value of a control parameter, e.g. temperature, pressure, etc., gives cor-

responding values of ¢i(§) and ¢

out- For varying the control parameter, we

can depict the equilibrium concentrations on a phase diagram. The phase
diagram, Fig. 1.5(b), shows the coexistence region of the two phases. The
separation into two phases with volume fractions qﬁi(r?) and ¢ is only possi-
ble when the average volume fraction ¢ fulfills ¢\, < ¢ < ¢\*. Outside this
region, phase separation is not possible, and only the homogeneous state is
stable. The coexistence line (black) in Fig. 1.5(b) separates the homogeneous
and inhomogeneous regimes and corresponds to the binodal. Within the bin-
odal curve is located a spinodal, which indicates the limit of local phase sta-
bility. Compositions between the spinodal and binodal curves, while not

thermodynamically stable, are robust against small fluctuations.

1.3.2 Interface effects on phase equilibrium

Until now, we did not analyze the energetic contributions of the interface sep-
arating the two phases. Only in the thermodynamic limit, where the system
and the volumes of the phases are infinitely large, the energetic contribution
of the interface is negligible compared to the energetic contributions of the
bulk phases. For droplets, due to their finite sizes, the effects of the curvature

are, in general, non-negligible.

To determine the concentration profile that connects the two phases, we de-
fine a flat interface. For an expanded system to infinity, we can keep the po-
sition and concentration value of the interface fixed. The interface of the co-
existing phases follows a tanh(z) profile, where the interfacial profile varies
substantially within the interfacial width [49]. The contribution of the inter-
face to the free energy is expressed through the surface tension v [56].
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FIGURE 1.6: Schematic concentration profile and phase diagram for finite
interface effects: (a) Single droplet of radius R representing the total dense
phase volume Vi, coexsiting with the dilute phase, (V — Vi,). (b) Schematic
of a concentration profile of droplet material in the dense and dilute phase,
given the interface conditions subject to curvature effect (Gibbs-Thomson
relation). Far away from the droplet interface, the concentration is c. (c)
Scetch of a free energy density profile, where we see the shift in the equilib-
rium concentrations due to the Laplace pressure. Modified from [49].

Using ¢in/out = VCin/out, the free energy for a droplet of radius R, Fig. 1.6(a), is
F= ‘/incin + (V - ‘/in>cout + 47TR277 (16)

where Vi, = 47 R3/3, is the volume of the droplet phase and V' the total sys-
tem volume. The conservation of the total particle number, V¢ = const, gives
a condition for the concentration outside ¢y = (Ve — Vinein) /(V — V). In the
following we consider the case where the surface tension v is constant and

independent of the interface curvature [49, 57, 58].

Analogously to minimising the free energy in Eq. 1.5, we take a derivative of
F with respect to ¢, and V4, and the equilibrium conditions read then

0= f'(c) = f'(cou) » (1.7a)
e e e e e 2
0= Fe) = F(gh) + (e5h = D f (52 + 3 - (L.7b)
where Cier?/out are the equilibrium concentration in/outside the droplet, de-

picted by blue markers in Fig. 1.6(c). The additional term in the Eq. (1.7b) of
the pressure balance, 2/ R, is the Laplace pressure. In the Maxwell construc-
tion, this term corresponds to the shift of the tangents Fig. 1.6(c)(blue dashed
line). The effect of the Laplace pressure disappears in the thermodynamic

limit, where R — oo. The Gibbs-Thomson relations, capture the effect of the
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Laplace pressure on the equilibrium concentrations ¢;}, .,
eq _ (0) E’y,in
Cin = Cin 1+—==1, (18&1)
R
l
3y = 9 (1 + —”]’;“t> : (1.8b)
where ci(r?} out are the equilibrium concentrations in the thermodynamic limit

in the condensed and dilute phase, respectively. The capillary lengths ., i /out
characterize the effect of the Laplace pressure. In the limit of strong phase
separation with ci(r?) > %, the impact of the Laplace pressure on the equi-
librium concentration inside the droplet can be neglected, i.e. ¢ ~ ¢\, Fur-
thermore, in the limit when the conditions of the outside phase are dilute, the

capillary length is determined by the surface tensions +, such that [32]

2y

— 5 (1.9)
kBTCi(I?)

g'y,out =

which only holds for the free energy density we have defined in Eq. (1.4).
The concentration profile of a single droplet with the boundary conditions
at the interface from the Gibbs-Thomson relations Eq. (1.8), is depicted in

Fig. 1.6(a). The concentration far away from the droplet interface is co.

The above discussion gives us a model of a single droplet in a binary mixture.
Coarsening refers to a behavior of emulsions, which are composed of many
droplets. In the following, we will classify emulsions through the condition

of conservation law, which we will also refer to in later sections.

1.4 Classification of emulsions by matter supply

The classical LSW-theory describes coarsening kinetics of emulsions with
conserved total amount of droplet material. Droplet material refers to the
molecules of the type which phase separate into droplets. Due to phase sep-
aration the droplet material is enriched withing the droplets and is present at
alower concentration in the phase outside the droplets. This work aims to ex-
tend the theory of Ostwald ripening to systems with broken conservation law
of the total droplet material. This setting is relevant in the application of the
theory of droplet coarsening to cells. As we have discussed in Subsect. 1.2, in
cells the droplet building blocks can be constantly expressed, changing thus
the total amount of droplet material available for droplets to grow. In the

coarsening kinetics, we are interested in the late stage of emulsion kinetics
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when droplets exchange material with each other without affecting the di-

lute concentration, which is close to equilibrium.

Passive emulsions are closed systems where the total droplet material is set
by the initial condition and does not change. LSW-theory applies to passive
emulsions. We will discuss the theory of coarsening for passive emulsions in
the next Subsect. 1.5.

In this thesis we break the conservation of the total droplet material. Emul-
sions with matter supply refer to open binary mixtures with a supply of
droplet material, which only affects the dilute phase. We restrict ourselves
to the special case of a matter supply that is homogeneous in space. In an
experimental realization, the emulsion would be surrounded from the out-
side by a matter reservoir in such a way so that the supplied matter would
homogeneously spread throughout the emulsion, i.e., matter entering at the
long edges of the container which embeds the emulsion. We consider matter
supply that can be time-dependent, where the concentration of the droplet
material in the dilute phase is constant. Furthermore, we will discuss a con-
stant matter supply. Chapt. 3 is devoted to these cases.

As an example of chemically-active emulsions we focus in this thesis on bi-
nary mixtures with a fuel-driven out-of-equilibrium chemical reaction in the
dilute phase. Such systems are inspired by experimentally studied emulsions
in the Boekhoven lab [59, 60]. They investigate reaction cycles consisting of
a reaction in which upon consumption of fuel, the precursor molecules be-
comes activated to droplet material. As discussed in Subsect. 1.2, such re-
action cycles are explored in coacervates and give a premise of active emul-
sions, which in contrary to passive emulsions, could exhibit size control. The

coarsening kinetics of this system will be discussed in Chapt. 4.

1.5 Coarsening kinetics of passive emulsions

In this section, we will explore the theory of coarsening kinetics of passive
emulsions. We will discuss the effect of growth limited by diffusion or the
interface-kinetics on the emulsion kinetics. We will see the main assumptions
leading to Ostwald ripening in the diffusion limited mass transport. We will
learn about the scaling laws and the statistics of growth in passive emulsions.
as well as about the self-similarity of the droplet size distribution function.
The following discussion is based on known theory of coarsening of passive
emulsions and we will follow the seminal paper from Carl Wagner Ref. [8].



Chapter 1. Introduction to coarsening kinetics of emulsions 16

(a) (b)

Concentration Diffusive flux Concentration

X [solubility ¢,

G
K, |Solubility ¢%)

Shrinks Grows Shrinks Grows

FIGURE 1.7: Schematic for droplet growth in a rate limiting process: (a):
Diffusion limited growth of droplets. Concentration difference between two
droplets results from the curvature dependence of the Gibbs-Thomson re-
lation. Material from the smaller droplet is transported through diffusive
flux to the larger droplet until its dissolution. (b): Interface-kinetics lim-
ited growth. When the interface-kinetics is slower than diffusion, droplets
exchange material due to the difference between the concentration at the in-
terface and the average concentration in the dilute phase.

The goal of this section is to gain a general intuition for the problem and
learn about the main results for passive emulsions from Ref. [8] and Ref. [7].
Chapt. 2.

1.5.1 Diffusion limited and interface-kinetics limited coars-
ening

The droplet material is distributed between the dilute and the droplet phase,
with the average concentration in the dilute phase c(¢). We consider a sys-

tem with a homogeneous concentration of the droplet phase, which is the
(0
in

equilibrium value ¢, = ¢ ). The conservation of the droplet material reads

&V = OV (t) + () (V = Vin(t)) (1.10)

where Vi, (t) is the total droplet phase volume. Taking the time derivative of

both sides, and using the definition of a passive emulsion, ¢V’ = const gives

5 d d Vi (t
4. _od in(t)

dt (t) = gt v

where we have further used the assumption for the droplet phase volume,

(1.11)

Vin(t) < V, i.e. droplets phase being a very small volume fraction of the
whole system. If there is just a single droplet of radius R, the total droplet
phase volume is Vi, (t) = 47 R3(t) /3. The changes of the droplet phase volume
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Vin(t) come from the changes in the radius R(t), Vi, = 47 R(t)>R(t). For a sys-
tem composed of more than one droplet, Vi, (¢) can be computed from the av-
erage volume (V (t)) and the total droplet number N (t), Vin(t) = (V())N(t),
such that

d A9 d
To find the solution of ¢(¢) in Eq. (1.12), we need to know what is the droplet
growth law, R(t).

There are two asymptotic regimes which define the droplet growth law, R(t),
in a phase-separated system: diffusion limited and interface-kinetics limited

regime, Fig. 1.7.

In liquids, mass transport occurs by diffusion [49, 2]. If diffusion with a dif-
fusion coefficient D is slow compared to the surface transport of molecules
and any other mass transport in the system, then the gradient of concentra-
tion of the droplet material at the droplet interface will dictate the amount of
material that diffuses into or out of the droplet [61]. The growth law in the
diffusion limited regime is

d D c(t) — el (R)

gy D0~ i) a1y

in

where ¢} (R) is the concentration from the Gibbs-Thomson condition, Eq. (1.8).

In the limit of low supersaturation, the competition between the droplets for
the droplet material dominates the system’s dynamics. Any gradients of the
chemical potential in the dilute phase will drive the material transport within
the solution, Fig. 1.7(a). A droplet of a smaller radius R; < R has a higher
curvature and, thus, the effect of the Laplace pressure is higher. Using the
Gibbs-Thomson relation Eq. (1.8) we can conclude that coi(R1) > coni(R2),
Fig. 1.7(a). The resulting concentration difference between the two droplets
drives the material transport from a smaller droplet to the larger one. The
smaller droplet will start to dissolve, since c(t) < cy(R;), while the larger
droplet grows. When the small droplet finally disappears, the number of
droplets N(t) decreases by one, (N(t) — 1), and the volume of the droplet of
radius R,, incorporated the whole volume of the droplet R,. This process is
called Ostwald ripening.

Another regime of droplet growth corresponds to slow relaxation kinetics
to the local equilibrium at the droplet interface, Fig. 1.7(b). If the relaxation
speed k is slower than the diffusion of molecules across the concentration
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gradients in the solution, and if there is a jump of a chemical potential at the
droplet interface, the droplet grows according to the interface-kinetics lim-
ited law [8]. The molecular fluxes in the interface-kinetics limited regime for
phase-separated system have been discussed for flat interfaces [62, 63, 64, 65].
We will highlight the theory model by Langer and Sekerka of the depar-
ture from local equilibrium with moving interface [66] for the derivation of
droplet growth in Chapt. 2. In the interface-limited kinetics, if the interface
is moving very slowly on the time scale associated with diffusion, then there
is no composition gradient in the a outside phase, Fig.1.7(b). Droplets grow
due to the difference of the concentration at the interface and that in the so-
lution ¢(t), with the droplet growth law [8]

iR(t) — k C(t) B Cg?lt(R)

dt 9 ’

in

(1.14)

where £ is the relaxation speed toward the local equilibrium at the interface.
Notice that due to the dominating volume versus area effects, the growth
laws in Eq. (1.13) and Eq. (1.14) differ in their dependence on the radius R.

In Ref. [8] we find a single equation which combines both processes,

d kD % 0
&= 5D 0 (5(75) - = (t)> , (1.15)

where we have used the Gibbs-Thomson relation, Eq. (1.8), for ¢{},(R), and
introduced supersaturation ¢(t) = (c(t) — cg?l)t) / 9. The capillary length we
consider, ¢, oyt = ¢,. By varying the ratio kR(t)/D, we can switch between
diffusion limited (kR (t) > D) and interface-kinetics limited regime (kR(t) <

D).

To derive the coarsening kinetics and the scaling laws of the average radius
(R(t)), the first step is to find a solution of Eq. (1.12). In the dilute limit, close
to equilibrium, when droplets compete between each other for the droplet
material, the changes of the concentration ¢(¢) are negligible compared to the
droplet growth, which implies a quasi-static approximation ¢é(¢) >~ 0. In this
approximation the solution of Eq. (1.12) is

c(t) = <1 + £, m> diffusion limited , (1.16a)

c(t) = <1 + £, Si0) ) interface-kinetics limited , (1.16b)

(R2(1))
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where /, is the capillary length, and by (e) we indicate the moments of the
distribution function N (R, ¢) which describes the statistics of droplet sizes.
The derivation of these solutions will be discussed in more detail in Chapt. 2
and can be found in Ref. [8]. What is important to notice at this point,
is that the average concentration ¢(t) captures at each time ¢ the evolution
of the whole emulsion. Every distinct droplets which grows according to
Eq. (1.15), is coupled through the supersaturation £(t) to all other droplets
in the emulsion. The fixed-point of the growth law R(t), is the critical ra-
dius, which can be expressed through the supersaturation and the capillary
length, R.(t) = ¢,/e(t). From Eq. (1.16b) follows that R 4 = (R(t)) and
Reine = (R2(1))/ (R(1))-

Lifshitz, Slyozov and Wagner have separately derived the asymptotic droplet
size distribution function N(R,t) and its moments for passive emulsions in
the diffusion limited [7, 8] and interface-kinetics limited regime [8]. The

asymptotic coarsening solution of the average radius is

©, \*
4
R(t)) = —Dcout£7t diffusion limited , (1.17a)
9 O
1/2
8 (k%0 \'7 o
(R(t)) = 9 Wt interface-kinetics limited , (1.17b)

are depicted in Fig. 1.8. The critical radius R gif/int, given its initial value at

time t = 0, R gifr/int(0), in the diffusion limited and interface-kinetics limited

case is
1/3
4 DO
R qigs = (Rc,diff(0)3 + 9 (ZO)t Tt , (1.18a)
Cin
1/2
kel
Rc,int = (Rc,int(0)2 + 2—(5)’7 t) , (118b)
Cin

respectively. The supersaturation, due to its dependence on the critical ra-
dius, follows c(t) o< R:'(t), and we can see the evolution of the supersatu-
ration profile according to this prediction in Fig. 1.8(b). We can also make
a simple estimation for the total number of droplets, N(t) = Vin(t)/(V (2)).
Coarsening in passive emulsions refers to a stage when the supersaturation
is very low, and the total droplet phase volume is approximately constant,
Vin ~ const. We can approximate the average volume (V' (t)) o (R(t))?, such
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FIGURE 1.8: Temporal evolution of the average radius and standard devi-
ation in passive emulsions: The plots are depicted on a log-log scale, the
time ¢ is rescaled by 7 = £2 /D and the radius by £,, see Eq. (1.22). The dots
corresponds to a time series of measurements we will later refer to. (a): Dif-
fusion limited coarsening kinetics of passive emulsions. The average radius
(light blue solid line) follows the theoretical LSW-prediction with the scaling
t1/3. The rescaled standard deviation o (t)/¢, (grey solid line) is increasing
indicating a broadening distribution function. (b): Interface-kinetics limited
coarsening kinetics of passive emulsions. The average radius follows the
t1/2 law. The standard deviation (grey solid line) increases.

that the scaling law of the total droplet number

t_l
t_3/2

diffusion limited ,

N(t) (1.19)

interface-kinetics limited .

The results for the number density n(t) = N(t)/V following the scaling laws
(dashed-lines) from Eq. (1.19), are depicted in Fig.1.9(a).

In the results sketched above, every moment contains the droplet size dis-
tribution function NV (R,t). The droplet size distribution function NV (R,t),
which we will define and discuss in Chapt. 3, obeys a continuity equation
[671,

ON(R, 1) = —0r(N(R, t)%R(t)) , (1.20)
if we plug in Eq. (1.15),
ON(R,t) = — ((’?‘)ta N(R t)k—D e(t) — al (1.21)
LA O "D+ kR(t) R@) || ‘
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FIGURE 1.9: Temporal evolution of the number of droplets and supersat-
uration in passive emulsions: The plots are depicted on a log-log scale.
The dashed lines correspond to the analytic derivations in the LSW-theory,
Eq. (1.19) and Eq. (1.18), respectively. The time ¢ is nondimensionalized by
T = (2/D, Eq. (1.22). (a): Number of droplets decays with ¢~ in the diffu-
sion limited regime (yellow) and with t=3/2 in the interface-kinetics limited

regime (green). (b): Supersaturation €(t) o< Rz !(t), decreases since the con-
(0)

centration ¢(t) converges to the equilibrium cg ;.

Numerically we solve nondimensionalized Eq. (1.21) using conservation law

Eq. (1.11). The nondimensionalisation of the variables is a transformation

t—t/(2/D) (1.22a)
R— R/L,, (1.22b)
such that the nondimensional form of Eq. (1.15) is
d o9 1
— =——— | e(t) — — 1.23
™ = TR R O ‘0= 7w ) (1.23)

where k = k-(,/D is also nondimensional. For the numerical calculations we
chose: £, = 1pum, D = 103um?2/s, ¥ = 200mM, %) = 1mM. For the diffusion
limited case the choice of k = 10*°um/s and for the interface-kinetics k¥ =

10%um/s.

1.5.2 Universal coarsening kinetics of passive emulsions

We have seen that for conserved emulsions, the average radius, the super-
saturation, and the number density of droplets evolve during the coarsening
kinetics with universal power laws. The exponents of the power laws are in-

dependent of the material, the system’s history, and the amplitudes depend
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FIGURE 1.10: Temporal evolution of the droplet size distribution func-
tion in passive emulsions: We depict the droplet size distribution function
for the first three time points (t1/7,t2/7,t3/7) and the last measured time
point ¢t7 /7 during the evolution of the system in Fig. 1.8. We see that the dis-
tribution function broadens during the coarsening kinetics. (a): Diffusion
limited regime. (b): Interface-kinetics limited regime. For the numerical cal-
culations we use the same parameters as in Fig. 1.8. The radius R is rescaled
by ¢,. The color code for the different times corresponds to the color code
used in Fig. 1.8.

on a few material constants but are also independent of initial conditions [10].

The most intriguing feature of the LSW-theory is the universal, self-similar
nature of the coarsening process at long times [2]. The distribution function
N (R, t) can be separated into a time-dependent and radial-dependent part,
such that Eq. (1.20) can be solved using an ansatz N (R, t) = g(t)h(p), where
the dimensionless radius, p = R/R,, is time-invariant [8]. The universal be-
haviour is a direct result of the droplet material conservation law, ¢V = const,
on the longtime solution of the continuity equation, Eq. (1.20) and the kinetic
equations Eq. (1.12), Eq. (1.15), [1]. It means that at all times, the distribution
function can be rescaled to one universal shape. The distribution functions
measured at different times ¢, Fig. 1.10, can be collapsed onto one curve, by
rescaling the radius R to p = R/R. and the amplitude of distribution func-
tion by RZ(¢), Fig. 1.11.

The solution of droplet size distribution function NV (R, t) in the diffusion lim-

ited regime is [8],

[\eJ o]

Y

Cu 2<i)”3< 1 )“/3eX (22). p=t <
N(p,t): Rt P\ 3+ 1-2p P\5=2% ) P~ &rR@ >

0, p>3,

(1.24)
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FIGURE 1.11: Collapse of the distribution function: The distribution func-
tions measured at different time points from Fig. 1.8 can be collapsed on a
self-similar shape by rescaling the radius R by R.(t), p = R/R., and the
amplitude of distribution function by RZ(¢), to multiply out the time de-
pendence of g(t) o< RZ%(t). (a): Diffusion limited regime. The distribution
function becomes zero at p = 1.5. (b): Interface-limited regime. The distri-
bution function becomes zero at p = 2. The color code for the curves on the
collapse corresponds to the color scheme used to indicate the time points in
Fig. 1.8.

For the interface-kinetics limited case [8],

5
G <L> ex < 3") =B <2
N(p,t) = Re(0)T P\ 2 b p P= R =4 (1.25)
0, p>2,

in both cases ¢(t) = Caisr/intRe(t)™*. The constant Cyif/int, is determined by
the initial condition of the droplet size distribution function. We can show
that the time dependence of the moments of the distribution function is a
function of the length scale R (t) which we choose for the radius p = R/R..
A k-th moment of the distribution function is defined as

[ R*N(R, t)dR

J SN (R, t)dR

By plugging in the ansatz N'(R,t) = ¢(t)h(p), and using p = R/R., we find

(RE(t)) =

(1.26)

that the £-th moment scales as a k-th power of the critical radius,

(R 1)) = (o L O 1.27)

fo
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The variance o?(t) tells us about the behavior of the distribution function.

Performing the steps before, for 02(t), gives us

o*(t) = (R*(t)) — (R(t))’

f0°°R2/\/Rt)dR_ IS RN (R, t)dR
Jo N (R, t)dR fo (R,t)dR

> 2h d h(p)d

fo )dp fo h(p)dp
For the solutions of (p) in Eq. (1.24) and Eq. (1.25), the difference of the in-
tegrals in the brackets is always positive. The distribution function is broad-

(1.28)

ening, and the variance increases as R2(t). For passive emulsions, a signifi-
cant result which also follows from Eq. (1.27) is that (R(t))as = Reai(t), and
(R(t))int = (8/9)Rent(t). The average radius is equal to or slightly below the
critical radius respectively.

The universal self-similar nature made Ostwald ripening an interesting pro-
cess as a premise for a wide variety of two-phase mixtures. For example,
fusion does not reflect this feature of universality, and its statistics depend
on the initial conditions. Although the scaling of the average radius for fu-
sion is the same as for Ostwald ripening, with (R(t)) o t'/3, the droplet size
distribution function is not self-similar. The rate of fusion depends on time,
and due to no upper bound in the radial domain, the distribution function
has a long tail. We now have all the knowledge and intuition about the the-
ory of coarsening for passive emulsions necessary to proceed in the following

chapters with the new theory of coarsening for emulsions with matter sup-

ply.

1.6 Scope of this thesis

Extending the theory of coarsening kinetics of passive emulsions to systems
with matter supply is crucial to our understanding of the evolution of emul-

sions in living cells and in vitro.

Chapt. 2 is dedicated to the theory of droplet growth in systems with a bro-
ken conservation law of the total droplet material. Some definitions intro-
duced in Subsect. 1.5 were often postulated in the literature but not derived.
We will discuss and derive in detail the droplet growth law where the growth
rate limiting process can be diffusion or the relaxation to local equilibrium
at the droplet interface. Furthermore, we will discuss the droplet material
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conservation law and how it can be broken through matter supply. We will
derive droplet size distribution function in systems where the conservation
law of the total droplet material is broken. The question we will attempt to
answer is: Are there new universality classes of emulsions with matter sup-
ply? This discussion will be the basis for Chapt. 3, where we will derive and
study coarsening kinetics of emulsions corresponding to a specific class of
matter supply.

In Chapt. 3, we will explore novel coarsening laws for emulsions with mat-
ter supply. We will discuss a constant matter supply and a time-dependent
supply, which maintains constant supersaturation. We will derive the scal-
ing of moments of the droplet size distribution function and its kinetics. The

questions we are interested in are:

* Are there new longtime coarsening kinetics for emulsions with matter
supply?

* When is the coarsening kinetics for emulsions with matter supply uni-

versal?

The preliminary results of Chapt. 3 and the comparison to passive emulsions
are summarized in Tab. 1.1.

Chapt. 4 is devoted to chemically-active emulsions in which droplet material

supply is controlled through a chemical reaction cycle. Precursor molecules

under fuel consumption become activated to droplet material which can spon-
taneously deactivate to precursor molecules. We will discuss under which

conditions we can write the mass action law for such a system and how does

the modified conservation law look like. We will link the model to an ex-

perimental realization. The experimental realization will allow us to study

coarsening in chemically-active emulsions for precursors and droplet build-

ing blocks spanning a wide range of physicochemical properties under dif-

ferent conditions of fuel supply. We will explore:

¢ Which parameters of the chemical reaction cycle influence the coarsen-

ing kinetics and in which way?
¢ Is the coarsening kinetics in chemically-active emulsions universal?

* What is the effect of the chemical reaction cycle on the short-time and

long-time evolution of the chemically-active emulsions?

In the summary part of the thesis Chapt. 5, we will summarize the results and

discuss the possible outlook. Furthermore, we will discuss the relevance of
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Grovsvltjf‘l) E)lr};(/:ess Diffusion limited Interface-kinetics limited
© \? © /2
Passive (R(t)) = (Dgﬁ”fg)‘“ t) (R(t)) = 2(1618;:(%? t)
n / Cin in
O suppy broadening broadening
(0) 1/2 k (0)
Time-dependent (R(t)) = <2D€<(;(§“t t) (R() = ( o t)
constant supersaturation Cin Cin
narrowing constant width
- W CS,?J) 1/3 - s{ ¢ c(()?l) 1/2
Constant supply (R(t)) = §diﬁ<D9 ;(2) tt) (R(t)) = &t gl ® ;cfg)tt
broadening - narrowing broadening

TABLE 1.1: Summary of coarsening kinetics in emulsions with different
matter supply: Table summarising asymptotic scaling laws for the average
radius (R(t)), and whether the distribution function is narrowing or broad-
ening in emulsions under different constraints. We differentiate between the
two processes that define the growth law, diffusion limited and interface-
kinetics limited. The passive results have been discussed in Chapt. 1, and
the novel results for emulsions with supply will be derived in Chapt. 3. We
will there derive and discuss the parameter &giff/int, Which under some con-
ditions can be independent of the supply.

the results from the perspective of emulsions in biology and at the molecular

origin of life.
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Chapter 2

Theory of droplet growth in emul-

sions with broken conservation law

In this chapter, we derive a complete model for emulsion kinetics, in which
the conservation of the total droplet material can be broken. We start with a
single droplet in a binary mixture, where we consider the departure from the
local equilibrium at the phase interface. We will derive the droplet growth
law, which in an asymptotic regime will correspond to a diffusion limited
or the interface-kinetics limited growth. The work of Langer and Sekerka in
Ref. [66], about a departure from the local equilibrium at the flat interface
of a binary mixture, will be of importance in our discussion. The growth
laws discussed in the introduction, especially Eq. (1.17a) and Eq. (1.17b), will

emerge in our derivation as asymptotic limits of the rate limiting processes.

In the second part of the chapter, we will extend the model from a single
droplet to an emulsion with a general matter supply term in the dilute phase
that breaks the droplet material conservation law. We will introduce the
droplet size distribution function N(R,t) first as a sum over an ensemble
of droplets to later discuss the results in the continuum limit. We will de-
rive how a single droplet grows in an emulsion with matter supply. In the
last part of the chapter, we will attempt to find an analytical solution of the
droplet size distribution function for emulsions with matter supply. We will
highlight the general features of the distribution function and discuss the
predictions of Sugimoto in Ref. [68, 69], who suggested possible regimes of
narrowing and broadening distribution function based on the relation be-

tween the average and the critical radius.



Chapter 2. Theory of droplet growth in emulsions with broken 08
conservation law

2.1 Effective droplet model

In Sect. 1.3, we learned that for a two-phase system, there exist equilibrium
(0)

volume fractions, ¢..’, ¢<()?1)t of the two phases. Since the volume fraction ¢ is
continuous in space, the free energy must interpolate between the concentra-
tion of dilute and dense phases. The free energy accounts for the contribution

of spatial inhomogeneities of the concentration profile across the interface.

We assume that at each position r, at time ¢, the two-phase system is de-
scribed by a scalar variable ¢(r,t), which corresponds to the local concen-
tration of the droplet material solution, whose molecular volume, v is in-
dependent of composition throughout the whole system and ¢ = ¢/v. For
each value of ¢(r, ), the coarse-grained free energy functional is of the form
[49, 66, 70]

Fld = / Pr [fo(6) + Foix(e) + 5 |Velr, )] 2.1)

where fix follows Eq. (1.4) and fj is the free energy of the pure system before
mixing [49]. Furthermore, x = ksTxv°/3, and characterises the concentration
inhomogeneities in the free energy. The stationary solutions to Eq. (2.1) sub-
ject to the constraint of the overall conservation of molecules are sketched in
Fig. 2.1(a). In the limit of strong phase separation, the interaction parameter
X in fmix(c) is high, leading to a large relative difference (ci(r?) — c(()?l)t) / cf,?l)t for
equilibrium concentrations. The interfacial width, dg, in this limit is of the

order of the molecular size /3.

We want to formulate the dynamical aspects of the model, describing how
it reaches its equilibrium state. The particle conservation is expressed by a
continuity equation, which describes the transport of a conserved quantity,
which is the concentration ¢(r, t),

Be+V-j=0, (2.2)

where j is the particle flux. Solving the above equation is generally non-
trivial due to the non-linear nature of the problem. For the system we con-
sider, there is a sharp jump in the concentration value at the thin interface.
In regions inside the coexisting phases and far away from the interface, we

can thus linearize the concentrations c¢i/out around the uniform equilibrium
(0)

in/out"

and reads [71]

values, c We arrive at a diffusion equation, valid in phases o = in/out,

oy ~ D V¢, (2.3)
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where D, = kgT' (Opia/0c) (), is a diffusion coefficient inside and outside the

droplet phase (o = in/out). For the flux of molecules, it follows,
j, = —D.Vec. (2.4)

Furthermore, we need a condition at the interface of the phases. Usually, one
can assume local phase equilibrium at the interface, which corresponds to

the chemical potential of the two phases being in balance at the interface,

Meq = Hin = Hout » (25)

where the chemical potential at the interface u, = % e The chemical

potential can be expressed in terms of the activity coefficient +,, the concen-
tration ¢, and the reference chemical potential wl [72,73,74,75]

fia = pig + kBT 10g(Vaca) - (2.6)

The direct effect of the local equilibrium condition, Eq. (2.5), is that the parti-
tion coefficient P = c;1/c5l,, can be expressed in terms of the activity coeffi-
cients of both phases at equilibrium,

eq

’Yout
p=- (2.7)

’7in

which reflects that the partitioning of the molecules in the two phases is de-
termined by the composition dependence of activity coefficients va', [76]. We
will explore the effects of the departure from local equilibrium at the inter-
face in Subsect. 2.1.1.

Before we continue, it is worth discussing the time and length scales rele-
vant to our problem. The shape of a droplet is parameterized in the spheri-
cal coordinate system (7, ¢,6), by R(¢,0;t) = R(¢,0;t)e,. From now on, we
will, for simplification, consider a spherically symmetric system, such that
R(¢,0;t) = R(t), and we parameterize the coordinate system accordingly.
The interfacial width is small (0 x v'/?), Fig. 2.1(a), we may assume that the
time 7; = 0%/ D required for the interface profile to relax across the phases is
smaller or compared to the time 7, = [%,/ D required for diffusion processes
associated with a length scale [p. We assume that the smoothing of the in-
terface profile will take place in a time much shorter than that required for
the displacement of the interface. If the interface moves with velocity v, it fol-
lows that 75v < 0 [66]. These assumptions simplify the concentration profile
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FIGURE 2.1: Schematic of the concentration profile for the inside and
outside phase across the interface: (a): Concentration of droplet material
across the phases with a tanh-profile across the interface. In bulk, away from

the interface, we indicate the equilibrium concentrations ci(r?} out- (b): In the

effective droplet model at the sharp interface we approximate the concen-
tration profile by the respective boundary conditions for both phases, with
Cin/out(R) at the droplet’s interface and c., far away from the interfaces.

across the two-phase system to the effective droplet model, where the finite
interfacial width is replaced by a sharp interface and the boundary condition
for the concentration in both phases at r = R, ¢injout(r = R) = cinjout(R),
Fig. 2.1(b). In the effective droplet model, the concentration far away from
the droplet interface is ¢(r — 00) = ¢wo.

2.1.1 Interface kinetics with local departure from equilibrium

In this section, we discuss the propagation of the interface R with a velocity
v and consider the local departure from equilibrium at the interface. The
case of small interfacial width dz compared to the curvature, which we have
discussed above, implies z/R — 0. We decide to derive the movement of
the interface in a 1D system corresponding to a flat interface. The results hold
for higher dimensions i.e., for spherically symmetric systems in the limit of
sharp interface limits, as showed by Elder et al. in Ref. [77].

We define a frame of reference moving with a velocity v, which is defined by
the equation ' = r — f(f v(t')dt'. The concentration ¢(r/,t) in that reference

frame evolves with [66]
Oe(r' 1) — v Oue(r',t) = Ope(r, ). (2.8)

In the moving reference frame, the continuity equation Eq. (2.2) holds, such
that 0;c(r',t) = —0,j (1", t). We also use Eq. (2.2) for the conservation law in
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the center of mass reference,
—0j(r't) —vOuc(r t) = —0,5(r,1). (2.9)

The conservation law in the reference frame of the moving interface implies,
dyc(r’,t) = 0 and thus 0., = 0. The flux is constant, j; = const across the inter-
face. The condition for both phases at the interface is, Jin = Jout- Integrating
both sides of Eq. (2.9) across the interface r = R,

jout|R —v Cout(R) = jin|R —v Cin<R) 5 (210)
The interface moves at a velocity v [77, 66],

o jin| - jout|
v(R) = = RI§ — (1}?{) . (2.11)

We want to relate the interface fluxes measured at in a reference frame which
is the interface at rest, to the chemical potential differences Ay, and Apioyt
across the interface. The rate of entropy production, due to interface fluxes,

per unit area of interface is [66, 78]
TS = jinAMin + joutAMout s (212)

where Apin = (tin — 11*), Attout = (14" — fout). The reference chemical potential
at the interface, ;1*, corresponds in the linear order to the equilibrium chemi-
cal potential, ;1* ~ ;1°l, determined by the tangent to the free energy minima
in the Maxwell-construction Fig. 1.6(b). The fluxes j,|j at the interface can
be expressed through their respective conjugate generalized forces Ap, and

be written as

Jinl = i (40T — 0T ) (213a)

jOth|R = kout (eu*/kBT _ el»‘out/k?BT) , (2.]_3b)

where we chose an expression that suffices the detailed balance of rates [79].
The coefficients k, with units [k,| = concentration - length /time, characterize
the relaxation of the chemical potentials to the reference ;.* at the interface R.
The boundary conditions for the fluxes follow from Eq. (2.4). In spherically
symmetric coordinates, with j, = j-e, considering that there is no polar and
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FIGURE 2.2: Schematics of the chemical potential profile across the
phases: (a): The chemical potentials pn/out = p* are equal at the interface,
which corresponds to the phase equilibrium at the droplet interface. (b):
Scenario with a jump in the chemical potential profile at the interface. Dark-
blue line corresponds to the scenario, when both the inside and the outside
phase mismatch the reference potential ;*. The light-blue line shows a sce-
nario when the inside is at equilibrium i, = p*, but for the outside there is
a mismatch in the chemical potential jiout # p*.

azimuthal dependence of the fields, the boundary condition reads,

Jinlg = —Din Vein|p (2.14a)
jout|R = _Dout vCou’c|R . (214b)

2.1.2 Cases of departure from the local equilibrium at the

droplet interface

In the following, we consider cases of the departure from the local equilib-
rium at the droplet interface. We will first look at the scenario when there is
no departure, and the condition of phase equilibrium at the interface holds.
We will compare the resulting movement of the interface to a case of asym-
metric departure from the local equilibrium at the interface when only the

outside phase is not at equilibrium.

Suppose the chemical potentials in the inside and outside phases at the in-
terface are equal to the reference chemical potential fioyt = pin = p*. This
is a condition of local phase equilibrium at the interface, Fig. 2.2(a). In this
case, since the fluxes in Eq. (2.13) have to be finite, we calculate them from
the boundary condition Eq. (2.14). The equation for the movement of the
interface Eq. (2.11) becomes

_Din vcin| + Dout vCout|
R — R R
o8 n(R) — coul F)

(2.15)
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The gradient of the concentrations in both phases at the interface determines

the growth of the droplet. This case corresponds to diffusion limited growth.

If the interface is not locally at the equilibrium in both phases, there is a jump
of the chemical potentials at the interface, Fig. 2.2(b). Using Eq. (2.6), we can
rewrite the expression for the local fluxes at the interface

jin|R - kin( (f}/incin)|R - Vielilcfr?) 9 (216a)
Jout| g = Fout <7§3tcce>?1t — (YoutCout)| R) : (2.16b)

Notice, that k,, for o = in/out is a molecular flux per unit area of the inter-

face, and does not depend on the composition.

As discussed earlier, at phase equilibrium, the partition coefficient P can be

expressed in terms of the activity coefficients, Eq. (2.7). The fluxes can be thus

simplified to
il = kiny 9 P Oncin)lp & (2.17a)
Jin R m/}/jn ’qu P out ) :
. e e (70utcout)’
]out|R = kout%r?P <Co?1t - TPR . (2.17b)

We have rewritten the fluxes in terms of the equilibrium conditions and the
concentrations at the interface. The above scenario corresponds to a case
when both pi, and jioy depart from the local equilibrium p*, depicted in
Fig. 2.2(b) (dark blue line).

The asymmetric departure from local equilibrium can also happen, e.g., if for
one of the phases only, the relaxation to equilibrium has not been reached.
Consider a situation like the one depicted in Fig. 2.2(b) (light blue line). For
the inside phase i, = p* at the interface. In this case, (VinCin)|p = Vincio,
and the flux jin|, = —Din Vein|p is controlled by diffusion. We can rewrite
Eq. (2.13b) for the flux in the outside phase

jout|R = kout <’7fr?cjer? - (’Youtcout) |R> ) (218)

and expand (YoutCout)| z around the equilibrium value up to the second order,

9

~ ~8q €q out

(’Youtcout> ’ R — P)/outcout + ( a
Cout

Cote 150 ) (cou(R) = %) . 219)
€q
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Since v,! and its derivatives are in the dilute regime constants, we can in-
corporate them into the coefficient k., which becomes a speed of relaxation
towards the equilibrium at the interface. The flux in Eq. (2.18) becomes

jout’R = kout (ngt - Cout(R)) . (220)

The corresponding growth law, Eq. (2.11), is composed of a diffusive flux and
an interface-kinetics controlled material transport,
o —Diy vCin|R - kout (CS)?H - Cout(R))

v(R) = (1) — com( ) . (2.21)

If the interface-kinetics contribution dominates the growth kinetics in Eq. (2.21),

this leads to the interface-kinetics controlled growth.

2.1.3 Constant conditions inside the droplet

We discuss here a spherical droplet of radius R(¢) in a spherically symmetric
system. We assume no polar or azimuthal dependence of the concentration
tield. Throughout this thesis, we focus on the case where the inside phase has
fast relaxation towards equilibrium and there are no spatial inhomogenedities,
V2¢in(r, t) = 0. The flux inside the droplet vanishes 9,cin(r)|,_, = 0. Further-

more, for strong phase separation, when A > 9 we can neglect the curva-

m
ture effects in the Gibbs-Thomson relation for the inside, such that ¢, ~ 9,

(0)

In this case we can set ¢, = ¢,,', which implies ji, = 0. The equation for the

movement of the interface simplifies to

- jout‘R
v(R) = —— 2R (2.22)
®) 0 — Cout(R)

in

where jou| is given by Eq. (2.20) with the boundary condition Eq. (2.14b).

2.1.4 Quasi-static approximation and the concentration pro-
file

To derive the droplet’s growth dynamics, since the concentration profile in-

side is flat, we only need to know the concentration profile in the outside

phase. We employ the quasi-static approximation, which assumes that the

droplet radius varies slowly, such that at each (coarse-grained) time point of

the droplet dynamics, we can neglect the transient of the diffusion equation,
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Eq. (2.3) [49]. The diffusion equation simplifies to the Laplace equation,
10/ ,0c
~ 2 . _ - 2 out
0= Vieoulrit) = - (7“ o ) . (2.23)

Since we have relaxed to a stationary solution, the time ¢ here is a parameter
determining the boundary condition but not the time dependence of the con-
centration. We consider a single droplet embedded in a large system, with
concentration far away from the droplet interface, ¢, set by the condition
at the system’s boundary. Given the concentration at the droplet’s interface
cout(R), we have two boundary conditions for Eq. (2.23),

Cout<7n = R) = Cout(R) ) (224&)
lm cout(r) = oo - (2.24b)
r—00

The solution of the Laplace equation for r > R, given the above conditions is

Cout(1") = Coo + (Cout(R) — cm)g , (2.25)

whereas due to the constant conditions inside, for r < R, ¢jn(r) = ci(.t(l))'

2.1.5 Asymptotic relaxation at the interface

Constant conditions inside the droplet imply that we will only encounter co-
efficients relevant to the outside phase. Thus, we can drop the index "out"
for parameters like the diffusion constant D, relaxation speed &, or when dis-

cussing the concentration profile outside.

In our model, the concentration at the boundary in the outside phase, ¢(R),
is still undetermined. Setting Eq. (2.20) equal to the boundary condition
Eq. (2.14b) and using the solution in Eq. (2.25), gives

_ Dewo k R(t) c*(R)

(R) D+kR(E)

(2.26)

where we have indicated the dependence of ¢*4(R) on R from the Gibbs-
Thomson relation. Wagner has also showed this solution [8], but the exact
derivation was missing. Comparison of D to kR(t) gives us two asymp-
totic regimes, which we can distinguish by 8 = kR(t)/D, such that: for
kR(t) > D, in the diffusion limited regime (8 — o0), the concentration c¢(R)
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is determined by the Gibbs-Thomson relation,

lim ¢(R) = *1(R). (2.27)
B—00
For kR(t) < D, which corresponds to the interface-kinetics limited regime
(8 — 0), the concentration ¢(R) is determined by the condition at the system’s
boundary far away from the droplet’s interface,

ELI[]] ¢(R) = ¢, (2.28)
where we have used L'Hopital’s rule to perform the limit of Eq. (2.26). We
reach the two asymptotic regimes by varying the ratio 5 = kR(t)/D, which
tells about the relaxation speed to the local equilibrium at the interface com-
pared to the diffusion in the bulk.

Plugging in the solution for ¢(R), i.e., Eq. (2.26) into the growth law Eq. (2.22),

B ED (oo — c*9)
- D+kR(Et) O 7

in

v(R) (2.29)

where we have assumed strong phase separation, such that ci(I?)

> ¢(R), at
all times. This result corresponds to the growth law discussed in Eq. (1.15).
By varying kR(t) to D, the growth law for a single droplet is corresponding
either to the interface-kinetics limited growth law Eq. (1.14), or the diffusion

limited regime Eq. (1.13).

2.2 Statistics of growth in emulsions

Until now, we have studied the behavior of a single droplet embed in an in-
finite system, with the constant concentration at the system’s boundary c..
For emulsions, we need to define a system composed of many droplets shar-
ing an average concentration in the dilute phase, which will be controlled by
the external matter supply.

In the following, we will derive mathematical tools to describe emulsions
from a perspective of a discrete sum over an ensemble of droplet radii, Sub-
sect. 2.2.1, and later in Subsect. 2.2.2 by taking a continuum limit. By intro-
ducing matter supply, we will find how it affects the single droplet growth
law and the evolution of emulsion. The derivation of emulsion kinetics in a
discrete picture, is partially inspired by the discussion of Ostwald ripening

in passive emulsions in the lecture notes of Martin Grant [80] and the notes
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of James S. Langer in Ref. [71]. We expanded this discussion to the interface-
kinetics limited growth of droplets and to matter supply. We focus only on
emulsions with constant conditions inside the droplets.

2.2.1 Derivation of emulsion growth kinetics for each droplet

Emulsion is composed of many droplets coexisting

with a dilute phase. We define a set of droplets la-

® beled i = 1,2,3,..., M, each of radius R;(t), cen-

U - tered at positions r,. The droplet size distribution

function in the discrete description is

T~

Z(S (R— R;) (2.30)

FIGURE 2.3: Schematic )
of emulsion: Emulsion Where the total number of droplets is N (¢). Any k-th

is composed of many moment of the distribution is defined as
droplets coexisting with
Xiny Bi()

a dilute phase. B ;
(R*(t)) = =30 (2.31)

The units of the droplets size distribution function in Eq. (2.30) are [N] =
length™*.

We treat droplets as reservoirs of droplet material, with constant concentra-
tion c( ). The material exchanged by each droplet with its environment due

to its volumetric changes is

d (4w
0 (FR) = 1), 232)

where ();(t) is a sink (or source) term of the droplet material due to droplet
growth. The contributions from all droplets through the sink and source
terms is a sum of the volumetric changes for all droplets, i.e., the sum of
Eq. (2.32) over all droplets 7, such that

N(t)

xQ c(ljt (477 ) — A Z Qi(t). (2.33)

=1

In the vector notation Fig. 2.4, a vector r; is pointing from the origin of the
frame of reference to the center of a droplet i, Fig. 2.4(a). The radius of droplet

i is given by R; = |r —r;|. The concentration field of the droplet material
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(a) (b)  Dropleti

Droplet j

FIGURE 2.4: Schematic of the coordinate system: (a) Vector r; points from

the origin (dot) to the center of a droplet i. Radius R; = |[r —1;|. (b): Two

droplets i and j. The vectors point from the origin, which is represented by
a dot.

in the dilute phase at position r is cou(r,?). The conservation law for the

concentration field, cout(r, t) in absence of any additional matter supply; is

OiCout(t,1) = D Vcou(r,t) — 47 Y - Qi(t)d(r —17) | (2.34)

where the last term describes the distributed source associated with growing
droplets [71]. We introduce a matter supply term J.(¢), an additional source
term that is spatially homogeneous and contributes homogeneously to the
dilute phase. Without matter supply J.(¢), the total amount of the droplet
material in the system would be conserved and bound by the initial condi-
tion. The conservation law for the concentration field cou(r, t) in the presence

of matter supply, is

N(t)
DyCout(t, 1) = D V2ou(r —47{:@ (r—1;) + Jo(t) . (2.35)

Since J.(t) is a homogeneous matter supply and we can assume droplets be-
ing distributed homogeneously, e can incorporate J.(¢) into the sum over 1.
We can consider the contribution of .J.(¢) to a sink source per droplet volume
V/N(t) for each droplet i,

N(®)
atcout< ) DV? Cout — 4 Z ( Zirgff)(‘/) > 5(1‘ - ri) ) (236)
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which we can write in the form of Eq. (2.34) by substituting ¢)(¢) with
~ J()V
(1) = Q,(t) — . 37
Qi) = Qi) ~ 13 237)

Employing the quasi-static assumption, O0;cout(r,t) =~ 0, allows us to find a
quasi-static solution for c,u(r; t), where the time dependence ¢ arises due to
the boundary conditions of the solution. We need to solve the differential

equation,
N(t)
D Veou(r;t) =47 Y Qi(t)d(r — 1), (2.38)
i=1

For problems like Coulomb’s law above, we can use a theorem [81, p.50],
V2(1/|x]) = —4md(x). The solution of Eq. (2.38) in spherically symmetric

coordinates is,

N(t) =~
1 it
Cou(E:1) = =5 ) |rQ_( r)A| +A. (2.39)
i=1 v

Far away from growing interface in a finite system, the concentration is set
by a homogeneous value ¢ (t). Due to this condition A = c(t). Note that
the time in the solution ¢(r; t) arises only due to the boundary conditions of
the quasi-stationary solution. The contribution to the dilute concentration
at the droplet’s interface is given by term Qi(t). Note that we assume that
droplets are point-like object far from one another that the diffusion field is

not affected by any distortions in their shapes [71].

Integrating Eq. (2.38) over the dilute phase, assuming that at system’s bound-
ary there are no fluxes of droplet material,

0= Z Qilt) . (2.40)

Using the definition of Qi(t), Eq. (2.37), it follows that

N(®)
> o= Sk (2.41)

The effect of this result is visible when we look at Eq. (2.33). In the presence
of matter supply, the total droplet phase volume changes according to added
material.

Without matter supply, the exchanged material between the droplets would
always balance, such that no material would be lost to the dilute phase but

also there would be no change in the total droplet phase volume. The sum of
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the sink and sources from all the droplets must balance, ZN(t Qi(t) =0, for
Jo(t) = 0, such that for two droplets i and j Fig. 2.4(b), Q; = —Q),.

To consider how droplets in an emulsion with matter supply grow, we should
first determine the growth law of a single droplet. Given the solution cou(r; t),
we can write modified version of the growth law Eq. (2.29), in which we rec-
ognize that the i—th droplet actually sees the field cou(r;;t) as opposed to
simply c¢. The equation for Ri(t), using Eq. (2.29) and Eq. (2.39),

Ri(t) = L_<__er ilt) o o D-eR)). @A)

This equation has been obtained by Wein and Cahn for the diffusion con-
trolled coarsening in passive emulsions in Ref. [82], see also [71]. In the dilute
limit of very distant droplets from each other, the term |r; — r;| — oo, which
is precisely the criterion for validity of the mean-field approximation. In that
case, the term with the sum vanishes, and we can consider droplets growing

just through the far away concentration shared by all droplets, c(t)

kD 1

() = — — (R,

B0 = 5t Rm o (co(t) = 3(Ry)) (2.43)
Combining the condition of the overall droplet phase volume growth, Eq. (2.33)
and the result for the sum over all sink and source terms in the presence of

matter supply J.(t), Eq. (2.41) gives us

N(t)
dmel) Y Ri(t)*Ri(t) = Je(t) (2.44)

where we have incorporated the total system volume into J.(¢) = V J.(t), see
Eq. (2.41). Substituting the growth law R;(t) Eq. (2.43),

N(t

— UR;) (1)
Zl D + kR;(t) — 4rwkD’ @45

In the limit of the diffusion £R; > D, or the interface-kinetics limited regime,
kR; < D, we distinguish two asymptotic solutions for the supersaturation
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respectively,
e J () (Ar D) T 40 N (¢
Coo(t)(o) c” ()( ™ ;(t)) +(,N(t) for kRS D. (2.460)
¢ Zi:l Ri(t)
wo(t) =@ J(t) (4mke®) T 0, SN Ryt
& ()(0) e _ ()( TRC )N(t) 2721_1 (t) for kR, < D, (2.46b)
¢ 2z B (1)

where we have used the Gibbs-Thomson relation, ¢*d(R) = (1 + ¢,/R).
Using the definition of a k—th moment Eq. (2.31), and rewriting for the su-
persaturation e(t) = (cxo(t) — ) /cl,

e(t) = R@) for kR> D, (2.47a)
- (0)) !
e(t) SO kN(Z_;Zt)» *LEW) for kER< D. (2.47b)
In the growth law for each droplet
: kD O 0y

the information about the whole emulsion is encoded through ¢(¢). In the
absence of matter supply J. = 0, the concentration shared by all droplets de-
pends only on the distribution of droplet sizes through its first and second
moment, respectively, as it is known for passive emulsions. The critical ra-
dius R.(t) is a fixed point of equation R(t) = 0, thus R.(t) = £, /<(t). For the
two asymptotic regimes,

R.(t) = (R(E) — for kR> D, (2.49a)
Jo(t)(4rDN(t)c@¢,) " +1
Re(t) = (A1) for kR< D, (2.49b)

Je(t) (4mk N (£)0,60) ™ + (R(t))

It is possible to describe the coupling between the droplets and the evolution
of emulsion with matter supply using discrete formalism. We have seen how
the coupling of droplets through the shared supersaturation £(¢) influences
the growth of every distinct droplet in the system. Only be fixing the super-
saturation to be a constant, and thus breaking the dependence on the mo-
ments of the distribution function, droplets would be decoupled from each

other.
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2.2.2 Continuum theory for emulsion kinetics
The time derivative of the droplet size distribution function, Eq. (2.30), is
N(t
—N R, 1) Z 1)) - (2.50)
=1
The right hand side of the equation above can be rewritten as
N(t) N(#)
dR;(t) O dR;(t) O
—R(D) = — — 2.51
@ ok, B R0) == 2 =5 g (R = R). @51)

where we have used the property of the Dirac delta function, which directly
follows from its integral definition, § (z—a) = (1/27) [;° ?(*~*dp. Since Ri(t)
has no dependence on R, we can use the product rule and write the partial

derivative /9 R outside the sum over i,

NG

N() ‘
Z dt ~ Ri(t)) = _a% ; %}(”5(3 — Ri(t)) . (2.52)

Bringing Eq. (2.50) and Eq. (2.52) together, gives a continuity equation, which
is obeyed by the droplet size distribution function,

—N(R t) + o (—/\/'(R t)) =0. (2.53)
OR

The droplet size distribution function N'(R,t) in

the discrete system, Fig. 2.5 (histogram, blue bars

of width AR), can be replaced by a continuous

function defined in space R, Fig. 2.5 (black dashed

line). We introduce N (R, t) by taking the step size

N(R,t)

AR in the discrete description to be infinitesimally

small and counting the number density of droplets

between radius R and R + AR,
FIGURE 2.5: Schematics of
the droplet size distribu- . n(R,R+ AR,t)
tion function: The distri- N(R.1) = Alzl%rgo AR '
bution function is a con-
tinuous function in radial The droplet number density is defined as,
space.

(2.54)

= / " N(R,1)dR, (2.55)
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where the radius R € [0,00). The dimensions of the droplet size density
function are [NV(R, t)] = length™*.

Since we do not consider nucleation of droplets, the droplet number density
n(t) can only change due to droplets dissolving. If we integrate the continuity
equation Eq. (2.53) we obtain

/OOO %N(R’ t)dR = — /Ooo % (R(t)N(R, t)) dR. (2.56)

Using the definition of the droplet number density, Eq. (2.55) and assuming
that the droplet size distribution function vanishes at infinity, we find how
the droplet number density changes in time

Snit) =~ (RON(RD)| (2.57)

The droplet number density changes only due to events of dissolution at R =
0. Furthermore, the k-th moment of the distribution, Eq. (2.31), is defined as

IS REE)N(R, t)dR

R (1)) = <= : 2.58
(F) = i 2.58)
and we define the droplet phase volume fraction ®(t) as
CAr s
B(t) = / TR N (R, AR, (2.59)
0

We can immediately see that the transition from the discrete picture, where
the distribution function was a Dirac delta function, Eq. (2.30), to continuum
corresponds to the transition

N(t)
d 4 d [ 4rn

—Y —R(t)o(r—1) > — [ —RON(R,t)R. 2.60
i 25 R0 —x) = g [ RN R (2.60)

2

We can thus very simply rewrite the conservation law in Eq. (2.35) in the con-
tinuum limit. For this we replace the sum over all sink and source terms of
the droplet material, which was defined in Eq. (2.33) through the volumetric
changes of all droplets, by the droplet phase volume fraction ®(t), such that
the conservation law becomes

@d [*4r

atcout(ry t) =D v2Cout(rv t) — Cin E 0 3

R*N(R,t)dR + J.(t). (2.61)

At this point, we can use the argument of time scale separation. Droplets



Chapter 2. Theory of droplet growth in emulsions with broken m
conservation law

grow by the exchange of material between each other, and they pick addi-
tional material through the matter supply J.(¢). The growth of droplets in the
quasi-static approximation is much slower than the diffusion of concentra-
tion profiles cou(r, t) away from droplets. There is a separation of timescales
such that there is a balance between O;cou(r,t) = D V2cou(r,t) and, the bal-

ance between

0~ —c? / h ATR*()R() N (R, t)dR + J(t) . (2.62)
0

from which also follows a condition for the time derivative of the droplet
phase volume fraction ®(t) (Eq. (2.59)),

() = 250 (2.63)

in

This equations is the continuum analog to Eq. (2.41). In the absence of matter
supply J.(t) = 0, droplets can only grow by exchanging material with each
other. In the presence of J.(t), growth and volumetric changes are dictated

by matter supply.

As we have learned in the previous discussion, to calculate the growth of
each droplet in an emulsion, we need to calculate the supersaturation as
a function of the whole emulsion. We again use the droplet growth law
Eq. (2.29) for the condition in Eq. (2.62) to solve for the quasi-static solution of
the supersaturation £(t) = (co.(t) — ) /c(?). We use the Gibbs-Thomson rela-
tion for c*4(R) = ¢®(1+¢,/R), Eq. (1.8). The solution for the supersaturation
is

0 S (58 ) N (R AR + Jo(t) (4mkD )

Iy (5% ) N (B4R

The growth law for a distinct droplet of radius R(¢) embed in an emulsion of

e(t) = (2.64)

supersaturation ¢(t) with matter supply J.(¢) is

R(t) =

kD o, (I (585D ) AR+ g0 (4mkDE, )
D+ kR 7 ( o (B0) an R(t))

(2.65)
We introduce a new variable 5 = kR/D, which tells us about the ratio of
the two rate limiting processes: Diffusion and interface-kinetics. If diffusion
is the limiting process, D < kR and  — oo. Otherwise, D >> kR implies

f — 0. Thus, we can distinguish two asymptotic results for the critical radius
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Re(t; ),
R.(t; 00) = Jo RN(E 1) dfE — (2.66a)
J SN (R, t) dR + Jc(t) (4 DLy )
2
R(t;0) = Jy BEN(R, 1) dFt (2.66b)

J. S RN (R, t) dR + Jo(t) (4mkly c(©) !

Without matter supply, when J.(t) = 0, we retrieve the classical results, with
Re(t;00) = (R(t)) and Re(t;0) = (R*(t))/(R(t)).

By using the appropriate limits, the growth law simplifies to

r ey — [ N(R ) dR + Jo(t) (4n DL, )T g
(.00) = R(t) cfff) [ RN(R. 1) dR RO |
(2.67a)
" JoZ RN(R.t)dR + J(t) (4mkt, )™ 1
R(t:0) = k QY ( J3PR2N(R,t)dR _R(t)>’ (2.67b)

where we have also introduced a parameter 3, R(t; 3). We have retrieved all
results as discussed in the discrete derivation in Subsect. 2.2.1. We will use
these equations directly in Chapt. 3 to discuss the effect of different matter
supply scenarios on the coarsening kinetics of emulsions. In the following,
we will discuss the separation ansatz for the droplet size distribution func-

tion and the time dependence of the critical radius R.(t).

2.2.3 Separation ansatz for the droplet size distribution func-
tion

Since we do not consider nucleation of droplets or droplets being added to
the system, the change in the droplet number density n(¢) comes only from
the dissolution of droplets, which happens for R < R.(t). We have derived
the law for the droplet number density change in Eq. (2.57), which is
in(t) = RN (R t))‘ : (2.68)
dt " lR=0
Using the part of the growth law R(t), Eq. (2.67), which is valid for R < R.(t),
we obtain [8]

dn(t) kD Cyc®
dt — (D+kR(t) R(t)c”

11’1

N (R, 1) (2.69)

R=0
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This holds both for passive emulsions and emulsions with matter supply,
since J.(t) only contributes in the growth law for R > R.(t). The condition
for the droplet number density will determine the radial dependence of the
droplet size distribution function N'(R, ).

For passive emulsions, the final state of the coarsening process is just one
droplet. Thus, for passive emulsions the droplet number density n(t) will
decrease. If the droplet number density decreases, Eq. (2.69) should be finite.
In order to counteract the divergence at R = 0 in the two asymptotic cases of
diffusion or interface-kinetics limited growth, where 3 — oo and § — 0, with
8 = kR(t)/D respectively, the dependence on the radius R of the droplet size

distribution function in passive emulsions is

N(R,t;00) o R*(t), (2.70a)
N (R,t;0) o< R(t). (2.70b)

The separation ansatz for the droplet size distribution function is, N'(p,t) =
g(t)h(p) [8], where the rescaled radius p = R(t)/I.(t), is scaled by a length
scale [.(t). The normalization condition is h(p = 0) = 1.

For passive emulsions, given the condition in Eq. (2.70) which holds for small
values of R, it follows that N (p,t;00) = p2h(p; 0)g(t; 00), and N (p,t;0) =
ph(p;0)g(t;0). In passive emulsions the choice of the length scale is the crit-
ical radius I.(t) = R.(t). Depending on the time dependence of the droplet
number density n(t), in Eq. (2.69), the dependence on the radius R of the

droplet size distribution function might differ.

The time-dependent part of the separation ansatz ¢(¢) can be defined through
any moment. The typical choice is to define it through the droplet phase vol-
ume fraction ®(t), Eq. (2.59), such that [8]

30 (1)

= . 2.71
Al (t)* [ pPh(p)dp @71)

g(t)

Without matter supply ®(¢) = 0, which follows from Eq. (2.63), and in pas-
sive emulsions, the droplet phase volume fraction ®(¢) is constant. For sys-
tems with matter supply, this is not the case anymore, and we need to take
into account that g(¢) can have, in general, a nontrivial dependence on the

time ¢.

Applying the separation ansatz to the the continuity equation, Eq. (2.53), we
can attempt to solve for the analytical solution of the droplet size distribution
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function NV (R, t). We will see that is not possible to find a complete analytical
solution for emulsions with matter supply. However, we will work in the
analytical approach as far as possible and discuss the final results compared

to passive emulsions in the LSW-theory.

2.3 Analytical solution of the droplet size distri-

bution function for emulsions with matter sup-

ply

The correctness of the separation ansatz for the droplet size distribution func-
tion can be checked, if, after using the continuity equation Eq. (2.53), we
can separate the radial and temporal contributions from each other. In the
following, we will discuss the separation ansatz N(p,t) = g(t)h(p), with
p = R(t)/I.(t) and g(t) o< ®(¢)I7*(¢), from Eq. (2.71). We do not determine
yet the length scale [.(t), which is a length scale of choice.

We are interested how the matter supply J.(¢) influences the validity of the
separation ansatz and if it is possible to solve for the droplet size distribu-
tion function. Note that in our derivation the important condition is that the
matter supply is homogeneous in space. Otherwise, we would need to take
into account the fluctuations in the diffusion profile of the concentration field
and the growth law might change as well. We focus here on a class of matter
supply, that can be defined through the power law time dependence, such
that J.(1)/ () = J.-1*, with @ determining the power law. We can write the

droplet phase volume fraction using the result in Eq. (2.63),

_ ‘]C L pa+1
O(t) = ®(0) + T e (2.72)
The continuity equation is
ON (R, t) = Or(R(t)N (R, 1)) . (2.73)

The left-hand side of the continuity equation, using the ingredients discussed

> . @74

above, is

t

(t

/p-ei.

KA

ON (R, t) = I(t)I° (1) (1) < — 4h(p) — ph'(p) + h(p)l(t)
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Using ®(t) o< t*+! and thus ®(¢)/®(t) = (o + 1)t}

ON (R, t) = I(t)I7°(t)D(2) ( —4h(p) — ph'(p) + (a + 1)h(p)lc(t) tl) . (2.75)

For a = —1, the last term in the sum will always vanish, and we can separate
the left-hand site of the continuity equation as a product of a time-dependent
and radial-dependent function. Furthermore, as long as the time dependence
of the length scale I.(t) is such that in the asymptotic limit ¢ — oo, which is
valid in the regime of coarsening

lim (I.(t)¢t7") =0, (2.76)

t—o00

we can neglect the last term of the sum. In passive emulsions, this term was
not present due to ® = 0. If in emulsions with matter supply there is a length
scale that fulfills the condition in Eq. (2.76), we can choose it to separate the

left-hand side of the continuity equation into
ON(R.1) = (DI (ML) F (p. h(p)) - (2.77)

We will now, analogously, rewrite the right-hand side of the continuity equa-
tion Eq. (2.73). We distinguish between the two asymptotic regimes of growth
limited by diffusion 5 — oo or interface-kinetics, 3 — 0. The growth laws
R(t; B) (Eq. (2.67)) are:

' vaiee [ 1 1
R(t; = — 2.78
29 = 7 (Rca) R(t)) | (278)
R(t;0) ! ! (2.78b)
;0) = vin iyl :
| A\ Bet) R
where we have used vgig and vins,
DOy
Vdiff = TV ; (2.79a)
Cin
k¢
Vint = T7 - (2.79b)
Cin
The units are [vg] = length®/time and [vy] = length®/time. Using the

growth laws we can write for the right-hand side of the continuity equation
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in the two regimes, such that for the diffusion limited regime,

Or (R(t; 00)N (R, t;00)) =

v ®(0) (Wo) (o Mp)  2h(p)) (280)
= ( (FOR(0) ~ (t>)‘RC<t>R2<t>+R3<t>>’

and for the interface-kinetics limited regime,

Or(R(t;0)N (R, 1;0)) = Uim P (1) (h/(p) (R7\(t) — R(1)) — ip) ) . (2.80b)

14(t) R2(t)

To simplify the calculations further, one can substitute R(t) = pl.(t). We
immediately see that if there exists a time-dependent critical radius, a choice
of [.(t) = R.(t) is the right choice to separate the temporal and radial parts of
the equations even further. The substitution for the choice of /.(¢) results in

(it )N (R, 1:00) = "SI0 (1) (5=t — p72) — nip)=2 (1~ 27))

RI(t)
(2.81a)
: vintq)(t) / -1 —2
On( RN (R, 6:0) = S5 (W) (1= ) = hlp)p) . (281b)

We were able to separate the equation into temporal and p dependent parts,

Vet P (1)

Or(R(t; 00)N (R, t;00)) = R C 0 hle):ioo). (2.82a)
On( (O, 10) = "Gl ) 0). (2.82b)

where G(p, h(p); 5) captures the dependence on p and h(p).

Combining both sides of the continuity equation, Eq. (2.75) and Eq. (2.81),
and using [.(t) = R.(t) gives us

Re(t; 00) R2(t; 00) = vais %}m , (2.83a)
Re(t; 0)Re(t;0) Glp.hip):0). (2.83b)

~ TR (o, h(p))

Integrating both sides of the equations above over the time ¢ gives a solution

for the critical radius in the diffusion and interface-kinetics limited regime,
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for emulsions with matter supply
1/3
Re(t;00) = (Bvaie t M) ', (2.84a)
Re(t;0) = (2vmet Ao) "2, (2.84b)

which, up to a yet undetermined constant Ag = G(p, h(p); B)/F(p, h(p)). No-
tice that the assumption we made to neglect the term R.(¢)t~! in Eq. (2.75)
can be now verified. The contribution of this term, given Eq. (2.81) leads to
Re(t;00) o< t'/2 and R.(t;0) oc t¥3. Both of these results on the other hand,
will in the asymptotic limit fulfil the condition Eq.(2.76), becoming negligi-
ble again. Even if matter supply leads to a different time-dependence of the
critical radius than the one in Eq. (2.84b), as long as the critical radius is not
constant, this effect would be transient.

A very important result, is that in both cases the functional form of Az, which
must be a constant number, is exactly the same as in passive emulsions. Fol-
lowing Bray in Ref. [32], who considered diffusion limited case only, we can
write for p = R/ R, ; ) o
0 : :
Fr (2.85)
The growth law in Eq. (2.78) and the results for R.(t; 5) in Eq. (2.84b) imply

for the two asymptotic cases § — oo and 8 — 0,

a2 = I T  Aen) (2.86a)
d 1 _
0= a0 =) (2.86b)

For the behaviour of p to be physical, we need to find As such that p does
not diverge. The expression in brackets has a shape of an inverted parabola,
and a choice of Az for which there is a stable fixed point that is reached as a
power law and not exponentially quickly is a right one. Through a graphical
method we find a solution when there is a single fixed point, A, = 4/27
[32] and Ay = 1/4. Given this results, the critical radius for emulsions with
matter supply behaves exactly like in passive emulsions, both in the scaling
exponent and in the scaling prefactor (see Eq. (1.18)),

1/3
4DcOy
Re(t;00) = <§CT)775> :

1/2
O
Re(t;0) = <M t) . (2.87b)

(2.87a)

2 c.(o)

m
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The only part of the droplet size distribution function we are missing is h(p).
Wagner in Ref. [8] used the results in Eq. (2.84b) and Eq. 2.83b, which can
be combined into AgF(p, h(p) = G(p,h(p); ). To simplify expression after
the integration over p, he has used the condition which holds for passive
emulsions that R.(t;00) = (R(t;00)) and R.(t;0) = (R?(¢;0))/(R(t;0)). With
matter supply, see Eq. (2.66), this does not hold. Furthermore, the condition
for the solution of /(p) was that the droplet phase volume fraction ®(¢) is con-
stant thus h(p) cannot be non-zero for arbitrary large p. With matter supply
it is not anymore the case.

Before we finalize this chapter and move to Chapt. 3, in which we analyse
the droplet size distribution function numerically, we will shortly determine
the kinetics of the droplet size distribution function through the prediction
of its narrowing and broadening regimes. We should remember, that the
derivation we have done above, holds only for systems where the distribu-
tion function broadens and when the critical radius is not constant. If the
distribution function narrows, or the critical radius is constant, the separa-
tion ansatz N'(R,t) = g(t)h(p), with p = R/R. is not valid anymore.

2.4 Prediction of a broadening and narrowing zone

of the droplet size distribution function

An important feature of the distribution function N(R,t) is if the distribu-
tion function broadens or narrows in time. If it broadens, it spans over time
a larger domain of droplet radii; if it narrows, the domain of droplet sizes
focuses around one value, corresponding to a size control mechanism. Sugi-
moto in Ref. [69] has proposed a simple approximation for the standard de-
viation and its time behavior given the growth laws in Eq. (2.67).

Sugimoto in Ref. [69] approximates the standard deviation o(t) ~ AR =
(Ry — Ry), as a distance between two radii R, > R;. The growth laws
Eq. (2.67) in terms of the critical radii are: R(t;00) = vaig(1/Rc(t) — 1/R)/R,
R(t:0) = ving(1/Re(t) — 1/R), with vgie = D 00, /c!” and vine = k@2, /¥
respectively. Taking the radial derivative of both equations gives us

dR(t;00) ) _waee (2 1
d( - >_ = (}_z Rc(t)>dR, (2.88a)

dR(t;0) ) Vint
d (T) = dR. (2.88b)
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FIGURE 2.6: Narrowing and broadening zones in the growth rate of the
average radius: (a): Diffusion limited regime. The broadening and nar-
rowing zone corresponds to (R) < 2R. and (R) > 2R. respectively. The
1/R term in the growth law allows for a competition between the Gibbs-
Thomson effects and the critical radius R.. (b): Interface-kinetics limited
regime. There is no regime for which the distribution function could nar-
row. Due to the lack of the extra 1/R term in the growth law, there is no
competition between the Gibbs-Thomson effects and the critical radius R..
Due to the Gibbs-Thomson term dominating the temporal evolution of the
standard derivation there is only broadening possible. Modified from Sugi-

moto [68].

Replacing dR — AR, and R — (R), we obtain an approximation for the

temporal change of the standard deviation AR,

dAR
dt

dAR
dt

diff

int

vaige | 2 1

- <<R> G OO)>AR, (2.89)
Vint

= AR (2.89b)

We see, that for the diffusion limited regime, the standard deviation broad-

ens, i.e, dAR/dt > 0if (R) < 2R.(t;00). It can narrow if the average radius

is large enough, such that (R) > 2R.(t; 00). For passive emulsions, which

we have discussed in Sect. 1, we have (R) = R.(t;00), and the distribution

function will always broaden. The two zones are depicted in Fig. 2.6(a).

For the interface-kinetics limited regime, the interesting result is that the dis-

tribution function does not have a narrowing zone, i.e., dAR/dt > 0 for all R,

Fig. 2.6(b). Although the distribution function for the interface-kinetics lim-

ited regime cannot narrow, we will show cases where due to matter supply,

the broadening is reduced, and we reach a constant standard deviation.
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2.5 Summary

We have derived the law for the movement of the droplet interface, which
considers local departure from equilibrium at the phase boundary. We have
derived the statistics of the droplet sizes in emulsions with matter supply. We
have learned that the supply changes the competition between the droplets
and enters the droplet growth law through the critical radius. Finally, we
have attempted to solve analytically for the droplet size distribution func-
tion and found when the separation ansatz holds and why for emulsions
with matter supply a complete analytical solution is not possible to be found.
We have revisited the prediction of narrowing and broadening zones of the
distribution function and the condition for the two regimes to exist. In the
interface-kinetics growth regime, narrowing cannot occur. Narrowing is how-
ever possible in the diffusion limited regime, if the ratio of the critical to the
the average radius exceeds a value of 2. This chapter is a theoretical basis
to discuss results of coarsening kinetics of emulsions with different matter
supply scenarios in the next chapters. There, using numerical tools we will
discuss the behavior of the distribution function and the power laws govern-
ing the average radius and the droplet number density to make a comparison

with passive emulsions.
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Chapter 3

Coarsening kinetics of emulsions with

matter supply

We want to study the effect of matter supply on the distribution of droplet
sizes and the coarsening kinetics. Since we cannot find the complete ana-
lytical solution to the problem, we will use numerical tools to discuss the
solution of the droplet size distribution function and make a comparison to
passive emulsions. Clark et al. in Ref. [83] revisited the prediction of Sug-
imoto in Ref. [68]. They found a minimum matter supply needed for the
distribution function in the diffusion limited regime to narrow for emulsions
with constant matter supply. In a continuation of this study, Vollmer et al.
in Ref. [84] explored the evolution of the droplet size distribution function in
such systems. In their results, the size distribution does not approach to a
universal shape, but rather depends on the initial conditions [84].

In the light of what we have learned in the previous chapter, we will start our
discussion with a constant matter supply and discuss the coarsening kinet-
ics of emulsions below and above the threshold from [83] in both diffusion
and interface-kinetics limited regimes. We will look at the universality of the
distribution function at late times in both regimes. In the second part of the
chapter, we will choose to supply matter in such a way as to keep the super-
saturation constant. It corresponds to a choice of a time-dependent matter
supply. Here we will also discuss the scaling laws that govern the evolution
of the emulsion, the average radius, and the droplet number density. We will
address the question of self-similarity of the droplet size distribution func-
tion in such systems.

The numerical tools used in this chapter were optimized and developed with

helpful discussion and hints from Thomas Tushar Dutta and Efe Ilker.
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3.1 Emulsions with constant matter supply

We want to discuss coarsening kinetics of emulsions with constant matter
supply. For this, we start with a modified conservation law Eq. (2.61), which
for fast diffusion of concentration profiles in the dilute phase compared to the
droplet growth kinetics, can be rewritten for a homogeneous concentration of
the droplet material in the dilute phase ¢(t). We have for simplicity dropped
the subscript in ¢ (t). For the matter supply, we replace J.(t) by a constant
matter supply rate J.. The conservation law is

de(t) o d [ 4r

R}HON (R, t)dR + J. . (3.1)

TR T
The same modification of a constant supply is introduced in Eq. (2.63), which
describes the temporal evolution of the droplet phase volume fraction ®(¢).
The droplet phase volume fraction evolves now according to,

d Je

Eq)(t) = Cl(r?) ’

(3.2)

from which it directly follows that ®(t) = ®(0) + tJ./ ci(g), grows linearly.

Following the results in Subsect. 2.2.2 (Eq. (2.64)), the supersaturation, £(t) =
(c(t) — c9)/c®), for constant matter supply is,

Iy (587 ) N (R )R + Je(4mD k)

Ji* (5%m) N (R.1)dR

e(t) = ¢, , (3.3)

and the growth law (Eq. (2.65)) for a droplet in an emulsion with constant

matter supply is

e} N , 1
(1) = kD c0¢ (o (Rm(;f Rt)) dR + J. (47D kt,c®) i

0 D+kR

(3.4)
The critical radius R.(t) is the fixed point of the growth law, & = 0, and
is also defined through the supersaturation ¢(t) = ¢,/R.(t). We again use
$ = kR/D to distinguish between the diffusion and interface-kinetics limited
regime. In the asymptotic limit, we have two cases: diffusion limited case
when D < kR(t), (B — o0), and the interface-kinetics limited case when
D > kR(t), (8 — 0). The critical radius, Eq. (2.66), for an emulsion with
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FIGURE 3.1: Constant rate of change of the droplet phase volume fraction:
Rate of change of the droplet phase volume fraction as a function of matter
supply J.. The rate of change of the volume fraction, ®(t), follows the re-
lation in Eq. (3.2) (grey dashed line) as soon as the supply is switched on.
The values of matter supply J. used are expressed in the units of Jy = /7,
with the color code corresponding to the legend below each plot. The time
t is rescaled by 7 = E?y /D. (a): Diffusion limited and (b): Interface-kinetics
limited regime.

constant matter supply is

— fooo RN (R, t;00)dR

S N(R,t;00) dR + Jo(4mDe,c®)
I R2N(R,t;0) dR

S5 RN(R,1;0) dR + J (4mkt,c©)

Re(t; 00) (3.5a)

Re(t;0) = , (3.5b)

where N (R, t; 3) is the droplet size distribution function in the two regimes
distinguished by 3.

In the following, we will use the tools discussed in Sect. 1.5.1 and solve the
continuity equation Eq. (1.21) of the droplet size distribution function for
the conservation law in Eq. (3.1). We use the same parameters as discussed
for the numerical method in Subsect. 1.5.1 with the nondimensionalization
in Eq. (1.22) and the growth law in Eq. (1.23). In our study, we initialize
the emulsion as passive emulsion first, and ensure it has started the passive
coarsening. At time t* we switch the matter supply J.. Once we switch on
the matter supply, we study the effect of the different values of the supply J.
on the two asymptotic cases: diffusion limited and interface-kinetics limited
growth. The results depicted in Fig. 3.1 show exactly the expected relation
between the droplet phase volume fraction ®(¢) and the supply .J..
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FIGURE 3.2: Convergence of the critical radius in emulsions with matter
supply to the passive solution: The critical radius for emulsions with mat-
ter supply, despite the supply converges to the result of passive emulsions
(grey dashed line). It is consistent with the results in Eq. (2.87b). (a): Dif-
fusion limited regime. (b): Interface-kinetics limited regime. The time ¢ is
rescaled according to Eq. (1.22) with 7 = (2 /D, the length with £,, for the
matter supply Jo = ¢(?) /7. The color code of the matter supply corresponds
to the legend below each plot.

3.1.1 Supply-independent acceleration of coarsening in emul-

sions with constant matter supply

We want to find how the average radius and the droplet number density
change for emulsions with matter supply and if they are governed by a dif-
ferent scaling law than in passive emulsions. We have learned in Sect. 2.3
that if the droplet size distribution function is broadening, even for emul-
sions matter supply, the solution of the critical radius is the same as in pas-
sive emulsions RY(t), Eq. (2.87b). We check if this condition is fulfilled for the
choice of matter supply we have made in the diffusion and interface-kinetics
limited regime, see Fig. 3.2(a) and (b) respectively. We see that in both cases
the critical radius fulfills this prediction.

In the following, we use the same separation ansatz for the droplet size
distribution function as before, N'(R,t) = g(t)h(p) with the rescaled radius
p = R(t)/l.(t), and a length scale of choice. We can assume that this ansatz
holds as long as the distribution function is broadening and the critical ra-
dius is given by Eq. (2.87b). Using Eq. (2.71), the scaling function g(t) for



Chapter 3. Coarsening kinetics of emulsions with matter supply 58

emulsions with constant matter supply is

3(®(0) +tJ/c(°>)

Al (t)* [ p (3:6)

g(t) =

where we have used how the droplet phase volume fraction ®(¢) changes in
emulsions with constant matter supply Eq. (3.2). The droplet number density

n(t) using the separation ansatz is given by

n(®) = g(OL(e) [ hlp)dp. 67)
0
The average radius, which is defined as
IS RN(R,t)dR
R(t y 3.8
(R() = S P )
can be rewritten given the separation ansatz,
Iy~ ph(p)dp
R(t)) = l(t) Bg——"— (3.9)
D = =50

Although we cannot solve analytically for the scaling function h(p) and thus
the integrals in Eq. (3.9), we can study them numerically. Since R.(t) = R2(t),
we choose [.(t) = Rc(t). The scaling law for the average radius will have
the same time exponent for emulsions with constant matter supply as in pas-
sive emulsions. Depending on the regime, diffusion limited 5 — oo or the
interface-kinetics limited regime 5 — 0, the average radius (R(¢; 5)),

(R(t; 00)) oc t'/?, (3.10a)
(R(t;0)) o< t1/2. (3.10b)

The prefactor of the scaling law is determined by the integrals of the scaling
function h(p; B) in Eq. (3.9), for I.(t) = R.(t). The prefactor is given by

(R(t; 8)) _ Jo ph(p:B)dp
R.(t; B) fooo h(p; B)dp

which for passive emulsions was 1 (5 — o) and (8/9) (8 — 0) respectively

(3.11)

[8]. In Fig. 3.3 we see the results of Eq. (3.11) for both regimes and different
values of matter supply J.. Surprisingly we find, that in the interface-kinetics
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FIGURE 3.3: Universality of the droplet size distribution function: The
ratio of the average radius to the critical radius. (a): In the diffusion lim-
ited regime, the ratio does not converge to a common value but seems
dependent on the supply. (b): Interface-kinetics limited case. The ratio
converges to the same number indicated by the orange dashed-dotted line
(1.234). Since the ratio corresponds to the integrals of the radial part of the
droplet size distribution function in Eq. (3.9), the convergence to the same
number indicates that the droplet size distribution function is independent
of the supply. The time ¢ is nondimensionalized according to Eq. (1.22),
Jo=c9/r.

limited regime, Fig. 3.3(b), the ratio of the average to the critical radius con-
verges to one value independent on the strength of the matter supply. The es-
timate of the value is (R(¢;0))/R.(t;0) ~ 1.234 (orange dashed-dotted line in
Fig. 3.3(b)). Thus, we conclude, that in the interface-kinetics limited regime,
the droplet size distribution function behaves as if it would be independent
of matter supply. Furthermore, it gives different results than in passive emul-
sions, and we expect the average radius to have a higher prefactor of the
scaling law than the passive system. For emulsions with matter supply, in
the interface-kinetics limited regime, we can compare the average radius to

the passive emulsions by writing it as
(R(t;0)) = &ne(R(t;0))o (3.12)

with the constant shift & = 1.234/(8/9) ~ 1.39, and the average radius of

the passive emulsion,

1/2
8 [ k"¢

m
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FIGURE 3.4: Temporal evolution of the average radius for emulsions with
constant matter supply: (a) Average radius in the diffusion limited regime
for different values of matter supply J.. The orange dashed-dotted line cor-
responds to &yirg = 1.17, the grey dashed line is the passive coarsening
of Ostwald ripening. (b): Average radius in the interface-kinetics limited
case. The acceleration of average radius compared to passive emulsions is
independent of matter supply, with the orange dashed-dotted line corre-
sponding to &ine = 1.39. In both regimes (a) and (b) the standard deviation
is increasing (dotted line). The time ¢ and radius R are nondimensionalized
according to Eq. (1.22), with 7 = K% /D, and Jy = °/7. The color code for
the matter supply corresponds to the legend below each plot.

In Fig. 3.4(b) we see that the average radius for emulsions with matter sup-
ply in the interface-kinetics limited regime fulfills the condition in Eq. (3.13).
There is an acceleration in the coarsening kinetics, which is independent of

the supply rates.

On the other hand, in the diffusion limited regime, we do not find conver-
gence of the ratio between the average radius and the critical radius to a
common value, Fig. 3.3(a). We conclude that the distribution function is de-
termined and depends on the matter supply J.. Using the expression for the
critical radius in the diffusion limited regime with matter supply Eq. (3.5a),
we will try to estimate the effect of matter supply on the average radius.
Given the definition of the average radius in Eq. (3.8), and R.(t) = R2(t), we

can rewrite Eq. (3.5a) for the average radius to find,

o0 (3.14)

(R(t: 00)) = RO(t: o0) (1 n JC<47TD€W0(0)>—1> |

with n(t; 00) is the droplet number density (Eq. (3.7)) in the diffusion limited

regime.
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Due to (R(t;00))o = RY(t; 00), in passive emulsions, we can immediately see,
that in the presence of matter supply J., the average radius will be accel-
erated compared to passive emulsions. Using the definition of the droplet
number density n(t) in Eq. (3.7) and the scaling function ¢(¢) from Eq. (3.6),
we can simplify the expression to,

<R(t;oo)>:R8(t;oo)(1+247fof hp ) dip ) (3.15)

where we have assumed that due to the linear growth of the droplet phase

volume fraction, ®(0) < t.J; / ¢, , we can neglect ®(0). For the length scale

we have used, I.(t) = RY(t; 00) from Eq. (2.87b). The expression above only
holds for J. # 0. We replace the expression in the brackets by &gy, which
tells about the acceleration of coarsening of emulsions with matter supply

compared to passive emulsions,
(R(t;00)) = Laie(R(t;00))0 - (3.16)

Since, as we have already learned, the scaling function (p; co) depends on
matter supply, and we cannot solve for it analytically, we cannot find the
exact value and dependence on J; of £gi¢s. We can, however estimate the ex-
pression in the brackets of the Eq. (3.15), using the scaling function of the pas-
sive emulsions in the diffusion limited regime Eq. (1.25). The lowest bound
of the value of i is then given by 4o = 1.17, and we expect the emul-
sions with constant matter supply in the diffusion limited regime to evolve
with (R(t;00)) > &airo(R(t; 00))o. In Fig. 3.4(a) we see the average radius in
the diffusion limited regime for different values of matter supply. We find
an agreement with our prediction, and the average radius fulfills the condi-

tion (R(t;00)) > Lairro(R(t; 00))o, (orange dashed-dotted line corresponds to
&aift,0)-

Analogously, we calculate the droplet number density n(¢; §) from Eq. (3.7).
Using for the scaling function g(t B) Eq. (3.6), where we assume that due to

the linear growth, ®(0) < tJ, / ¢, , we can neglect ®(0), we can write

m’

3J.t fooo h(p; B)dp

n(t7/8):4 (0 ( ) fo 3h p7 ,0’

(3.17)
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FIGURE 3.5: New scaling laws of the droplet number density for emul-

sions with constant matter supply: Droplet number density in the (a) diffu-

sion limited and the (b) interface-kinetics limited case. In both cases, there

is an agreement with the law derived in Eq. (3.18) (orange dashed-dotted

lines). The droplet number density in passive emulsions follows an evolu-

tion depicted by grey dashed line. The time ¢ is nondimensionalized accord-
ing to Eq. (1.22), Jo = ¢V/7.

= RY(t). Using the solution of
the critical radius in the two regimes, Eq. (2.87b), we find

where we have used as the length scale I (¢)

4 3 Je fooo p;
' _ (4 3.18
n(t, OO) <9 47TD€,YC ) f() 3h p’ dp ) ( a)
3T\ [h
0) — +—1/2 0 3.18b
n(t;0) =t (47r(kc(0 10,/2)3/2 f p3h (p; O)dp’ ( :

In the diffusion limited regime, the number density and thus the total droplet
number is constant, n(¢;c0) o« const. This is due to the linear growth of
the droplet phase volume fraction ®(¢) and the linear scaling of the average
droplet volume (V (t)) o (R(t))3. In passive emulsions, due to the constant
droplet phase volume fraction, n(t; 00)y o< t~!. For the interface-kinetics lim-
1/2

ited case, the number density follows n(t;0) o t~/*, where in the passive

emulsions the dependence was n(t;0), oc t~3/2. Here too, the linear growth
of the total droplet volume has an impact on the new scaling law. In Fig.3.5
we show the droplet number density in both regimes for different matter sup-
plies. As a theoretical approximation we have used the results of Eq. (3.18).
There, we have approximated the expression containing the integrals of the
scaling function A (p) to 1. This is motivated through the results of these inte-

grals for passive emulsions which in both regimes is in the order of 1 (0.885
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FIGURE 3.6: Average radius and droplet number density in diffusion
limited regime: (a) Average radius follows a scaling law consistent with
Eq. (3.16), with an increasing prefactor of the scaling law for higher supply
rates. (b) Droplet number density approaches consistently to a constant fol-
lowing Eq. (3.18). For the two lowest values of the supply (blue and dark
blue solid line), the number density is still not constant. Looking at the av-
erage radius for these cases, reveals that the system has not yet reached the
regime of coarsening with a scaling of ¢!/3. The time ¢ and radius R are
nondimensionalized according to Eq. (1.22), and Jy = °/7.

and 1.045 respectively). It is not a rigorous approximation, and we can see
that a higher value of this estimate would fit the results better.

3.1.2 Switch between a broadening and narrowing distribu-

tion function for increasing supply

Until now, we kept the matter supply J. such that the distribution function
was broadening. In Fig. 3.3, the dotted line depicts the standard deviation,
which in both regimes is increasing. Inspired by the discussion of Sugimoto
in Ref. [68], Clark et al. in Ref. [83] and Vollmer et al. in Ref. [84], we would
like to explore the effect of increasing matter supply on our system. Further-
more, it is important to check beyond which regime the discussed assump-
tions and results in Subsect. 3.1.1 will break.

We study the same system as before, but now we introduce higher matter
supply J.. Note, that in this study we have increased the concentration in-
side, so the rates of matter supply used should not be quantitatively com-
pared with the previous subsection. For the diffusion limited regime, the
results of the average radius Fig. 3.6(a), show that as the matter supply be-

comes higher so does the prefactor in the scaling law of the average radius.
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FIGURE 3.7: Broadening and narrowing zones of the distribution function
in diffusion limited regime: (a): The standard deviation switches from in-
creasing to decreasing function as we increase the matter supply J.. The
threshold between the two regimes (red dashed line) corresponds to a con-
stant standard deviation and the supply from Eq. (3.19). (b) The ratio of the
average to the critical radius for the narrowing distribution function cor-
responds to the condition (R) < 2R.. The time ¢ is rescaled according to
Eq. (1.22), Jo = ¢ /7.

The coarsening does not converge to any common value, and is always above
the minimum threshold we have estimated, (R(; 00)) > &aitro (R(t; 00))o with
&aitto = 1.17 (orange dashed-dotted line). The scaling exponent of the power
law for the average radius does not change and the dependence on time ¢
stays the same, (R(t)) o t'/%. The results in Fig. 3.6(b), reveal that for higher
supplies, the system immediately reaches constant number density. The up-
per bound for the number density corresponds to n(t*; co), which is the num-
ber density at the time we switch the matter supply for the first time. Since
we do not allow nucleation, n(t;o00) < n(t*;00). In cases of higher matter
supply the number density becomes independent of J. and it only depends
on the initial conditions of the system.

The standard deviation in Fig. 3.7(a) depicts a full range of broadening and
narrowing scenarios. The standard deviation increases for lower values of
J.. There is a critical supply for which is becomes constant and beyond
which the standard deviation decreases. The supply which corresponds to
this threshold (red dashed line in Fig. 3.7(a)) is given by [83]

Jo > dman(t*)De,c O . (3.19)
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FIGURE 3.8: Broadening distribution function in interface-kinetics lim-
ited regime: (a): The standard deviation always increases even in the pres-
ence of higher matter supply J.. For high supplies we reach a constant
standard deviation (red dashed line). (b) The ratio of the average to the
critical radius. For low matter supply the ratio converges to the prefac-
tor (R(t;0))/Rc(t;0) ~ 1.234 (orange dashed-dotted line). It indicates the
universality of the distribution function. For higher supplies (orange and
yellow solid lines) we do not converge to this value anymore. The time ¢ is
rescaled according to Eq. (1.22), Jo = ¢\0 /7

For any supply J. fulfilling the condition in Eq. (3.19) the droplet size distri-
bution function in the diffusion limited regime will narrow. The ratio of the
average to the critical radius, (R(t; 00))/R.(t; 00), in Fig. 3.7(b), shows that the
threshold in Eq. (3.19) corresponds to the estimation of Sugimoto Eq. (2.89).
Narrowing in the diffusion limited regime happens if (R(¢; 00)) > 2R.(t; 00).
The results in Fig. 3.7(b) in the light of Eq. (3.11) suggest, that the droplet size
distribution function is not independent of the supply rates and the system is
not universal but rather depends on the initial conditions and the conditions
of matter supply.

We perform the same analysis for the interface-kinetics limited case, for (8 —
0). Sugimoto in Ref. [68] predicted that narrowing of the droplet size distri-
bution function in this regime is impossible. As we are increasing the supply
J., we see that the standard deviation can at most be constant Fig. 3.8(a) (red
dashed line). For the cases of higher supply, the ratio (R(¢;0))/R.(¢;0) in
Fig. 3.8(b), does not converge to a fixed value anymore. However, we see a
very clear convergence for lower supplies J. to the same value as in Fig. 3.3
(orange dashed-dotted line (R(¢;0))/R.(¢;0) = 1.234). This indicates, that
there is a regime in which the system is described by a universal distribution
function which is independent of the supply.
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FIGURE 3.9: Average radius and droplet number density in interface-
kinetics limited regime: (a) Average radius for lower supplies approaches
the coarsening law derived in Eq. (3.12), with &;,,; = 1.36 (orange dashed-
dotted line). For higher supplies the radius follows a t/3 law (red dashed
line) indicating the crossover to the diffusion limited coarsening. (b) Droplet
number density for lower supplies follows Eq. (3.18) (orange dashed-dotted
lines) but for higher supplies becomes constant (red dashed line), which cor-
responds to the crossover to the diffusion limited regime, where the number
density is constant. The time ¢ and radius R are nondimensionalized accord-
ing to Eq. (1.22), and Jy = °/7.

Studying the effect of higher matter supply on the average radius and the
droplet number density in the interface-kinetics limited regime, Fig. 3.9 re-
veals the regime of universality. For the supply corresponding to almost con-
stant standard deviation (yellow and orange solid line), the average radius
follows a t'/3 power law (red dashed line in Fig. 3.9(a)). It indicates a transi-
tion to a diffusion limited growth law, and means that § = kR/D > 0. The
supply J. caused a transient increase in the average radius (R(¢; 00)), which
although initialized in the interface-kinetics limited regime, has increased to
values high enough that the interface-kinetics can not compete with the dif-
fusion anymore. The droplet number density, Fig. 3.9(b), reaches in this case
also a constant value, which is opposed to the predictions in Eq. (3.18) for
the interface-kinetics limited regime. There, n(t; 0) o t~'/2, which we see for
lower supplies in Fig. 3.9(b). For these values of the supply J. we have a
broadening droplet size distribution function and the average radius follows
the coarsening law described by Eq. (3.12) (orange dashed-dotted line). The
observation is consistent with the results for the ratio of the critical and the
average radius in Fig. 3.7(b). Next, we would like to look at the solutions of
the droplet size distribution function, and discuss when the scaling ansatz
we have used is valid.
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FIGURE 3.10: Collapse of the droplet size distribution function in diffu-
sion limited regime: (a): At different time points we measure the distribu-
tion function for the choice of J./Jy = 1.25 - 1073, when the distribution
function is broadening. The time point ¢;/7 = 103 is an early time point
when the system did not reach the asymptotic coarsening kinetics yet. The
later time points are equidistant from to/7 = 6-10° to t5/7 = 2- 10%. (b): We
find a separation ansatz for which the distribution function collapses on its
self-similar shape. For nondimensionalization we use Eq. (1.22). The critical
radius is a function of supersaturation R. = ¢.,/¢(t).

3.1.3 Universal coarsening kinetics of emulsions with con-

stant matter supply

In the following, we would like to study the evolution of the distribution
function for systems with matter supply. In the previous subsection, Sub-
sect. 3.1.2, we have learned when the distribution function narrows or broad-
ens, and what scaling laws govern its evolution. We have also learned when
the coarsening behavior is independent of matter supply .J.. We would like to
study the behavior of the droplet size distribution function in these regimes

and check the validity of the separation ansatz.

The collapse of the distribution function onto a self-similar, time-invariant
shape was revisited and discussed for passive systems. If a collapse exists,
we can successfully separate the distribution function N'(R,t) into a time-
and radial-dependent part. We start by looking at the distribution function
for the diffusion limited case, with matter supply J. below the threshold
Eq. (3.19). Our choice of the supply is J./Jo = 1.25 - 1073, which corresponds
to a broadening distribution function in Fig.3.7(a). We pick an early time
point ¢ /7 = 10* when the system has not reached the coarsening kinetics of
the power law in Eq. 3.16 yet (Fig. 3.6(a)), and then later time points from ¢,
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FIGURE 3.11: No self-similarity droplet size distribution function in dif-
fusion limited regime: (a): At equidistant time points from t;/7 = 10°
to t5/7 = 8- 10° we measure the distribution function for the choice of
Je/Jo = 3 - 1072 when the distribution function is narrowing. (b): It is not
possible to find a separation ansatz to find a self-similar shape of the distri-
bution function. We try rescaling the radius with the critical and the average
radius respectively. For the nondimensionalization we use Eq. (1.22).

to t5 (Fig. 3.10(a)), which are spread logarithmically from each other. It is es-
sential to choose the time points to be distanced far enough from each other

to talk about a possible collapse in time.

The choice of the nondimensional radius p = R/R,, like for passive emul-
sions, works very well to separate the distribution function. In Fig. 3.10(b),
we see a collapse of the distribution function for times from ¢, to ¢; onto a
self-similar shape. The early time point ¢;, which does not fall on the col-
lapsed shape, shows that there is still some non-trivial time dependence in
the distribution function, which disappears at later times when the system
enters the coarsening regime. The collapse highlights that in this regime, the
distribution function belongs to the same universality class as the distribu-
tion function of Ostwald ripening and confirms the choices we have made
for the analytical approximations in the previous subsection.

For a higher supply J., (J./Jo = 3 - 107?), for which the narrowing occurs,
we are not able to find a collapse of the distribution function Fig. 3.11(b).
There are several reason for this. As we have learned in Eq. (2.69), the rate
of change of the number density implies the dependence of the droplet size
distribution function NV (R, ¢; 00) on the radius R. Since the number density
is constant here, we expect a different dependence on the radius R than in

passive emulsions. It is non-trivial what kind of separation ansatz is suitable
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FIGURE 3.12: Collapse of the droplet size distribution function in
interface-kinetics limited regime: (a): At different time points we measure
the distribution function for the choice of .J./Jo = 5 - 1072, when the distri-
bution function is broadening. The time point ¢1/7 = 10? is an early time
point when the system did not reach the asymptotic coarsening kinetics yet.
The later time points are equidistant from t5/7 = 6-10? to tg/7 = 4-103. (b):
We find a separation ansatz for which the distribution function collapses on
its self-similar shape. For the nondimensionalization we use Eq. (1.22).

for the problem for the distribution function which in this regime of supply
depends on its initial conditions as well as the conditions of the supply. The
narrowing system reaches at late times a delta peak and corresponds to a

monodispersed emulsion.

Analogously to the analysis of the evolution of the distribution function at
low supply rates in the diffusion limited regime, we pick J./Jo = 5-107° to
analyze the distribution function and its temporal behaviour in the interface-
kinetics limited case (8 — 0). We pick again an early time ¢,, and later time
points from ¢, to t5, Fig. 3.12(a). Collapsing the distribution function onto
its self-similar form is possible with a choice of a nondimensional radius
p = R/R.. As expected and discussed, the distribution function is universal
even in the presence of the supply J.. For a higher supply, which corresponds
to a constant standard deviation (J./Jy = 1 - 107%), the distribution function
has a constant width, and its peak moves with a velocity d(R)/dt. By shifting
each radius R by the average (R), the distribution function collapses at all
times onto a self-similar shape.

We have explored the coarsening kinetics of emulsions with constant matter
supply. We have found regimes that dictate a fixed acceleration of coarsening
and correspond to a self-similar distribution function. We have also explored
the behavior outside these regimes and the effect of high matter supply on
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FIGURE 3.13: Collapse of the droplet size distribution function in
interface-kinetics limited regime: (a): At different time points we measure
the distribution function for the choice of J./.Jy = 1-10~* when the distribu-
tion function is constant. The time points are equidistant and chosen from
t1/T7 =4-10% to tg/T = 4 - 103. (b): We find that a shift in the radial space by
(R — (R)), collapses the distribution function on its self-similar shape. The
distribution function has a constant width and moves for every radius R at
the same speed. For the nondimensionalization we use Eq. (1.22).

the time evolution of emulsions. In the next section, we will choose the mat-
ter supply to be time-dependent, and see how we can tune it in accordance to
the evolution of droplet sizes to find novel coarsening kinetics of emulsions
with matter supply.

3.2 Emulsions with time-dependent matter supply

maintaining constant supersaturation

Until now, we were introducing the droplet material with a constant sup-
ply J.. It corresponded to a constant rate of change of the droplet phase
volume fraction, ®(t) = const, such that the droplet phase was growing lin-
early, ®(t) o t. Introducing a time dependence in J.(t), causes the droplet
phase volume fraction, the supersaturation as well as the critical radius to
have an additional time dependence. Analogously to the conservation law
in Eq. (3.1), we can write for J.(t),

dC(t) (0) d OO 4_71'

a 3
o= g | 3 PONROR L), (3.20)
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Using the droplet phase volume fraction ®(¢), Eq. (2.59),

Bre(t) = —cfr?)%q)(t) + (1) (3.21)
We can immediately see that an interesting choice for the matter supply is
one such that J. = ci(r?)(ﬁ(t), in which matter supply balances the changes in
the droplet phase volume fraction at each time ¢. This choice ensures ¢(t) = 0,
and the system is truly (quasi-)static. The supersaturation, being a measure
of the excess concentration in the dilute phase, ¢ = (¢ — ¢(?)/c(®, is constant
and set by the initial condition. Thus, the constant concentration ¢, cannot
now relax to its equilibrium value ¢®. What is the effect of the constant

supersaturation on the coarsening kinetics of droplets?

The droplet growth equation Eq. (2.29), can be rewritten using the constant
supersaturation ¢,

: kD 9 l,y

Contrary to previous systems, the critical radius, R. = ¢, /¢, is constant here.
Two important consequences follow from this result. First of all, droplets are
now decoupled from each other. The growth of every droplet is independent
of the emulsion and of the information about the droplet size distribution
function NV (R, t). Furthermore, a constant critical radius R., means that after
an initial phase, when the distribution function moves in its radial space past
the radius R., such that R > R, for all radii R in N'(R,t), droplets cannot
dissolve anymore. The droplet number density n(¢) will be constant.

For emulsions with constant matter supply in the diffusion limited regime,
the constant number density directly influenced the dependence of the droplet
size distribution function NV (R, t) on the radius R. We expect that the separa-
tion ansatz valid for passive emulsions will also not be possible here. Thus,
we will try to analyze the moments and the coarsening kinetics of droplets
in emulsions with constant supersaturation without specifying V' (R, t) yet.

3.2.1 Moments of droplet size distribution function in emul-

sions with constant supersaturation

Since the droplets are decoupled from each other, every droplet follows a
growth law from Eq. (3.22). We can replace R(t) by the average radius (R(t)),
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FIGURE 3.14: Crossover in the scaling of the average radius for differ-
ent initial conditions: (a): Average radius for emulsions initialized with
the initial ratio k(R(0))/D depicted in (b) (circles at the y-axis, the differ-
ent initial conditions are corresponding to the color code used). We see
a crossover in the scaling laws of the average radius, from the interface-
kinetics (black dashed line) to the diffusion limited regime (grey dashed
line). The crossovers are indicated by a star and the times of the crossover
are t*. (b) The ratio kR(t)/D as a function of the average radius is depicted
to document the initial conditions and to appreciate when, due to the in-
crease in the average radius, the system crosses from the interface-kinetics
(blue shaded region) to the diffusion limited regime (grey shaded region).
The crossover is visualized by a star and corresponds to (R(t*)). The system
is nondimensionalized as in Eq. (1.22) with 7 = 63 /D.

such that

dt ~ D+k(R(t) O R(t))

where the supersaturation ¢ = (c—c(¥)/c(?). We expect that due to the evolu-

d(R(t)) kD 9 <5 _ <€_v> , (3.23)

tion of (R(t)), an initial choice of ¢ = ¢(0) is possible, such that at later times,
e > (,/(R(t)). Thus, we neglect the term /., /(R(t)) in Eq. (3.22). Note that the
choice of ¢(0) should be such that the system is not in the overfeeding regime.
We again identify two regimes through 5 = k(R)/D, such that f — oo and
5’ — 0, for the diffusion and interface-kinetic limited case respectively. The
solution of the growth law in Eq. (3.23) is

/2
Dic— @) \'
<R(t;oo)>:<2%t> , (3.24a)
Cin

k(c—c®)
i

(R(t;0)) = (3.24b)
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The average radius follows a t'/2 or a linear growth law in the diffusion and
interface-kinetics limited case, respectively. Fig. 3.14(a) shows these scaling
laws for a few cases that differ in the initialization through the choice of B
at t = 0. The measure of the competition between the processes of diffu-
sion to interface-kinetics is the value /3, which is a measure that changes with
the growth of the emulsion. By tracing the value of 5, Fig. 3.14(b), during
the evolution of the emulsion we can see how the system is able to cross be-
tween the two asymptotic regimes, Eq. (3.24). We refer to the time point of
the crossover by ¢*, which corresponds to the average radius (R(t*)).

For emulsions that are initialized in the diffusion limited regime, £(R(0))/D >
1 (cyan), the crossover happens at t* — 0. For emulsions that are initialized
in a strong interface-kinetics limited regime, k(R (0))/D ~ 0, we need to wait
for very long times to see the crossover, t* — oo (for the red line). But for
intermediate choices of k(R(0))/D ~ 1 a crossover at a measurable time t*
is possible. In Fig. 3.14(a) we see a crossover in the scaling of the average
radius at time ¢* from the linear scaling law to a t'/? scaling for the choice
of k(R(0))/D = 3-107* (orange solid line). We learn that systems which are
initialized in the interface-kinetics limited growth regime, will eventually fol-

low the diffusion limited coarsening kinetics.

In a similar way, we can estimate the standard deviation o(t), and the vari-

ance o?(t). The temporal change of the variance, o2(t) = (R?(t)) — (R(t))?

s d d d
2 2

— - ) —

50 (8) = 2 {1°(1)) — 2(R(1)) -,

We modify the definition of the k-th moment, Eq. (2.58), by the constant num-

(R(t)). (3.25)

ber density n, such that

1 o0

(R*(t)) = - / dRR*N (R, 1). (3.26)
0

We substitute the definition of moments into Eq. (3.25) and use the conti-

nuity equation (Eq. (2.53)) for the temporal derivatives of N'(R,t). We per-

form partial integration, for which we use vanishing boundary terms (due to

N(R,t) =0 for R =0and R = oc), and obtain

d o 2[( [~  DkR = Dk
Co (t)——[</0 dRD+kRN(R,t)>—<R>/O dRD+kRN(R,t)].
(3.27)

In the growth law, Eq. (3.22), we have used the condition ¢ > ¢, /R.

For the expressions in the integrals, Eq. (3.27), we identify two regimes which
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FIGURE 3.15: Narrowing distribution function as the emulsion reaches
fixed droplet number density: (a): Standard deviation as a function of
time for emulsions initialized according to a choice in Fig. 3.14(b). Since
the numerical calculations to maintain proper resolution are very slow, by
the dashed orange line we visualize the prediction of the evolution for the
one case (orange solid line). (b) Droplet number density for all cases reaches
the same value. The drop in the number density from the initial value cor-
responds to the amount of droplets between R = 0 and R = R, that will
dissolve. Due to the critical radius being constant, the emulsion can only
loose this fixed amount of droplets.

are distinguished for every droplet by 3 = kR/D, such that o?(¢; ). In the
diffusion limited regime, for § — oo, we obtain,

d , c—cl0 1
i (t;00) = 2D O (1 - <R><E>> : (3.28)

m

Since 1/R is a convex function, we can use Jansen’s inequality [85], which
implies, (R)(1/R) > 1. The droplet size distribution function in the diffu-
sion limited regime for emulsions with constant supersaturation will always
narrow,

d ,
— ; <0. 2
i (t;00) <0 (3.29)

Evaluating the integrals in Eq. (3.27) for § — 0, which corresponds to the

interface-kinetics limited regime, gives us

d 2

—o°(t;0) =0. 3.30
The standard deviation is constant, and the droplet size distribution function
has a constant width over time. As we have learned, the cases initialized in
the interface-kinetics limited regime, will crossover to the diffusion limited

regime and eventually evolve with a narrowing distribution function. The
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FIGURE 3.16: No self-similar droplet size distribution function in diffu-

sion limited regime: (a): At equidistant time points from t1/7 = 5 - 10* to

ts/T = 5 - 10°, we measure the distribution function for the system with ini-

tial conditions k(R(0))/D = 3 - 103, corresponding to the diffusion limited

regime. (b): It is not possible to find a separation ansatz to find a self-similar

solution of the droplet size distribution function. For the nondimensional-
ization we use Eq. (1.22).

results of the narrowing distribution function for systems from Fig. 3.14 are
depicted in Fig. 3.15(a).

Furthermore, Fig. 3.15(b) shows an agreement with our assumption about the
constant number density n. The system is initialized for different choices of
k(R(t))/D with the same droplet size distribution function NV (R,0) and the
constant supersaturation €. During the evolution, we loose some droplets
and settle at a constant droplet number density n. The amount of droplets
lost corresponds to the amount of droplets between R = 0 and R = R, at
t = 0, a range which due to constant supersaturation is constant in time and
for all cases. The asymptotic number density n is set by the initial conditions

that determined the critical radius,

n= OON(R, 0)dR, (3.31)

R

and stays constant, Fig. 3.15(b).

3.2.2 Universal coarsening kinetics of emulsions with con-

stant supersaturation

In the last part of this chapter, we study the time evolution of the distribution

function in the two asymptotic regimes 3 — oo and 8 — 0. For emulsions
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FIGURE 3.17: Collapse of the droplet size distribution function in
interface-kinetics limited regime: (a): At equidistant time points from
t1/7 = 10" to t5/7 = 8 - 10'! we measure the distribution function for
the system with initial conditions k(R(0))/D = 3 - 1077, corresponding to
the interface-kinetics limited regime. (b): The shift in the radial space by
(R — (R)), collapses the distribution function on its self-similar shape. The
distribution function has a constant width and moves for every radius R at
the same speed. For the nondimensionalization we use Eq. (1.22).

initialized in the diffusion limited regime, (k(R(0))/D = 3-10?%), we again do
not see a possibility of finding a length scale that would allow for a success-
tul separation of the distribution function into the time- and radial depen-
dent scaling function, Fig. 3.16(b). This is due to the same reasons discussed
in Subsect. 3.1.3 for emulsions with constant matter supply in the narrowing
regime. The narrowing distribution function and the constant droplet num-
ber density require a different ansatz for the droplet size distribution function

than the ansatz used for passive emulsions.

For emulsions initialized in the interface-kinetics limited regime (k(R(0))/D =
3-1077), the constant standard deviation implies that for all radii the dis-
tribution function moves at the same speed. This speed is defined by the
movement of the average radius, dt(R(t))/dt. A shift (R — (R)) immobilizes
the distribution function, and we see a collapse at all times, Fig. 3.17(b). As
we have learned, this is temporary, and the system at asymptotic times will
crossover to the diffusion limited regime, which evolves with a narrowing

droplet size distribution function and thus loose the self-similarity.

3.3 Summary

In this chapter, we have learned about coarsening kinetics in emulsions with

matter supply. For a constant supply, we found regimes in which emulsions
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grow with a new scaling law independent of the supply. We derived the
prefactors presented in Tab. 1.1. In both regimes the average radius evolves
with the same time exponent as passive emulsions but with a higher pref-
actor. We found that in the interface-kinetics limited regime the average ra-
dius is shifted compared to passive emulsions, but the shift is independent
of the supply values. Beyond the threshold of the supply discussed in [83],
the droplet size distribution function in the diffusion limited regime narrows,
and the coarsening kinetics is not universal anymore but depends on the sup-
ply and the initial conditions. At the same time, narrowing cannot be reached
in the interface-kinetics limited regime even for very high supply rates. Nar-
rowing poses a challenge in deriving a self-similar form of the droplet size
distribution function. A distribution function that evolves into a delta-peak
corresponds to a monodispersed emulsion which is interesting from the per-
spective of size control. In the later part of the chapter, we choose the mat-
ter supply in such a way as to keep the supersaturation constant. Droplets
are decoupled from each other and grow independently of the whole emul-
sion. Even if we initialize the system in the interface-kinetics limited regime,
the crossover to the diffusion limited regime will always happen for a large
enough system, and the droplet size distribution function will always nar-

TOw.
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Chapter 4

Coarsening kinetics of chemically-

active emulsions

In Chapt. 3, droplet material was directly added to the system from a mate-
rial reservoir. We now want to address a more general case of matter supply
relevant to chemistry and biology, which consists of a chemical reaction of
multiple components like precursor molecules and fuel that lead to droplet
material supply. Through a fuel-driven chemical reaction, we control the con-
centration and production of the droplet material. Since we keep the system
away from relaxing to its thermodynamic equilibrium due to matter supplied

in a chemical reaction manner, we call such emulsions chemically-active.

We have discussed in Chapt. 1 that droplets present in cells are often subject
to chemical cues that actively control the droplets” formation and evolution.
These chemical cues often involve a chemical reaction cycle fueled by the hy-
drolysis of ATP and organelles in cells are often actively regulated by ATP-
dependent chemical reaction cycles [86, 19, 87, 88]. To incorporate multiple
components in the emulsion and a fuel-driven reaction cycle, we need to in-
troduce a minimal model and discuss when we can write the mass action law
kinetics. We will discuss a possible chemical realization of the model which
tulfills these conditions. The experimental findings of droplet coarsening ki-
netics in emulsion with fuel-driven chemical reaction cycle are result of the
collaboration with the Boekhoven laboratory. We will analyse these results
together with the model of chemically-active emulsions to understand the
effect of matter supply on the coarsening kinetics of chemically-active emul-

sions.
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41 Model for emulsions with fuel-driven chemi-

cal reactions in dilute phase

Fuel (F)
.
Precursor Product > o
(A) (B) Q
n @)

k
& Droplets

FIGURE 4.1: Schematic representation of fuel-driven droplet formation:

A chemical reaction cycle in the dilute phase drives the activation of precur-

sor (A) through fuel consumption of to the droplet forming product (B). The

product (B) is unstable, and in reaction with solvent, i.e., hydrolysis reaction

for a water solvent, it is deactivated to the precursor. The reaction rate con-

stants at each arrow, correspond to these reactions respectively. Modified
from [89].

Until now, we were discussing a binary mixture, made of a component that
phase separates in the solvent into a dense and dilute phase. To discuss a
more complicated system, like the one represented in Fig. 4.1, we need to
introduce more components and discuss the chemical reaction cycle. Un-
til now, our phase separating component corresponded to the product (B)
molecules, which was phase separating into droplets. We extend now the
model by precursor (A) and fuel (F), which do not phase separate and are
not present in droplets but are present in the dilute phase. The reaction cy-
cle happens only in the dilute phase and consists of activation through fuel
consumption (forward reaction): A — B, and the deactivation through the
reaction with solvent (backward reaction): B — A.

In the following, we introduce the necessary assumptions and simplifications
the model must fulfill for further discussion. The concentrations c¢*5¥5(¢) cor-

respond to the concentrations in the dilute phase of the precursor, product,

ABJES
in

fuel and solvent respectively. For the inside phase c accordingly.

Model simplifications and assumptions

1. Strong phase separation: If the solvent (S) is water, we can describe the
strength of the interactions between the molecules and solvent through
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their hydrophobicity. Here we assume that the product (B) is highly
hydrophobic, thus it phase separates strongly and forms droplets in
which the presence of the solvent (and other components such as fuel
or precursor) can be neglected. The other components precursor (A),
tuel (F) are highly hydrophilic, which means they do not phase sep-
arate. The precursor (A) and fuel (F) molecules are as often present
inside the droplets as the solvent is. Thus, we can neglect their concen-
tration inside the droplets, such that ¢/v" ~ 0. The conditions inside the
droplet, with no space for molecules other than the product, correspond
to a high packing fraction of the order of 0.8. The concentration inside
corresponds to the inverse of the molecular volume of the product v,
¢in =~ 1/v. Furthermore, the concentration of the product in the dilute
phase is much lower than in the dense phase, B(t) < ¢\. The case of
strong phase separation is also reflected in the constant concentration
inside ¢ = ci(r?), which is the case we have derived and discussed in
Chapt. 2.

2. Exchange of droplet material: As a consequence of the condition 1,
droplets exchange between each other only the droplet building ma-
terial (B). No fuel, product, or solvent is exchanged during droplet
growth kinetics. The growth law and the discussion of emulsion ki-
netics in Chapt. 2 hold in this limit.

3. Reactions solely in the dilute phase: The reactive components of the
reaction cycle are only present at quantitative relevant levels in the di-
lute phase. Thus, the reaction happens outside the droplets only. The
deactivation reaction can occur at the interface of the droplet. But we
will assume that its effect on the total reaction outcome is negligible.

4. Broken detailed balance condition: The product (B) is activated by
fuel and the thermal pathway of creating B from the precursor (A)
can be neglected. As a result, stationary states are non-equilibrium
steady states, and the system cannot relax to thermodynamic equilib-

rium. Thus, we call the system a chemically-active emulsion.

5. Fast diffusion: The diffusion of precursor, fuel, and the solvent is
very fast compared to droplet growth, so there are no spatial inhomo-
geneities in the concentration profiles. Since droplets can grow in the
diffusion limited regime, the diffusion of the product is relevant for the
exchange of material between the droplets. We can, however, assume

that the product concentration in the dilute phase is very low, and this
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accounts for weak spatial inhomogenities. We assume the concentra-

tion of product in the dilute phase to be quasi-static.

6. Composition independent reaction rate constants: Since there are no
reactions inside the droplets, the reaction rate constants kgq(c®, ¢8, cf, ¢°)
correspond to the dilute phase only and can be in general composition
dependent. During nucleation, when the concentration of the build-
ing block in the dilute phase is high, the reaction rate constants could
change. However, since we do not consider this regime in our discus-
sion and are interested at times when the components in the phase out-
side the droplets are dilute, we can treat the reaction rate constants kg4
as constant and thus composition independent. This condition must be

tested in the experimental realization.

In this model, the concentrations of the precursor (A) and fuel (F) change
only due to the activation and deactivation reactions in the dilute phase, and
we can write:

dc;;t) = —kp ()M (t) + kae(t) (4.1a)
F
de dt“ — e )M (4.1b)

The concentration of the building block in the dilute phase, changes accord-

ing to the conservation law discussed in Eq. (3.20), where we take into ac-
count how the droplet phase volume fraction ®(¢) changes due to emulsion
growth. Furthermore, the activation and deactivation reactions influence the
conservation law, such that the concentration of the building blocks in the
dilute phase ®(¢) changes according to

dcB d
O _ 9L 40) 4 k(1102 (1) — k(). 42)

where we have used the condition of small droplet phase volume compared
to the total system volume, Vi, < V. The droplet phase volume fraction ()
is defined as

dAr
(1) :/0 ?R ()N (R,t)dR, (4.3)

with a time evolution given by

%(I)(t) = /0 T unRA(0R() N (R, 1)dR (4.4)
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FIGURE 4.2: Schematic representation of fuel-driven droplet formation in

the chemical realization: (a): A chemical reaction cycle from Fig. 4.1 has

been extended by waste and water according to the experimental realiza-

tion. (b): List and chemical structure of precursors used in the experiments.
Modified from [89].

This time evolution of the droplet phase volume fraction is only valid in
the regime in which we do not consider nucleation of droplets. This means
that for droplet radii smaller than the critical radius R < R.(t) droplets will
shrink. In this regime the droplet size distribution function N'(R,t) evolves
according to the continuity equation in Eq. (2.53) and for the droplet growth
R(t) we use Eq. (2.65). Compared to Eq. (3.20), we can see that the term which
corresponded to matter supply, J.(t), is here given by a time dependent ex-
pression

Jelt) = ke " (8)cA(t) — kac®(1), (4.5)

which is coupled to the time evolution of the other components in the reac-

tion cycle.

Furthermore, the total concentration of the building block (B) is not a con-
stant anymore, but depends on the concentration of the precursor (A), such
that:

Cot = A (1) + E) + V(1) (4.6)

where cior = c*(t = 0) before the start of the reaction cycle.
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4.1.1 Experimental realization of emulsions with fuel-driven

chemical reactions in the dilute phase

The field of fuel-driven self-assembly has recently gained interest. In the
experiment, the self-assembly of molecules is regulated by a chemical reac-
tion cycle that comprises two reactions: a building block activation and de-
activation reaction. In the activation, a precursor molecule is activated for
self-assembly by the irreversible consumption of a chemical fuel. In the de-

activation, the product is reverted to the precursor [86].

The following discussion is based on our work with the Boekhoven group
[89]. Here, we study water-soluble precursor molecules Fig. 4.2(b) in a water
solvent. The reaction cycle Fig. 4.2(a) is driven by hydrolysis of 1-Ethyl-3-
(3-dimethylaminopropyl)carbo-diimide (EDC) as a carbodiimide-based fuel.
The carboxylate-based precursor (A) is activated by a reaction with fuel (F,
EDC). The activation reaction is a two step process involving intramolecular
carboxylate to form the product. The deactivation happens via hydrolysis
of the product [89]. The concentration of the product, fuel and precursor is
measured by HPLC method.

To be able to analyze the results of the experiment and write a correct model,
we need to check how the experimental realization corresponds to the as-
sumptions in 1-6. Starting from this section, we will, for simplicity, drop the
index B in the concentration of the building blocks (product).

Conditions of the experimental realization

1. Oil droplets: The product, during the activation reaction, loses the neg-
atively charged carboxylate group of the precursor, which decreases the
solubility of the product compared to the precursor, and the nucleation
of droplets. The chemical structure of the product is hydrophobic, as
opposed to the hydrophilic structure of the precursor and fuel (EDC).
The packing fraction withing the droplets is very high compared to the
dilute conditions outside. The equilibrium concentration of the droplet

(0)

in /

building blocks of the dense phase, c
(0)

in

is estimated through the molec-
ular volume ¢;,” ~ 1/v for each product and is in agreement with the
measurements. The estimated solubility of the droplet building blocks,
9, is for all products in the order of ImM, whereas Ci(r01) ~ IM. The con-
centration of the other compounds in the dilute phase, ¢*f(¢) ~ 10mM,
is dilute compared to the conditions inside the droplets. The droplets

in the experimental conditions are oil droplets.
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As a result of fulfilled condition 1, the conditions 2 and 3 follow directly.
Droplets only exchange the product material with each other, and the re-
action between the precursor and fuel, as well as product and water, hap-
pens only in the dilute phase. The estimate of the total number of product
molecules (B) at the droplet interface Ni, compared to the total amount of
molecules in the dilute phase N, in the experiments is, Noy ~ 10° - Nipt. The
difference amounts for five orders of magnitude, and we can neglect the ef-

fect of hydrolysis at the droplet interface to the hydrolysis in the dilute phase.

4. Broken detailed balance condition: Without the fuel, the backward
reaction (deactivation) has a very low chemical equilibrium constant,
K*® = c(t)/ea(t) =~ 1073 [89]. As soon as there is fuel and we activate a
lot of B, we can neglect the pathway of A — B compared to the reaction
with fuel.

5. Fast diffusion: The diffusion of all reactants is D = 500um?/s. Fur-
thermore, the distance between the droplets is ¢y ~ 30um. For the
deactivation reaction, {gcact = \/m ~ 300um, such that lgeact > lint iS
well fulfilled, and the diffusion between the droplets is fast compared

to chemical reactions.

6. Composition independent reaction rate constants: The reaction rate
constants kg4 have been estimated through experimental measurements
and do not show a dependence on the composition [90]. Even in the
regimes where the concentration profile of the components changes
strongly, the experimental data can be well described using krq = const.
Thus, the dependence on the composition must be very weak in the
regimes we are discussing, and we chose to approximate them as con-

stants.

There are two additional conditions the experimental realization satisfies. In
the chemical reaction cycle, there are typically waste and intermediate prod-
ucts, depicted in Fig. 4.2. However, for the following reasons, we can neglect
their impact on the reaction cycle.

* Waste: The hydrolysis of fuel, during which waste (EDU) is produced,
occurs at the lowest reaction rate compared to all other reactions. The
half-life of fuel is in the order of a day, and experiments are conducted
within a few hours. Thus, in the regime we are looking at, the hydroly-
sis of fuel into the waste can be neglected. Furthermore, for some prod-

ucts, the hydrolysis into precursor produces waste. The time-frame of
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the experiments has been adjusted such that these effects can be ne-
glected and do not cause any problems in the measurements. However,
the production of waste limits the possible observational time in the ex-
periments, especially for the continuously-fuelled experiments, which

we will discuss in more detail.

¢ Short-lived intermediate product: The reaction between precursor and
fuel involves an intermediate step of an intermediate product that is
short-lived and reacts quickly to the precursor and product. The inter-
mediate product is quasi-static, and in the approximation, it is incorpo-
rated into a yield factor ), such that

/\k‘FCF
kq

B, (4.7)

the precursor is activated by fuel, and the product is deactivated by hy-
drolysis. The yield factor A is estimated from the reaction rate constants
of the intermediate reaction and for all cases is in the order of A ~ 0.8
[89].

Given these conditions, the experimental realization can be described by the
model in Eq. (4.2) and Eq. (4.1) with the modification of Eq. (4.7).

4.2 Experimentally observed acceleration of coars-

ening in chemically-active emulsions

In experiments, fuel was supplied in two ways: In single-fuelled emulsions,
fuel was supplied only once to the mixture of solvent and precursor molecules
Fig. 4.3(a). The publication in Ref. [89] refers to this set-up as one-batch mode.
In the second method, called continuously-fuelled emulsions, fuel was sup-
plied after the initial batch of fuel at equal time intervals, in such a way as to
maintain the fuel concentration constant, Fig. 4.4(a). We distinguish between

two set-ups, single- and continuously-fuelled emulsions.

The difference between these two set-ups is visible in the results of the total
product concentration (B) that accounts for the product in the dilute phase
and the droplet phase, Fig. 4.3(b) and Fig. 4.4(b). In single-fuelled experi-
ments, the total concentration of product increases while the fuel is depleted.
Once the fuel has been completely used, the product reaches its maximum
concentration. Now, the forward reaction cannot happen anymore, and the
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FIGURE 4.3: Schematic of the set-up and results in single-fuelled experi-
ments: (a): Schematic of the single-fuelled set-up. The pipette corresponds
to the fuel supply at the beginning of the experiment. Droplets emerge,
grow, and, after a coarsening phase, dissolve, when the total concentration
of product has been fully depleted. (b): Total concentration of product and
fuel measured by HPLC method. The product initially increases (ligt blue
region) and after reaching maximum concentration decreases linearly (red
region). The concentration of fuel (EDC) decreases from its initial value un-
til it is completely used. Markers correspond to experimental data and the
solid lines to the theoretical model. (c): Micrographs at several time points
in the cycle described in (b). The results (b), (c) are for the precursor CgSA.
Modified from [89].

v

product can be only deactivated. Its concentration decreases until the emul-
sion fully dissolves. For continuously-fuelled experiments, due to supply of
fuel at constant time intervals, it is possible to maintain a semi-fixed con-
centration of fuel and of the product. We will now try to approximate the
average droplet volume and compare it to classical Ostwald ripening, which
for a diffusion limited growth valid in these experiments, is a good reference
case.

4.2.1 Estimation of the average volume

In order to understand the coarsening kinetics of emulsions in the experi-
mental realization, we make a theoretical estimate of the average volume for
both set-ups.

For both cases, the time evolution of the droplet phase volume fraction ®(¢),
Eq. (4.3), in the quasi-static regime discussed in the earlier sections, ¢(t) ~ 0,
for the droplet material (B) in the dilute phase, simplifies to Eq. (2.63), which



Chapter 4. Coarsening kinetics of chemically-active emulsions 87

~~
5]
~—
—~~
o
S~—

= % . 12
\ 10

[Product] (mM)
o N b OO
[EDC] (mM)
O

N

(=)

v

Time 0 50 100 150 0 40 80 120 160
Time [min] Time [min]

FIGURE 4.4: Schematic of the set-up and results in continuously-fuelled
experiments: (a): Schematic of the continuously-fuelled set-up. The pipette
corresponds to the fuel supply at the beginning of the experiment and later
at equal time intervals. Droplets emerge, grow, and continuously coarsen.
(b): Total concentration of product and fuel measured by HPLC method.
The product increases and after reaching a maximum maintains constant
concentration. The concentration of fuel (EDC) decreases from its initial
value and through the continuous supply maintains a constant concentra-
tion. Markers correspond to experimental data and the solid line to the
theoretical model. (c): Micrographs at several time points in the cycle de-
scribed in (b). The results (b), (c) are for the precursor CsSA. Modified from
[89].

states

- . (4.8)

For the single-fuelled experiments, we can focus on the regime when fuel
has been completely depleted, which corresponds to ¢ = tnax in Fig. 4.3(b).
For cf(t) = 0, the matter supply J.(¢) from Eq. (4.5) has only the contribution
from the degradation reaction. In the quasi-static approximation, the concen-
tration of the droplet material in the dilute phase in the presence of droplets
can be approximated by its equilibrium value, c(t) ~ (¥, such that,

Jo = —kacl?. (4.9)

In this regime, when fuel has been depleted, for ¢ > .« the droplet phase
volume fraction,

O(t) = % <)\CF(0) — e® gt — tmax)> , (4.10)

Cin
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where the term (\cf(0) — ¢(?)) estimates the amount of product (B) that has
been produced by the initial amount of fuel ¢"(0), given the yield factor A\. We
subtracted the minimal droplet material needed for phase separation, which

is the solubility ¢(*). We can write the average volume as,

(V) = (4.11)

with the total number of droplets N (¢), which must be still estimated. In ex-
periments, the total system volume was estimated to V' = 6-10°um?®. In exper-
iments, the droplet size distribution function in both set-ups was broadening
(which we will discuss in detail in the next section), and the total number
of droplets decreased linearly [89]. As we have learned from Eq. (2.69) the
number of droplets changes due to dissolution events, and by estimating the

timescale of droplet dissolution 74 we can approximate

N(t) =1 - (4.12)
where 7 contains the numerical factor from the integration over the droplet
size distribution function and all other constants. For passive emulsions in

the diffusion-limited regime,

30 fooo h(p)dp

No(t) = V47ch(t)3 = (o)

(4.13)

where the subscript 0 corresponds to passive emulsions. We have used the
definition of the droplet number density in Eq. (2.55), the separation ansatz
valid in the diffusion limited regime, together with the result in Eq. (2.71).
The critical radius for passive emulsions is R.(t)* = (4/9)D{.,cVt/ ci(r?), and
the droplet phase volume fraction is approximately constant, ® ~ const. For
passive emulsions we can choose to write

Td,0 o

= 3V—47ch(t)3 , (4.14)
such thatn” = [~ h(p)dp/ |} p*h(p)dp. Using the solution of the droplet size
distribution function for passive emulsion 7° = 0.885. For the single-fuelled
set-up, we estimated 7 for all experiments through a fit to data and found
n = 12.5 [89], which can be expected to correspond to 1 ~ 4.

To approximate 74, consider an emulsion of one droplet only. The droplet
phase volume fraction for a single droplet ®,(¢), changes according to Eq. (4.8)
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with J.(t) given by Eq. (4.9), such that

dd,(t) )
o = ki (4.15)
It follows, that the time scale of droplet dissolution is
q)sci(r?)
Tq = a0 (4.16)

In experiments, we approximate ®, by considering the early stage of droplet
kinetics and measuring an average-sized droplet captured in a box whose
size corresponds to the interdroplet distance ;. There, &, ~ 2 - 1072 [89].
Alternatively, taking into account the physicochemical properties of the reac-
tants and the initial conditions of the experiments, ®, can be estimated using
the conservation law Eq. 4.6 and assuming that most of the precursor has
turned over to products. Under the condition c(t) ~ ¢© and ¢© « (),
follows ®; = cyor/ ci(r?). We crosscheck and validate this estimation with the

approximation of ®; ~ 2 - 1073, which is valid for all reactants.

The estimate of the average volume (V (t)) from Eq. (4.11), using Eq. (4.16)
and Eq. (4.10), is [89]

B V kac© (t — tmax) ka9 (t — tmax)
Vit) = (Vitma)) + =5 (1 = N0 O ) . (417)

in

where for ®, we have used ¢y = (AcF(0) — ¢(©), valid for ¢ > t . This result
is in agreement with the experimental results and reflects the parabolic shape
of the average volume Fig. 4.5(a) (red line: Eq. (4.17), dots: experiments).
The estimation has been applied to the measurements of the average volume
for all precursors used in the single-fuelled experiment. In total, there were
seven different precursors used, for which the estimate was in a very good

quantitative agreement [89].

For the continuously-fuelled experiments, we estimate the average volume
analogously. The main difference is that the droplet phase volume fraction
d(t) is directly estimated from the conservation law of the total material
Eq. (4.6). For the condition ¢(t) ~ ¢{”), we can solve Eq. (4.6) for ®(¢),

CA
d(t) = % <ct0t — 0 ( C(gf) — 1)) . (4.18)

in

For continuously-fuelled set-ups, the quasi-static concentration of fuel Fig. 4.4(b)
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FIGURE 4.5: Agreement of theoretical approximation of the average
droplet volume with experiments: The average droplet volume against
time for CgSA. The markers represent the data measured by image analysis
software in three repeated experiments. The black line represents the av-
erage of the repeated experiments. The blue line corresponds to Ostwald
ripening. (a): Single-fuelled experiment. The theoretically estimated av-
erage droplet volume from Eq. (4.17) is depicted by red solid line. The
region where fuel has been depleted is depicted by the red shaded area,
in contrary to the blue shaded region, which corresponds to ¢ < tmax.
(b): Continuously-fuelled experiment. The theoretically estimated average
droplet volume from Eq. (4.21) is depicted by red solid line. Modified from
[89].

implies that there is a stationary fuel concentration ™.

For c(t) =~ ¢, Eq. (4.1a) results thus in a stationary concentration of the pre-

cursor ¢, which is given by

AD kdc(ﬂ)

= 4.19
N0 (4.19)

where the constant concentration of ¢*? is estimated from the concentration
profiles. Note, that under these conditions, the matter supply in Eq. (4.5),
Jo(t) = kpcfPcA0 — k4c(0. The stationary conditions of the concentration pro-
files of fuel and precursor, correspond to vanishing matter supply, J.(t) = 0.
The droplet phase volume fraction ®(¢) from Eq. (4.18), using the quasi-
stationary concentration profile of the precursor Eq. (4.19) [89],

1 o( ha
®(1) = 5 (ctot _ >(AkFch - 1)) | (4.20)

in

For the total droplet number N(t) we can use the same arguments as be-
fore, with N(t) = nrq/(bt). The factor n = 12.5 as before, obtained from
the fit to data. We expect the dissolution timescale to be shorter than in the

single-fuelled experiments, and b > 1 accounts for this difference. This is
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due to additional activation events to the product, which were absent in the
single-fuelled experiments. The parameter b is estimated as the relative in-
crease of the slope of the average volume in the continuously-fuelled com-
pared to single-fuelled experiments. In the experiments we find: (CsSA)
b= 3.84, (CsSA) b = 2.89, (C19SA) b = 4.29. For the estimate of the dissolution
timescale 74 in Eq. (4.16) we calculate the droplet phase volume fraction @,
from Eq. (4.20).

For the average volume (V' (¢)) from Eq. (4.11), by plugging in the results for
the droplet phase volume fraction and the droplet number, the estimate sim-

plifies to [89],

bV k)dc(o)
(V(t) = ERPORE

in

(4.21)

where the linear growth is consistent with the experimental results, Fig. 4.5(b)
(red line: Eq. (4.21), dots: experiment).

4.2.2 Collapse of the acceleration of coarsening

For the comparison of the experimental data to the theoretical estimates Eq. (4.11)
and Eq. (4.21) in the two regimes, respectively, we have additionally depicted
the average volume for Ostwald ripening, calculated using the physicochem-
ical properties of the product (blue line in in Fig. 4.5(a),(c)). The average
volume for Ostwald ripening can be approximated (V' (¢))o = (47/3)(R(t))3,
where the average radius corresponds to the result in Eq. (1.17a), such that

dr (4 DO,
(V(t))o = B <§T t, (4.22)
where the diffusion constant D, and the equilibrium concentrations are known
for each experiment. The capillary length /., discussed in Eq. (1.9),

2y
by = ——, (4.23)
! kBTCI(r?)
is calculated for each product after measuring its surface tension . The re-
sults in Fig. 4.5(a),(b) show that the coarsening kinetics of emulsions in ex-
periments, in the regime when the growth is linear exceeds the prediction of
Ostwald ripening (blue line).

We want to estimate the acceleration of coarsening between the coarsening
of active and passive emulsions. We assume that the average volume (V (t))

in the chemically-active emulsions has both a contribution from coarsening
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coming from Ostwald ripening, (V' (¢))o as well as from the active growth
(V(t))a, from Eq. (4.11) and Eq. (4.21). We can thus write (V' (¢)) = (V(¢))o +
(V(t))a, and the acceleration of coarsening m is defined as,

V) _ ., (V) (4.24)

(V) — (V)

For the comparison of the active and passive growth, we are only interested

m =

in the regime where the average droplet volume grows linearly. We use the
results in Eq. (4.11) for the linear growth and Eq. (4.21) as well as Eq. (4.22)

accordingly and write,

9 VigT kgD |1

SR @O |y 429

m =1+

where V, kg1 and 7 are the same in all experiments. Since the different pre-

cursors and products vary in their physicochemical properties reflected in kg,
(0)

¢ v and ¢, we want to write the expression for m in terms of a rescaled
variable, which holds all active parameters of the reactants. We define a ref-
erence surface tension, 7y, which corresponds in value to the surface tension
of CgSA. We can then define a rescaled deactivation rate r,
o vy
Teff = kda—g : (4.26)
C(O) Yref

such that the acceleration of coarsening m in Eq. (4.25) becomes, [89]

————— Tef , (4.27)
7/3)n b

In Fig. 4.6, we show a plot of the result in Eq. (4.27) for b = 1 (single-fuelled
experiments, light red line) and a choice of b = 2.95 (continuously-fuelled,
dark red line). For Ostwald ripening, m = 1 and is depicted as a reference
(blue line). In the same figure, we show the experimentally measured values
of m by directly reading off the linear growth rate of the average volume for
every experiment and comparing it to the prefactor of the average volume in
Ostwald ripening.

The experimental results and the theoretical estimate match each other very
well. There is an excellent quantitative agreement; additionally, products
from the same physicochemical family of similar properties are found to clus-

ter into groups in the vicinity of a common parameter regime. Through the
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FIGURE 4.6: Collapse of the acceleration of coarsening as a function
of rescaled deactivation rate: Acceleration of coarsening against the
rescaled deactivation rate when products are subjected to single-fuel (red)
or continuous-fuel (dark red). The products are grouped into families by
common physicochemical properties (blue, yellow, green, red). The mark-
ers corresponds to the experimental measurements, with the error bars cor-
responding to the standard deviation from the average of the experiments.
The solid lines correspond to Eq. (4.27), the blue solid line is the acceleration
of coarsening for Ostwald ripening. Modified from [89].

estimations, we were able to understand that the active chemical reaction cy-
cle regulates the increase in the average droplet volume. The deactivation
reaction determines the time scale of droplet dissolution, and its possible to
collapse the acceleration of coarsening using the physicochemical properties
of the product material and the deactivation rate constant. We will now use
the numerical calculations of the evolution of the droplet size distribution
function, to better understand how the experimentally observed acceleration

of coarsening is reflected in the theory of emulsions with matter supply.

4.3 Transient acceleration of coarsening in chemically-

active emulsions

To understand the mechanism of accelerated coarsening in chemically-active
emulsions, we solve numerically the continuity equation for the droplet size
distribution function N'(R,t) as discussed in Chapt. 1, Eq. (1.21). We ex-
tend the model by adding the evolution of fuel and precursor, which follow
Eq.(4.1), and for the droplet material, we extend the conservation law by the
chemical reaction cycle in Eq. (4.2). As before for the time and radial compo-

nents we use the nondimensional form, t — t/(¢2/D) and R — R/(,, such
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FIGURE 4.7: Acceleration of the average volume in the single-fuelled set-
up: (a): In the single-fuelled conditions, we find the acceleration of the av-
erage volume five-fold compared to Ostwald ripening. The solution of the
model (red solid line) is depicted together with the average volume for Ost-
wald ripening (light blue dashed line). The light blue dashed area corre-
sponds to the regime where fuel is still present, which is depleted at ¢ = ¢*.
In the red shaded area the matter supply due to lack of fuel is negative. (b):
The number density in the single-fuelled set-up (orange solid line) decreases
faster as in passive systems (Ostwald ripening, light blue dashed line). The
time is ¢ rescaled by 7 = £2 /D, and the length by /.

that the nondimensional growth law Eq. (1.15) is

d koo 9 1

where the supersaturation, (t)c® = (c(t) — ¢@). For the numerical calcula-
tions we chose: £, = 0.001um, D = 5-10%um? /s, which correspond the exper-
imental conditions. For the diffusion limited case the choice of k¥ = 102°um/s,
tulfills the condition D¢, < k. The choice of the equilibrium concentration in
the dense and dilute phase corresponds to the experimental values of CsSA,
i(r?) = 5000mM, cg?l)t = 0.15mM. The choice of the reaction rate constants is in

the regime of the experimental values.

C

We initialize the system with an initial amount of precursor and fuel, first
without droplets, and calculate how much fuel and precursor are used to pro-
duce enough product to phase separate. The threshold is chosen c(t) = 3-¢(©.
When this condition is reached, the emulsion is initialized with a droplet size
distribution function which corresponds to the LSW-theory solution for the
diffusion limited case (Ostwald ripening). Since with our method we cannot
study the regime of nucleation, the solution of the distribution function for
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FIGURE 4.8: Acceleration of the average volume in the continuously-
fuelled set-up: (a): In the continuously-fuelled conditions, we find the ac-
celeration of the average volume five-fold and ten-fold compared to Ost-
wald ripening. The solution of the model (blue and black solid line) is de-
picted together with the average volume for Ostwald ripening (light blue
dashed line). The blue line corresponds to a lower choice of the degradation
rate constant kqplack = 1.14k4 pie and the time ¢* refers to this system. The
observation is consistent with the prediction that a higher deactivation rate
constant leads to higher acceleration of coarsening. (b): The matter supply
in continuously-fuelled set-up (black solid line) decreases to J.(t) = 0 at
t = t*. The concentration of fuel (red dashed line) is maintained constant.
The data correspond to the system depicted by blue solid line in (a). The
time is ¢ rescaled by 7 = 63 /D, the length by ¢, and the concentration by
0,

Ostwald ripening seems a natural choice. We initialize the emulsions with
cp(0) = 45mM and ¢p(0) = 724.5mM. This condition is higher than in the
experiments, but due to the nature of the system we solve and the lack of
the nucleation regime, we need to add much more material for the already

existing droplets to notice the matter supply and the chemical reactions.

Given these conditions, we study the evolution of single- and continuously-
fuelled emulsions. The results for the single-fuelled set-up are depicted in
Fig. 4.7. We find the acceleration of the average volume, which can be five-
fold of the Ostwald ripening. The power law of the average volume does
not change, and the acceleration comes through the higher prefactor only, as
predicted in Subsect. 4.2.1. The red shaded region in Fig. 4.7(a) corresponds
to a regime when fuel has been depleted. The time ¢ = ¢* corresponds to the
time when cp(t > t*) = 0. In experiments we referred to this time as tmax,
since it was measured when the total product concentration reached its max-
imum value. Beyond this time, the degradation of the product dominates

the matter supply, which is now negative J.(t > t*) < 0. The shape of the
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average volume has similarities to the parabolic shape from Fig. 4.18(a). The
presence of the deactivation reaction, as expected through the estimate of the
time scale of droplet dissolution 74 in Eq. 4.16, causes droplets to dissolve
faster than in Ostwald ripening Fig. 4.7(b). Since matter supply is negative,
the single-fuelled emulsion evolves further until its complete dissolution.

For the continuously-fuelled emulsion, we fix the fuel concentration to a con-
stant before the fuel has been completely depleted. The fuel concentration is
chosen in such a way as to correspond to the quasi-static concentration of fuel
in experiments, ¢™ = 1.5mM. The results of the average volume in Fig. 4.8(a)
show that, as expected, the emulsion will not dissolve in contrary to single-
fuelled set-up. We find in the initial regime, for ¢t < t*, a ten-fold acceleration
in coarsening compared to Ostwald ripening (black solid line in Fig. 4.8(a)).
At the time ¢ = t*, although the concentration of fuel is maintained constant,
the matter supply becomes zero, J.(t > t*) = 0, Fig. 4.8(b). This is con-
sistent with the discussion of the quasi-static concentration profiles of fuel
and precursor, which will lead to matter supply reaching J.(t) = 0. As we
can expect, under this condition, the system will not dissolve, since for the
dissolution matter supply must be negative. However it will relax from the
accelerated coarsening towards the passive system. At late times, we find
that the average volume approaches Ostwald ripening Fig. 4.8(a) (light blue
dashed line).

Consistent with the experimental results, we find that in the continuously-
fuelled emulsions, the acceleration of coarsening can be higher than in the
single-fuelled experiments. In both cases, the average volume evolves with
the same power law as in passive systems. Furthermore, in the continuously-
tuelled case, the emulsion will not dissolve, contrary to single-fuelled exper-
iments. We have learned that at very long times, which are not accessible
to the experiments, emulsions in the continuously-fuelled experiments will
always relax to the passive emulsions described in the diffusion limited case
by Ostwald ripening. The increase in the dilute concentration of the droplet
material ¢(t) due to a constant matter supply through the forward reaction,
and the growth of droplets, balance out the effect of the forward reaction in

F0 CA’O

the matter supply term, such that J.(t) = kgc — kqc(t), becomes zero.

As the last comparison to experiments, we look at the evolution of the droplet
size distribution function N'(R, t) for the experiments Fig. 4.9 and the model
Fig. 4.10, in the single-fuelled and continuously-fuelled set-ups, (a) and (b)
respectively. In experiments, it was possible to measure the number of droplets
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FIGURE 4.9: Size distribution histograms for single- and continuously fu-

elled experiments: The distribution of droplet volumes at different times

measured for CgSA. The colors of the lines correspond to the times of the

measurement. (a): Single-fuelled experiment. (b): Continuously-fuelled ex-
periment. Taken from [89].

having a particular droplet volume and represent the data in a form of a his-
togram. It is not the same measure as the droplet size distribution function,
but it tells about the qualitative feature of the distribution of droplet sizes. In
Fig. 4.9 we see that in both set-ups the amplitude of the number of droplets
is decreasing, indicating that droplets dissolve, and the tail of the function
is moving towards right. This indicates a broadening in the droplet size dis-
tribution function. For the model, we see analogous results for both set-ups.
We choose time points, (¢; — t4), that in both cases are equally spread around
t*, not too close to the initial stage nor too far in the dissolution regime for
the single-fuelled set-up. We plot the droplet size distribution function as a
function of the droplet volume, to be consistent with the experiments. We
find that the droplet size distribution function is broadening, droplets are
dissolving and the number is decreasing. As we have learned in Chapt. 3, for
the distribution function to narrow, the matter supply must exceed a fixed
threshold. Here, matter supply is high only in the initial regime, and later
decreases to negative values or 0. Thus, the distribution function here is not
expected to narrow.

44 Summary

In this chapter we discussed the effect of a chemical reaction cycle on mat-
ter supply and on the coarsening kinetics of emulsions. We discussed how
the reaction cycle changes the conservation law and the droplet kinetics.
Through an experimental realization it was possible to find acceleration in
the coarsening kinetics for chemically-active emulsions. The prefactor of the

scaling law of the average volume increased compared to passive emulsions.
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FIGURE 4.10: Droplet size distribution function in single- and
continuously-fuelled set-ups: For the model fulfilling the conditions of the
single- and continuously-fuelled conditions, we measure the droplet size
distribution function at times t; /7 = 0.2-10* (black solid line), t3 /7 = 0.4-10*
(red), t3/7 = 0.6 - 10* (purple) and t4/7 = 0.8 - 10* (blue), where 7 = E%/D
The arrows indicate how the amplitude is decreasing over time, due to de-
creasing droplet number and that the distribution function is broadening.
(a): Single-fuelled set up. (b): Continuously-fuelled set up.

On the other hand, the power law in time for the average volume is the same
as in passive systems. We understood how the chemical reaction, especially
the deactivation reaction and the physicochemical conditions of the experi-
mental realization influence the acceleration of coarsening. Furthermore, by
solving the model numerically, we found that the acceleration of coarsening
is only transient. Droplets either dissolve after the acceleration regime in the
single-fuelled set-ups or relax towards passive systems at very late times in
the continuously-fuelled cases. The observed acceleration is relevant only at
short time scales. In the experimental realization of the continuously-fuelled
set-ups, these late times cannot be reached.
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Chapter 5

Summary and future outlook

This thesis is dedicated to the coarsening of emulsions under conditions of
matter supply. In the first part, in Chapt. 1, we defined an emulsion and
its different stages of evolution. After exploring the physics of liquid-liquid
phase separation, we have learned about the coarsening kinetics in passive
emulsions, what is the scaling law of the average droplet radius in the two
asymptotic regimes of the droplet growth law: the diffusion limited and the
interface-kinetics limited growth. Furthermore, we have learned about the
solution of the droplet size distribution function and its self-similarity in pas-
sive emulsions. Emulsions are present in cells, which are active systems, and
because active systems are often subject to matter and energy supply, we de-
cided to explore the effect of matter supply on emulsion coarsening kinetics.

The next chapter, Chapt. 2, was dedicated to the theory of single droplet
growth kinetics, which was later used to construct the theory of emulsion
coarsening kinetics with broken conservation law. We derived a complete
theoretical framework that describes the growth of a single droplet consid-
ering the scenarios of the diffusion or the interface-kinetics limited growth.
We focused on a special case of constant conditions inside the droplet. After
deriving the full picture of single droplet growth kinetics, we derived the the-
ory of emulsion kinetics, where we look at an ensemble of droplets sharing
the same concentration field in the dilute phase. The concentration shared
by the droplets changes additionally to the growth of the emulsion due to
a general matter supply term. We have derived how a single droplet grows
in such emulsion given the conditions of matter supply. The discussion is
only valid for homogeneous matter supply in the dilute phase. We found
that even with matter supply it is possible to find the solution of the critical
radius, and how it evolves in time. The solution is the same as in passive
emulsions as long as the critical radius is not constant and the distribution
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TABLE 5.1: Summary of coarsening kinetics in emulsions with different
matter supply: Table summarising asymptotic scaling laws for the aver-
age radius (R(t)) and the droplet number density n(t), and whether the
distribution function is narrowing or broadening in emulsions under differ-
ent constraints. We differentiate between the two processes that define the
growth law, diffusion limited and interface-kinetics limited regime. The ta-
ble has been introduced in Chapt. 1 and we have now added the information
about the droplet number density n(¢). Through the numerical calculations,
we were able to determine the value of &,; ~ 1.39, which is fixed and in-
dependent of the supply. However, {4if remains undetermined and has a
more pronounced dependence on the supply.

function is broadening. The solution of the critical radius is very robust, and
the perturbations which can occur due to matter supply, have only transient
effect. The solution of the critical radius determines the power law of the
average radius. Thus, even with matter supply it is very difficult to change
the scaling exponent in the power law of the average radius compared to
passive emulsions. Due to the broken conservation law of the total droplet
material and an increasing droplet phase volume fraction it is not possible to
solve analytically for the whole scaling function of the droplet size distribu-
tion function, which determines the scaling prefactor of the average radius,

and can, in general, depend on the matter supply conditions.

In Chapt. 3, we decided to look at specific classes of matter supply and solve
the system numerically. We chose first to look at a constant matter supply.
We found that in the interface-kinetics limited regime, the scaling function
of the droplet size distribution function is independent of the supply rates.
We estimated the scaling law for the average radius, for which the prefactor
of the scaling law differs by a constant shift independent of the supply, com-

pared to passive emulsions. For high enough supplies, there was a crossover
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to the diffusion limited regime due to the rapid but transient acceleration in
the average radius. The number density of droplets is described by a differ-
ent power law behaviour than in passive emulsions.

For the diffusion limited regime, the results imply that the distribution func-
tion depends on matter supply, and so does the prefactor of the scaling law
for the average radius. The droplet number density in this regime with a
constant matter supply becomes constant. We found that in the regime of
low supply rates, as long as the distribution function broadens, we can find a
separation ansatz that leads to a universal and self-similar droplet size distri-
bution function in both diffusion and interface-kinetics limited regime. How-
ever, for increasing supply rates in the diffusion limited regime, we observed
a transition to a narrowing distribution function, proposed and discussed in
the literature. There, it was impossible to find a collapse of the distribution
function onto a self-similar shape.

Another class of matter supply we studied maintains the supersaturation
constant. We derived new scaling laws for the average radius that differ from
passive emulsions in the scaling exponent and in the scaling prefactor. Fur-
thermore, the droplet size distribution function for emulsions with constant
supersaturation is narrowing and the droplet number density is constant.
Initializing the emulsion in the interface-kinetics limited regime introduces a
transient regime, when the system evolves and grows with a constant stan-
dard derivation. However, at later times, when the emulsion becomes large
enough, there will always be a crossover to the diffusion limited regime and
the narrowing will eventually occur there as well. In the narrowing regime
we again find that a self-similar solution of the distribution function is not

found. These observations are summarized in Tab. 5.1.

In the last part, Chapt. 4, we discussed chemically-active emulsions, for which
matter supply is controlled through a chemical reaction cycle in the dilute
phase. After understanding the minimal model from the theoretical perspec-
tive, we discussed an experimental realization of the system. In the experi-
mental realization, it was found that due to the chemical reaction cycle, there
is an acceleration in the coarsening kinetics compared to passive emulsions.
The acceleration of coarsening was not affecting the scaling exponent in time
but only the scaling prefactor of the average droplet volume. In the single-
fuelled experiments after the initial acceleration of coarsening, due to the
depletion of fuel and the ongoing degradation of the droplet material, the
emulsion has dissolved. In the continuously-fuelled experiments, the disso-
lution was not observed and the acceleration of coarsening was believed in
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experiments to persist. By combining the theory and experiments, we could
understand better what happens at times beyond the observation times of
the experiments. In the continuously-fuelled set-up, after the initial accelera-
tion, the emulsion relaxed to the passive evolution through Ostwald ripening
due to vanishing matter supply. In our discussion we have only considered
chemical reactions in the dilute phase. It would be interesting to extend the
chemical reaction cycle also to the inside of the droplets. It is known that
chemical reactions inside the droplets can arrest Ostwald ripening [91], and
thus this mechanism could offer an additional control of the relaxation kinet-
ics towards Ostwald ripening.

If the supersaturation is maintained constant, or during overfeeding and nu-
cleation, the scaling in time of the average radius will be different than in
passive emulsions. Otherwise, it is very difficult to observe a new power law
behavior in the coarsening kinetics of emulsions compared to passive sys-
tems, even in the presence of matter supply in the dilute phase. However,
matter supply highly affects and changes the power law behaviour of the
droplet number density or the standard deviation. Studying the power law
behaviour of other observables than the average droplet radius or the aver-
age droplet volume, could tell us much more about the active processes that
might regulate the emulsion kinetics compared to passive systems. By study-
ing the average droplet radius or volume only, in some experimental set-ups,
it might be not possible to differentiate between the passive and non-passive
coarsening kinetics. For cells, the division of cells and the cell cycle limit
the possible time window for the droplets to evolve. Matter supplied and
controlled through a chemical reaction cycle offers rapid acceleration and
an increase in the average droplet volume at very short time scales. This
mechanism might have a functional relevance for cells. Collecting more ex-
perimental results for the emulsion kinetics in cells as well as for droplets in
vitro, and comparing them to our theoretical prediction, would be relevant
to understanding the interplay between active processes like matter supply
and the evolution of emulsions.
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