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Abstract

Interactions among the multitude of macromolecules populating the cytoplasm can

lead to the emergence of coexisting phases formed via phase separation. This phe-

nomenon plays a crucial role in the spatial organization of cells and the regulation of

their functions. Many of the molecules that drive phase separation can undergo tran-

sitions among different states. Proteins, for example, can go through conformational

transitions and switch among different phosphorylation states. In addition, pro-

teins that are relevant for phase separation can assemble into oligomers of different

sizes. Both molecular transitions and oligomerization can be described as chemical

reactions in the context of theories that account for phase separation in multicompo-

nent mixtures. In this work, we discuss how chemical reactions can be used to con-

trol coexisting phase composition and shape. In particular, focusing on molecular

transitions among two states of a protein, we find a discontinuous thermodynamic

phase transition in the composition of the protein-dense phase, as a function of tem-

perature. Breaking detailed balance of the molecular transition by continuous fuel

addition can also be used to control the number of distinct coexisting phases and

their composition. Additionally, fuel turnover can lead to the emergence of novel

patterns as the system approaches a non-equilibrium stationary state. We focus on

the mechanism that leads to the formation of ring-like patterns, motivated by the

observation of similar shapes in experiments with chemical reaction cycles coupled

to a fuel reservoir. We propose that, due to chemical reactions, the composition at

the centre of the dense phase can be altered, leading to an instability that drives the

formation of a new interface.

Controlling the composition of coexisting phases becomes crucial when the number

of components and the number of reactions among them rises. This is the case in

mixtures containing proteins that can be found in a monomeric state but also form

aggregates of arbitrary size. We characterise the equilibrium of such systems in the

limit of maximum aggregate size going to infinity. For systems that phase separate,

we show that the aggregate size distribution can be different in each of the coexist-

ing phases and is determined by the temperature and the energy of bonds between

monomers. Mixtures composed of disk-like or spherical aggregates can undergo a

gelation transition. Gelation can be considered as a special case of phase coexistence

between a dilute phase (the ªsolº) containing aggregates of finite size, and a ªgelº

phase, corresponding to an aggregate of infinite size. Lowering the temperature

leads to a transition from two coexisting ºsolº phases to the coexistence of a ªsolº

phase and a ºgelº phase. In summary, this work provides a theoretical framework to

study phase-separating systems composed of many components that undergo chem-

ical reactions. Furthermore, we discuss how to exploit such reactions to control the

composition of coexisting phases.
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Zusammenfassung

Wechselwirkungen zwischen der Vielzahl von Makromolekülen im Zytoplasma kön-

nen zur Entstehung koexistierender Phasen führen, die durch Phasenseparation ent-

stehen. Dieses Phänomen spielt eine entscheidende Rolle bei der räumlichen Or-

ganisation von Zellen und der Regulierung ihrer Funktionen. Viele der Moleküle,

die für die Phasentrennung verantwortlich sind, können Übergänge zwischen ver-

schiedenen Zuständen durchlaufen. Zum Beispiel können Proteine Konformation-

sübergänge vollziehen und zwischen verschiedenen Phosphorylierungszuständen

wechseln. Darüber hinaus können sich Proteine, die für die Phasentrennung rel-

evant sind, zu Oligomeren unterschiedlicher Gröûe zusammensetzen. Sowohl die

molekularen Übergänge als auch die Oligomerisierung können als chemische Reak-

tionen im Rahmen von Theorien beschrieben werden, die die Phasentrennung in

Multikomponentengemischen erklären. Diese Arbeit untersucht unter Verwendung

von Methoden aus der Thermodynamik fern vom Gleichgewicht, wie mit Hilfe

chemischer Reaktionen die Zusammensetzung und die Form koexistierender Phasen

kontrolliert werden können. Wir konzentrieren uns auf molekulare Übergänge zwis-

chen zwei Zuständen eines Moleküls, zum Beispiel eines Proteins, und finden einen

diskontinuierlichen thermodynamischen Phasenübergang in der Zusammensetzung

der proteindichten Phase in Abhängigkeit von der Temperatur. Des Weiteren kann

das Brechen des detaillierten Gleichgewichts der molekularen Übergange durch die

kontinuierliche Zugabe eines chemischen Moleküls, das analog wie ein Brennstoff

fungiert, auch dazu verwendet werden, die Anzahl der verschiedenen koexistieren-

den Phasen und ihre Zusammensetzung zu regulieren. Darüber hinaus kann eine

Veränderung der Konzentration des brennstoffähnlichen Moleküls zur Entstehung

neuartiger Muster führen, wenn sich das System einem stationären Zustand fern

vom Gleichgewicht nähert. Hier konzentrieren wir uns auf einen Mechanismus, der

zur Bildung ringförmiger Muster führt. Dies ist motiviert durch die Beobachtung

ähnlicher Formen in Experimenten mit chemischen Reaktionszyklen, die mit einem

Reservoir in dem brennstoffähnlichen Molekülen angereichert sind, gekoppelt sind.

Wir schlagen vor, dass die Zusammensetzung im Zentrum der dichten Phase durch

chemische Reaktionen verändert werden kann, was zu einer Instabilität führt, die

die Bildung einer neuen Grenzfläche bewirkt. Wir bezeichnen diesen Zustand, der

nur stabil ist, wenn das System fern vom Gleichgewicht gehalten wird, als Vakuole.

Die Kontrolle der Zusammensetzung koexistierender Phasen wird entscheidend,

wenn die Anzahl der Komponenten und die Anzahl der zwischen diesen ablaufen-

den Reaktionen steigt. Dies ist der Fall bei Mischungen, die Proteine enthalten, die

in einem Zustand als einzelne Monomere vorliegen können, aber auch Aggregate

beliebiger Gröûe bilden können. Wir charakterisieren das Gleichgewicht solcher

Systeme im Grenzfall der unendlich groûen maximalen Aggregatsgröûe. Für Sys-

teme mit Phasentrennung zeigen wir, dass die Gröûenverteilung der Aggregate in

jeder der koexistierenden Phasen unterschiedlich sein kann und von der Temper-

atur und der Energie der Bindungen zwischen den Monomeren bestimmt wird.
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Mischungen, die aus scheibenförmigen oder kugelförmigen Aggregaten bestehen,

können einen Gelierungsübergang durchlaufen. Die Gelierung kann als Sonderfall

der Phasenkoexistenz zwischen einer verdünnten Phase (dem "Sol"), die Aggregate

endlicher Gröûe enthält, und einer "Gel"-Phase betrachtet werden, die in der Ther-

modynamik einem Aggregat unendlicher Gröûe entspricht. Eine Senkung der Tem-

peratur führt zu einem Übergang von zwei koexistierenden "Sol"-Phasen zur Koex-

istenz einer "Sol"- und einer "Gel"-Phase. Zusammenfassend lässt sich sagen, dass

diese Arbeit einen theoretischen Rahmen für die Untersuchung von phasentrennen-

den Systemen bietet, die aus vielen Komponenten bestehen, die chemischen Reak-

tionen unterliegen. Darüber hinaus wird erörtert, wie solche Reaktionen genutzt

werden können, um die Zusammensetzung der koexistierenden Phasen zu steuern.
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Chapter 1

Introduction: phase separation in com-
plex mixtures

In 2005, the American writer David Foster Wallace gave a commencement speech to

the graduating class at Kenyon College. His speech began with the following story:

There are these two young fish swimming along and they happen to meet an older fish swim-

ming the other way, who nods at them and says ªMorning, boys. How’s the water?º And

the two young fish swim on for a bit, and then eventually one of them looks over at the other

and goes ªWhat the hell is water?º [1]

I personally think that, with this anecdote, Wallace wanted to emphasise how, some-

times, things we know the least about are the very things we are immersed in. The

Italian author Laura Tripaldi, in her recent book ‘Parallel Minds’, expresses this con-

cept crystal clearly: ªIt is probableº she says ªindeed it is almost certain, that com-

mon women or men can describe Schrödinger’s cat paradox better than the chemical

structure of the polyester in their socksº [2]. Let us consider water, which I think

is the perfect example of something we give for granted. We are very familiar with

this element, which constitutes more than half of our bodies. Water has always been

part of our everyday lives, our body and our planet are full of it. In Italy, we tend

to consider water boring to the extent that we use the saying ªhai scoperto l’acqua

caldaº (literally ªyou discovered warm waterº) when someone has just discovered

something that most people already knew.

But the truth is that there is still so much to be understood about water and its bizarre

behaviour, which has earned water the title of ªthe most anomalous liquidº. Indeed

there are many scientists all around the world who everyday work very hard try-

ing to answer Wallace’s question: ªWhat the hell is water?º. Arguably, most of the

enthusiasm about this fluid comes from the extraordinary properties of its phases,

which made the emergence of life on earth possible [3]), and the transitions between

them. The existence of two different kinds of liquid water, for example, has only

recently been experimentally characterised [4].

The phase transition that excites me the most, however, manifests when water is

mixed with other liquids. When we pour alcohol into the water, for example, we
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obtain a homogeneous mixture. This is because molecules in the liquid state can

quickly rearrange, and the entropy in the mixed state is higher than the correspond-

ing value in the demixed state. We are used to well-mixed aqueous solutions, but

this is not the only option. Pouring oil in water, for example, leads to the coexistence

of oil-rich droplets surrounded by a water-rich phase. This is caused by interactions

among molecules. Specifically, in this case, the energy in the phase-separated state

is much lower than the energy corresponding to the homogeneous state, and this

difference outcompetes the entropic gain in mixing molecules. In the next chapter, I

will discuss the key factors that have generated so much interest in the phase sepa-

ration phenomenon in the last several years.

Phase separation in living cells and at the origin of life

The cytoplasm is an aqueous fluid filling the cell that is composed of a multitude

of macromolecules such as proteins, lipids, and nucleic acids. As a consequence of

thermal motion, these components continuously float around. A crude estimate [5]

reveals that it takes roughly 0.01 s for a protein to travel across an E. Coli cell, which

has a diameter in the order of 1µm. For this reason, the formation of compartments

to organise the interior of cells is of crucial importance. These compartments, called

organelles, were traditionally thought to be surrounded by selectively permeable

membranes. In typical textbook pictures, cells look dominated by all sorts of barri-

ers and rigid structures. In 2009, however, Clifford Brangwynne and a team formed,

among the others, by Frank Jülicher and Anthony Hyman, saw evidence that P gran-

ules in C elegant embryos behave like liquid drops [6]. Indeed these organelles

were observed to fuse, shear, and wet the nucleus. This experiment paved the way

for the discovery of many other membrane-less organelles with different material

properties (such as viscosity or surface tension) that, besides membrane-bound or-

ganelles, inhabit the cell [7, 8]. In addition, liquid-like phases enriched in certain

macromolecules, sometimes referred to as ªbiomolecular condensatesº, are thought

to play a major role in many biological functions [9] and dysfunctions [10, 11].

Another liquid mixture that has been the focus of a lot of recent research is the pre-

biotic soup. According to the prebiotic soup hypothesis, simple organic compounds

accumulated in aqueous solutions on the surface of prebiotic earth and then com-

bined into complex organic molecules, such as nucleic acids, which are the building

blocks of life. For this reason, a lot of effort has been made to study mixtures in

pre-biotic plausible conditions and characterise their properties, such as their phase

behaviour. In particular, recent studies have shown that oligonucleotides phase sep-

arate forming coacervates [12, 13], liquid crystals [14, 15] or hydrogels [16, 17], which

can lead to a local enrichment of specific oligonucleotides. The idea that the emer-

gence of phase separation in pre-biotic mixtures could have played a role in facili-

tating one or more key steps in the origin of life (for example local enrichment and

selection of nucleotides [18] or protocell division [19, 20] ) is currently under debate,
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and many theoretical and experimental work is likely to be done in the next years in

this direction.
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Chapter 2

Thermodynamics of mixtures with
many reacting components

In the previous chapter, we have come to appreciate the raising importance of phase

separation in different research fields, ranging from cell biology to the origin of life.

Unfortunately, for reasons that will be discussed in this chapter, modelling the phase

behaviour of mixtures composed of many components remains a challenging task.

Much work has still to be done in refining the existing methods [21, 22, 23, 24] to

achieve this goal. Here we provide an overview of a specific approach, namely the

mean-field theory of multi-component mixtures, that we will adopt throughout the

thesis to study complex mixtures composed of many components. We will show

that introducing chemical reactions among these components and imposing chem-

ical equilibrium reduces the number of relevant degrees of freedom at thermody-

namic equilibrium. This reduction can become crucial in treating systems with a

large number of components.

In the first section, we will focus on how to characterise the thermodynamic equi-

librium of multicomponent mixtures in the presence of chemical reactions. In the

second part, we will review different methods to study the passive relaxation kinet-

ics that leads to the equilibrium state.
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2.1 The interplay between phase equilibrium and chemical

equilibrium

2.1.1 Helmholtz free energy for many interacting components

In this section, we describe the thermodynamic behaviour of a system composed of

M +1 interacting components. We describe the mixture in the T -V -Ni-ensemble, Ni

being the particle number of component i = 0, . . . ,M . The system volume reads

V =

M
∑

i=0

Nivi , (2.1)

where we have introduced the molecular volumes vi. We proceed by introducing the

volume fractions of each component ϕi = Nivi/V . The thermodynamic behaviour

of the system is encoded in the Helmholtz free energy

F (T, V, {Ni}) =
∫

dV



f (T, V, {ϕi}) +
M
∑

i,j=0

κij
2
∇ϕi∇ϕj



 . (2.2)

In this work, we consider the Flory-Huggins free energy density, defined as [25, 26]

f =
kBT

v0





M
∑

i=0

ϕi
νi

ln

(

ϕi
νi

)

+
ωi
kBT

ϕi +
M
∑

i,j=0

χij
2kBT

ϕiϕj



 , (2.3)

where we made use of the volume ratios νi = vi/v0. The first term represents the

mixing entropy, which favours homogeneous solutions. ωi is the internal free en-

ergy per monomer of the i-th solute component accounting for internal bonds and

configurational rearrangements in the creation of a unit of component i 1. In the

last term, the off-diagonal, symmetric matrix χij captures interactions among com-

ponents [27]. If the molecular volumes change only slightly upon variations of the

control parameters, we can exploit a further assumption, namely that vi are indepen-

dent of system volume, temperature, and composition [28]. This assumption defines

incompressible systems for which, as is clear from Eq. (2.1), not all Ni and V can vary

independently [29]. For example, one could adopt Ni with i = 0, . . . ,M as indepen-

dent state variables, with V given by Eq. (2.1). We adopt an alternative description

1To better understand the physical meaning of internal free energies we can consider homogeneous
states φ̃ composed entirely of the i-th component, defined by φ̃j = δij , where δij is the Kronecker delta.
We get the relation

ωi =
F (φ̃)

Niνi
− kBTν

−1

i ln ν−1

i .

Thus we identify ωi as the free energy needed to ªconstructº a single monomer of the i-th compo-
nent, subtracting the conformational entropy coming from having more states if the i-th species has a
different size than the others
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in terms of V and ϕi with i = 1, . . . ,M , and ϕ0 given by Eq. (2.1), rewritten as

ϕ0 = 1− ϕtot , ϕtot =
M
∑

i=1

ϕi . (2.4)

We denote the 0-th component as the solvent and the components i = 1, . . . ,M as

solutes. Without loss of generality, we set ki0 = 0 for i = 0, . . . ,M . We introduce the

exchange chemical potentials of the i-th solute component,

µ̄i = vi
δ

δϕi
F (ϕ1, ... ϕM ) . (2.5)

Making use of Eq. (2.2) and Eq. (2.3) we get an expression for the exchange chemical

potential of the form

µ̄i = kBT (lnϕi + 1) + νi

[

− kBT (lnϕs + 1) + ωi − ω0

+
M
∑

j=0

(χij − χ0j)ϕj − κij∇ϕ2j

]

,

(2.6)

where in the first line we made use of Eq. (2.4) to eliminate the dependency on ϕ0.

We also introduce the osmotic pressure

Π = −∂F
∂V

= −f (ϕ1, ... ϕM ) +
M
∑

i=1

µ̄i
ϕi
vi
. (2.7)

Since the derivative with respect to volume in the equation above is meant to be

performed keeping the number of solute molecules N1, . . . , NM constant, the os-

motic pressure quantifies responses to volume variations coming from changes in

the solvent amount. Its physical meaning becomes clear placing the system in con-

tact with a solvent reservoir through a semi-permeable membrane: the osmotic pres-

sure quantifies the pressure exerted on the membrane by the mixture. The osmotic

pressure in Eq. (2.7), together with the exchange chemical potential, will be used in

the next section to study the phase behavior of the mixture.

2.1.2 Phase equilibrium

Due to the presence of interaction terms (χij in Eq. (2.3)), for a fixed temperature T

the equilibrium state of the system can consist of np phases, i.e. homogeneous sub-

domains with specific values of the volume fractions ϕi. We now focus on locating

the points in the phase space ({ϕαi }, T ) associated with each phase α = I, . . . , np.

This corresponds to determining the phase behavior of the system described by the

free energy

F =

np
∑

α=I

f
(

{ϕαi }
)

V α , α = I, . . . , np , (2.8)
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FIGURE 2.1: Phase equilibrium in ternary mixture a) The solutions of Eqs. (2.9)
divide the ϕ1 − ϕ2 domain in three distinct regions. The grey area corresponds
to a homogeneous mixture, while the green striped area to two-phase coexistence.
In particular, in green, we depict the tie lines which connect the average system
volume fraction with the two coexisting phases. The triangle shaded in green cor-
responds to three-phase coexistence, with the dark green dots representing the vol-
ume fractions in the three phases. In b) we plot the free energy density that leads
to the phase behavior discussed in a). Here, χ01/kBT = 1.5, χ02/kBT = 1.25,

χ12/kBT = 1, ν1 = ν2 = 1.

where we have introduced the phase volumes V α. Minimising F with the con-

straints V =
∑np

α=I V
α and ϕ̄iV =

∑np

α=I ϕ
α
i V

α results in the following conditions,

see App. A

µ̄i
(

{ϕI
j}
)

= µ̄i
(

{ϕαj }
)

, (2.9a)

Π
(

{ϕI
i}
)

= Π
(

{ϕαi }
)

, (2.9b)

where the index α runs over all phases different from I, i.e. α = II, . . . , np, and

i, j = 1, . . . ,M . The conditions in Eqs. (2.9) constrain the dimension of the manifold

on which vectors ϕαi lie. In particular, we count (Mnp + 1) degrees of freedom (np

volume fraction vectors of M components each, plus the temperature). To establish

equilibrium between np phases, we have to impose the (M+1) equalities in Eqs. (2.9)

(M exchange chemical potential plus the osmotic pressure) between np − 1 couple

of phases. Thus, the number of truly independent intensive degrees of freedom nd

is given by

nd =Mnp + 1− (M + 1)(np − 1) =M + 2− np . (2.10)

This equation is commonly known as the Gibbs phase rule for incompressible mix-

tures [30, 31]. It implies that each point in the (T, ϕαi ) phase representing one of the

np coexisting phases is constrained to lie on a nd-dimensional manifold, called the np

phase boundary. We notice that the dimension of this manifold decreases increasing
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the number of coexisting phases np. In fact, the Gibbs rule sets an upper bound on

the number of coexisting phases, n∗p =M +2, for which the phase manifold reduces

to n∗p points in the phase diagram (with nd = 0). We stress that this is an upper

bound, and the maximum number of phases that are effectively found in a phase

diagram depends on the choice of the interaction matrix χij .

φ1

0.0
0.5

1.0

φ2

0.0

0.5

1.0

φ3

0.0

0.5

1.0

FIGURE 2.2: Phase equilibrium in quater-
nary mixtures We highlight in grey and green
the area corresponding to a homogeneous
mixture and four-phase coexistence, respec-
tively. The dark green dots represent the
volume fractions in the four phases. Here,
χij/kBT = 3.5 and νi = 1 for i ̸= j = 0, 1, 2, 3.

As an example, we can examine ternary

mixtures, where M = 2. Homoge-

neous states (np = 1) lie on a three-

dimensional manifold, in fact, each ho-

mogeneous state is determined by fix-

ing the solutes volume fractions ϕ1 and

ϕ2 and the temperature T . Couples

of points, np = 2 associated with

two phases that coexist, lie on a two-

dimensional manifold, often called the

binodal. In fact, to locate each of such

points it is sufficient to specify, for ex-

ample, T and ϕ1, with ϕ2 being de-

termined by the equilibrium condition.

Three and four-phase coexistence (np =

3 and n∗p = 4) span three lines (nd =

1) and four points (np = 0), respec-

tively. In Fig. 2.1a) we plot one slice of

the ternary phase diagram correspond-

ing to fixed temperature T .

Here homogeneous states lie on two-dimensional manifolds (grey areas), while each

binodal branch is a curve (dark green). Tie lines (in light green) connect pairs of

coexisting phases. For T fixed, three phases are unique points, dark green dots in

2.1a). Four-phase coexistence is not compatible with the set of interaction param-

eters chosen. In Fig. 2.1 b) we plot the free energy density profile that led to such

phase behavior. In Fig. 2.2 a) we illustrate a constant T slice of the phase diagram

of a quaternary mixture (M = 3), where green dots represent the composition of

4 coexisting phases. In green, we highlight the region corresponding to four-phase

coexistence. Once the different np phase boundaries, with np = 1, . . . , n∗p, are deter-

mined via Eqs. (2.9), it is possible to determine the volume V α and composition ϕαi of

the np coexisting phases associated to any fixed temperature T , average composition

ϕ̄iV =

np
∑

α=I

ϕαi V
α , (2.11a)



Chapter 2. Thermodynamics of mixtures with many reacting components 9

and total volume

V =

np
∑

α=I

V α . (2.11b)

In fact, the nd = (M + 1 − np) degrees of freedom necessary to locate np points

on the respective phase boundaries plus the np phase volume V α add up to M + 1

parameters, that are uniquely determined by the M + 1 constraints in Eqs. (2.11).

This is illustrated in Fig. 2.1 a), where we study the phase decomposition of a state

with average volume fraction ϕ̄. This choice of the average uniquely identifies a tie

line (shaded in gray) connecting a pair of points ϕI and ϕII (black points) and fixes

the phase volumes V I and V II, which are given by

V I =
ϕ̄i − ϕII

i

ϕI
i − ϕII

i

, V II =
ϕI
i − ϕ̄i

ϕI
i − ϕII

i

, (2.12)

and have the geometrical interpretation of the distances
∥

∥ϕ̄− ϕII
∥

∥ and
∥

∥ϕ̄− ϕI
∥

∥, re-

spectively, normalised by the length
∥

∥ϕI − ϕII
∥

∥.

In practice, solving Eqs. (2.9) to determine the parametric form of phase boundaries

is a hard task. Instead, one typically specifies an average volume fraction ϕ̄αi and

looks for the phase decomposition associated with that specific average composi-

tion only. This entails looking for np vectors ϕαi , composed in total of npM volume

fractions values, plus np phase volumes V α. These are uniquely determined by the

M(np − 1) equations in Eq. (2.9) plus the M + 1 constraints in Eqs. (2.11). Again

see Fig. 2.1 a) for an illustration. To determine the phase equilibrium of the system

we have to scrutinise solutions of Eqs. (2.9) corresponding to different numbers of

phases np = 1, . . .M + 2, and determine the one with the lower total free energy,

defined in Eq. (2.8). Finally, we note that solving for the phase volume fractions is

equivalent to constructing the convex hull of the free energy density. In fact, recall-

ing the definitions in Eqs. (2.5) and (2.7), the set of equations in Eqs. (2.9) can be

geometrically interpreted as finding an (np − 1)-dimensional hyperplane tangent to

f at each point ϕα. For example, for np = 2, Eqs. (2.9) are equivalent to the common

tangent construction [32].

2.1.3 Chemical equilibrium

The framework presented in this section follows closely the presentation in [33] and

references therein. We now introduce a set of R chemical reactions

M
∑

i=1

σ+iaCi ⇌
M
∑

i=1

σ−iaCi , a = 1, . . . R , (2.13)

where Ci indicate the i-th component and σ±ia are stoichiometric coefficients. Notice

that the index i runs from 1 to M only since we focus on chemical reactions that do

not involve the solvent (i = 0). If the reaction a occurs from left to right once, σ+ia
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and σ−ia represent the amount of component i-th that has reacted and is produced,

respectively. They combine to form the stoichiometric matrix and the volume stoi-

chiometric matrix, defined, respectively, as

σia = σ+ia − σ−ia , σ̃ia = σiaνi . (2.14)

Since we made the incompressibility assumption (constant vi) and have chosen an

ensemble with V fixed, for consistency, we restrict to reaction networks that conserve

the sum of molecular volumes, namely

M
∑

i=1

σiavi = 0 , ∀ a = 1, . . . R . (2.15)

Assuming that the reaction network leads to linearly independent columns of σia,

the stoichiometric matrix can be used to determine the (M−R) conserved quantities

associated with the chemical reaction network. This is done with the aid of Qij ,

defined via

M
∑

j=1

Qijσjaνj = 0 . (2.16)

In other words, Q is a (M −R)×R matrix whose rows are the basis of the null space

of σajvj . The (M −R) conserved quantities then read

ψi =
M
∑

j=1

Qijϕj . (2.17)

These represent a set of quantities that are not affected by chemical reactions, as

we will prove in the following. Since the basis for the null space of σajvj is not

unique, the choice of conserved quantities is also not unique. For volume-conserving

reactions, the stoichiometric matrix is such that one row of Q (that we chose to be

the first) is a constant vector: Q0i = 1. In fact, the null space equation, Eq. (2.16)

for for Q0i = 1 reduces to the constraint in Eq. (2.15). The corresponding conserved

quantity is ϕtot, defined in Eq. (2.4). We can also introduce the R reaction extents,

defined as

ξα =
M
∑

i=1

Eajϕi . (2.18)

With the aid of the matrixE, the pseudo inverse of the volume stoichiometric matrix

σiavi, defined through
∑

i Eaiσibνi = δab. As for Q, the matrix E is not unique. We
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can now combine Q and E into a square matrix

U =









Q

E









. (2.19)

Its inverse is simply

U−1 =

(

Q−1 σ̃

)

, (2.20)

were σ̃ is the volume stoichiometric matrix defined in Eq. (2.14), and Q−1 is the

pseudo inverse of Q. In fact, by making use of the definitions of Q and E, one can

easily show that

U U−1 =







I 0

0 I






. (2.21)

These definitions allow to establish a mapping between ϕi and (ψi, ξa) via

ϕi = U−1ϕ =
M−R
∑

i=1

Q−1ij ψi +
R
∑

a=1

σiaviξa . (2.22)

To get familiar with these definitions we now discuss one example that will be useful

in the following chapters.

Single reaction A ⇌⇌⇌ B Here we discuss the case of a ternary mixture composed of

three components: C0, the solvent, C1 = A C2 = B, with vA = vB = v, and v/v0 = ν.

We allow the reaction (a = 1) A ⇌ B. The stochiometric and volume stoichiometric

matrices read

σ =







a = 1

+1 A

−1 B






, σ̃ =







a = 1

+v A

−v B






. (2.23)

We can introduce the vectorQ imposingQiσ̃i = 0, leading toQ1 = Q2. As previously

outlined, this condition leads to the constant vector, which is always a basis (in this

case the only one), of the null space of σ̃. In conclusion, we get:

Q =
(

1 1
)

, ψ = ϕtot = ϕA + ϕB . (2.24)

We now introduce E to be the pseudo-inverse of σ̃, namely Eiviσi = 1, resulting in

the constraint −E1 + E2 = 1/v. We choose B1 = 0 and get
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E =
(

0 v−1
)

, ξ = ϕB/ν . (2.25)

To discuss chemical equilibrium, we introduce the so-called forward (+) and back-

ward (−) reaction free energies

∆µ±a =
M
∑

i=1

σ±iaµ̄i , (2.26)

and the net reaction free energy

∆µa =
M
∑

i=1

σiaµ̄i . (2.27)

Chemical equilibrium is then enforced via

∆µa = 0 , a = 1 . . . , R . (2.28)

We can now exploit the decomposition in Eq. (2.22) to express µ̄i as a function of

({ψi}, {ξa}). The set of R equations in (2.28), allows us to find the reaction extents as

a function of the conserved quantities ξa = ξa({ψi}). In conclusion, chemical equi-

librium reduces the number of independent volume fractions to M − R, which we

identify with the conserved quantities ψi, see Eq. (2.17). In the presence of chemical

reactions, ψi are the only quantities that can be controlled experimentally since they

do not change as the reaction progresses. Thus, they are the only proper variables

that should be used to describe systems at chemical equilibrium. Once specified the

value of ψi, the system is completely determined and the dependent variables ξa, de-

fined in Eq. (2.18), can be determined via chemical equilibrium, Eq. (2.28), exploiting

Eq. (2.22).

2.1.4 Thermodynamic equilibrium

In a mixture composed of M components in the presence of R chemical reactions,

the global equilibrium of the system is reached once both chemical equilibrium and

phase equilibrium are enforced. We first impose chemical equilibrium, exploiting

the theory developed in the previous section. There we have discussed a change of

variables {ϕi} ↔ ({ψi}, {ξa}), via the mapping in equation Eq. (2.22). The (M −R)-

dimensional vector ψ contains the conserved quantities, see Eq. (2.17), which are

the only independent degrees of freedom in systems at chemical equilibrium. The

R-dimensional vector ξ contains the reaction extents, see Eq. (2.18), which at equi-

librium are a function of ψi that can be determined solving the set of equations in

(2.28) making use of Eq. (2.22).

Once the functions ξa = ξa({ψi}) are determined this way, we can use it together

with the change of variables in Eq. (2.22) to express the free energy density in Eq. (2.3)
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FIGURE 2.3: Chemical, phase and thermodynamic equilibrium in the presence
of the A ⇌⇌⇌ B reaction a) We study a ternary mixture that, at phase equilibrium,
can remain homogeneous (grey area) or demix into two phases (striped area, with
tie lines in light green). The boundaries between these two regions are called bin-
odal lines (in dark green). b) The chemical equilibrium condition, Eq. (2.28), allows
to find the chemical extent ξ = ϕB/ν as a function of the conserved quantity ϕtot.
Note that the presence of interactions makes multiple solutions possible. See panel
d) for the stability analysis. c) Chemical equilibrium curve (in black) plotted in the
ϕA −ϕB plane. Its interceptions with the binodal (black dots) determine the values
of ϕtot for which the system remains homogeneous (grey areas). Its boundaries,
corresponding to ϕI

tot and ϕII
tot, encompass the two-phase coexistence region, the

black dots indicating the volume fractions in the two phases. d) Assuming chem-
ical equilibrium, thermodynamic equilibrium can be studied as a function of the
only relevant control parameter, the conserved quantity ϕtot. We plot the rescaled
free energy f̃ (see Eq. (2.30)) and identify the branches where homogeneous states
are stable (coloured lines), metastable (dashed lines), and unstable (dotted lines).
Coexisting phases ϕI/II

tot and their respective free energies are represented by circled
points, joined by the black solid line. The colour code indicates the value of the
reaction extent ξ. Here kBT = 0.4χB0, χA0 = 0.25χB0, χAB = 1.5χB0, ωA = ω0 = 0,

ωB = 0.2χB0, νA = νB = 1.
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as a function of the conserved quantities only. We then impose phase equilibrium

and repeat the convex hull construction described in Sec 2.1.2 with f = f({ψi}) in

the space ({ψi}, T ). Explicitly, phase equilibrium conditions for systems at chemical

equilibrium read

µ̄i
(

{ψαi }
)

= µ̄i
(

{ψβi }
)

, (2.29a)

Π
(

{ψαi }
)

= Π
(

{ψβi }
)

. (2.29b)

Once the value of the conserved quantities in each phase is determined, we can

make use of the relation ξa = ξa({ψi}) to completely characterise the mixture. This

construction is illustrated in Fig. 2.3 for the chemical reaction A ⇌ B introduced in

paragraph 2.1.3. In Fig. 2.3 a) we illustrate the ternary mixture phase equilibrium,

with tie lines and binodal highlighted in light and dark green, respectively. Fig. 2.3

b) depict the relation between the conserved quantity ϕtot and the reaction extent

ξ, stemming from chemical equilibrium, Eq. (2.28). In Fig. 2.3 c) the same chemical

equilibrium curve is plotted in the ϕA − ϕB plane, along with the ternary phase di-

agram. Its interceptions with the phase boundary (black dots) determine the values

of ϕtot for which the system remains homogeneous (grey areas). In the remaining

region, the system phase separates, with phase volume fractions indicated by black

dots. In Fig. 2.3 d) we switch to a representation in terms of the only relevant control

parameter at chemical equilibrium, the conserved quantity ϕtot. For visualization

purposes, we plot the rescaled free energy

f̃ =
v0
kBT

(f −mϕtot) , m =
f(ϕI

tot)− f(ϕII
tot)

ϕI
tot − ϕII

tot
. (2.30)

Examining its curvature and its convex hull, we identify regions corresponding to

homogeneous states (grey background), and phase separation (white background).

We further distinguish between metastable (dashed lines), and unstable (dotted lines)

branches, corresponding to positive and negative free energy curvature, respec-

tively. Coexisting phases are represented by circled points, joined by a black solid

line. The colour code indicates the reaction extent ξ which, together with ϕtot, com-

pletely determines the state of the system.

For systems with chemical reactions, the Gibbs must be generalised to account for

the reduction of the independent components, caused by chemical equilibrium [34,

35]

nd = (M −R) + 2− np . (2.31)

This imposes, for systems at chemical equilibrium, the maximum number of coex-

isting phases to be n∗p = M − R + 2. Thus chemical equilibrium suppresses the

dimension of the manifold where points corresponding to np-coexistence live, as il-

lustrated in Fig. 2.4, and the maximum number of coexisting phases. In Fig. 2.4 a)
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we show that for this choice of parameters, below a certain temperature, the system

without chemical reaction exhibits three-phase coexistence. The reaction A ⇌ B,

however, leads to two-phase coexistence, except for fine-tuned values of the temper-

ature. This has an interesting effect on the composition of the dense phase, as can be

seen by fixing ωA = 0 and varying ωB . Indeed, the dense phase is mainly composed

of A for ωB/χB0 = 0.15 while for ωB/χB0 = −0.05 is dominated by B. In Fig. 2.4. In

Fig. 2.4 b) and c) we show the free energy densities as a function of ϕtot, correspond-

ing to the same two internal free energies ωB chosen in a). Here this effect manifests

in a strong difference between the reaction extents ξ, captured by the colour code, in

the dense phases.
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FIGURE 2.4: Three-phase coexistence suppression leads to a sudden change of
dense phase composition. a) Chemical equilibrium lines corresponding to dif-
ferent internal free energy values, superimposed to the ternary phase diagram of
Fig. 2.1, that allowed for three-phase coexistence. Chemical equilibrium leads to
two-phase coexistence, phase volume fractions indicated by coloured dots. Fixing
ωA = 0 but letting ωB vary, the chemical equilibrium curve intercepts different
branches of the binodal (in green), leading to a significant change in dense phase
volume fractions. b) and c) free energy densities corresponding to ωA = 0 while
ωB/χB0 = 0.15 and ωB/χB0 = −0.05, respectively. We identify the branches where
homogeneous states are stable (coloured lines), metastable (dashed), and unsta-
ble (dotted). Coexisting phases are represented by circled points, while the colour
code indicates the reaction extent ξ. The change of dense phase composition is
highlighted by the difference in dense phase extent, namely low in a) and high b).

Here, kBT = 0.425χB0, χA0 = 1.25χB0, χAB = 1.5χB0, νA = νB = 1

2.2 Relaxation kinetics of multicomponent mixtures in the

presence of chemical reactions

In the next chapters, we outline some methods to study the passive relaxation ki-

netics that leads to thermodynamic equilibrium. We will apply these approaches

to different biochemically inspired examples, and discuss how to generalise such

kinetic schemes to systems that cannot relax to equilibrium.
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2.2.1 Detailed balance of the rates and relaxation to chemical equilibrium

in homogeneous system

We start studying the kinetics of mixtures described in the previous sections, fo-

cusing on spatially homogeneous systems that relax to chemical equilibrium; see

Ref. [36, 33]. We look for an equation of the form

dϕi
dt

= ri . (2.32)

Since the source term originates from R chemical reactions, described by the stoi-

chiometric matrix σia, the chemical rates must be of the form

ri =

M
∑

a=1

viσiara . (2.33)

Recalling the definitions of conserved quantities and reaction extents, (Eq. (2.17) and

Eq. (2.18), respectively) one obtains

dψi
dt

= 0 ,
dξa
dt

= ra , (2.34)

where we used the properties
∑

j Qijσjavj = 0 and
∑

iEaiσibvi = δab. Now we can

fully appreciate the importance of the conserved quantities ψi, which stay constant

as the reaction proceeds, and the reaction extents ξa, which can be related to the

cumulative amount of reaction a that occurred per unit volume. In Sec. 2.1.3, we

introduced a change of variables (Eq. (2.22)) that allows to decompose ϕi in a con-

stant part (the conserved quantities ψi) and a part that evolves in time (the reaction

extents ξa) due to chemical reactions. We can write dynamic equations for the latter

dξa
dt

= r+a − r−a , (2.35)

with r+a and r−a forward and backward reaction rates. The mixture evolves towards

equilibrium if the rates obey detailed balance of the rates, namely

r+a
r−a

= exp

(

−∆µa
kBT

)

, (2.36)

with ∆µa defined in Eq. (2.27). For a discussion on the detailed balance of the rates

see Appendix C in reference [32]. We chose

r+a − r−a = Λa

[

1− exp

(

∆µa
kBT

)]

, (2.37)

where we have introduced the kinetic coefficients Λa that must be positive and can

depend on mixture composition. Recalling the decomposition in Eq. (2.22), the time

evolution of the volume fractions reads
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dϕi
dt

= ri , for i = 1 . . .M . (2.38)

With the sources defined with the aid of ∆µa, see in Eq. (2.27)

ri =
R
∑

a=1

viσia
(

r+a − r−a
)

=
R
∑

a=1

viσiaΛa

[

1− exp

(

∆µa
kBT

)]

. (2.39)

2.2.2 Chemical kinetics with compartments at phase equilibrium

We now study the kinetics of multicomponent mixtures described in the previous

sections, taking into account that interactions can lead to spatial inhomogeneities.
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φI

i

We study passive systems and their relaxation

kinetics towards the thermodynamic equilib-

rium, focusing on very slow chemical reactions

and very fast diffusive kinetics. In this regime,

the average system composition varies slowly

so that at all times we can consider the system

to be at phase equilibrium. By choosing initial

average volume fractions corresponding to two-

phase coexistence, we can consider the system volume to be divided into two homo-

geneous compartments as a result of phase separation. We then study the evolution

of compartment sizes and volume fractions due to chemical reactions, enforcing in-

stantaneous phase equilibrium at all times. The theoretical framework that we are

about to review has been developed by Jonathan Bauermann and Sudarshana Laha

in Ref. [37] and will be useful in the last chapter to study passive kinetics in the limit

of a large number of components that can form molecular assemblies. To this aim,

we start from the variation of particle numbers in compartments I and II

dNi

dt

I/II

= −J I/II
i +RI/II

i , (2.40)

where RI/II
i are the variations due to chemical reactions while J I/II

i due to particle

hopping between the two phases. Particle conservation during crossing implies J I
i =

−J II
i . The volumes in the two phases read

V I/II =
M
∑

i=0

N I/II
i vi . (2.41)

Furthermore V = V I + V II. We now introduce volume fractions ϕI/II
i = N I/II

i /V I/II

and the rescaled rates jI/II
i = vi J

i/II
i /V I/II and rI/II

i = viR
I/II
i /V I/II arriving to
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dϕi
dt

I/II

= −jI/II
i + rI/II

i − ϕI/II
i

d lnV

dt

I/II

. (2.42)

We derived a generalised version of Eq. (2.38), that accounts for the two-phase coex-

istence. Since we consider the two phases to be spatially homogeneous, an analogue

derivation that led us to Eq. (2.39) allows us to set

rI/II
0 = 0 , (2.43)

rI/II
i =

R
∑

a=1

viσiaΛ
I
a

[

1− exp

(

∆µI/II
a

kBT

)]

for i = 1, . . .M . (2.44)

where r0 = 0 stems from the restriction to chemical reactions that do not involve

the solvent and ∆µa =
∑M

i=1 σiaµ̄i. Eq. (2.40) and Eq. (2.41) can be combined to get

dtV
I/II = V I/II∑M

i=0(r
I/II
i − jI/II

i ). Using the volume conserving properties of the

rates
∑M

i=0 r
I/II
i = 0, we finally get

d lnV

dt

I/II

= −
M
∑

i=0

jI/II
i . (2.45)

Using conservation during particle hopping, expressed in terms of the rescaled cur-

rents ji/II
i

jI
i = −jII

i

V II

V I , (2.46)

is easy to check that the volume dynamics obeys dt(V I + V II) = 0. We then look for

an expression for the currents jI/II
i . They must guarantee that phase equilibrium is

satisfied at all times, which can be expressed by taking a time derivative of Eq.s (2.9)

M
∑

j=0

∂µ̄I
i

∂ϕI
j

dϕI
j

dt
=

M
∑

j=0

∂µ̄II
i

∂ϕII
j

dϕII
j

dt
, (2.47a)

M
∑

j=0

∂ΠI

∂ϕI
j

dϕI
j

dt
=

M
∑

j=0

∂ΠII

∂ϕII
j

dϕII
j

dt
. (2.47b)

Provided that the initial phase volume and volume fractions V I(t = 0), and ϕI/II
i (t =

0) are a solution of Eqs. (2.9). Once an expression for ∂µ̄i/∂ϕj and ∂Π/∂ϕj is calcu-

lated, we can derive an a set of M + 1 equations for jI
i inserting Eq. (2.42), Eq. (2.45),

and Eq. (2.46) in Eqs. (2.47). These equations are linear and enable us to find an ex-

pression for jI/II
i as a function of ϕI/II

i and V I/V . We have finally all the ingredients

to characterise the dynamics of the phase volume and volume fractions ϕI/II
i (t) and



Chapter 2. Thermodynamics of mixtures with many reacting components 19

V I(t), integrating Eq. (2.42) and (2.45) and provided we can solve the initial phase

equilibrium problem to find V I(t = 0)/V , and ϕI/II
i (t = 0).

2.2.3 Kinetics of coexisting phases in the presence of chemical reactions

We now move to the general case of spatially heterogeneous systems, in which we

can define a volume fraction field ϕi that varies in space within the system volume

that obeys the conservation law

∂ϕi
∂t

= −∇ · ji + ri . (2.48)

The Onsager theory allows us to identify [38]

ji = −vi
M
∑

j=1

Λij∇µ̄j , (2.49a)

ri = −
R
∑

a=1

viσiaΛa∆µa , (2.49b)

where ∆µa is the reaction free energy defined in Eq. (2.27). Λij are kinetic coeffi-

cients, that must be chosen positive and such to balance the divergences coming

from the logarithmic terms in µ̄ in the dilute limit ϕi → 0, see Eq (2.5). A possibility

is to chose Λij diagonal, in the form [39]

Λij = Λϕiϕ0 δij , (2.50)

Another possible choice is [33]

Λij = Λϕi (δij − ϕj) , (2.51)

that, in the limit of non-reacting components with equal size (vi = v0) and interac-

tions χij = χi0, allows to recover Fick’s diffusion law

dϕi
dt

= D∇2ϕi , (2.52)

with D = v0ΛkBT . Examining now the chemical rates, we notice that Eq. (2.49b)

can be considered an expansion of Eq.(2.39) close to chemical equilibrium, i.e. if

∆µa/kBT ≪ 1.

Finally, we can repeat the same passages that led to Eq. (2.34), to derive dynamical

equations of the conserved quantities

dψi
dt

= −∇ · jψi , (2.53)



Chapter 2. Thermodynamics of mixtures with many reacting components 20

where we have defined j
ψ
i =

∑

kQikjk. This implies, that at steady state, the flux

associated with conserved quantities is constant in space.
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Chapter 3

Controlling phase composition via
molecular transitions
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FIGURE 3.1: Illustration of the model to study molecular transitions and phase
separation. In our model, we consider a molecule that can be found in two states
A, B immersed in a solvent C0. We allow reversible molecular transitions between
A and B which are controlled by temperature T or fuel volume fraction ϕF. In
the presence of phase separation, molecular transitions occur in the dense and di-
lute phases, respectively. Depending on the molecular interactions of A and B
molecules, the total volume fraction of both components and their composition
(i.e. the relative amount of B molecules) change in each of the phases. Illustration

by Mara Müller.

Here, we apply the framework described in the previous chapter to mixtures com-

posed of unstructured macromolecules, such as DNA or proteins, and a solvent. In

our model, these macromolecules can undergo molecular transitions (e.g. changes

in conformation or charge) between two states, referred to as A and B, see Fig. 3.1.

The transition between the two states can be described with the chemical reaction

scheme exemplified in the previous chapter, see paragraph 2.1.3. The corresponding

transition rates depend on thermodynamic control parameters such as temperature

T and macromolecule concentration, as well as fuel volume fraction ϕF that drives

the transition away from thermodynamic equilibrium. In our model, both compo-

nents A and B can phase-separate due to interactions among them and with the

solvent, see Fig. 3.1. This project is the result of a very fruitful collaboration with

Omar Adame-Arana and Xueping Zhao, under the supervision of Christoph Weber.
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3.1 Molecular transitions at equilibrium

We introduce a ternary mixture composed of three components: C0, the solvent,

C1 = A, andC2 = B, with vA = vB = v, and v/v0 = ν. Its thermodynamic behaviour

descends from the free energy density introduced in Eq. (2.3). In particular, the

interactions among molecules are characterised by χAB , while χA0 and χB0 describe

the interaction between the solvent and A and B, respectively. We recall that ωi
accounts for the free energy needed to create the molecular component i (e.g. via

molecular transitions) in units of kBT . Since the internal free energies are defined

modulo a constant, we chose

ωA = 0 , ωB = eint − sintT . (3.1)

Here, eint and sint are the energetic and entropic differences between state A and B.

As a prototypical example, we consider molecular transitions leading to an energy

and entropy increase converting A to B, i.e. eint > 0 and sint > 0. Such a scenario

corresponds for example to polymers breaking some internal bonds to adopt a more

flexible conformation, with negligible change in the molecular volume.

The chemical equilibrium in Eq. (2.28) can be cast in the form

ϕA
ϕB

= exp

[

ν

kBT

(

eint − sintT + χAB (ϕA − ϕB) + (χB0 − χA0) (1− ϕtot)
)

]

(3.2)

that can be used to determine the so-called melting temperature, Tm, at which ϕA =

ϕB = ϕtot/2, i.e. the mixture is equally composed of A and B

Tm =
eint + (χB0 − χA0) (1− ϕtot)

sint
. (3.3)

Above and below Tm the favoured molecular state is B and A, respectively. The

melting temperature can be shifted by tuning the internal energy eint and entropy

sint, parameters that are easy to control experimentally. In this section, we study

the equilibrium phase diagrams as a function of the conserved quantity associated

with the chemical reaction, namely the total volume fraction ϕtot as described in

paragraph 2.1.3, and the rescaled temperature T/T0, with

T0 = χB0/kB . (3.4)

In such phase diagrams, the binodal lines separate demixed and mixed thermody-

namic states. Along the binodal, we also depict the composition in terms of the

relative abundance of B molecules, ϕB/ϕtot, see the colour code in Fig. 3.2. We pre-

fer ϕB/ϕtot to the reaction extent ξ = ϕB/ν introduced before since it provides more

direct information on the relative composition of the mixture. We then study how

such phase diagrams are affected by molecular transitions, described by the melting
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temperature Tm, defined in Eq. (3.3), and interaction strengths. As a reference sys-

tem, we consider a binary mixture composed of only B and W molecules, see the

black lines in Figs. 3.2. This case corresponds to suppression of the A conformation,

achieved for ωA ≫ ωB , for which ϕtot = ϕB . In all our studies, we choose the relative

molecular volume ν = 2 to account for differences in molecular volumes between

macromolecules and water.

3.1.1 Reentrant phase behaviour

We first focus on the class of system (i), defined via

χAB ∼ χB0 , χA0 ≪ χB0 . (3.5)

With this choice of parameters, A can be thought of as an inert conformation in

which the interacting sites are self-saturated due to the formation of internal bonds,

while B is the interacting conformation. This becomes clear when considering that,

in the limit χAB = χB0, the quadratic part of Eq. (2.3) reduces χϕB(1 − ϕB). Along

with the binodal, in Fig. 3.2 a) we also plot the melting curve Tm(ϕtot), defined in

Eq. (3.3). For this choice of parameters, Tm decreases with ϕtot, meaning that the

denser the mixture, the more B, which is the interacting conformation, would be

produced at the expense of A. As is clear from Fig. 3.2 a), at high temperatures en-

tropy dominates, thus the system remains homogeneous, and mainly composed of

the conformation B, which is entropically favoured. Lowering the temperature be-

low a threshold called the upper critical solution temperature Tc, the system demixes

into a ϕtot-rich and a ϕtot-poor phase, in the following referred to as the dense and

dilute phase, respectively. In the vicinity of Tc, the stateB dominates in both phases.

This can be quantified via the colour code encoding the system composition, defined

as the relative amount of molecules in the B conformation, ϕB/ϕtot.
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FIGURE 3.2: Molecular transitions can lead to a lower critical dissolution tem-
perature. The binodal encompasses the demixing region in the plane spanned by
total volume fraction ϕtot and rescaled temperature T/T0. The composition of each
phase is indicated by the colour code displayed on each of its branches. The black
line corresponds to the binary B-W reference mixture. a) Due to the presence of
molecular transitions, the phase diagram becomes reentrant, i.e., bounded above
from the critical temperature Tc but also from below by a lower dissolution tem-
perature Td. b) Increasing eint, the binodal is upshifted until the demixing region

shrinks into a point for eint = sintT0 ν/2.

The temperature at which the dilute branch of the binodal and the melting curve

intercept determines the regime where coexisting phases differ not only in ϕtot, but

also in the amount of B relative to A, see the colour code in Fig. 3.2. This is intuitive

since, according to the definition of the melting curve (Eq. (3.3)), below the intercep-

tion temperature in the dense branch ϕB > ϕA, while in the dilute one ϕB < ϕA.

Along with the change in composition in the dilute branch, as the temperature de-

creases the ϕtot domain corresponding to phase separation shrinks and shifts close

to ϕtot = 1. This is because, with this choice of parameters, B molecules are the

only interacting ones, to have phase separation the system must contain enough B.

According to the melting curve, this is guaranteed for high ϕtot. The fact that B

molecules are the only interacting ones explains also why the composition changes

along the dilute branch but remains rather uniform in the dense branch. In fact, the

temperature at which the melting curve and the dense cross, corresponding to the A

molecules populating the dense phase, determines the dissolution of the two phases.

In other words, depletion of the interacting material B due to internal energy gain

ultimately leads to a lower dissolution temperature Td, below which the system can-

not phase separate. The dissolution temperature Td can be estimated setting ϕtot = 1

in the definition of the melting temperature, see (3.3), leading to

Td =
eint

sint
. (3.6)
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Systems that exhibit both an upper critical solution temperature Tc and a lower dis-

solution temperature Td, are called reentrant. In such cases, both increasing and de-

creasing the temperature leads to a phase transition from a demixed to a mixed state.

Increasing the internal energy stored in the A component, eint enhances the domi-

nance of the molecular transition at low temperatures, and according to Eq. (3.6), an

increase in Td, see Fig. 3.2 b). For high enough eint the melting curve passes gets close

to the critical point of the reference binary mixture (composed of B and the solvent

only), indicated by a black dot in Fig. 3.2 b). In this regime, the upper critical solution

temperature Tc and critical volume fraction ϕc exceed the corresponding values in

the binary case. This is because, at the interception between Tmand the dilute branch

of the binodal, the dilute phase is composed of A and B in equal amounts.
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FIGURE 3.3: Scaling of the critical tempera-
ture with the internal energy For eint = 0 we
get the critical temperature of the binary ref-
erence Tc/T0 = (ν + 2

√
ν + 1)/2 while for

eint = sintT0 ν2, we get Tc = T ∗c = T0ν/2.

Even though, with our choice of inter-

action parameters, B effectively repels

both A and the solvent, differences in

molecular volumes of A and B with re-

spect to the solvent (i.e. ν > 1) favour

phase-separating B from A. In other

words, the addition of A and B in the

dilute and dense phase respectively, at

the expense of the solvent, leads to an

entropic advantage. This implies that

the two phases will be up-shifted in ϕtot

leading to two coexisting phases rich in

B and A, respectively, instead of B and

solvent rich, as in the binary reference,

and an increase in critical temperature.

This effect can be appreciated by com-

paring panels a) and b) in Fig.3.2, and

manifests only for ν > 1.

To sum up, the higher the internal energy eint the lower the solvent amount is present

in both phases. This implies that the critical temperature, has an upper bound, as

shown in Fig 3.3. In fact in the limit of zero solvent, the polymer blend composed

of A and B only phase separate below T ∗c = T0 ν/2. Thus we find a threshold e∗int at

which the phase diagram shrinks to a point, and below which the system remains

homogeneous for all ϕtot and T values. This threshold can be found imposing that

Td = T ∗c which, recalling Eq. (3.6), leads to

e∗int =
ν

2
sintT0 . (3.7)
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FIGURE 3.4: Strong interactions of both states lead to a first-order phase transi-
tion in the composition of the dense phase. a) In the limiting case of χA0 = χB0,
for sufficiently high χAB , the melting curve becomes horizontal Tm = eint/sint and
coincide with a triple line (green dashed line) at which a dilute phase coexists with
two dense phases of different compositions. Such two dense phases have collapsed
into the degenerate point at ϕtot = 1 (⊗ symbol). Note that both, the order param-
eter ϕtot and the relative composition ϕB/ϕtot are discontinuous at Tm. b) Quan-
tification of the compositional jump in the dense phase and comparison with the

continuous variation of the composition in the dilute phase.

3.1.2 Temperature induced first-order transition in phase composition

We now consider another category of systems, class (ii), for which both components

have the same effective interaction with the solvent

χA0 = χB0 , χAB > χB0 . (3.8)

For simplicity, we now fix eint. With this choice of parameters, the dense phase com-

position can change, and for sufficiently high χAB it does so discontinuously, see

Fig. 3.4 a). The transition occurs at the melting temperature, which loses its de-

pendence on ϕtot and reads Tm = eint/sint. As a result, the melting curve becomes

horizontal and denotes a triple line; see the dashed green line in Fig. 3.4 a). At the

corresponding triple line temperature, three phases coexist for any value of ϕtot be-

tween the dilute binodal and 1. The reason is that for χA0 = χB0, both molecular

states have the same phase separation propensity from the solvent, and the internal

free energy balance determines the composition of the dense phase.

In Fig. 3.4 b) we quantify the change in dense phase composition and we show that,

in contrast, the composition of the dilute phase changes continuously. The discon-

tinuous change in the composition of the dense phase is a fingerprint of three-phase

coexistence in the underlying ternary phase diagram, which is typical for high χB0,

χA0 and χAB > 0 and will be analysed in the next session (Fig. 3.6). The jump

in ϕI
B/ϕ

I
tot can then be explained with a mechanism similar to the one described

in Fig 2.4. Indeed changing temperature implies changing the internal free energy
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ωB , without altering significantly the underlying ternary phase diagram. We notice

that, in our case, the molecular transition at thermodynamic equilibrium reduces

the dimensionality of the manifold in which points associated with three-phase co-

existence live, in agreement with the Gibbs rule (see Eq. (2.31)). In our case, the

molecular transition at thermodynamic equilibrium reduces also the dimensionality

of the domain in which three-phase coexistence is observed from a plane (green tri-

angle in Fig. 2.4 a) or Fig. 3.6 d)), to a line (portion of the green dashed line within

the binodal in Fig 3.4 a) ). The coexistence of three phases and thus also the jump in

dense phase composition is controlled by the effective interaction χAB , for a detailed

discussion see Ref. [40].

3.2 Phase separation kinetics with molecular transitions main-

tained away from equilibrium via fuel

In the last section, we focused on how temperature affects the composition of coexist-

ing phases. Temperature is a great control parameter for in vitro systems, however,

there is no evidence that living systems control their temperature to regulate phase

separation. In living cells, molecular transitions are regulated by a ªfuelº component

F which affects the balance between the two molecular states. A prototypical exam-

ple is phosphorylation, where we can identify ATP as the fuel whose hydrolysis is

known to regulate the balance between phosphorylated states and thereby regulate

protein phase separation [41, 42, 43].
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FIGURE 3.5: Illustration of the reaction pathways involving the fuel

In the previous chapter, we studied the kinetics of passive systems that relax to equi-

librium, see Sec. 2.2. We now use a similar theoretical framework to account for the

effect of the fuel [44, 32]. As illustrated in Fig. 3.5, this is done considering explicitly

two new reaction pathways, (a = 2 and a = 3) that involve fuel and a waste compo-

nent, F and W respectively. In analogy with Eq. (2.48), we consider kinetic equations

of the form

∂tϕA = ∇ · (ΛA∇µ̄A) + r , (3.9a)

∂tϕB = ∇ · (ΛB∇µ̄B)− r , (3.9b)

where we chose Λi = ϕi (1− ϕA − ϕB) ΛD/(kBT ). Including now both reaction

pathways in Fig. 3.5, with and without the fuel, we can write the reaction flux in

the spirit of Eq. (2.39)
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r = Λr

[

1− exp

(

µ̄A − µ̄B
kBT

)]

+ Λ1

[

1− exp

(

µ̄A + µ̄W − µ̄B − µ̄F

kBT

)]

+ Λ2

[

1− exp

(

(µ̄A + µ̄F − µ̄B − µ̄′W)

kBT

)]

.

(3.10)

We can now expand the first term for (µ̄B − µ̄A)/kBT ≪ 1 and the second and third

at first order in ϕB and ϕA, respectively, to get

r = Λr
(µ̄B − µ̄A)

kBT
+ k← ϕBϕF − k→ ϕAϕF . (3.11)

Here, k← and k→ are the volume fraction independent rate constants of the back-

ward and forward transition, respectively. This independence of rate constants im-

plies that detailed balance of the rates corresponding to the molecular transition is

broken; for a conceptual discussion see Ref. [32]. In contrast to systems described

in Sec. 2.2, a system with a reaction flux r given by Eq. (3.11) cannot fulfil the two

equilibrium conditions of equal and spatially constant chemical potentials. Thus,

stationary solutions to Eqs. (3.9) using Eq. (3.11) are non-equilibrium steady states.

Consistently with this, in the absence of fuel (ϕF = 0), the reaction flux above re-

duces to Eq. (2.49b) and the system can relax to thermodynamic equilibrium. Thus,

in our model, the fuel level controls how far the system is maintained away from

thermodynamic equilibrium. Finally, we look for an equation for the fuel volume

fraction ϕF. To this end, we focus on the case where the diffusion of fuel is fast

compared to the diffusion of the macromolecules A and B, respectively. This limit

is indeed reasonable for many biological systems since diffusivities for example be-

tween phase-separating macromolecules (proteins, RNA,...) and ATP differ by about

two orders in magnitude [45, 46]. For simplicity, we consider the case of fuel being

conserved, i.e., it is maintained constant in time. This scenario applies to living cells

under physiological conditions and in in vitro systems, where these conditions could

be realized by encapsulated ATP or regeneration of ATP. Moreover, we assume that

the fuel molecules interact in the same way with A and B. In this case, we can

quasi-statically slave the fuel volume fraction ϕF to the total concentration of A and

B,

ϕF(x⃗, t) = ϕ̄F (Γ + Υϕtot(x⃗, t)) , (3.12)

where ϕ̄F denotes the average volume fraction of fuel that is constant in time. The

choice above allows capturing the partitioning of fuel by accounting for the spatial

correlations between fuel and the total volume fraction ϕtot. The fuel partitioning

coefficient PF, which is experimentally accessible, determines the values of the pa-

rameters Γ and Υ in Eq. (3.12) (see Appendix B for a definition of PF and the link to Γ

and Υ). In the following, we choose three parameter sets for Γ and Υ corresponding

to three qualitatively different scenarios. First, the fuel partitions inside the ϕtot-rich

phase for Γ = 0 and Υ = 1/ϕ̄tot. Second, fuel is enriched outside corresponding to
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Γ = −Υ = 1/(1− ϕ̄tot). Finally, we also consider the case of a homogeneous fuel for

Γ = 1,Υ = 0. The latter case has been studied for example in Refs. [47, 48].

We numerically solve the kinetic Eqs. (3.9) and (3.11) in two dimensions with peri-

odic boundary conditions combining the energy quadratization method [49, 49, 50]

with with the stabilization method [51], see also Appendix F and G in Ref. [40].

3.2.1 Control of the number of coexisting phases via fuel

For the rest of the chapter, we study systems belonging to class (ii), defined in

Eq. (3.8). We measure the effective rates in units of tD = L2/ΛD, which represents the

time a macromolecule takes to diffuse across a length L = 100
√

κAA/(kBT ), where

L corresponds to the system size. Moreover, the length scale
√

κAA/(kBT ) approxi-

mates the droplet interface width [32]. In all simulations, we set Λr = 5 t−1D . We also

set the effective backward rate ϕ̄F k← = 0 and k→ = 2103 t−1D and consider variations

of the effective forward rate induced by the average fuel amount. In Fig. 3.6 a)-c) we

plot representative stationary states at three different fuel levels. In the absence of

fuel (ϕ̄F = 0), the system reaches its thermodynamic equilibrium, which for the pa-

rameters chosen here corresponds to an A-rich phase coexisting with a solvent-rich,

see Fig. 3.6 a). Intermediate amounts of fuel induce a transition to a non-equilibrium

stationary state comprised of three coexisting domains, see Fig. 3.6 b). For an even

larger amount of fuel, the system transits to a non-equilibrium stationary state where

B-rich domains stably coexist with a solvent-rich domain.

As expected, for high values of k→ and k←, we find that the local composition of

each domain is no more governed by the thermodynamic equilibrium values. The

effective description in terms of a single degree of freedom (i.e. ϕtot), discussed in

Sect. 2.1.3 and Sect. 2.1.4) breaks down, and the system must be characterised by two

degrees of freedom (i.e., ϕA and ϕB). The corresponding ternary phase diagram for

the chosen temperature is depicted in Fig. 3.6 d). As anticipated at the end of the pre-

vious section, for parameters corresponding to case (ii), the phase diagram exhibits

three-phase coexistence (green triangle), but also three domains of two-phase coex-

istence (blue, red and white). In the absence of fuel, the average (blue circled dot) is

constrained by chemical equilibrium to the lower blue domain, thus the demixes in

two phases, their composition specified by the blue dots in Fig. 3.6 d). Changing the

fuel amount (and consequently the effective forward rate k→ϕ̄F) amounts to moving

the average volume fraction vector along the conserved trajectory ϕB = ϕtot − ϕA,

as indicated by the gray arrow. For intermediate fuel amount, the average volume

fraction moves into the green area, and the system exhibits three-phase coexistence,

as we saw in Fig. 3.6 b).
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FIGURE 3.6: Breaking detailed balance of the molecular transition enables con-
trolling the number of distinct phases a)-c) ϕA and ϕB spatial profiles at the sta-
tionary state for increasing fuel average volume fraction ϕ̄F. a) Without fuel the
system demixes into an A-rich phase and a solvent-rich phase, whose composition
is set by thermodynamic equilibrium. b) Increasing fuel leads to the emergence
of three phases: many A-rich drops and a single B-rich drop surrounded by a
solvent-rich phase, respectively. c) Increasing further the fuel amount leads to two
domains at steady state, enriched in B and solvent, respectively. d) Increasing the
fuel level results in moving the average system composition in the ternary phase
diagram. Average volume fractions for different fuel values are indicated by the
circled coloured dots. The dashed lines connect average volume fractions with the
volume fraction values in the respective demixed domains (colored dots), at steady
state. We notice that the phase compositions are not too far from the reference val-
ues obtained imposing phase equilibrium in the ternary mixture, without chemical
equilibrium. (e) The number of phases along with their density and composition
as a function of the amount of fuel in the system. Here, interactions correspond to

parameter set (ii), i.e. χA0 = χB0, χAB > χB0,

Surprisingly, the local composition of each domain in the fueled system is almost

equal to the equilibrium value of a ternary mixture without molecular transitions, as

can be seen comparing the green dots with the vertices of the green triangle in Fig. 3.6

d). This remains true for high fuel amounts, for which the average volume fraction
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lies in the red domain corresponding to a B-rich droplet. Although the three-phase

coexistence regime occupies the majority of the ϕA-ϕB-plane, the coexistence of three

domains is actually only accessible over a narrow range of fuel values. To see this,

compare the green regions in the phase diagram of Fig. 3.7 d) with the green region

in Fig. 3.7 e). Thus, when the fuel is changed by an amount larger than this narrow

window, the long-time, stationary state of the systems swaps from an A-rich to a

B-rich domain. In general, this does not necessarily imply that the initial single

droplet swaps its composition without dissolving. However, our results suggest the

intriguing possibility, that under some conditions, a droplet may be able to change

its composition without losing its identity, related to the profile of the total volume

fraction.
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3.2.2 Active switch of condensate composition
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FIGURE 3.7: Fuelling leads to droplet composition switch in time The active
switch in droplet composition is achieved by changing fuel in time according to
the protocol in a). b) Time traces of ϕA, ϕB and ϕtot inside the dense phase show an
abrupt compositional switch with time, reminiscent of the discontinuous switch ob-
served at thermodynamic equilibrium when quasi-statically varying the tempera-
ture. c)-e) Snapshots of ϕA ϕB profile evolving in time within the first half of the fu-
eling ramp shown in a). The rescaled temperature is kept constant to T/T0 = 0.525.

To test the possibility of a single droplet kinetically swapping its composition with

time as the fuel is increased, we initially start with an A-rich droplet at thermody-

namic equilibrium (ϕ̄F = 0) and gradually increase the average fuel volume fraction

until it reaches a plateau value, and then gradually decrease it, see Fig. 3.7 a). This

causes an abrupt change in the composition of the dense phase, defined by means of

a threshold in the total volume fraction, i.e. ϕtot > ϕ∗tot, as can be seen in Fig. 3.7 b).

Here we have chosen

ϕ∗tot = (ϕmax
tot + ϕmin

tot )/2 + δtot , (3.13)
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where ϕmax
tot and ϕmin

tot correspond to the maximum and minimum value of ϕtot(x), for

a given time, while δtot = 0.4 (ϕmax
tot − ϕmin

tot ). As the average fuel volume fraction is

increased, a B-rich domain appears in the centre of the initial A-rich droplet. This

domain grows and splits into concentric rings enriched in A and B, respectively, see

Fig. 3.7 d). The outermostB-rich domain radially propagates inwards and outwards

facilitating the formation of a final B-rich droplet. This inversion occurs approxi-

mately concomitant to the average fuel amount exceeding some specific value, see

Fig. 3.7 e). Thus, the composition has indeed swapped with time compared to the

initial state. As the fuel is gradually decreased, B material is consumed causing the

droplet to shrink and a release of A material near its interface. This process forms an

A-rich outer ring that relaxes with time to the spherical shape ± the composition has

returned back to its initial value. These results demonstrate that the composition

of a droplet can indeed be controlled and reversibly switched by fuel that breaks

detailed balance of the rates without dissolving and re-nucleating the droplet at an-

other position.
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Chapter 4

Controlling the shape of coexisting
phases via molecular transitions

In the previous chapter, we generalised our reaction scheme to account for the pres-

ence of a fuel component. We have shown that breaking the detailed balance of the

rates, via constant fuel supply, causes deviations from chemical equilibrium, thus

paving the way for controlling phase composition. We also discussed how maintain-

ing chemical reactions away from equilibrium leads to violations of the Gibbs phase

rule, in turn releasing the strict limitations on the dimension of multi-phase coexis-

tence regions (Eq. (2.31)). In our example, breaking detailed balance of the rates led

to three-phase coexistence for a wide temperature range, instead of fine-tuned tem-

perature values imposed by equilibrium (compare Fig. 3.4 with Fig. 3.6). Accounting

for the presence of the fuel, we could not resort to the dimensional reduction com-

ing from chemical equilibrium (see Sect, 2.1.3), but it proved useful to refer to the

underlying M dimensional phase diagram. However, this has many limitations, as

can be clearly appreciated by taking a closer look at the patterns that emerged in

the last chapter, like the fixed-sized droplets in Fig. 3.6 b) and the (transient) rings

in Fig. 3.6 d). In fact, breaking detailed balance of the rates, in general, prevents

both the relaxation to chemical and phase equilibrium. In this chapter, we focus on

non-equilibrium patterns that emerge due to fuel-driven chemical reactions. We first

discuss the impact of interaction propensity and effective rates on the emergence of

patterns and then introduce a simplified framework to characterise rings. We then

show experimental evidence of an analogue pattern in 3D, namely spherical shells,

forming in fuelled coacervate systems. We conclude by showing that theoretical

predictions are in good agreement with experimental results. The results presented

here, have been obtained within a very fruitful collaboration involving Jonathan

Bauermann, Frank Jülicher and Christoph Weber on the theory side, and Alexander

Bergmann, Carsten Donau, and Job Boekhoven on the experimental side.
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4.1 Fuel controls the shape of coexisting phases

We start from the ternary mixture described in previous chapters, composed of the

solvent and a molecule in two states (A and B). We consider the classes of sys-

tems outlined in the previous chapter: (i) weak A-solvent interactions: χA0 ≪ χB0,

while χAB ∼ χB0 and (ii) strong A-solvent and A-B interactions: χA0 ∼ χB0, with

χAB > χB0. At thermodynamic equilibrium, we observed reentrant phase behavior

for (i), see Fig. 3.2, and a discontinuous phase transition in droplet composition for

(ii), see Fig. 3.4. We study the system kinetic, described in Eq. (3.9), considering both

a thermodynamic and a fuel-related contribution to the reaction flux; see Eq. (3.11).

Most importantly, the fuel-related contribution breaks detailed balance of the rates.

This causes the system to settle into non-equilibrium stationary states which differ

from the thermodynamic equilibrium one in terms of the number of phases, phase

composition, and morphology. To classify these non-equilibrium states, we numeri-

cally solve Eqs. (3.9) together with Eq. (3.11), initializing the system with one droplet

of total volume fractions and A-B-composition taken from the corresponding ther-

modynamic phase diagrams. We then track the interfaces between A-rich, B-rich,

and solvent-rich domains, shown by dashed blue and red lines in Fig. 4.1 a) and d),

defined via a threshold in the functions ϕA(x) and ϕB(x) respectively. As in the pre-

vious chapter, we have chosen the threshold based on the conserved quantity ϕtot,

namely

ϕ∗A = ϕ∗B = (ϕmax
tot + ϕmin

tot )/2 + δtot , (4.1)

where ϕmax
tot and ϕmin

tot correspond to the maximum and minimum value of ϕtot(x),

for a given time, while δtot = 0.4 (ϕmax
tot − ϕmin

tot ). We find the emergence of various

patterns ranging from equally sized droplets to rings and stripes (see Fig. 4.1 a), b),

d), e), and SI movies I-VII in Ref [40]). In our analysis, we focus on two sets of pa-

rameters:

Class (i) is defined by weak A-solvent interactions: χA0 ≪ χB0, while χAB ∼ χB0,

we find that the ϕtot-rich phase is mainly composed of B and that the inside compo-

sition hardly varies due to the presence of fuel; Fig. 4.1 c). However, the fuel can in-

duce the formation of patterns that are significantly different from the corresponding

equilibrium state, composed of a single droplet. We find that there is an extended

region in the k→-k← state diagrams where patterns emerge, enclosed by the grey

line in Fig. 4.1 c). Close to the onset of pattern formation, we observe stable ring-like

patterns, see Fig. 4.1 a). For increasing effective backward rate ϕ̄F k←, we often ob-

serve rings coexisting with droplets, see SI Movie II. For even larger effective rates

ϕ̄F k←, rings break up leading to the emergence of equally sized droplets (Fig. 4.1 b).

Equally sized droplets have been reported in a model using a Ginzburg-Landau type

of free energy [48]. Droplets can also strongly deviate from their spherical shape (see

SI Movie IV in Ref. [40]) and deform into elongated domains reminiscent of stripes.
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FIGURE 4.1: Molecular transition breaking detailed balance leads to non-
equilibrium stationary states. We monitor the emergence of patterns by tracking
the interface between solvent-rich (I), A-rich (II), and B-rich (III) domains (defined
in Eq. (4.1)). For example, such tracked interfaces are shown by the dashed lines
in a) and d), where the red and blue lines enclose B-rich and A-rich domains,
respectively. These domains are the analogue of demixed phases at thermody-
namic equilibrium. In a) and b) we display two prototypical fuel-induced non-
equilibrium stationary states belonging to parameter set (i) defined by weak A-S
interactions, namely χA0 ≪ χB0, χAB ≃ χB0. The state diagram in c) indicates
out-of-equilibrium patterns corresponding to different values of the effective for-
ward and backward rates (ϕ̄F k← and ϕ̄F k→, respectively, entering in Eq. (3.11)), for
parameter set (i). Here, the colour code indicates the composition of the dense do-
main in terms of the relative B amount (i.e. ϕB/ϕtot). For strong A-S interactions,
χA0 = χB0, χAB > χB0, corresponding to parameter set (ii), stationary patterns
emerge composed of three domains distinct in composition d), e). In the state dia-
gram f), such domains are indicated with two triangles of different colours in which

each colour corresponds to the composition of the two distinct dense phases.

Class (ii) is characterized by strong A-solvent and A-B interactions: χA0 ∼ χB0,

with χAB > χB0, the behavior in the k→-k← state diagram changes significantly. In

contrast to the previous case, for the temperature value chosen (T = 0.525T0) the

initial equilibrium state is a droplet composed mainly of A. Increasing the effective

forward rate for low effective backward rates leads to a transition from an A-rich

droplet to a B-rich droplet. In other words, for a large effective forward rate, this
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leads to a droplet of switched composition. Between the two regions in the k→-k←
plane corresponding to single droplets of different composition, there is a region

where observe various kinds of patterns, see Fig. 4.1 d),e). In particular, for a low

effective forward rate corresponding to the onset of pattern formation, we typically

find that the shape of the A-rich domain deviates significantly from the initial sin-

gle drop at thermodynamic equilibrium, while the composition of such domains

remains close to the equilibrium value. Besides rings and equally sized drops, we

also find patterns reminiscent of bubbly-phase separation [52], see SI Movie V in

Ref. [40]. For higher effective forward rates and low backward rates, we find pat-

terns where three domains of different compositions stably coexist, see the region

marked with two triangles of different colours in Fig. 4.1 f). Representative station-

ary patterns composed of three domains are shown in Fig. 4.1 d), e). These patterns

are spherically symmetric with a centered droplet enriched in B that is surrounded

by a ring of smaller A-rich droplets of equal size. As mentioned above, for even

higher effective forward rates, the system settles in a non-equilibrium stationary

state composed of a singleB-rich droplet. The rates for which these patterns emerge

are influenced by the partitioning of fuel into the droplets. For details, see Fig.5 in

Ref. [40]

4.2 Fuel-driven chemical reactions lead to vacuole formation

Among the patterns identified in the previous section, arguably the most interest-

ing is the ring-like structure. What makes this pattern intriguing is the presence of

two interfaces, which are penalised by the surface tension, and thus forbidden at

equilibrium. To better characterise such a ring-like pattern, and study its 3D ana-

logue, we now introduce a simplified kinetic description of multicomponent mix-

tures. This powerful approximation is usually referred to as the effective droplet

description [32, 33] and can be exploited in the limit of sharp interfaces between

different phases. This approach assumes local phase equilibrium at the interface.

4.2.1 The effective droplet model

We study first the case of a spherically symmetric system composed of two phases,

separated by an interface at position R. We will call phase I the domain from r = 0

to r = R, and phase II the domain from r = R to r = Rsys, the system boundary.

For κij → 0, the interfaces among different phases become infinitely thin. The idea

behind the effective droplet model is to expand the volume fraction around certain

values, e.g. their values at the interface, defined as ΦI/II
i = ϕi(r → R±), where R

is the droplet radius. Then, by means of appropriate relations, these volume frac-

tion values and R must be determined self-consistently. We chose to linearise the

dynamics in Eq. (2.48) with respect to the volume fraction values at the interface
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ϕi(r → R±) = ΦI/II
i leading to

∂ϕi
∂t

= −∇ · ji + cI/II
i +

M
∑

j=1

kI/II
ij

(

ϕi − ΦI/II
i

)

, (4.2)

with

ji = −
M
∑

j=1

DI/II
ij ∇ϕj , (4.3a)

kI/II
ij =

∂ri
∂ϕj

, (4.3b)

cI/II
i = ri(Φ

I/II) , (4.3c)

and we have defined the diffusion coefficient

DI/II
ij =

M
∑

k=1

Λik
∂µ̄k
∂ϕj

∣

∣

∣

ΦI/II
. (4.4)

Providing the appropriate boundary conditions at r = Rsys, these equations can

be solved to get the spatial profiles ϕI/II
i (r) of each component i in phases I and II,

respectively, as a function of ΦI/II
i , R. Following Ref. [19], we now assume that is

possible to decouple the slow kinetic of R(t) from the fast dynamics of the volume

fraction fields. In other words, neglect transients in Eq. (4.2) and use its stationary

solutions to compute the motion of the interface R(t). In particular, starting from

Eq. (4.2), adopting a reference frame comoving with the interface, and integrating

between R− and R+, we get

Ṙ
(

ΦI
i − ΦII

i

)

=
(

jIi(R
−)− jIIi (R

+)
)

n̂r , (4.5)

with n̂r denoting the radial vector. The equation above relates fluxes and volume

fractions at the interface to the motion of the interface. Considering the dynamics of

conserved quantities, we get constraints on the possible values of Ṙ. In fact, accord-

ing to Eq. (2.53), we obtain

dψI/II
i

dt
= −∇ · jψi

I/II
, (4.6)

where the linearised currents read j
ψ
i

I/II
=
∑

kQikj
I/II
k . Eq. (4.6) implies that, at

steady state, the flux of conserved quantities is divergence-free. In this work, we

focus on the case of closed systems imposing no flux of material through the sys-

tem boundary. This assumption implies that the flux of conserved quantities also

vanishes at Rsys:

j
ψ
i

II (
Rsys

)

= 0 . (4.7)
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This equation, together with the vanishing flux at R = 0, and Eq. (4.6) implies that,

at a steady state, the current associated with conserved quantities must be zero ev-

erywhere: jψi = 0. Applying Qij on both sides of Eq. (4.5), we find

Ṙ
(

ΨI
i −ΨII

i

)

= 0 , (4.8)

where ΨI/II
i indicate the values of the conserved quantities at the interface. Equa-

tion (4.8) states that, in closed systems that are stationary with respect to Eq. (4.2), if

the value of any conserved quantity differs across the interface, the interface velocity

must vanish. Thus, unless the interaction parameters lead to ΨI
i = ΨII

i , we can use

the effective droplet model only to study the stationary state of the system, and not

the slow relaxation kinetics of R(t).

In any case, we need to determine the 2M volume fractions ΦI/II
i and R(t). To this

aim, we impose local equilibrium across the interface:

µ̄i
(

{ΦI
j}
)

= µ̄i
(

{ΦII
j }
)

, (4.9a)

Π
(

{ΦI
j}
)

= Π
(

{ΦII
j }
)

+ 2
γ

R
, (4.9b)

where we modified Eq. (2.9b) to account for the surface tension γ. These equations

must be supplemented by global and local conservation laws. In particular, the con-

served quantities obey the following global conservation laws

4π

∫ R

0
ψi(r)r

2 dR+ 4π

∫ Rsys

R
ψi(r)r

2 dR = ψ̄i Vsys . (4.10)

The remaining constraints can be found applying the matrixEai, defined in Eq. (2.18),

to the expression for the interface velocity in Eq. (4.5), leading to

Ṙ =
j
ξ
a

I − j
ξ
a

II

ΞI
a − ΞII

a

n̂r , (4.11)

where we introduced ΞI/II
a as the values of the reaction extents at the interface. Equa-

tion (4.11) represents a set of local conservation laws for the fluxes of reaction extents.

It states that molecules have to be provided (or removed) by the mismatch of the

fluxes while moving the interface between two phases and having a finite difference

in the volume fraction at the phase boundaries. Summing up, we have to distinguish

between two cases:

i All conserved quantities are continuous at the interface. In this case, which

requires a very specific choice of interaction parameters and molecular vol-

umes, Eq. 4.8 does not constrain the interface velocity of volume fraction pro-

files that are stationary with respect to Eq. (4.2). For a given value of the radius

R, we have to determine 2M values of the volume fractions at the interface,

ΨI/II
i and the velocity Ṙ. To this aim, we use the M + 1 local equilibrium con-

ditions in Eq. (4.9), plus the (M − R) conservation laws in Eq. (4.10), together

with the R interface conditions in Eq. (4.11).



Chapter 4. Controlling the shape of coexisting phases via molecular transitions 40

ii At least a conserved quantity jumps at the interface. In this case, according

to Eq. 4.8, the assumption that volume fraction profiles are stationary states

of the dynamics in Eq. (4.2), implies that the interface velocity vanishes. Even

if, within the stationarity assumption of the volume fraction fields, we cannot

study the slow relaxation kinetics of R(t), we can still make use of the effective

droplet model to find the stationary radius R∗ and the corresponding interface

values ΦI/II
i . To this aim, we use the same set of constraints, namely the M + 1

local equilibrium conditions in Eq. (4.9), the M − R global conservation laws

in Eq. (4.10), and the R interface conditions in Eq. (4.11).

4.2.2 Spinodal instability at the centre of chemically active droplets

As an example, we study the ternary mixture already introduced in the previous

chapters, composed of the solvent, C0, and two components A and B. We allow the

chemical reaction A ⇋ B and impose A and B to have the same molecular volume

vA = vB = ν v0. We chose the conserved quantity ψ = ϕtot = ϕA + ϕB and the

reaction extent ξ = ϕB/ν. We do not restrict the choice of interaction parameters

and molecular volumes and allow jumps in the conserved quantity at the interface:

ϕI
tot ̸= ϕII

tot. According to the discussion in the previous chapter, this implies that the

interface velocity Ṙ must vanish, at steady state of Eq. (4.2). Nevertheless, we can

resort to the effective droplet model to determine the stationary radius and volume

fraction profiles associated with a chemically active droplet and discuss its stability.

For a ternary mixture, the reaction-diffusion equations in Eq. (4.2) read

∂tϕA = DI/II∇2ϕA − kI/II
BAϕA + kI/II

ABϕB , (4.12a)

∂tϕB = DI/II∇2ϕB + kI/II
BAϕA − kI/II

ABϕB . (4.12b)

In principle, the diffusion coefficients Dij and the rate coefficients kij depend on

the boundary values ΦA around which we expanded, via Eq. (4.4) and Eq. (4.3b),

respectively. In the following, we consider the possibility that both coefficients differ

between the phases, however, for simplicity, we neglect any further volume fraction

dependence ofDij(Φi) and kij(Φi) in each phase. This assumption greatly simplifies

the determination of the boundary values Φi without altering the qualitative results

that can be obtained within the effective droplet model. Here, for simplicity, we

have set DI/II
ij = 0 for i ̸= j and chosen equal diffusion coefficients for A and B,

DI/II
ii = DI/II. Furthermore, we have set ci, defined in Eq. (4.3c), to be zero in both

phases. The last assumption should be taken with care since it implies that we can

linearise the volume fractions around values corresponding to phase equilibrium

and chemical equilibrium simultaneously. With these assumptions, the stationary
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solutions have the general form

ϕI/II
A (r) =

aI/II
1

r
+ aI/II

2 + aI/II
3

sinh
(

rλI/II
)

r
+ aI/II

4

cosh
(

rλI/II
)

r
, (4.13a)

ϕI/II
B (r) =

kαBA
kαAB

(

aI/II
1

r
+ aI/II

2

)

− aI/II
3

sinh
(

rλI/II
)

r
− aI/II

4

cosh
(

rλI/II
)

r
, (4.13b)

with

λI/II =

√

kI/II
AB + kI/II

BA

DI/II , (4.14)

and aI/II
i integration constants to be fixed via boundary conditions. Imposing van-

ishing flux at the droplet centre and identifying ϕI
i = ΦI

i, we can recast the solutions

in phase I as:

ϕI
A(r) =

ΦI
Ak

I
BA − ΦI

Bk
I
AB

kI
AB + kI

BA

i0(λIr)

i0(λI
AR)

+ kI
AB

ΦI
A +ΦI

B

kI
AB + kI

BA

, (4.15a)

ϕI
B(r) =

ΦI
Bk

I
AB − ΦI

Ak
I
BA

kI
AB + kI

BA

i0(λIr)

i0(λI
AR)

+ kI
BA

ΦI
A +ΦI

B

kI
AB + kI

BA

, (4.15b)

where i0(x) = sinh(x)/x denote the spherical modified Bessel function of the first

kind and 0th order. In phase II stationary solutions read:

ϕII
A(r) =

ΦII
Ak

II
BA − ΦII

Bk
II
AB

kII
AB + kII

BA

k1(λ
IIRsys)i0(λIIr) + i1(λIIRsys)k0(λ

IIr)

k1(λIIRsys)i0(λIIR) + i1(λIIRsys)k0(λIIR)

+ kII
AB

ΦII
A +ΦII

B

kII
AB + kII

BA

,

(4.16a)

ϕII
B(r) =

ΦII
Bk

II
AB − ΦII

Ak
II
BA

kII
AB + kII

BA

k1(λ
IIRsys)i0(λIIr) + i1(λIIRsys)k0(λ

IIr)

k1(λIIRsys)i0(λIIR) + i1(λIIRsys)k0(λIIR)

+ kII
BA

ΦII
A +ΦII

B

kII
AB + kII

BA

,

(4.16b)

where ΦII
A,Φ

II
B are the interface volume fractions at r = R andRsys is the system size.

Moreover, k0(x) = exp(−x)/x is the spherical modified Bessel function of the second

kind and 0th order. The spherical modified Bessel function of the first and second

kind and first order (i1 and k0, respectively) are defined through i1(x) = i′0(x) and

k1(x) = −k′0(x). The A and B fluxes read

jI/II
i (r) = −DI/II∂rϕ

I/II
i . (4.17)

Now we can self-consistently determine the boundary values ΦI/II
i , and the interface

position R making use of the following (M + 1) conditions:
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• Phase equilibrium

µ̄A
(

{ΦI
j}
)

= µ̄A
(

{ΦII
j }
)

, (4.18a)

µ̄B
(

{ΦI
j}
)

= µ̄B
(

{ΦII
j }
)

, (4.18b)

Π
(

{ΦI
j}
)

= Π
(

{ΦII
j }
)

+ 2
γ

R
. (4.18c)

• Global material conservation

Vsys ϕ̄tot =

∫

dV (ϕA + ϕB)

=
4

3
π
[

(ΦI
A +ΦI

B)R
3 + (ΦII

A +ΦII
B)(R

3
sys −R3)

]

.

(4.18d)

• Conservation across the interface

jI
B = −jII

B . (4.18e)

In the following, we introduce the time scale

τ = R2
sys/D

II (4.19)

that will be the natural unit to measure rates. Two examples of the radial profiles ϕA
and ϕB resulting from the solution of the equations above are displayed in Fig. 4.2

a) and b), for two different values of kI
AB . Due to chemical reactions, moving away

from the interface r = R, the volume fractions can vary from the values ΦI/II
i , around

which we have linearised. The variation becomes significant at distances from R

comparable with the length scale 1/λI/II, introduced in Eq. (4.14). In both cases il-

lustrated, the reaction-diffusion length scale λII is much larger than the system size,

1/λII ∼ 10Rsys, corresponding to flat profiles outside of the droplet. On the other

hand, 1/λI ∼ 0.6Rsys in a) and 1/λI ∼ 0.3Rsys in b). As a result, A and B profiles

vary mildly in a) while in b) the volume fractions at the droplet centre (red and blue

circles) and at the r = R (red and blue triangles) differ significantly. In Fig. 4.2 c) we

plot volume fraction variations in the dense phase, on top of the phase diagram, for

the same parameters used in a) and b). Since we imposed phase equilibrium across

the interface, the volume fractions at r = R (circles) must lie in the proximity of

the binodal. The discrepancy is to the presence of surface tension γ. As mentioned

before, chemical reactions lead to variations of the volume fraction profile with r.

In particular, the volume fraction at the droplet centre may lie in the spinodal re-

gion, as is the case for parameters in b). Inside the spinodal region, homogeneous

states become unstable for any perturbation. Thus, if volume fractions at r = 0 cross

the spinodal line, spontaneous demixing occurs at the droplet centre. In Fig. 4.2

d) we depict the dependence of the volume fractions at the centre ϕi(0) on the rate

kI
AB , highlighting the value k∗, corresponding to crossing the spinodal. In Fig. 4.2

e) we depict the variation of the interface radius as a function of the rate kI
AB , again

highlighting k∗. Values above k∗ are dashed since in this regime the droplet state
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becomes unstable.

We have shown that for kI
AB > k∗ chemical reactions lead to volume fractions at

r = 0 that lie in the spinodal region. This would correspond to spontaneous demix-

ing at the droplet centre, and thus the emergence of a third phase. We speculate that

indeed for kI
AB > k∗ the stationary state of the system is composed of three phases

separated by two interfaces. Unfortunately, to study this regime we cannot resort to

the set of linearised equations in Eqs. (4.18). In fact, there we considered DI
i to be

constant, as given by the expression in Eq. (4.4). On the other hand, if the volume

fractions in the dense phase deviate from their boundary values, this approximation

can lead to contradictions. This becomes evident when the droplet centre crosses the

spinodal, leading to a negative diffusion coefficient considering equations linearised

around ϕi(0). For this reason, in the next session, we will introduce a new theoretical

framework that will reveal to be useful for characterizing the stationary state in the

regime kI
AB > k∗.
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FIGURE 4.2: Chemical reactions lead to spinodal instability at the droplet centre.
a) and b) concentration profiles corresponding to kI

AB = 0.01 and kI
AB = 0.05. Solid

and dashed lines represent stable and unstable solutions of Eqs. (4.18), respectively.
c) Concentrations at the interface R(circles) and at the droplet centre (triangles) for
the parameters corresponding to a) and b) plotted on top of the phase diagram.
For high values of the rate kI

AB , the volume fractions at the droplet centre cross
the spinodal region thus the droplet state becomes unstable. The dependence of
R and of the volume fraction at the centre on kI

AB are plotted in panels d) and e),
respectively. Here, k∗ denotes the onset of the spinodal instability at the droplet
centre, where the droplet state becomes unstable. For this reason, we dash values

of the radius and volume fraction at the centre above k∗.

4.2.3 Describing vacuoles within the effective droplet model

We study now the case of a spherically symmetric system composed of three phases,

separated by an inner and an outer interface at position Rin and Rout, respectively.

We will call phase I the domain from 0 to Rin, and phase II the domain from Rout

to Rsys, the system boundary, and phase III the shell between Rin and Rout. We

focus on the ternary mixture described in Sec 4.2.2 and previous chapters. Again, we
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assume the interfaces among different phases to be infinitely thin and solve reaction-

diffusion equations analogue to Eqs. (4.2), namely

∂tϕA = Dα∇2ϕA − kαBAϕA + kαABϕB , (4.20a)

∂tϕB = Dα∇2ϕB + kαBAϕA − kαABϕB , (4.20b)

in the phases α = I, II, III. In the following, we will use the superscripts ªIº, ªinº,

ªoutº, and ªIIº to indicate quantities evaluated at R−in, R+
in, R−out, R

+
out, respectively.

For example, with this notation, the volume fractions at the boundaries read

ΦI
i = ϕi(r → R−in) , (4.21a)

Φin
i = ϕi(r → R+

in) , (4.21b)

Φout
i = ϕi(r → R−out) , (4.21c)

ΦII
i = ϕi(r → R+

out) , (4.21d)

for i = A,B. The stationary solutions of the reaction-diffusion equations (Eq. (4.20))

in phases I and II are identical to those presented in Eq. (4.15) and Eq. (4.15), respec-

tively. The stationary profiles inside of the shell, instead, read

ϕIII
A (r) =

(Φout
A kIII

BA − Φout
B kIII

AB)
[

k0(λ
IIIRin)i0(λIIIr)− i0(λIIIRin)k0(λ

IIIr)
]

(kIII
AB + kIII

BA) [k0(λIIIRin)i0(λIIIRout)− i0(λIIIRin)k0(λIIIRout)]

+
(Φin

Ak
III
BA − Φin

Bk
III
AB)

[

k0(λ
IIIRout)i0(λIIIr)− i0(λIIIRout)k0(λ

IIIr)
]

(kIII
AB + kIII

BA) [k0(λIIIRin)i0(λIIIRout)− i0(λIIIRin)k0(λIIIRout)]

+ kIII
AB

(Φin
A +Φin

B − Φout
A − Φout

B )RinRout

(kIII
AB + kIII

BA)(Rout −Rin)r

+ kIII
AB

(Φout
A +Φout

B )Rout − (Φin
A +Φin

B)Rin

(kIII
AB + kIII

BA)(Rout −Rin)
,

(4.22a)

ϕIII
B (r) =

(Φout
B kIII

AB − Φout
A kIII

BA)
[

k0(λ
IIIRin)i0(λIIIr)− i0(λIIIRin)k0(λ

IIIr)
]

(kIII
AB + kIII

BA) [k0(λIIIRin)i0(λIIIRout)− i0(λIIIRin)k0(λIIIRout)]

+
(Φin

Bk
III
AB − Φin

Ak
III
BA)

[

k0(λ
IIIRout)i0(λIIIr)− i0(λIIIRout)k0(λ

IIIr)
]

(kIII
AB + kIII

BA) [k0(λIIIRin)i0(λIIIRout)− i0(λIIIRin)k0(λIIIRout)]

+ kIII
BA

(Φin
A +Φin

B − Φout
A − Φout

B )RinRout

(kIII
AB + kIII

BA)(Rout −Rin)r

+ kIII
BA

(Φout
A +Φout

B )Rout − (Φin
A +Φin

B)Rin

(kIII
AB + kIII

BA)(Rout −Rin)
,

(4.22b)
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where we have imposed no flux boundary conditions at r = 0 and, since we restrict

to closed systems, at r = Rsys. Furthermore, we have introduced

λIII =

√

kIII
AB + kIII

BA

DIII . (4.23)

The currents read

jαi (r) = −Dα∂rϕ
α
i , (4.24)

with α = I,II,III. We can now study the interfaces kinetics fixing Rin and determine

the boundary values ϕI
i, ϕ

in
i , ϕout

i , ϕII
i , the outer interface position Ṙin, and the inter-

face velocities Ṙout and Rout, making use of the following conditions:

• Phase equilibrium across the inner interface Rin

µ̄A
(

{ΦI
j}
)

= µ̄A
(

{Φin
j }
)

, (4.25a)

µ̄B
(

{ΦI
j}
)

= µ̄B
(

{Φin
j }
)

, (4.25b)

Π
(

{ΦI
j}
)

= Π
(

{Φin
j }
)

+ 2
γ

Rin . (4.25c)

• Phase equilibrium across the outer interface Rout

µ̄A
(

{Φout
j }

)

= µ̄A
(

{ΦII
j }
)

, (4.25d)

µ̄B
(

{Φout
j }

)

= µ̄B
(

{ΦII
j }
)

, (4.25e)

Π
(

{Φout
j }

)

= Π
(

{ΦII
j }
)

+ 2
γ

Rout . (4.25f)

• Global material conservation

ϕ̄tot Vsys =

∫

dV (ϕA + ϕB) . (4.25g)

• Unicity of the inner interface velocity Ṙin

Ṙin =
jinA − jIA

Φin
A − ΦI

A

n̂r =
jinB − jIB

Φin
B − ΦI

B

n̂r . (4.25h)

• Unicity of the outer interface velocity Ṙout

Ṙout =
jout
A − jIIA

Φout
A − ΦII

A

n̂r =
jout
B − jIIB

Φout
B − ΦII

B

n̂r . (4.25i)

As demonstrated for the case with one interface only, see Eq. (4.6)), at stationary

state, the current associated with the conserved quantity ϕtot, namely

jαtot = −Dα∇ϕαtot , (4.26)
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must be constant in the phases. For closed system, this implies jItot = jIItot = 0 while,

in principle, jIIItot does not have to vanish. Thus, we can rewrite the interface veloci-

ties, defined in Eq. (4.25h) and Eq. (4.25h), as

Ṙin =
jIIItot

ϕin
tot − ϕI

tot
n̂r , (4.27a)

Ṙout =
jIIItot

ϕout
tot − ϕII

tot
n̂r . (4.27b)

The last pair of equations allows slaving the velocities at the two interfaces:

Ṙout = Ṙin
ϕin

tot − ϕI
tot

ϕout
tot − ϕII

tot
, (4.28)

implying that if an interface velocity vanishes so does the velocity of the other inter-

face.

To determine the steady state radii (Rin and Rout) and volume fraction profiles at

interfaces (ϕI
i, ϕ

in
i , ϕout

i , ϕII
i , the outer interface position , for i = A,B), we solve the

set of equations in Eqs. (4.25), supplemented with

Ṙin = 0 . (4.29)

As outlined above (see Eq. (4.28)), the last equation implies that both interface veloc-

ities simultaneously vanish.

An example of interface kinetics is reported in Fig. 4.3. For different values of Rin,

we solve the set of equations in (4.25) to get the corresponding outer interface po-

sitions Rout, the volume fractions at both interfaces and the interface velocities, Ṙin

and Ṙout, respectively. In Fig. 4.3 a), we show Ṙin and Ṙout as a function of Ṙin. We

measure velocities in units of

vD = DII/Rsys . (4.30)

The system admits two stationary radii (black dots) for which both velocities simul-

taneously vanish. The one at lowerRin, with the (u) label, is unstable while at higher

Rin we find the stable one, labelled with (s). In Fig. 4.3 b), we depict the evolution of

both radii in time, initialising the system with Rin slightly higher than the unstable

value. After both radii increase, they saturate to the steady state value corresponding

to the stable point, see (s) black dot in Fig. 4.3 a). In panel c), we show the stationary

state volume fraction profiles, highlighting ϕA and ϕB in blue and red, respectively.

Solid lines and dashed lines correspond to the stable and unstable stationary states,

black dots labeled as (s) and (u) in Fig. 4.3 a), respectively.
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FIGURE 4.3: Fuel-sustained chemical reactions can lead to the emergence of sta-
tionary vacuoles. a) Interface velocities as a function of the inner radius position
derived solving Eqs. (4.25). We find two stationary points (black dots) at which
both velocities simultaneously vanish. The one corresponding to lower Rin, la-
belled with (u), is unstable while the one at higher Rin, , labelled with (s), is stable.
b) Time evolution of both Rin and Rout, starting from an initial condition in the
vicinity of the unstable point. Indeed the radii approach the stationary values cor-
responding to the stable point (s) highlighted in panel a). c) Stationary profiles
of the volume fraction ϕA (in blue) and ϕB (in red) in the three phases I, II, and
III. Solid and dashed lines correspond respectively to the stable and unstable sta-
tionary solutions discussed in a). In d) we discuss the different stationary states
reached as a function of the B to A rate kBA in the phase with higher ϕtot. For low
rates, the system can be described by a single interface between a ϕtot-dense (I) and
a ϕtot-dilute (II) phase. The position of the interface R, separating phases I and II,
depends on kI

AB , as already shown in Fig. 4.2 e). At kI
AB = k∗, the volume fractions

at the droplet centre cross the spinodal. Above k∗, the state stable is a vacuole com-
posed of three phases I, II (the one with higher ϕtot), and III. In this regime, green
shaded area, we plot the dependence of the two interface positions (Rin and Rout)

on kIII
AB .

The shaded area between the two stable interface positions indicates phase III, the

ϕtot-rich shell. Fig. 4.3 d) is an extension of Fig. 4.3 e), where we quantify the effect of

the rate kBA in the phase with higher ϕtot. For low rates, the system can be described

by a single interface between a ϕtot-dense and a ϕtot-dilute phase, which we label

phase I and II, respectively. The interface position R, as well as the volume fraction

profiles, depend on kI
AB . For kI

AB = k∗ the droplet centre crosses the binodal and

the droplet state becomes unstable. Above k∗, the stable state becomes a vacuole
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composed of three phases I, II (the one with higher ϕtot), and III. In this regime, we

plot the dependence of the two interface positions (Rin and Rout) on kIII
AB see the

green shaded area in Fig. 4.3 d).

4.3 Theory of active vacuole compared with experiments us-

ing chemically-active coacervates

4.3.1 Experimental system using active coacervates

Recently, the Boekhoven lab has performed a set of experiments in which spheri-

cal shells, that are reminiscent of active vacuoles described in the previous chapter,

were observed. Here, we shortly describe their experimental setup and compare the

theory presented in Sec. 4.2 with the experimental results.

S

O

OO

n

PolyanionProductPrecursor 2H+ H2O

DIUDIC, 2H+
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n = 400

FIGURE 4.4: Chemical reaction network underlying active coacervate formation.
The chemical reaction involves the peptide (ac-FRGRGRGD) with +1 net charge,
which we refer to as ªPrecursorº in the following. The peptide can react with the
chemical fuel, N,N’-diisopropylcarbodiimide (DIC), to form the corresponding an-
hydride with +3 net charge, which we call ªProductº. The reaction byproduct, DIU,
will be referred to as ªwasteº. In dilute solutions without fuel, the product is un-
stable and rapidly hydrolyzes to convert back to the precursor. At these conditions,
the half-life of the product can be estimated to be roughly 45 seconds. Both precur-
sor and product can interact with a polyanion, the poly sodium styrene sulfonate

(PSS), which has a net charge of -400, on average.

In Fig. 4.4, we present the chemical reaction network, that involves a peptide, namely

ac-FRGRGRGD (where F stands for phenylalanine, R for arginine, G for glycine, and

D for aspartic acid) that is made of three +1 charged groups and a group with −2

charge. This peptide will be referred to as the ªPrecursorº molecule. The precursor

can react with the chemical fuel, namely the N,N’-diisopropylcarbodiimide (DIC), to

form the corresponding anhydride that has only the three positively charged groups.

The anhydride will be referred to as the ªProductº molecule. The product can also

hydrolyze to revert to the precursor. In dilute conditions, the equilibrium of the

first chemical reaction is shifted towards the product and the second towards the

precursor. As a consequence, once the fuel is supplied, it rapidly reacts with a pre-

cursor producing product molecules, that then decay back into the precursor. The

estimated half-life of the product is roughly 45 seconds. Both precursor and prod-

uct can interact with a polyanion, the poly sodium styrene sulfonate (PSS), made of
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negatively charged units. The average number of units is n = 400, thus polyanion

polymers have a net charge of −400, on average.

4.3.2 Phase diagram for coacervates

c̄ [mM] cI [mM] cII [mM]

Pre Pro∗ Pm Pre Pro∗ Pm Pre Pro∗ Pm

20 0 5 2500 ± 907 0 403 ± 227 5.76 ± 0.66 0 2.7 ± 0.4

9 1 5 1443 ± 403 231 ± 56 606 ± 205 3.2 ± 0.3 0.08 ± 0.03 2.6 ± 0.2

0 2 5 0 700 ± 434 1486 ± 227 0 0.78 ± 0.08 2.4 ± 0.0

TABLE 4.1: Concentrations measured in mM of precursor (Pre), stabilised product
(Pro∗), and polyanion monomer (Pm), in vacuole forming systems. The first group
of columns contains concentrations averaged over the entire system volume. The
second group of columns contains concentrations inside the coacervates (phase I),

while the last group contains concentrations in the supernatant (phase II).

In a passive binary mixture composed of precursor and polyanion only, the experi-

mental quantification of phase behavior is straightforward. However, determining

the complete phase diagram for a system that also contains the product components

is challenging due to the rapid hydrolyzation of the product. To circumvent this

problem, the product was stabilised against hydrolysis by mutating the C terminal

aspartic acid for an asparagine. This chemical modification yields a peptide that

is stable and should have similar interaction propensities as the product. For suf-

ficiently high concentrations of precursor and stabilised product, the formation of

stable coacervates was observed. In Table 4.1, we display the concentrations of pre-

cursor (Pre), stabilised product (Pro∗), and polyanion monomers. We chose to show

the concentrations of polyanion monomers and not of the entire polyanion chains,

to compare the number of similarly charged compounds. We show concentrations

averaged over the entire system volume but also inside and outside the coacervate

(phase I and II, respectively).

Here we aim at a minimal description of this experimental system. To this end,

we consider the case where all the precursor and product molecules cluster around

polyanion monomers being in excess. We identify the precursor and product be-

longing to these complexes as the effective components A and B. In Fig. 4.4 a), we

show a sketch of the precursor, the stabilised product, and polyanion, while in panel

b), we illustrate the effective components A and B. We further assume that coacer-

vates are made of A and B only and that the excess polyanion monomers which are

not surrounded by precursor or product are localised in the remaining supernatant

phase 1. These assumptions allow us to reduce the number of degrees of freedom

and describe the system as an effective ternary mixture composed of A, B plus the

1We can confirm this hypothesis by calculating the number of precursors and products per polyan-
ion monomer pA = cI

Pm/c
I
Pre, in the system composed of precursor and polyanion only, focusing on



Chapter 4. Controlling the shape of coexisting phases via molecular transitions 51

0.0 0.5 1.0
A volume fraction φA

0.0

0.5

1.0

B
vo
lu
m
e
fr
a
ct
io
n
φ
B

a)

b)

0.000 0.001 0.002
A volume fraction φA

0.000

0.001

0.002

c)

Precursor

Product

Component B

Component A

<latexit sha1_base64="rUxoTOeZoEhTDE7BtsyxGq9JKcU=">AAAB8HicbVDLSgNBEJyNrxhfUY9eFoOil7ArQT0GvHiMYB6SLGF20kmGzMwuM71iWPIVXjwo4tXP8ebfOEn2oIkFDUVVN91dYSy4Qc/7dnIrq2vrG/nNwtb2zu5ecf+gYaJEM6izSES6FVIDgiuoI0cBrVgDlaGAZji6mfrNR9CGR+oexzEEkg4U73NG0UoPHYQnTOn5pFsseWVvBneZ+BkpkQy1bvGr04tYIkEhE9SYtu/FGKRUI2cCJoVOYiCmbEQH0LZUUQkmSGcHT9wTq/TcfqRtKXRn6u+JlEpjxjK0nZLi0Cx6U/E/r51g/zpIuYoTBMXmi/qJcDFyp9+7Pa6BoRhbQpnm9laXDammDG1GBRuCv/jyMmlclP3LcuWuUqqeZnHkyRE5JmfEJ1ekSm5JjdQJI5I8k1fy5mjnxXl3PuatOSebOSR/4Hz+AOSHkGQ=</latexit>

<latexit sha1_base64="gUIhMYowXprbuS00omPsk5cGPbg=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mkqBeh4MVjBdMW2lA22027dLMJuxOhlP4GLx4U8eoP8ua/cdvmoK0PBh7vzTAzL0ylMOi6305hbX1jc6u4XdrZ3ds/KB8eNU2SacZ9lshEt0NquBSK+yhQ8naqOY1DyVvh6G7mt564NiJRjzhOeRDTgRKRYBSt5Kvbmuv2yhW36s5BVomXkwrkaPTKX91+wrKYK2SSGtPx3BSDCdUomOTTUjczPKVsRAe8Y6miMTfBZH7slJxZpU+iRNtSSObq74kJjY0Zx6HtjCkOzbI3E//zOhlGN8FEqDRDrthiUZRJggmZfU76QnOGcmwJZVrYWwkbUk0Z2nxKNgRv+eVV0ryselfV2kOtUj/P4yjCCZzCBXhwDXW4hwb4wEDAM7zCm6OcF+fd+Vi0Fpx85hj+wPn8AaUYjdg=</latexit>

Polyanion

FIGURE 4.5: Phase behaviour of effective components A and B. a) Sketch of the
precursor, product, and polyanion, that get combined to form the effective com-
ponents shown to the right of panel a). In particular, component A is formed by a
precursor molecule plus a strand belonging to the polyanion. Component B is com-
posed of a precursor molecule surrounded by pieces of polyanion strands. Coun-
terions that make the system neutral are not shown. b) and c) depict the phase di-
agram for the two-component A and B. Data points from experiments performed
in the Boekhoven lab (TUM) are shown in green (including error bars related to the
HPLC concentration measurement). Theoretical fits using a ternary Flory Huggins
model are shown by green solid lines. Gray-shaded domains correspond to the

mixed domains based on the theoretical fits.

solvent, in which we include water, buffer, and the polyanion monomers in excess.

Furthermore, the concentrations ofA andB are easy to calculate, since they are in 1-1

correspondence with the precursor and stabilised product concentrations. The Flory

Huggins free energy (see Eq. (2.3)) that best fits the experimental values corresponds

to the relative molecular volumes

νA = 15.9 , νB = 44.2 , (4.31)

and the interaction propensities

χA0 = 1.15 kBT , χB0 = 0.869 kBT , χAB = −0.025 kBT . (4.32)

the inside phase (first raw of Table 4.1). The same can be done in the system with the stabilised prod-
uct only, to get pB . We can now focus on the case in which both precursor and product are present,
and calculate the expected amount of polyanion in the coacervate phase, assuming that pA and pB are
constant. The estimation yields cI

Pm = 715, which agrees with the measured value 606± 205.
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The difference in relative molecular volumes can be explained considering that in

the effective component B, a product molecule is surrounded by more polyanion

monomers, as represented in Fig. 4.4 b). This is consistent with the data presented in

Table 4.1. Once the relative molecular volumes are known, we can convert concen-

trations to volume fractions and construct the binary phase diagram as a function of

the volume fractions ϕA and ϕB , see Fig. 4.4 c).

↽⇀

↽⇀<latexit sha1_base64="kjFgKpPY8rzzsQftmEpFTOc6U/w=">AAAB7XicdVBNSwMxEM3Wr1q/qh69BIviadmVYu2t4MVjBfsB7VKy6Wwbm02WJCuU0v/gxYMiXv0/3vw3ptsVVPTBwOO9GWbmhQln2njeh1NYWV1b3yhulra2d3b3yvsHbS1TRaFFJZeqGxINnAloGWY4dBMFJA45dMLJ1cLv3IPSTIpbM00giMlIsIhRYqzUJjhKgQ/KFc+tZ8BLUqvmpO5j3/UyVFCO5qD83h9KmsYgDOVE657vJSaYEWUY5TAv9VMNCaETMoKepYLEoINZdu0cn1hliCOpbAmDM/X7xIzEWk/j0HbGxIz1b28h/uX1UhNdBjMmktSAoMtFUcqxkXjxOh4yBdTwqSWEKmZvxXRMFKHGBlSyIXx9iv8n7XPXv3CrN+eVxmkeRxEdoWN0hnxUQw10jZqohSi6Qw/oCT070nl0XpzXZWvByWcO0Q84b58JU49h</latexit>

a fuel

<latexit sha1_base64="fAdkemvhzvENfEjgWHKp0ph11Bg=">AAAB7nicdVDLSgNBEOz1GeMr6tHLYFA8LbshGHMLePEYwTwgWcLspDcZMvtgZlYJIR/hxYMiXv0eb/6Nk80KKlrQUFR1093lJ4Ir7Tgf1srq2vrGZmGruL2zu7dfOjhsqziVDFssFrHs+lSh4BG2NNcCu4lEGvoCO/7kauF37lAqHke3epqgF9JRxAPOqDZSh5J7qjQOSmXHrmcgS1Kr5qTuEtd2MpQhR3NQeu8PY5aGGGkmqFI910m0N6NScyZwXuynChPKJnSEPUMjGqLyZtm5c3JqlCEJYmkq0iRTv0/MaKjUNPRNZ0j1WP32FuJfXi/VwaU341GSaozYclGQCqJjsvidDLlEpsXUEMokN7cSNqaSMm0SKpoQvj4l/5N2xXYv7OpNpdw4y+MowDGcwDm4UIMGXEMTWsBgAg/wBM9WYj1aL9brsnXFymeO4Aest0/meo/j</latexit>

a waste

<latexit sha1_base64="syDrdvYfs8flqZAsrhybwz8ai8w=">AAAB+HicdVBNS8NAEN34WetHox69LBbFU0mkWHsQCl48VrAf0Iay2W7apZtN2J2INfSXePGgiFd/ijf/jds0goo+GHi8N8PMPD8WXIPjfFhLyyura+uFjeLm1vZOyd7da+soUZS1aCQi1fWJZoJL1gIOgnVjxUjoC9bxJ5dzv3PLlOaRvIFpzLyQjCQPOCVgpIFdggvXwX1gd5CGXM4Gdtmp1DPgBalVc1J3sVtxMpRRjubAfu8PI5qETAIVROue68TgpUQBp4LNiv1Es5jQCRmxnqGShEx7aXb4DB8ZZYiDSJmSgDP1+0RKQq2noW86QwJj/dubi395vQSCcy/lMk6ASbpYFCQCQ4TnKeAhV4yCmBpCqOLmVkzHRBEKJquiCeHrU/w/aZ9W3LNK9bpabhzncRTQATpEJ8hFNdRAV6iJWoiiBD2gJ/Rs3VuP1ov1umhdsvKZffQD1tsnDIyTUA==</latexit>

t = 10min

<latexit sha1_base64="nXEyzpFQIphFkpQy1ToZAl9UPJA=">AAAB9XicdVBNS8NAEN3Ur1q/qh69LBbFU0ikWHsrePFYwX5AE8tmu2mX7iZhd6KW0P/hxYMiXv0v3vw3btMKKvpg4PHeDDPzgkRwDY7zYRWWlldW14rrpY3Nre2d8u5eW8epoqxFYxGrbkA0EzxiLeAgWDdRjMhAsE4wvpj5nVumNI+ja5gkzJdkGPGQUwJGunEd7MnUA3YPmZz2yxXHrufAc1KrLkjdxa7t5KigBZr98rs3iGkqWQRUEK17rpOAnxEFnAo2LXmpZgmhYzJkPUMjIpn2s/zqKT4yygCHsTIVAc7V7xMZkVpPZGA6JYGR/u3NxL+8XgrhuZ/xKEmBRXS+KEwFhhjPIsADrhgFMTGEUMXNrZiOiCIUTFAlE8LXp/h/0j613TO7elWtNI4XcRTRATpEJ8hFNdRAl6iJWogihR7QE3q27qxH68V6nbcWrMXMPvoB6+0T+maSyw==</latexit>

10µm

<latexit sha1_base64="M3i5TBhKek/c6x3CoeYCUc3JSYQ=">AAAB7XicdVBNSwMxEM3Wr1q/qh69BIviadmVYu2t4MVjBfsB7VKy6Wwbm02WJCuU0v/gxYMiXv0/3vw3ptsVVPTBwOO9GWbmhQln2njeh1NYWV1b3yhulra2d3b3yvsHbS1TRaFFJZeqGxINnAloGWY4dBMFJA45dMLJ1cLv3IPSTIpbM00giMlIsIhRYqzUDtMoAjUoVzy3ngEvSa2ak7qPfdfLUEE5moPye38oaRqDMJQTrXu+l5hgRpRhlMO81E81JIROyAh6lgoSgw5m2bVzfGKVIY6ksiUMztTvEzMSaz2NQ9sZEzPWv72F+JfXS010GcyYSFIDgi4XRSnHRuLF63jIFFDDp5YQqpi9FdMxUYQaG1DJhvD1Kf6ftM9d/8Kt3pxXGqd5HEV0hI7RGfJRDTXQNWqiFqLoDj2gJ/TsSOfReXFel60FJ585RD/gvH0Cf0KPrg==</latexit>

buffer

<latexit sha1_base64="M8lVNYyhp0dPifSmOYaf/RZvRE8=">AAAB8HicdVBNSwMxFHxbv2r9qnr0EiyKp2W3FGtvBS8eK9haaZeSTbNtaLJZkqxQSn+FFw+KePXnePPfmG5XUNGBwDDzHnkzYcKZNp734RRWVtfWN4qbpa3tnd298v5BR8tUEdomkkvVDbGmnMW0bZjhtJsoikXI6W04uVz4t/dUaSbjGzNNaCDwKGYRI9hY6c7OklRpqQbliuc2MqAlqddy0vCR73oZKpCjNSi/94eSpILGhnCsdc/3EhPMsDKMcDov9VNNE0wmeER7lsZYUB3MsoPn6MQqQxRJZV9sUKZ+35hhofVUhHZSYDPWv72F+JfXS010EcxYnKSGxmT5UZRyZCRapEdDZgMbPrUEE8XsrYiMscLE2I5KtoSvpOh/0qm6/rlbu65Wmqd5HUU4gmM4Ax/q0IQraEEbCAh4gCd4dpTz6Lw4r8vRgpPvHMIPOG+fHbSRNw==</latexit>

precursor

<latexit sha1_base64="tnoh4QNJ1uxHXcGWkbT5hBt/z9E=">AAAB8HicdZDLSsNAFIYn9VbrrerSzWBRXIWkFGt3BTcuK9haaUOZTCft0LmEmYkQQp/CjQtF3Po47nwbp2kEFf1h4OM/5zDn/GHMqDae9+GUVlbX1jfKm5Wt7Z3dver+QU/LRGHSxZJJ1Q+RJowK0jXUMNKPFUE8ZOQ2nF0u6rf3RGkqxY1JYxJwNBE0ohgZa93FkqVIWBpVa57bygWX0GwU0PKh73q5aqBQZ1R9H44lTjgRBjOk9cD3YhNkSBmKGZlXhokmMcIzNCEDiwJxooMsX3gOT6wzhpFU9gkDc/f7RIa41ikPbSdHZqp/1xbmX7VBYqKLIKMiTgwRePlRlDBoJFxcD8dUEWxYagFhRe2uEE+RQtjYjCo2hK9L4f/Qq7v+udu4rtfap0UcZXAEjsEZ8EETtMEV6IAuwICDB/AEnh3lPDovzuuyteQUM4fgh5y3TwuXkSs=</latexit>

polyanion

<latexit sha1_base64="Ln9ILSK9+boUz9BXIzFzTV2ftJw=">AAAB+HicdVDLSsNAFJ3UV62PRl26GSyKq5BItXYhFNy4rGAf0IYymU7aoZMHMzdiDf0SNy4UceunuPNvnKYRVPTAhcM593LvPV4suALb/jAKS8srq2vF9dLG5tZ22dzZbasokZS1aCQi2fWIYoKHrAUcBOvGkpHAE6zjTS7nfueWScWj8AamMXMDMgq5zykBLQ3MMlw41inuA7uDdCxnA7NiW/UMeEFq1ZzUHexYdoYKytEcmO/9YUSTgIVABVGq59gxuCmRwKlgs1I/USwmdEJGrKdpSAKm3DQ7fIYPtTLEfiR1hYAz9ftESgKlpoGnOwMCY/Xbm4t/eb0E/HM35WGcAAvpYpGfCAwRnqeAh1wyCmKqCaGS61sxHRNJKOisSjqEr0/x/6R9YjlnVvW6Wmkc5XEU0T46QMfIQTXUQFeoiVqIogQ9oCf0bNwbj8aL8bpoLRj5zB76AePtE7cckxk=</latexit>

t = 1.5hr
<latexit sha1_base64="snsGRJ81vBTLV/RRBWI8fol7ANM=">AAAB9XicdVBNS8NAEN34WetX1aOXxaJ4CokUaw9CwYvHCvYD2lg22027dLMJuxO1hP4PLx4U8ep/8ea/cZtGUNEHA4/3ZpiZ58eCa3CcD2thcWl5ZbWwVlzf2NzaLu3stnSUKMqaNBKR6vhEM8ElawIHwTqxYiT0BWv744uZ375lSvNIXsMkZl5IhpIHnBIw0g2cO7gH7B7SkMtpv1R27FoGPCfVSk5qLnZtJ0MZ5Wj0S++9QUSTkEmggmjddZ0YvJQo4FSwabGXaBYTOiZD1jVUkpBpL82unuJDowxwEClTEnCmfp9ISaj1JPRNZ0hgpH97M/Evr5tAcOalXMYJMEnni4JEYIjwLAI84IpREBNDCFXc3IrpiChCwQRVNCF8fYr/J60T2z21K1eVcv0oj6OA9tEBOkYuqqI6ukQN1EQUKfSAntCzdWc9Wi/W67x1wcpn9tAPWG+fIomS5A==</latexit>

t = 0min

<latexit sha1_base64="YA+pSAnZO2540/O30v7wwQikKqU=">AAAB+HicdVDLSgNBEJyNrxgfiXr0MhgUT8uuBmMOQsCLxwjmAUkIs5PZZMjM7DLTK8YlX+LFgyJe/RRv/o2Th6CiBQ1FVTfdXUEsuAHP+3AyS8srq2vZ9dzG5tZ2vrCz2zBRoimr00hEuhUQwwRXrA4cBGvFmhEZCNYMRpdTv3nLtOGRuoFxzLqSDBQPOSVgpV4hDxenHu4Au4NUcjXpFYqeW5kBz0m5tCAVH/uuN0MRLVDrFd47/YgmkimgghjT9r0YuinRwKlgk1wnMSwmdEQGrG2pIpKZbjo7fIIPrdLHYaRtKcAz9ftESqQxYxnYTklgaH57U/Evr51AeN5NuYoTYIrOF4WJwBDhaQq4zzWjIMaWEKq5vRXTIdGEgs0qZ0P4+hT/Txonrn/mlq5LxerRIo4s2kcH6Bj5qIyq6ArVUB1RlKAH9ISenXvn0XlxXuetGWcxs4d+wHn7BA+sk1I=</latexit>

t = 30min
<latexit sha1_base64="syDrdvYfs8flqZAsrhybwz8ai8w=">AAAB+HicdVBNS8NAEN34WetHox69LBbFU0mkWHsQCl48VrAf0Iay2W7apZtN2J2INfSXePGgiFd/ijf/jds0goo+GHi8N8PMPD8WXIPjfFhLyyura+uFjeLm1vZOyd7da+soUZS1aCQi1fWJZoJL1gIOgnVjxUjoC9bxJ5dzv3PLlOaRvIFpzLyQjCQPOCVgpIFdggvXwX1gd5CGXM4Gdtmp1DPgBalVc1J3sVtxMpRRjubAfu8PI5qETAIVROue68TgpUQBp4LNiv1Es5jQCRmxnqGShEx7aXb4DB8ZZYiDSJmSgDP1+0RKQq2noW86QwJj/dubi395vQSCcy/lMk6ASbpYFCQCQ4TnKeAhV4yCmBpCqOLmVkzHRBEKJquiCeHrU/w/aZ9W3LNK9bpabhzncRTQATpEJ8hFNdRAV6iJWoiiBD2gJ/Rs3VuP1ov1umhdsvKZffQD1tsnDIyTUA==</latexit>

t = 10min
<latexit sha1_base64="Ln9ILSK9+boUz9BXIzFzTV2ftJw=">AAAB+HicdVDLSsNAFJ3UV62PRl26GSyKq5BItXYhFNy4rGAf0IYymU7aoZMHMzdiDf0SNy4UceunuPNvnKYRVPTAhcM593LvPV4suALb/jAKS8srq2vF9dLG5tZ22dzZbasokZS1aCQi2fWIYoKHrAUcBOvGkpHAE6zjTS7nfueWScWj8AamMXMDMgq5zykBLQ3MMlw41inuA7uDdCxnA7NiW/UMeEFq1ZzUHexYdoYKytEcmO/9YUSTgIVABVGq59gxuCmRwKlgs1I/USwmdEJGrKdpSAKm3DQ7fIYPtTLEfiR1hYAz9ftESgKlpoGnOwMCY/Xbm4t/eb0E/HM35WGcAAvpYpGfCAwRnqeAh1wyCmKqCaGS61sxHRNJKOisSjqEr0/x/6R9YjlnVvW6Wmkc5XEU0T46QMfIQTXUQFeoiVqIogQ9oCf0bNwbj8aL8bpoLRj5zB76AePtE7cckxk=</latexit>

t = 1.5hr

↽⇀

↽⇀<latexit sha1_base64="kjFgKpPY8rzzsQftmEpFTOc6U/w=">AAAB7XicdVBNSwMxEM3Wr1q/qh69BIviadmVYu2t4MVjBfsB7VKy6Wwbm02WJCuU0v/gxYMiXv0/3vw3ptsVVPTBwOO9GWbmhQln2njeh1NYWV1b3yhulra2d3b3yvsHbS1TRaFFJZeqGxINnAloGWY4dBMFJA45dMLJ1cLv3IPSTIpbM00giMlIsIhRYqzUJjhKgQ/KFc+tZ8BLUqvmpO5j3/UyVFCO5qD83h9KmsYgDOVE657vJSaYEWUY5TAv9VMNCaETMoKepYLEoINZdu0cn1hliCOpbAmDM/X7xIzEWk/j0HbGxIz1b28h/uX1UhNdBjMmktSAoMtFUcqxkXjxOh4yBdTwqSWEKmZvxXRMFKHGBlSyIXx9iv8n7XPXv3CrN+eVxmkeRxEdoWN0hnxUQw10jZqohSi6Qw/oCT070nl0XpzXZWvByWcO0Q84b58JU49h</latexit>

a fuel

<latexit sha1_base64="fAdkemvhzvENfEjgWHKp0ph11Bg=">AAAB7nicdVDLSgNBEOz1GeMr6tHLYFA8LbshGHMLePEYwTwgWcLspDcZMvtgZlYJIR/hxYMiXv0eb/6Nk80KKlrQUFR1093lJ4Ir7Tgf1srq2vrGZmGruL2zu7dfOjhsqziVDFssFrHs+lSh4BG2NNcCu4lEGvoCO/7kauF37lAqHke3epqgF9JRxAPOqDZSh5J7qjQOSmXHrmcgS1Kr5qTuEtd2MpQhR3NQeu8PY5aGGGkmqFI910m0N6NScyZwXuynChPKJnSEPUMjGqLyZtm5c3JqlCEJYmkq0iRTv0/MaKjUNPRNZ0j1WP32FuJfXi/VwaU341GSaozYclGQCqJjsvidDLlEpsXUEMokN7cSNqaSMm0SKpoQvj4l/5N2xXYv7OpNpdw4y+MowDGcwDm4UIMGXEMTWsBgAg/wBM9WYj1aL9brsnXFymeO4Aest0/meo/j</latexit>

a waste

<latexit sha1_base64="nXEyzpFQIphFkpQy1ToZAl9UPJA=">AAAB9XicdVBNS8NAEN3Ur1q/qh69LBbFU0ikWHsrePFYwX5AE8tmu2mX7iZhd6KW0P/hxYMiXv0v3vw3btMKKvpg4PHeDDPzgkRwDY7zYRWWlldW14rrpY3Nre2d8u5eW8epoqxFYxGrbkA0EzxiLeAgWDdRjMhAsE4wvpj5nVumNI+ja5gkzJdkGPGQUwJGunEd7MnUA3YPmZz2yxXHrufAc1KrLkjdxa7t5KigBZr98rs3iGkqWQRUEK17rpOAnxEFnAo2LXmpZgmhYzJkPUMjIpn2s/zqKT4yygCHsTIVAc7V7xMZkVpPZGA6JYGR/u3NxL+8XgrhuZ/xKEmBRXS+KEwFhhjPIsADrhgFMTGEUMXNrZiOiCIUTFAlE8LXp/h/0j613TO7elWtNI4XcRTRATpEJ8hFNdRAl6iJWogihR7QE3q27qxH68V6nbcWrMXMPvoB6+0T+maSyw==</latexit>

10µm

<latexit sha1_base64="nEV1aOGY5t/wptrRWkK5XdYNLg0=">AAAB6XicdVBNS8NAEJ3Ur1q/qh69LBZFLyEpxdpbwYvHKvYD2lA22027dLMJuxuhhP4DLx4U8eo/8ua/cZtGUNEHA4/3ZpiZ58ecKe04H1ZhZXVtfaO4Wdra3tndK+8fdFSUSELbJOKR7PlYUc4EbWumOe3FkuLQ57TrT68WfveeSsUicadnMfVCPBYsYARrI93658NyxbEbGdCS1Gs5abjItZ0MFcjRGpbfB6OIJCEVmnCsVN91Yu2lWGpGOJ2XBomiMSZTPKZ9QwUOqfLS7NI5OjHKCAWRNCU0ytTvEykOlZqFvukMsZ6o395C/MvrJzq49FIm4kRTQZaLgoQjHaHF22jEJCWazwzBRDJzKyITLDHRJpySCeHrU/Q/6VRt98Ku3VQrzdM8jiIcwTGcgQt1aMI1tKANBAJ4gCd4tqbWo/VivS5bC1Y+cwg/YL19AvdnjZc=</latexit>

b)

<latexit sha1_base64="HZvOhebkB/j2UOP4zf7DEnIRIcc=">AAAB6XicdVBNS8NAEJ3Ur1q/qh69LBZFLyEpxdpbwYvHKvYD2lA22027dLMJuxuhhP4DLx4U8eo/8ua/cZtGUNEHA4/3ZpiZ58ecKe04H1ZhZXVtfaO4Wdra3tndK+8fdFSUSELbJOKR7PlYUc4EbWumOe3FkuLQ57TrT68WfveeSsUicadnMfVCPBYsYARrI93i82G54tiNDGhJ6rWcNFzk2k6GCuRoDcvvg1FEkpAKTThWqu86sfZSLDUjnM5Lg0TRGJMpHtO+oQKHVHlpdukcnRhlhIJImhIaZer3iRSHSs1C33SGWE/Ub28h/uX1Ex1ceikTcaKpIMtFQcKRjtDibTRikhLNZ4ZgIpm5FZEJlphoE07JhPD1KfqfdKq2e2HXbqqV5mkeRxGO4BjOwIU6NOEaWtAGAgE8wBM8W1Pr0XqxXpetBSufOYQfsN4+AfXijZY=</latexit>

a)

<latexit sha1_base64="0YZy6RDju8VWv/tUGMExNXrCQ4I=">AAAB8HicdVBNS8NAEN3Ur1q/qh69LBZFLyGRYu2t4MVjBfshbSib7aZdupuE3YlYQn+FFw+KePXnePPfuE0jqOiDgcd7M8zM82PBNTjOh1VYWl5ZXSuulzY2t7Z3yrt7bR0lirIWjUSkuj7RTPCQtYCDYN1YMSJ9wTr+5HLud+6Y0jwKb2AaM0+SUcgDTgkY6bYP7B5SejoblCuOXc+AF6RWzUndxa7tZKigHM1B+b0/jGgiWQhUEK17rhODlxIFnAo2K/UTzWJCJ2TEeoaGRDLtpdnBM3xklCEOImUqBJyp3ydSIrWeSt90SgJj/dubi395vQSCCy/lYZwAC+liUZAIDBGef4+HXDEKYmoIoYqbWzEdE0UomIxKJoSvT/H/pH1mu+d29bpaaRzncRTRATpEJ8hFNdRAV6iJWogiiR7QE3q2lPVovVivi9aClc/sox+w3j4BvM2Q+Q==</latexit>

c)
<latexit sha1_base64="xXax+2+v5PQOf6vAKwW6o+jSMDw=">AAAB8HicdVBNS8NAEN3Ur1q/qh69LBZFLyGRYu2t4MVjBfshbSibzaZdutmE3YlYQn+FFw+KePXnePPfuE0rqOiDgcd7M8zM8xPBNTjOh1VYWl5ZXSuulzY2t7Z3yrt7bR2nirIWjUWsuj7RTHDJWsBBsG6iGIl8wTr++HLmd+6Y0jyWNzBJmBeRoeQhpwSMdNsHdg9ZcDodlCuOXc+B56RWXZC6i13byVFBCzQH5fd+ENM0YhKoIFr3XCcBLyMKOBVsWuqnmiWEjsmQ9QyVJGLay/KDp/jIKAEOY2VKAs7V7xMZibSeRL7pjAiM9G9vJv7l9VIIL7yMyyQFJul8UZgKDDGefY8DrhgFMTGEUMXNrZiOiCIUTEYlE8LXp/h/0j6z3XO7el2tNI4XcRTRATpEJ8hFNdRAV6iJWoiiCD2gJ/RsKevRerFe560FazGzj37AevsEvlOQ+g==</latexit>

d)
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FIGURE 4.6: Experimental realization of spherical shells with fuel-activated coac-
ervates. a) Microfluidic reactor composed of a water droplet loaded with buffer,
polyanion, and precursor, in contact with an oil phase containing fuel. After a
rapid transient, the fuel concentration in the water phase can be considered con-
stant cF = 18mM. Due to the fuel-mediated production of the product, droplets nu-
cleate and start to fuse until a stationary state composed of a single drop is reached.
b) In larger microreactors the single drop state, reached after approximately 30min,
is not stable. After sinking to the bottom of the microreactor, it becomes a spherical
shell of uniform thickness. c) Snapshot of many reactors with different sizes, the
bigger ones containing spherical shells. d) top and e) lateral view of a spherical

shell sitting at the interface between the water droplet and oil phase.
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4.3.3 Vacuole formation in coacervate systems coupled to a fuel reservoir

In the last chapter, we have studied the phase equilibrium of the system correspond-

ing to a fixed product and precursor amount in the absence of fuel. In this case, the

product component was stable due to a chemical modification. We introduced a

minimal description in terms of A and B effective components and used the exper-

imental data to shed light on their size and interaction propensities. In this section,

we now study the kinetics of the original system where the composition ofA andB is

regulated by the fuel-driven chemical reaction network introduced in Fig. 4.4. Exper-

imentally, the fuel is provided by a reservoir. In particular, a microreactor-like setup

was used by preparing a stable emulsion of water droplets in a fluorinated oil phase,

as shown in Fig. 4.6 a), first panel. The water droplets (enclosed by a white circle)

contain buffer, polyanion, and precursor, but initially no fuel. At t = 0, 500 mM of

fuel was injected into the oil phase. The fuel rapidly diffuses into the droplets where

it reacts with the precursor. Since the solubility of fuel in water is 18 mM and thereby

much lower than the amount of fuel in the oil phase, and its diffusion is very quick,

we consider the fuel concentration in the water phase constant cF = 18mM. Impor-

tantly, the reaction waste (DIU) crystallises in the oil phase. Therefore, this method

allows us to continuously maintain a steady fuel concentration and simultaneously

avoid the challenges typically encountered with waste accumulation. Within sec-

onds after preparing the microreactors, the coacervate droplets nucleate and start to

fuse.

We find that the long-time behaviour depends on the size of the microreactor. In

small microreactors, Fig. 4.6 a), the droplets coalesce until a stationary state com-

posed of a single drop is reached. We observe the formation of a single drop also

in larger microreactors, see Fig. 4.6 b), but this final drop is not stable. After about

30 minutes, it sinks to the bottom of the microreactor, and its core dissolves, giving

rise to a spherical shell of uniform thickness. The spherical shell remains stable for

at least 12 hours and thus can be considered a stationary state. Studying its fluo-

rescence recovery after photobleaching, showed that the shell is liquid. Once the

fuel concentration was lowered in the system, e.g., by diluting the fluorinated oil,

the amount of product decreases and the spherical shell gradually collapses until

the system become homogeneous (data not shown). In Fig. 4.6 c), we show many

polydispersed reactors, the bigger ones containing spherical shells. In Fig. 4.6 d)

and e), we show a top and lateral view of a spherical shell. Note that, at the interface

between the water droplet and oil phase, the wetting angle is approximately 90◦.

4.3.4 Recapitulating experimental findings with the effective droplet model

We now use the theory outlined in Sec. 4.2 to characterise the steady state of the sys-

tem and benchmark the experimental findings. We resort to the simplified theory

that considers combinations of precursor, product, and polyanion strands leading to
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the effective components A and B, introduced in Sec. 4.3.2. The starting point of this

theory is the free energy density f , see Eq. (2.3). We neglect all other chemical species

and consider the fuel maintained at a constant concentration. The thermodynamic

parameters contained in f , namely the molecular volume ratios and the interaction

propensities, were obtained in Sec. 4.3.2 by fitting the experimental phase diagram,

see Eq. (4.32) and Eq. (4.31). The drawback of using effective components with dif-

ferent molecular volumes is that the chemical reaction between 1 precursor and 1

product gets translated into

νBA⇌ νAB . (4.33)

In fact, this choice of stoichiometric coefficients leads to a volume-conserving reac-

tion.

The last thermodynamic parameter that the theory requires is surface tension. Since

a direct measure in the microreactors is not feasible, we use a value

γ = 50µN/m2 , (4.34)

which is in agreement with the literature on complex coacervation [53]. The missing

parameters entering the linearised equations (4.12) are the diffusion coefficients and

the reaction rates. As anticipated, we neglect their dependence on composition and

use for the effective componentsA andB the experimental estimates for the product

and precursor diffusivities, namely

DI
A = DI

B = 0.03µm2/s , DII
A = DII

B = 10µm2/s . (4.35)

Getting an estimate for the chemical rates associated with the effective components

is not an easy task, given the difference between the chemical reaction in Eq. (4.33)

and the one involving the same amount of product and the precursor, shown in

Fig. 4.4. For the reaction from B to A we use the experimental value measured for

the product hydrolyzation, namely,

kI
AB = kII

AB = 0.015s−1 . (4.36)

The rate of precursor activation kact is fuel-dependent, as is clear from Fig. 4.4. We

assume the fuel concentration in the supernatant phase to be set by the solubility

of fuel in water cII
F = 18mM. This value, together with the experimental estimate

kact = cF 0.1s−1, allows to get

kII
act = 0.002s−1 . (4.37)

Unfortunately, the amount of fuel in the vacuole phase is impossible to measure,

leaving us without knowledge of the precursor activation rate in phase I, kI
act. Good
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agreement with the experimental results is found setting

kII
BA = 0.0016s−1 , kI

BA = 0.00016s−1 . (4.38)

Both values are not too far from the experimental estimate for the rate of precursor

conversion into the product. We are finally ready to apply the theory developed in

Sec. 4.2 to describe the transition from stable droplets to stable vacuoles. We first look

for stationary profiles corresponding to a single interface, solving the set of equa-

tions in (4.18). In Fig. 4.7, we plot two representative radial volume fraction profiles

corresponding to a) small reactors (Rsys = 15µm) and b) big reactors (Rsys = 30µm).

As the system size increases, the volume fractions ϕA and ϕB (in blue and red, re-

spectively) in the centre of the coacervate phase (shaded area) deviate significantly

from their values at the coacervate interfaceR. The changes in volume fraction when

moving from the coacervate boundary R, indicated by dots in a), to the coacervate

centre at r = 0 are indicated with the triangular arrowhead, as well as plotted in the

phase diagram in Fig. 4.7 c). In the case of big microreactors, as in b), the coacer-

vate centre crosses the spinodal and the droplet state becomes unstable. The stable

state for these large values of Rsys can be described by solving the Eqs. (4.25), corre-

sponding to two interfaces. The stationary radial profile corresponding to Rsys = 30

is shown in Fig. 4.7 d). In this figure, the ϕtot-rich shell is shaded in gray. Unfor-

tunately, experimentally, the spatial profiles of precursor and product are currently

not available preventing comparison with the theoretical profiles. Instead, the de-

pendence of the stable droplet radius on the microreactor volume and the onset of

the vacuole formation could be determined experimentally. These results are shown

in Fig. 4.7 e) (orange dots), together with the dependence of the inner and outer ra-

dius on reactor volume above the onset of the vacuole formation (blue dots). For

comparison, the orange and blue lines show the same quantities calculated within

the theory developed in Sec. 4.2.
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FIGURE 4.7: Theoretical description of active coacervate vacuoles agrees with the
experimental results. Radial volume fraction profiles representative of a) small
reactors (Rsys = 15µm). and b) big reactors (Rsys = 30µm). For large reactor sizes,
ϕA and ϕB (in blue and red, respectively) at the coacervate interface r = R (dots)
differ significantly from the values in the centre of the coacervate phase r = 0
(triangles). c) The discrepancy between the coacervate boundary R, indicated with
dots, and the coacervate center, indicated with the triangle at the arrow tip, are
plotted in the phase diagram. We show the variations corresponding to small and
large microreactors, with system sizes corresponding to a) and b), respectively. For
reactors bigger than a threshold, the coacervate centre crosses the spinodal and
the droplet state becomes unstable. d) The stationary radial profile for Rsys = 30,
representative of large reactor sizes. The shaded area corresponds to the ϕtot-rich
spherical shell. In panel e), we locate the reactor size threshold corresponding to
the emergence of vacuoles. Orange dots display experimentally measured droplet
radius for different microreactor volumes, while blue ones the variation of inner
and outer radius measured as a function of the reactor volume, after the onset of
vacuoles. The same quantities derived from the theoretical analysis are depicted
with the orange and blue lines, showing good agreement with the experimental

data.
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Chapter 5

Controlling phase composition in the
limit of a large number of compo-
nents

In the previous chapters, we discussed how to study the composition of coexisting

phases in the presence of chemical reactions. Controlling the composition of coex-

isting phases becomes crucial when the number of components in a mixture and

the number of reactions among them rise. In this chapter, we use chemical reac-

tion networks to describe proteins that, in addition to driving phase separation, can

assemble and form aggregates of different sizes. This model is motivated by the

observation that many biologically relevant proteins form clusters, that can collec-

tively phase separate from the solvent [54, 55]. The interplay between phase separa-

tion and protein aggregation becomes particularly interesting in the limit of infinite

maximum aggregate size. This work is done in collaboration with Thomas Michaels

and Christoph Weber. The illustrations shown in this chapter are made with Bioren-

der.com
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5.1 Equilibrium theory of aggregation and phase separation

5.1.1 A chemical reaction network to describe aggregation

Here, we apply the theory developed in chapter 2 to that case in which the M com-

ponents are different aggregation states of the same molecule, resulting from the

formation of internal bonds. In particular, component C1 represents the monomeric

form, C2 the dimer, etc etc. We focus on monomers with the same molecular volume

of the solvent, v1 = v0 leading to a scaling of the relative molecular volumes of the

form νi = i. Aggregates can convert into each other via monomer pick-up, described

through the set of M − 1 chemical reactions

C1 + Ci ⇋ Ci+1 . (5.1)

This reaction network is exemplified in Fig. 5.1 a), and its associated stoichiometric

matrix σia, defined in Eq. (2.14), reads

σ =





































a = 1 a = 2 a = 3 . . . a =M − 1

−2 −1 −1 . . . −1 C1

+1 −1 0 . . . 0 C2

0 +1 −1 . . . 0 C3

...
...

...
. . .

...
...

0 0 0 . . . −1 CM−1

0 0 0 . . . +1 CM





































. (5.2)

We chose the conserved quantity

ϕtot =

M
∑

i=1

ϕi , (5.3)

which represents the total volume fraction occupied by the macromolecule in all

possible aggregation states. The reaction extents, defined in Eq. (2.18), can be chosen

to be

ξa =

M
∑

i=a+1

ϕi
i
. (5.4)

In a homogeneous mixture, ξa can be related to the progress of the chemical reac-

tions, starting from an initial state composed of monomers only.
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5.1.2 Scaling laws in the multicomponent aggregation free energy

Recalling the form of the free energy density in Eq. (2.3), the key parameters of this

model are the internal free energy of aggregates, ωi, and the interaction energies of

aggregates among themselves and with the solvent, χij . We begin discussing a scal-

ing form for ωi, with the cluster size i. We recall that the internal free energies can

be interpreted as the free energy cost of producing i-th components. Discussing ag-

gregating particles, this descends from the formation of internal bonds, that keep a

cluster of size i together. For this reason, we introduce the number of oligomeriza-

tion domains per monomer, z. The total number of bonds formed in an aggregate of

size i receives contributions coming from monomers at the boundaries of the cluster,

which are ib), and the bulk ones, i − ib. Monomers in the bulk can saturate all their

z oligomerization domains while, in general, monomers at the boundaries are able

to saturate only zb < z of them, for steric reasons. Summing up, we get

ωi =
z(i− ib) + zbib

2i
∆ω =

z

2
∆ω − (z − zb)

ib
2i

∆ω , (5.5)

where ∆ω is the free energy associated with the formation of a single bond, and the

factor 2 avoids double counting.

We introduce three species of aggregates with different spatial dimensions: rod-like

(d=1), disc-like (d=2) and spherical (d=3), see Fig. 5.1 b). These can be realised by

varying the number of oligomerization domains and their orientation. Rod-like ag-

gregates (d=1) are defined to have only two oligomerization domains with a fixed

orientation. They can be pictured as one-dimensional aggregates with no loops,

leading to ib = 2, z = 2, zb = 1. Disk-like aggregates (d=2) are defined to have z > 2

coplanar oligomerization domains. For disks, the total number of monomers and

the number of boundary monomers scale respectively with the area and the perime-

ter of the aggregate. As a consequence, in d = 2, ib ≃
√
i. Spherical aggregates (d=3)

are characterized by z > 2 oligomerization domains with no precise orientation. In

this case, the total number of monomers and the number of monomers at the bound-

ary scale with the volume and the area, respectively, leading to ib ≃ i2/3. Inserting

there the relations for ib in Eq (5.5) leads to the following scaling relationships for

the internal free energies of rod-like (d = 1), disk-like (d = 2) and spherical (d = 3):

ωi ≃ ω∞ +
∆ω

i1/d
. (5.6)

Here, ω∞ = limi→∞ ωi is a constant that does not affect both chemical and phase

equilibrium. In the bond free energy ∆ω, we include an enthalpic and entropic con-

tribution

∆ω = eint − sintT . (5.7)
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For the scaling of interaction energies, we focus on the case

χij = 0 for i, j > 0 , χi0 = χ . (5.8)

Inserting both scaling ansatzes in the Florry Huggins free energy density defined in

Eq. (2.3), we get

f =
ω∞
v0
ϕtot +

kBT

v0

[

M
∑

i=1

ϕi
i
ln
ϕi
i
+

∆ω

kBT

ϕi

i1/d
+

+ (1− ϕtot) ln (1− ϕtot) +
χ

kBT
ϕtot (1− ϕtot)

]

,

(5.9)

with ∆ω defined in Eq. (5.7) Examining the free energy above, we notice that our

choice of interaction parameters led to an interaction term that depends only on

the total amount of macromolecule ϕtot. This corresponds to the case in which

monomers have the same interaction propensities independently of the aggregate

they belong.

5.1.3 Chemical equilibrium in homogeneous systems

We start by using the free energy in Eq. (5.9) to study aggregation equilibrium in

a homogeneous system. According to Eq. (2.28), the monomer transitions between

clusters are at equilibrium if

µ̄i
i

= µ̄1 = const. ∀ i = 2 ...M , (5.10)

where µ̄i is the i-th exchange chemical potential defined in Eq. (2.5). Using the free

energy of Eq.(5.9) in Eq. (5.10) leads to the following expression for the volume frac-

tion of the cluster of size i as a function of the monomer volume fraction ϕ1:

ϕi = i ϕi1 exp

(

−i ωi − ω1

kBT
+ i− 1

)

, (5.11)

= i

(

ϕ1
ϕ∗

)i

exp

(

∆ω

kBT
i
d−1

d − 1

)

, (5.12)

where we have used the internal free energy (5.6) and introduced the volume frac-

tion threshold, ϕ∗ = exp (∆ω/kBT − 1). As we will discuss in the following, ϕ∗

represents the ϕtot value corresponding to the emergence of large clusters. Note

that, due to our choice of interaction scaling (Eq. (5.8)), the value of χ does not in-

fluence chemical equilibrium. The equation above together with conservation of

monomers (5.3), allows us to calculate the volume fraction of each aggregate of size

i, ϕi(ϕtot), as a function of the conserved quantity ϕtot.

In Fig. 5.1, we show the cluster size distribution in homogeneous mixtures obtained

by solving numerically Eq. (5.11) together with Eq. (5.3), with a cut-off M = 50. As

anticipated, for dilute solutions corresponding to ϕtot ≪ ϕ∗, the size distribution is
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C2

<latexit sha1_base64="BhEnz6kct9WPu2deTkElrpATpzg=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CRalXsquFPUiFLx4rOC2hXYp2TTbhibZJckKZelv8OJBEa/+IG/+G9N2D9r6YODx3gwz88KEM21c99sprK1vbG4Vt0s7u3v7B+XDo5aOU0WoT2Ieq06INeVMUt8ww2knURSLkNN2OL6b+e0nqjSL5aOZJDQQeChZxAg2VvKr+Na76Jcrbs2dA60SLycVyNHsl796g5ikgkpDONa667mJCTKsDCOcTku9VNMEkzEe0q6lEguqg2x+7BSdWWWAoljZkgbN1d8TGRZaT0RoOwU2I73szcT/vG5qopsgYzJJDZVksShKOTIxmn2OBkxRYvjEEkwUs7ciMsIKE2PzKdkQvOWXV0nrsuZd1eoP9UrjPI+jCCdwClXw4BoacA9N8IEAg2d4hTdHOi/Ou/OxaC04+cwx/IHz+QN1g425</latexit>

(a = 1)

<latexit sha1_base64="NOWWpuCDChNd2BeaSTUu3qH4+yk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbFU0mkqMdCLx4r2g9oQ9lsN+3SzSbsToQS/AlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmjZnfeeTaiFg94DThfkRHSoSCUbTSfWPgDcoVt+rOQVaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyp1I/NTyhbEJHvGepohE3fjY/9YmcWWVIwljbUkjm6u+JjEbGTKPAdkYUx2bZm4n/eb0Uwxs/EypJkSu2WBSmkmBMZn+TodCcoZxaQpkW9lbCxlRThjadkg3BW355lbQvq95VtXZXq9TP8ziKcAKncAEeXEMdbqEJLWAwgmd4hTdHOi/Ou/OxaC04+cwx/IHz+QO1ZY1Y</latexit>

C1

<latexit sha1_base64="4898NgQdJGf7VlUjRoOV7HkcTUI=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4IrtK1CMJF48Y5ZHAhswOvTBhdnYzM2tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoJRbea3nlBpHstHM07Qj+hA8pAzaqz0UOtd9Yolt+zOQVaJl5ESZKj3il/dfszSCKVhgmrd8dzE+BOqDGcCp4VuqjGhbEQH2LFU0gi1P5mfOiVnVumTMFa2pCFz9ffEhEZaj6PAdkbUDPWyNxP/8zqpCW/9CZdJalCyxaIwFcTEZPY36XOFzIixJZQpbm8lbEgVZcamU7AheMsvr5LmZdm7LlfuK6XqeRZHHk7gFC7Agxuowh3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AuG2NWg==</latexit>

C3

<latexit sha1_base64="QYMkwi2wBLmCcaLHgpL7eGQ28DY=">AAAB7HicbVBNSwMxEJ34WetX1aOXYFHqpeyWol6EghePFdy20C4lm2bb0Gx2SbJCWfobvHhQxKs/yJv/xrTdg7Y+GHi8N8PMvCARXBvH+UZr6xubW9uFneLu3v7BYenouKXjVFHm0VjEqhMQzQSXzDPcCNZJFCNRIFg7GN/N/PYTU5rH8tFMEuZHZCh5yCkxVvIq5LZ22S+VnaozB14lbk7KkKPZL331BjFNIyYNFUTrruskxs+IMpwKNi32Us0SQsdkyLqWShIx7WfzY6f43CoDHMbKljR4rv6eyEik9SQKbGdEzEgvezPxP6+bmvDGz7hMUsMkXSwKU4FNjGef4wFXjBoxsYRQxe2tmI6IItTYfIo2BHf55VXSqlXdq2r9oV5uXORxFOAUzqACLlxDA+6hCR5Q4PAMr/CGJHpB7+hj0bqG8pkT+AP0+QN3CI26</latexit>

(a = 2)

<latexit sha1_base64="NOWWpuCDChNd2BeaSTUu3qH4+yk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbFU0mkqMdCLx4r2g9oQ9lsN+3SzSbsToQS/AlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmjZnfeeTaiFg94DThfkRHSoSCUbTSfWPgDcoVt+rOQVaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyp1I/NTyhbEJHvGepohE3fjY/9YmcWWVIwljbUkjm6u+JjEbGTKPAdkYUx2bZm4n/eb0Uwxs/EypJkSu2WBSmkmBMZn+TodCcoZxaQpkW9lbCxlRThjadkg3BW355lbQvq95VtXZXq9TP8ziKcAKncAEeXEMdbqEJLWAwgmd4hTdHOi/Ou/OxaC04+cwx/IHz+QO1ZY1Y</latexit>

C1

<latexit sha1_base64="rLn7wPQJnTEXX6Ty2aYmCEueNu8=">AAAB6nicbVDLTgJBEOzFF+IL9ehlItF4IruEqEcSLh4xyiOBDZkdemHC7OxmZtaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfj+txvP6HSPJaPZpKgH9Gh5CFn1Fjpod6v9Islt+wuQNaJl5ESZGj0i1+9QczSCKVhgmrd9dzE+FOqDGcCZ4VeqjGhbEyH2LVU0gi1P12cOiMXVhmQMFa2pCEL9ffElEZaT6LAdkbUjPSqNxf/87qpCW/9KZdJalCy5aIwFcTEZP43GXCFzIiJJZQpbm8lbEQVZcamU7AheKsvr5NWpexdl6v31VLtMosjD2dwDlfgwQ3U4A4a0AQGQ3iGV3hzhPPivDsfy9ack82cwh84nz+26Y1Z</latexit>

C2

<latexit sha1_base64="ttOLkstDo8K+Vnag4+rmf/NWfec=">AAAB7HicbVBNS8NAFHypX7V+VT16WSyCp5JIUY8FLx4rmLbQhrLZbtqlm03YfRFK6G/w4kERr/4gb/4bt20O2jqwMMy8Yd+bMJXCoOt+O6WNza3tnfJuZW//4PCoenzSNkmmGfdZIhPdDanhUijuo0DJu6nmNA4l74STu7nfeeLaiEQ94jTlQUxHSkSCUbSS3x8maAbVmlt3FyDrxCtIDQq0BtUvm2NZzBUySY3peW6KQU41Cib5rNLPDE8pm9AR71mqaMxNkC+WnZELqwxJlGj7FJKF+juR09iYaRzayZji2Kx6c/E/r5dhdBvkQqUZcsWWH0WZJJiQ+eVkKDRnKKeWUKaF3ZWwMdWUoe2nYkvwVk9eJ+2runddbzw0as1GUUcZzuAcLsGDG2jCPbTABwYCnuEV3hzlvDjvzsdytOQUmVP4A+fzB/Agjr0=</latexit>

. . .

<latexit sha1_base64="MAQQYK3Icl9Ecmjq77M5bvkqAUs=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16CRbBU0mkqMeCF48V7Ae0oWy2k3bpZjfsTsRS+le8eFDEq3/Em//GbZuDtj4YeLw3w8y8KBXcoO9/O4WNza3tneJuaW//4PDIPS63jMo0gyZTQulORA0ILqGJHAV0Ug00iQS0o/Ht3G8/gjZcyQecpBAmdCh5zBlFK/Xdck9AjJoPRziiOlVKmr5b8av+At46CXJSITkafferN1AsS0AiE9SYbuCnGE6pRs4EzEq9zEBK2ZgOoWuppAmYcLq4feadW2XgxUrbkugt1N8TU5oYM0ki25lQHJlVby7+53UzjG/CKZdphiDZclGcCQ+VNw/CG3ANDMXEEso0t7d6zEZAGdq4SjaEYPXlddK6rAZX1dp9rVKv5XEUySk5IxckINekTu5IgzQJI0/kmbySN2fmvDjvzseyteDkMyfkD5zPH8/+lOk=</latexit>

!
<latexit sha1_base64="mGLjOmuwxO77z3L+6vDgYsutZ/o=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMiCGFXgnoMePGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9cteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhrT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwqe9flSr1Sqp5nceThBE7hAjy4gSrcQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB2wHjJw=</latexit>

+
<latexit sha1_base64="MAQQYK3Icl9Ecmjq77M5bvkqAUs=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16CRbBU0mkqMeCF48V7Ae0oWy2k3bpZjfsTsRS+le8eFDEq3/Em//GbZuDtj4YeLw3w8y8KBXcoO9/O4WNza3tneJuaW//4PDIPS63jMo0gyZTQulORA0ILqGJHAV0Ug00iQS0o/Ht3G8/gjZcyQecpBAmdCh5zBlFK/Xdck9AjJoPRziiOlVKmr5b8av+At46CXJSITkafferN1AsS0AiE9SYbuCnGE6pRs4EzEq9zEBK2ZgOoWuppAmYcLq4feadW2XgxUrbkugt1N8TU5oYM0ki25lQHJlVby7+53UzjG/CKZdphiDZclGcCQ+VNw/CG3ANDMXEEso0t7d6zEZAGdq4SjaEYPXlddK6rAZX1dp9rVKv5XEUySk5IxckINekTu5IgzQJI0/kmbySN2fmvDjvzseyteDkMyfkD5zPH8/+lOk=</latexit>

!
<latexit sha1_base64="mGLjOmuwxO77z3L+6vDgYsutZ/o=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMiCGFXgnoMePGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9cteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhrT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwqe9flSr1Sqp5nceThBE7hAjy4gSrcQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB2wHjJw=</latexit>

+
<latexit sha1_base64="mGLjOmuwxO77z3L+6vDgYsutZ/o=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMiCGFXgnoMePGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9cteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhrT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwqe9flSr1Sqp5nceThBE7hAjy4gSrcQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB2wHjJw=</latexit>

+
<latexit sha1_base64="MAQQYK3Icl9Ecmjq77M5bvkqAUs=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16CRbBU0mkqMeCF48V7Ae0oWy2k3bpZjfsTsRS+le8eFDEq3/Em//GbZuDtj4YeLw3w8y8KBXcoO9/O4WNza3tneJuaW//4PDIPS63jMo0gyZTQulORA0ILqGJHAV0Ug00iQS0o/Ht3G8/gjZcyQecpBAmdCh5zBlFK/Xdck9AjJoPRziiOlVKmr5b8av+At46CXJSITkafferN1AsS0AiE9SYbuCnGE6pRs4EzEq9zEBK2ZgOoWuppAmYcLq4feadW2XgxUrbkugt1N8TU5oYM0ki25lQHJlVby7+53UzjG/CKZdphiDZclGcCQ+VNw/CG3ANDMXEEso0t7d6zEZAGdq4SjaEYPXlddK6rAZX1dp9rVKv5XEUySk5IxckINekTu5IgzQJI0/kmbySN2fmvDjvzseyteDkMyfkD5zPH8/+lOk=</latexit>

!

<latexit sha1_base64="UCVJe5bO3n02PgukeQZqHq/M7zM=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPixbArQT0GcvEiRDAPSJYwO5kkQ2Znl5leISz5CC8eFPHq93jzb5wke9DEgoaiqpvuriCWwqDrfju5tfWNza38dmFnd2//oHh41DRRohlvsEhGuh1Qw6VQvIECJW/HmtMwkLwVjGszv/XEtRGResRJzP2QDpUYCEbRSq1aL72/9Ka9Ysktu3OQVeJlpAQZ6r3iV7cfsSTkCpmkxnQ8N0Y/pRoFk3xa6CaGx5SN6ZB3LFU05MZP5+dOyZlV+mQQaVsKyVz9PZHS0JhJGNjOkOLILHsz8T+vk+Dg1k+FihPkii0WDRJJMCKz30lfaM5QTiyhTAt7K2EjqilDm1DBhuAtv7xKmldl77pceaiUqudZHHk4gVO4AA9uoAp3UIcGMBjDM7zCmxM7L86787FozTnZzDH8gfP5A3/sjvI=</latexit>

CM−1

<latexit sha1_base64="yDKFjEHcEKdKksyAIZe6IfqPEXU=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbFU0mkqMdCL16ECsYW2lI220m7dLMJuxuhhP4GLx4U8eoP8ua/cdvmoK0PBh7vzTAzL0gE18Z1v53C2vrG5lZxu7Szu7d/UD48etRxqhj6LBaxagdUo+ASfcONwHaikEaBwFYwbsz81hMqzWP5YCYJ9iI6lDzkjBor+Y1+djftlytu1Z2DrBIvJxXI0eyXv7qDmKURSsME1brjuYnpZVQZzgROS91UY0LZmA6xY6mkEepeNj92Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zOqkJb3oZl0lqULLFojAVxMRk9jkZcIXMiIkllClubyVsRBVlxuZTsiF4yy+vksfLqndVrd3XKvXzPI4inMApXIAH11CHW2iCDww4PMMrvDnSeXHenY9Fa8HJZ47hD5zPH6QsjoA=</latexit>

CM

<latexit sha1_base64="AtE7KMgpPw9W0oDAAt+SBrLeHP8=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRalHiy7UtSLUPDiRahgP6BdSjbNtqFJdkmyQln6I7x4UMSrv8eb/8a03YO2Phh4vDfDzLwg5kwb1/12ciura+sb+c3C1vbO7l5x/6Cpo0QR2iARj1Q7wJpyJmnDMMNpO1YUi4DTVjC6nfqtJ6o0i+SjGcfUF3ggWcgINlZqlfHN/bl31iuW3Io7A1omXkZKkKHeK351+xFJBJWGcKx1x3Nj46dYGUY4nRS6iaYxJiM8oB1LJRZU++ns3Ak6sUofhZGyJQ2aqb8nUiy0HovAdgpshnrRm4r/eZ3EhNd+ymScGCrJfFGYcGQiNP0d9ZmixPCxJZgoZm9FZIgVJsYmVLAheIsvL5PmRcW7rFQfqqXaaRZHHo7gGMrgwRXU4A7q0AACI3iGV3hzYufFeXc+5q05J5s5hD9wPn8AeyGORw==</latexit>

(a = M − 1)

<latexit sha1_base64="NOWWpuCDChNd2BeaSTUu3qH4+yk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbFU0mkqMdCLx4r2g9oQ9lsN+3SzSbsToQS/AlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmzjVjLdYLGPdDajhUijeQoGSdxPNaRRI3gkmjZnfeeTaiFg94DThfkRHSoSCUbTSfWPgDcoVt+rOQVaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyp1I/NTyhbEJHvGepohE3fjY/9YmcWWVIwljbUkjm6u+JjEbGTKPAdkYUx2bZm4n/eb0Uwxs/EypJkSu2WBSmkmBMZn+TodCcoZxaQpkW9lbCxlRThjadkg3BW355lbQvq95VtXZXq9TP8ziKcAKncAEeXEMdbqEJLWAwgmd4hTdHOi/Ou/OxaC04+cwx/IHz+QO1ZY1Y</latexit>

C1

<latexit sha1_base64="tudgL4se/8t+6My8ZtaBuG/FK9k=">AAAB6XicbVBNS8NAEJ34WetX1aOXxaLopSRS1GPBi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoduq3nlBpHstHM07Qj+hA8pAzaqz0QC96pbJbcWcgy8TLSRly1Hulr24/ZmmE0jBBte54bmL8jCrDmcBJsZtqTCgb0QF2LJU0Qu1ns0sn5NQqfRLGypY0ZKb+nshopPU4CmxnRM1QL3pT8T+vk5rwxs+4TFKDks0XhakgJibTt0mfK2RGjC2hTHF7K2FDqigzNpyiDcFbfHmZNC8r3lWlel8t187yOApwDCdwDh5cQw3uoA4NYBDCM7zCmzNyXpx352PeuuLkM0fwB87nDyFXjQU=</latexit>

a)

<latexit sha1_base64="4N23x34xuP9zMBIe+hMYVAB3bZk=">AAAB6XicbVBNS8NAEJ34WetX1aOXxaLopSRS1GPBi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nZXVtfWNzcJWcXtnd2+/dHDY1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hoduq3nlBpHstHM07Qj+hA8pAzaqz0EFz0SmW34s5AlomXkzLkqPdKX91+zNIIpWGCat3x3MT4GVWGM4GTYjfVmFA2ogPsWCpphNrPZpdOyKlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvSm4n9eJzXhjZ9xmaQGJZsvClNBTEymb5M+V8iMGFtCmeL2VsKGVFFmbDhFG4K3+PIyaV5WvKtK9b5arp3lcRTgGE7gHDy4hhrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPHyLcjQY=</latexit>

b)

<latexit sha1_base64="zzPn+HFbCxFwb++XkkBZxJBdxLc=">AAAB6nicbVBNS8NAEJ34WetX1aOXxaJ4KokU9SIUvHisaD+gDWWzmbRLN5uwuxFK6U/w4kERr/4ib/4bt20O2vpg4PHeDDPzglRwbVz321lZXVvf2CxsFbd3dvf2SweHTZ1kimGDJSJR7YBqFFxiw3AjsJ0qpHEgsBUMb6d+6wmV5ol8NKMU/Zj2JY84o8ZKD+GN1yuV3Yo7A1kmXk7KkKPeK311w4RlMUrDBNW647mp8cdUGc4ETordTGNK2ZD2sWOppDFqfzw7dUJOrRKSKFG2pCEz9ffEmMZaj+LAdsbUDPSiNxX/8zqZia79MZdpZlCy+aIoE8QkZPo3CblCZsTIEsoUt7cSNqCKMmPTKdoQvMWXl0nzouJdVqr31XLtLI+jAMdwAufgwRXU4A7q0AAGfXiGV3hzhPPivDsf89YVJ585gj9wPn8AtAGNVw==</latexit>

d = 1

<latexit sha1_base64="gAj+oJHv3QkOZxzVnMwOT3+B0QA=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRbFU9ktRb0IBS8eK9oPaJeSzWbb0GyyJFmhLP0JXjwo4tVf5M1/Y9ruQVsfDDzem2FmXpBwpo3rfjuFtfWNza3idmlnd2//oHx41NYyVYS2iORSdQOsKWeCtgwznHYTRXEccNoJxrczv/NElWZSPJpJQv0YDwWLGMHGSg/hTW1QrrhVdw60SrycVCBHc1D+6oeSpDEVhnCsdc9zE+NnWBlGOJ2W+qmmCSZjPKQ9SwWOqfaz+alTdGaVEEVS2RIGzdXfExmOtZ7Ege2MsRnpZW8m/uf1UhNd+xkTSWqoIItFUcqRkWj2NwqZosTwiSWYKGZvRWSEFSbGplOyIXjLL6+Sdq3qXVbr9/VK4zyPowgncAoX4MEVNOAOmtACAkN4hld4c7jz4rw7H4vWgpPPHMMfOJ8/tYWNWA==</latexit>
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d = 3

FIGURE 5.1: A volume fraction threshold separates two aggregation regimes in
homogeneous systems. a) Chemical reaction network associated with monomer
aggregation. b) Illustration of aggregates of different spatial dimensions. c) Clus-
ter size distribution for M = 50, at low total macromolecular volume fraction:
ϕtot ≪ ϕ∗. Irrespective of aggregate dimension, d, the macromolecules are mainly
in the monomer state, i.e., ϕ1 ≃ ϕtot. d) For ϕtot ≫ ϕ∗, the monomer concentration
saturates at ϕ1 ≃ ϕ∗ and large clusters begin to populate the system. For rod-like
aggregates (corresponding to d = 1 in (5.6)), the distribution becomes peaked at an
intermediate value imax > 1 and then exponentially cut off. For disk-like and spher-
ical aggregates, d = 2, 3, the distribution becomes bimodal, with peaks at i = 1 and
i = M , the maximum cluster size (M = 50). This bimodal behaviour hints at the
emergence of a gelation transition in the limit M → ∞. In the insets, we show ag-
gregate concentrations ci = ϕi/i, measured in units of 1/v0, and their scaling with

the aggregate size.

dominated by monomers while larger aggregates have vanishing volume fraction,

i.e., ϕ1 ≃ ϕtot. For ϕtot ≫ ϕ∗, the monomer concentration saturates at ϕ1 ≃ ϕ∗ and

aggregates begin to populate the system. Above this threshold, the size distribu-

tion depends crucially on cluster dimensionality d. For rod-like aggregates, d = 1

in (5.6), the distribution becomes peaked at a value M > 1 and then exponentially

cut off. For disk-like and spherical aggregates, d = 2, 3 in (5.6), the distribution be-

comes bimodal peaked at i = 1 and at i = M , the maximum cluster size (M = 50

in Fig. 5.1). The emergence of this threshold and the behaviour of the system at

high density can be exemplified in the case of rod-like aggregates (d=1), in the limit

M → ∞, see App. C. There we find an explicit form for the volume fraction distri-

bution ϕi = ϕi(ϕtot) and we show that, at ϕtot = ϕ∗, the cluster size corresponding to

the maximum of this distribution (imax) becomes greater than 1.

For d = 2, 3 the bimodal behaviour observed at ϕtot ∼ ϕ∗ for M = 50 suggests

that, in the limit M → ∞, the system undergoes a gelation transition. This transi-

tion is defined as the emergence of an aggregate that is comparable with the system
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size [56, 57]. In App D we discuss a criterion to confirm that indeed gelation occurs

for ϕtot ∼ ϕ∗. To precisely locate this transition point and describe what happens

above the transition, we have to relax the assumption that the system is homoge-

neous. In the next section, we are going to describe systems that can spatially com-

partmentalise as the result of phase separation, applying the theory presented in

Sec. 2.1.

5.1.4 Phase and thermodynamic equilibrium

As discussed in Chapter 2, np phases are at equilibrium in an incompressible, multi-

component if the exchange chemical potentials µ̄i (defined in Eq. (2.5)) and the os-

motic pressure (Eq. (2.7)) balance in each phase:

µ̄i
(

{ϕI
j}
)

= µ̄i
(

{ϕαj }
)

, (5.13)

Π
(

{ϕI
i}
)

= Π
(

{ϕαi }
)

, (5.14)

where the index α runs over all phases different from I, i.e. α = II, . . . , np. For

a detailed discussion see Sec. 2.1.2. We now focus on mixtures at thermodynamic

equilibrium, i.e. when aggregation and phase equilibrium hold simultaneously. As

outlined in the previous section, aggregation equilibrium allows finding each vol-

ume fraction as a function of the total macromolecule amount, i.e. ϕi (ϕtot) (combin-

ing Eq. (5.11) and Eq. (5.3)). The free energy density (2.3), in turn, can be written

as a function of the conserved variable, ϕtot. Chemical equilibrium also restricts the

maximum number of coexisting phases, see Eq. (2.31) and related discussion. In the

case of aggregation, we have M solute components and M − 1 reactions, leading

to a maximum number of coexisting phases n∗p = 3. For this reason, we restrict to

two-phase coexistence and rewrite the phase equilibrium as:

µ̄(ϕI
tot) = µ̄(ϕII

tot) , (5.15a)

µ̄(ϕI
tot) =

f(ϕII
tot)− f(ϕI

tot)

ϕII
tot − ϕI

tot
. (5.15b)

To exemplify the behaviour of the system at thermodynamic equilibrium, we dis-

cuss rod-like aggregates (d = 1) in the limit M → ∞. As shown in App. C, in this

special case we can find an analytic expression for f (ϕtot). Due to the presence of the

interaction term χ, the system can demix into two phases with different total volume

fractions ϕI
tot and ϕII

tot, given by Eqs.(5.15). By means of ϕI/II
tot , we can reconstruct the

whole assembly size distribution ϕI/II
i via the set of equations coming from chemical

equilibrium, see Eq. (5.11) and Eq. (5.3).

We first focus on the regime where the interaction and internal energy scales are

comparable eint ≃ χ. In Fig. 5.2 a), we show the phase diagram as a function of ϕtot

and the rescaled temperature T/T0 with T0 = χ/kB . The domain enclosed by the

binodal corresponds to phase separation while the colour code depicts the monomer

fraction ϕ1/ϕtot in each phase. The green dashed line is the volume fraction threshold
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ϕ∗(T ), at which intermediate-sized aggregates start to appear. These two curves de-

fine distinct regions in the phase diagram. In region ª1º the system is homogeneous

and composed of monomers only, see Fig. 5.2 b) left, while in region ª2º is homoge-

neous but populated by larger aggregates. In region ª3º the system phase separates

but, in both phases, monomers dominate the size distribution, see Fig. 5.2 b) centre.

The intersection with the binodal line locates the temperature below which the total

aggregate volume fraction in the dilute phase lies below the threshold, ϕII
tot < ϕ∗,

while in the dense phase lies above ϕI
tot > ϕ∗. As described in the previous section

and Fig. 5.1, below this temperature we expect the cluster size distribution to signif-

icantly differ in the two phases. Indeed this is the case in region ª4º as displayed in

Fig 5.2 b) right. In Fig 5.2 b)-c) we illustrate states corresponding to fixed ϕtot and de-

creasing temperature T , starting from a homogeneous monomeric state, region ª1º,

to a demixed state with the same composition, region ª3º, and finally to a demixed

state with only monomers outside while inside larger aggregates are present, region

ª4º. In Fig. 5.2 d)-f) we discuss the thermodynamic behaviour of linear aggregates

(d = 1), in the regime where the internal energy is much stronger than the interac-

tion scale eint ≫ χ. As is clear from the phase diagram presented in Fig. 5.2 d), for

a wide range of temperatures the aggregation threshold precedes in ϕtot the dilute

branch of the binodal. In addition to cases already discussed above (Fig. 5.2 b) ), this

gives rise to region ª5º, where both the dilute and the dense phase are enriched in

large aggregates, see Fig. 5.2 e), right panel. In Fig 5.2 f) we illustrates states corre-

sponding to fixed T and increasing ϕtot. Starting from a homogeneous monomeric

state, ª1º, increasing the total aggregate volume fraction ϕtot the system crosses the

volume fraction threshold ϕ∗, entering region ª2º. Here, intermediate aggregates

appear, with the maximum and the average of the distribution ϕi scaling with
√
ϕtot,

see Appendix C. Finally, once ϕtot > ϕII
tot, the system enters region ª5º, where it

demixes in two phases both populated by intermediate aggregates.
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d = 1

FIGURE 5.2: Phase diagram and for rod-like aggregates aggregate in the two
regimes eint ∼ χ and eint ≫ χ. a) Phase diagram in the regime eint ≃ χ, as a func-
tion of ϕtot and the rescaled temperature T/T0 with T0 = χ/kB . The coloured curve
represents the binodal, enclosing the phase separation regime, with the colour code
depicting the monomer fraction ϕ1/ϕtot in each phase. The green dashed line is the
volume fraction threshold ϕ∗(T ), at which intermediate-sized aggregates start to
appear. b) Size distributions in different regions of the phase diagram, defined
by the interception of the binodal with the aggregation threshold. In region ª1º
the system is homogeneous and composed of monomers only. In region ª3º the
system phase separates, but in both phases, monomers dominate the size distribu-
tion, while in region ª4º the dense phase becomes populated by intermediate ag-
gregates. Progressively lowering the temperature allows switching between these
regions, as depicted in c). In d)-f) we focus on the regime where the internal en-
ergy is much stronger than the interaction scale eint ≫ χ. In phase diagram a),
the aggregation threshold precedes in ϕtot the dilute branch of the binodal. In this
regime, we can identify a new region, ª5º, characterised by intermediate aggre-
gates in both phases. In e) we illustrate states representative of these regions, corre-
sponding to fixed T and increasing ϕtot. Starting from a homogeneous monomeric
state, ª1º, and increasing the total aggregate volume fraction ϕtot the system enters
in region ª2º where intermediate aggregates appear. Here, the sizes corresponding
to the maximum and the average of the distribution ϕi scaling with

√
ϕtot, see Ap-

pendix C. Finally, once ϕtot > ϕII
tot, the system enters region ª5º and demixes in two

phases, both rich in intermediate aggregates.
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5.1.5 The interplay between phase separation and aggregation equilib-

rium

We now fix the interaction propensity χ, the temperature and T/T0, and the total

macromolecule volume fraction ϕtot to values corresponding to two-phase coexis-

tence at thermodynamic equilibrium. We then compare the aggregate size distribu-

tion (after averaging over both phases), with the distribution in the corresponding

homogeneous state, with the same values of T and ϕtot. We recall that, due to our

choice of interaction propensity scaling in Eq. (5.8), the size distribution in the ho-

mogeneous system, Eq. (5.11), is insensitive to χ. For this reason, the homogeneous

state can be thought of as an unstable state corresponding to the same χ as the phase

separating one, which has not reached phase equilibrium yet, but also as the equilib-

rium state of a system with the same parameters as the phase separating one, except

suppressed hydrophobicity (χ = 0).

In Fig. 5.3 a), we display results for rod-like aggregates (d=1) with the same param-

eters as in Fig. 5.2, T/T0 = 0.2, and ϕtot = 0.016, just inside the binodal. There,

we compare the size distribution in the homogeneous system ϕi, with the weighted

average over compartments, defined as

ϕ̄i =
V I

V
ϕI
i +

V II

V
ϕII
i , (5.16)

in the corresponding phase-separated system. Clearly, the two distributions differ,

proving that the presence of compartments can lead to larger aggregates. The differ-

ence in distributions can be quantified by means of the functional distance

δ(h, g) = sup
i

∣

∣

∣

∣

hi
∑

i hi
− gi
∑

i gi

∣

∣

∣

∣

, (5.17)

that quantifies the distance among two normalised functions as the largest possi-

ble distance among values that they assign to the same element. This distance is

sometimes referred to as ªstatistical distanceº. The distance between the homoge-

neous size distribution and the distribution defined in Eq. (5.16), depends on the

temperature T and the total volume fraction ϕtot chosen, which in turn determines

the droplet size. In Fig. 5.2 b) we display distance differences corresponding to dif-

ferent temperatures and droplet volumes. In the limits V I/V → 0 and V I/V → 1,

the phase-separated state approaches the homogeneous one, thus distribution dis-

tance vanishes. Notice that the volume corresponding to the maximum distribution

distance shifts towards lower values.

We now compare systems with the phase behaviour of systems with the same in-

teraction propensity χ, but with increasing aggregation strength. This is achieved

by increasing the ratio eint/χ containing the energy associated with internal bonds

eint see Eq. (5.7). In figure Fig. 5.2 c) we show the binodal lines corresponding to

eint/χ = 0.5,−1and − 2. We compare it to a binary mixture made of monomers
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and solvent only (black curve), which corresponds to an infinite energy penalty for

bond formation, i.e. eint/χ→ ∞. The region enclosed by the binodal, corresponding

to phase separation, expands even in the case of slightly penalised bond formation

eint/χ = 0.5. This is can be explained considering that cluster formation, even if en-

ergetically disfavoured, reduces the mixing entropy (see the first term in (5.9)). In the

region enclosed by the back curve, we can compare the total droplet volumes in the

binary mixture (composed of monomers only), eint/χ→ ∞, and in the mixtures with

aggregates eint/χ = −1. At low ϕtot, V I/V is greater in the presence of aggregates

with respect to the binary mixture while, above the dashed grey line, aggregates lead

to smaller V I/V . Finally, in Fig. 5.2 d), we quantify the upshift in critical tempera-

ture and downshift in critical volume fraction observed lowering eint/χ = −1, i.e.

making aggregates more energetically favourable.

Critical volume fractions lower than 1/2 and critical temperatures higher than T0/2

are reminiscent of mixtures containing two components with unequal molecular vol-

umes. Indeed aggregation causes the average molecular volume of the species in the

mixture to exceed the solvent molecular volume. It must be noticed, however, that

in our theory the size distribution, and hence average molecular volume, is different

in the two phases.
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FIGURE 5.3: The interplay between phase separation and aggregation. a) Com-
parison between the size distribution in a homogeneous system, and in the cor-
responding phase-separated system (averaged in both compartments). Here, we
consider rod-like aggregates (d=1),M → ∞, and the same parameters as in Fig. 5.2.
Furthermore, both distributions correspond to ϕtot = 0.016 and T/T0 = 0.2. We no-
tice that the presence of compartments can favour aggregate formation, even when
the corresponding homogeneous mixture is populated mainly by monomers. The
difference in distributions can be quantified by means of the functional distance de-
fined in Eq. (5.17). b) The magnitude of this distance depends on the droplet size,
and on the temperature chosen. The volume corresponding to the maximum dis-
tribution distance shifts towards lower values with decreasing temperature T/T0.
The distributions separated by the maximum distance, for T/T0 = 0.2, are the ones
displayed in a). c) Comparison between three binodal lines corresponding to ag-
gregation energies eint/χ = 0.5,−1,−2 (coloured curve) and the reference binary
mixture composed of monomers and solvent only (black curve). The latter can be
associated with the limit eint/χ → ∞. The region enclosed by the binodal, corre-
sponding to phase separation, expands even if aggregates are slightly penalised
eint/χ = 0.5. This can be explained by the entropic advantage caused by size poly-
dispersity. Aggregation influences also droplet size: the area shaded in blue corre-
sponds to V I/V greater in the presence of aggregates with respect to the reference
binary mixture. On the other hand, above the dashed grey line (orange area) ag-
gregation lead to smaller V I/V . d) Dependence of the critical volume fraction and
critical temperature on the aggregation energy eint/χ. Decreasing eint/χ, T c and ϕc

deviate from the reference values (black dashed lines) corresponding to a binary
mixture with monomers and solvent only (eint/χ→ ∞).
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5.1.6 Gelation transition in the limit of infinitely large aggregates

As outlined in discussing Fig. 5.1, in the case of a homogeneous mixture populated

by disk-like (d=2) and spherical (d=3) aggregates with maximum sizeM = 50, above

ϕ∗ the size distribution becomes bimodal. As shown in App. D, the peak appearing

at the upper bound M = 50 is a finite-size manifestation of the gelation transition

occurring in the limit M → ∞. In App. D, we also introduced ϕGS, which estimates

the volume fraction corresponding to gel formation, after which the system cannot

be described as homogeneous anymore. We now study the onset of gelation in sys-

tems that can phase separate, and locate both these phase transitions in the same

phase diagram.

In the limit M → ∞, calculating the phase diagram for 2- and 3-dimensional ag-

gregates becomes difficult. The reason is that, for d > 1 case, it is not possible to

calculate the series in Eq. (5.3). To cope with this limitation, introduce the following

free energy:

f sg = f + fgel , (5.18)

where f is defined in Eq. 5.9, with M finite, and

fgel =
ω∞
v0

δ (1− ϕtot) , (5.19)

can be thought of as the free energy of a state with no solvent, where all monomers

belong to an aggregate of size i → ∞. In fact, the free energy in Eq. 5.9, in the limit

ϕi = 0 for all finite i, and ϕtot = 1, gives f = ω∞/v0. We can now perform the

Maxwell construction (see Eqs. (5.15)) using the free energy f sg in Eq. 5.18, which

accounts for aggregates up to a finite cut-off M and for an infinitely large cluster.

In Fig. 5.4, we show the result of this construction for three different temperature

values. The phase diagram is displayed Fig. 5.5 a). There, the coloured curve rep-

resents the binodal, and its colour code depicts the monomer fraction ϕ1/ϕtot in the

coexisting phases. The grey dashed line represents ϕSG(T ), introduced in App. D. In

homogeneous systems, ϕSG estimates the volume fraction at which the gel appears.

In phase-separating systems, on the other hand, gelation can be considered as a spe-

cial case of phase coexistence between a dilute phase (the ªsolº) in which ϕsol < 1

and the gel phase, corresponding to ϕgel = 1.
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FIGURE 5.4: Free energy for disk-like (d=2) and spherical (d=3) aggregates. Il-
lustration of f sg defined in Eq. (5.18), for three different temperatures. This free
energy includes contributions coming from clusters up to size M = 50, f , and from
a macroscopic cluster, fgel. Here, dashed lines correspond to unstable free energy
branches, while black lines connect coexisting phases. Furthermore, we have set
ω∞ = 0. a) At high temperatures both coexisting phases have ϕtot < 1. b) At inter-
mediate temperatures, there are two ϕtot domains corresponding to the coexistence
of qualitatively different phases. For intermediate ϕtot values, ϕtot < 1 in both co-
existing phases, as in a). At higher ϕtot, instead, a phase (the ªsolº) with ϕsol

tot < 1

coexists with the gel, corresponding to ϕgel
tot < 1. c) At lower temperatures, only the

ªgel-solº coexistence is present.

The area in the phase diagram where the gel is present is shaded in blue and labelled

as ªsol-gelº in Fig. 5.5 a). There we show that at high ϕtot, lowering the temperature

leads to a transition from the homogeneous state to the sol-gel coexistence. Notice

that, in this regime, the binodal is very close to the volume fraction estimate ϕSG. For

intermediate volume fractions, instead, the system transit first in a region, shaded

light blue and labelled as ªsol-solº in Fig. 5.5 a), corresponding to two-phase co-

existence where ϕtot < 1 in both phases. In Fig. 5.5 b) we display aggregate size

distribution representative of the ªsol-solº and ªsol-gelº regions. Transitions from

the ªsol-solº to the ªsol-gelº region are accompanied by a jump in the dense phase

total volume fraction ϕI
tot, see Fig. 5.5 c) for an illustration.
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FIGURE 5.5: Gelation transition in phase separating systems. a) Phase diagram
for disk-like (d=2) and spherical (d=3) aggregates in the limit M → ∞, as a func-
tion of ϕtot and the rescaled temperature T/T0 (with T0 = χ/kB). The coloured
curve represents the binodal, obtained performing the Maxwell construction (see
Eqs. (5.15)) on the free energy f sg, that accounts for the emergence of an infinite
cluster. The colour code depicts the monomer fraction ϕ1/ϕtot in the phases. The
grey dashed line represents ϕSG(T ), introduced in App. D. ϕSG is an estimate of the
volume fraction at which the gelation transition emerges in homogeneous systems.
In the region labelled as ªsol-solº, the system demixes into two phases both pop-
ulated mainly by monomers, see panel b), with ϕI/II

tot < 1. In the region labelled as
ªsol-gelº, on the other hand, a phase (the ªsolº), obeying ϕsol

tot < 1, coexists with a
phase (the ªgelº) that is a macroscopic aggregate, occupying a finite portion of the
system (V gel/V ) and containing no solvent (ϕsol

tot = 1). The latter scenario is repre-
sented in panel b), right side. c) Lowering the temperature allows moving from the
ªsol-solº to the ªsol-gelº region. This transition is accompanied by a jump in the

dense phase total volume fraction, from ϕI
tot < 1 to ϕgel

tot = 1.

5.2 Aggregation kinetics at phase equilibrium

In this section, we consider systems that are initially composed of monomers only

and study their relaxation to thermodynamic equilibrium. We assume a finite bound

in aggregate size M and aggregates diffusion much faster than aggregate intercon-

version. The last assumption allows us to impose phase equilibrium at all times, and

study the slow aggregation kinetics in the presence of spatial compartments. To this

aim, we apply the theoretical framework developed in Sec. 2.2.2. We focus on control

parameters choice such that the initial mixture, composed of monomers in solution,

phase separates. Eq. (2.42) allows to write the evolution of volume fractions in both

phases as follows:

dϕi
dt

I/II

= −jI/II
i + rI/II

i + ϕI/II
i

M
∑

i=0

jI/II
i . (5.20)

The rates rI/II
i can be found evaluating Eq. (2.43) with the stoichiometric matrix in

Eq. (5.2), to get:
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rI/II
1 = −rI/II

2,1 −
M−1
∑

i=1

i rI/II
i+1,i ,

rI/II
i = (i− 1) rI/II

i,i−1 − i rI/II
i+1,i , for i = 2, ..M − 1 ,

rI/II
M = (M − 1) rI/II

M,M−1 .

(5.21)

where, ri,i+1 quantifies the net reaction flux associated with the reaction C1 + Ci ⇌

Ci+1, and reads

rI/II
i+1,i = ΛI/II

i

[

1− exp

(

(i+ 1)µ̄I/II
i+1 − iµ̄I/II

i − µ̄I/II
1

kBT

)]

. (5.22)

To gain some intuition on the reaction fluxes, we can substitute the expression for

the chemical potential derived from Eq. (5.9), leading to

rI/II
i+1,i = ΛI/II

i

(

1− i

i+ 1

ϕI/II
i+1

ϕI/II
i ϕI/II

1

K−1i

)

(5.23)

Where we have introduced

Ki = exp

(

1− (i+ 1)ωi+1 − iωi − ω1

kBT

)

. (5.24)

We chose Λi = ϕiϕ1Ki/ϕi Λ in order to recover a finite rate in the limit ϕ1, ϕi ≪ 1.

We can then recast the flux in Eq.s (5.22) as

rI/II
i+1,i = Λ

(

ϕi
i

I/II

ϕI/II
1 Ki −

ϕI/II
i+1

i+ 1

)

. (5.25)

We finally identify Ki, defined in Eq. (5.24) as the aggregation kernel. In general,

this kernel depends on the cluster size i, but in the simple case of rod-like assemblies,

d = 1 in Eq. (5.6), we get a constant kernel 1

Ki = K = exp

(

1 +
∆ω

kBT

)

. (5.26)

Having obtained the form of ri,i+1 as functions of the volume fraction, we determine

the diffusive currents jI/II
i through Eqs. (2.47). The expressions for jI/II

i found in this

way guarantee that the mixture remains at phase equilibrium at all times.

In Fig. 5.6, we display an example of the slow relaxation to thermodynamic equi-

librium in a compartmentalized system, with a maximum aggregate size M = 15.

At t = t0, the system is composed of two compartments at phase equilibrium, both

1This may be the reason why, in aggregation and fragmentation literature, size-independent kernels
define the so-called string model [58].
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filled with monomers and solvent. In a) and b) we show how the size distribution

in phases II and I, respectively, changes in time. At late times, the distributions ap-

proach their equilibrium values (black dots), calculated as described in Sec. 5.1.4.

The area below the curves in a) and b) represents the total macromolecule volume

fraction in the two phases, ϕI/II
tot . In Fig. 5.6 c) we show time traces of ϕI/II

tot , showing

that the ϕtot-dense phase (I) becomes denser while the dilute phase (II) becomes more

dilute. As a consequence, phase volumes change slightly, in a non-monotonous way,

see Fig. 5.6 d). In conclusion, for this choice of parameters, aggregates selectively ap-

pear in the dense phase, increasing its volume V I and total volume fraction ϕI
tot, as

depicted in Fig. 5.6 e), we illustrate the changes in phase volume and composition as

aggregation proceeds. With our choice of parameters, aggregates selectively appear

in the dense phase, causing its volume V I and total volume fraction ϕI
tot to increase.
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FIGURE 5.6: Aggregation kinetics at phase equilibrium. Assuming that aggre-
gate diffusion is fast, we study the slow relaxation to chemical equilibrium in a
compartmentalized system. In a) and b) we show the time evolution of the size
distribution in phases II and I, respectively, starting from an initial state composed
of monomers and solvent only. Black dots show the equilibrium distributions cal-
culated in Sec. 5.1.4. c) As time proceeds, the total macromolecule volume fraction
in the two phases, ϕI/II

tot changes. In particular, the ϕtot-dense phase (I) becomes
denser while the dilute phase (II) becomes more dilute. Concomitantly, d) phase
volumes change slightly, in a non-monotonous way. In conclusion, for this choice
of parameters, aggregates selectively appear in the dense phase, increasing its vol-

ume V I and total volume fraction ϕI
tot.
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Chapter 6

Conclusion and future perspectives

In this thesis, we studied the complexity of mixtures with more than two compo-

nents that undergo chemical reactions that relax towards equilibrium and that are

maintained away from equilibrium.

In chapter 2, we have started with a review of the mean-field approach to dis-

cuss thermodynamic equilibrium and reviewed the upper bound on the number

of phases that can coexist in a multi-component mixture at phase equilibrium. We

discussed how chemical equilibrium leads to a reduction in the number of degrees of

freedom needed to characterise the state of a mixture, and how this reduction affects

the maximum number of phases that can coexist. We then presented a few selected

approaches to study the relaxation dynamics toward the equilibrium state.

In chapter 3, we applied these concepts to a minimal system composed of a sol-

vent and a macromolecule that can exist in two different molecular states. We mod-

eled the conversion between these two states with a chemical reaction, and study

the equilibrium behaviour of the mixture. We have emphasised the qualitative dif-

ferences between the phase behaviour of binary mixtures and ternary mixtures at

chemical equilibrium, despite both their equilibrium state can be characterised by

the same number of degrees of freedom. In particular, we discussed how molecu-

lar transitions can control the relative amount of molecular states in both, the dilute

and the dense phase as a function of temperature, leading to a reentrant phase be-

haviour. Strikingly, if both components have similar interaction propensities with

the solvent, the dense phase can undergo a discontinuous switch between states

where most macromolecules are either in one or the other state. We then gener-

alised the mixture kinetics to account for the presence of a fuel component that is

maintained at a constant level. Continuous fuel replenishment leads to breaking the

detailed balance of the reaction rates. We then probed the kinetics of systems initially

at thermodynamic equilibrium, once the fuel is added to the system. In particular,

we have shown that a switch in phase composition can also be triggered via fuel ± a

more likely control pathway in living cells in contrast to temperature. Furthermore,

driving the system out of equilibrium via fuel addition can change the number of
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distinct coexisting phases. In our example, in fact, releasing the constraints coming

from the Gibbs phase rule, which allows three-phase coexistence only for fine-tuned

values of the control parameters.

In chapter 4, chemical reactions with broken detailed balance of the rates lead to the

emergence of stationary states different from spherical drops. We have then intro-

duced the theoretical framework referred to as the effective droplet model and used

it to characterise ring-like patterns. Intuitively, rings emerge because, due to chemi-

cal reactions, the volume fraction at the centre of droplets can cross the spinodal line

and become unstable. Experimental evidence that similar patterns can emerge in

mixtures leading to the formation of coacervate droplets coupled to a fuel reservoir

has been recently found by the Boekhoven lab at TUM. For this reason, we conclude

the chapter by showing that our theoretical framework can be used to recapitulate

their experimental findings. Our key result is that we confirmed that such vacuoles

are indeed non-equilibrium steady states where continuous chemical and diffusive

fluxes prevent the vacuole from collapsing into a single spherical droplet.

In chapter 5, we developed a theory for aggregating units that can phase separate in

the presence of a solvent. In this theory, the number of componentsM is equal to the

maximum aggregate size. Furthermore, aggregates can convert into each other via

monomer pick-up, described through a set of (M − 1) chemical reactions. We first

characterise the equilibrium of the system in the limit M → ∞. Focusing on two-

phase coexistence, we show that the aggregate size distribution, in general, differs

between the two phases. In particular, monomers are not necessarily the most abun-

dant species, and distribution tails can deviate from the exponential decay known

for classical assembly at dilute conditions. Third, we show that by lowering the tem-

perature, the system can gelate, i.e., the dense phase becomes a single macroscopic

aggregate. We then show an example of aggregation kinetics in the two phases, in

the limit where the exchange between the phases is fast compared to the transition

rate among clusters. In particular, we monitor two phases initially composed of

monomer and solvent only, showing the evolution of size distributions, total vol-

ume fraction in the phases, and phase volumes.

This work set the foundation to investigate several questions at the interface between

biology, chemistry, and physics in the future. For example, our framework for the in-

terplay between aggregation and phase separation can be extended to more complex

molecular assemblies that are composed of different monomers. Such monomers

could correspond to different nucleotides, thus paving the way to study the interplay

of oligonucleotide assembly and phase separation. Such studies are of particular im-

portance for biomolecular condensates in cells since they are composed of various

proteins, and mRNA of specific sequence patterns and lengths [9, 10]. Moreover,

such an extended framework could also be applied to investigate the role of phase

separation in the emergence of the first self-replicating RNA strands. Recently, we

applied a simplified framework to make the first step in this direction; see Ref. [18].
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Finally, our theoretical framework for aggregating and phase-separating mixtures

can be extended by fuel-driven chemical reactions, following the concepts laid out

in our studies of minimalistic chemical systems. We speculate that maintaining the

formation of sequence-dependent and phase-separating assemblies out of equilib-

rium will give rise to complex-shaped assemblies that can carry specific sequence

information ± a complexity that is essential to understand processes in living cells

and crucial to engineering life-like processes, such as synthetic cells.
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Appendix A

Phase equilibrium in multicompo-
nent mixtures

Here we perform the minimization of the free energy of a system where np phases

coexist, namely

F =

np
∑

α=I

fαV α , (A.1)

where we have introduced the notation fα = f({ϕαi }), and the index α runs over all

coexisting phases, i.e. α = I, . . . , np. We impose volume and material conservation,

that read, respectively

V ϕ̄i =
∑

α

V αϕαi , (A.2a)

V =
∑

α

V α . (A.2b)

We adopt as independent variables vα and {ϕαi }, with α > I, and use the constraints

in Eqs. (A.2) to express the dependent variables as

ϕI =
V ϕ̄i −

∑

α>I V
αϕαi

V −
∑

α>I V
α

, (A.3)

V I = V −
∑

α>I

V α . (A.4)

From which we derive the following expression, for α > I

∂ϕI
i

∂ϕαj
= − V I

V α
δij ,

∂ϕI
i

∂V α
=
ϕI
i − ϕαi
V I , (A.5)

∂V I

∂V α
= −1 ,

∂V I

∂ϕαi
= 0 . (A.6)
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We minimise the total free energy in Eq. (2.8) with respect to variation of ϕαi , with

α > 1

0 =
∂F

∂ϕαi
=
∂
(

f IV I
)

∂ϕαi
+
∑

β>I

∂
(

fβV β
)

∂ϕαi

= V I
(

−∂f
I

∂ϕI
i

+
∂fα

∂ϕαi

)

(A.7)

=
V I

vi

(

−µI
i + µαi

)

,

where we made use of the exchange chemical potential, defined in Eq. (2.5), and in-

troduced the notation µαi = µi
(

{ϕαj }
)

. Having justified Eq. (2.9a), we now minimize

the total free energy with respect to variation of V α, with α > 1

0 =
∂F

∂V α
=
∂
(

f IV I
)

∂V α
+
∑

β>I

∂
(

fβV β
)

∂V α

= −f I +
∑

i

∂f I

∂ϕI
i

(

ϕI
i − ϕαi

)

+ fα

= −f I +
∑

i

∂f I

∂ϕI
i

ϕI
i + fα −

∑

i

∂f I

∂ϕI
i

ϕαi

= ΠI −Πα ,

(A.8)

where we have used Eq. (A.7), the definition of osmotic pressure in Eq. (2.7), and the

notation Πα = Π
(

{ϕαj }
)

. The last equality proves Eq. (2.9b)in the main text.
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Appendix B

Derivation of equilibrium fuel pro-
file

We impose fuel conservation by keeping the spatial average of Eq. (3.12) fixed and

equal to ϕ̄F. This implies Γ + Υϕ̄tot = 1, with ϕ̄tot being the total average volume

fraction of macromolecules (see Eq. (2.4)). In Eq. (3.12) we notice the coefficient Υ en-

codes correlations between fuel ϕF and total macromolecular material ϕtot. Maximal

spatial correlation between ϕF and ϕtot is reached maximizing Υ with the constraints

Γ + Υϕ̄tot = 1 and 0 < ϕF(x) < 1 everywhere in space. This leads to Γ = 0 and

Υ = 1/ϕ̄tot. Maximal anti-correlation between ϕF and ϕtot is reached minimizing Υ

with the same constraints, leading to Γ = −Υ = 1/(1 − ϕ̄tot). Finally, no correlation

between ϕF and ϕtot, i.e. fuel homogeneously distributed in the system, is achieved

for Υ = 0 and, due to fuel conservation, Γ = 1. This explains the choices of Γ and Υ

introduced at the end of Sec. 3.2.

At equilibrium and for the case where the fuel has only weak effects on the chemical

flux (i.e., k← ≃ 0, k→ ≃ 0), we can make the connection between the coefficients

Γ and Υ in Eq. (3.12) and the fuel partitioning even more explicit. We recall the

definition of partitioning coefficient of the fuel component, PF = ϕI
F/ϕ

II
F , and of the

total concentration, Ptot = ϕI
tot/ϕ

II
tot. Here, I and II denote the dense and the dilute

phase, respectively. We can express the fuel and total volume fractions in I and II,

respectively, in terms of the average fuel volume fraction ϕ̄F that is considered to be

maintained at some constant value, and the conserved total volume fraction ϕ̄tot:

ϕI
i = ζi Pi ϕ̄i , (B.1)

ϕII
i = ζiϕ̄i , (B.2)

where i = {F, tot}. The partition degree [59] reads

ζi =
1

1 + (Pi − 1)V
I

V

, (B.3)
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where the phase-separated volume reads, in the limit of dilute fuel

V I = V
ϕ̄tot − ϕII

tot

ϕI
tot − ϕII

tot
. (B.4)

Evaluating Eq. (3.12) inside and outside the dense phase, we find:

Γ = ζF

(

1− PF − 1

Ptot − 1

)

, (B.5)

Υ =
ζF

ζtot

1

ϕ̄tot

PF − 1

Ptot − 1
. (B.6)

If the fuel partitions equally strong into both phases (PF = 1, and thus ζF = 1), we

get Γ = 1 and Υ = 0. Consistently, this corresponds to a homogeneous fuel profile,

ϕF(x) = ϕ̄F. For a fixed Ptot > 1, the fuel partition coefficient PF determines the

localization of the fuel. In particular, PF > 1, corresponds to fuel co-localizing with

the total volume fraction ϕtot with Υ > 0. On the contrary, when PF < 1, the fuel and

the total volume fraction ϕtot anti-co-localize with Υ < 0.
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Appendix C

One-dimensional aggregates infinite
size

In the case of rod-like aggregates (d = 1), we can analytically derive the size distri-

bution in the limit M → ∞. In fact, for d = 1 the chemical equilibrium in (5.11),

simplifies to

ϕi = i

(

ϕ1
ϕ∗

)i

ϕ∗, (C.1)

And the series defined in the conservation law, (5.3), can be explicitly computed,

leading to

ϕtot =
ϕ1

(

1− φ1
φ∗

)2 . (C.2)

This can be inverted leading to

ϕ1
ϕ∗

=
1 + 2φtot

φ∗ −
√

1 + 4φtot
φ∗

2φtot
φ∗

. (C.3)

As anticipated, in the regime ϕtot ≪ ϕ∗, this leads to monomers taking up all the

mass, namely ϕ1 ≃ ϕtot, while for ϕtot ≫ ϕ∗ we get ϕ1 ≃ ϕ∗, and bigger aggregates

start to be populated, see Fig. 5.1. The maximum of the volume fraction distribution

in (C.1) can be obtained imposing ∂iϕi = 0, leading to

imax =
1

ln (ϕ∗/ϕ1)
≃
√

ϕtot

ϕ∗
. (C.4)

Where the approximation is obtained using (C.3) and expanding for ϕtot/ϕ
∗ ≫ 1.

The average can be calculated as well from its definition ⟨i⟩ = ∑ iϕi/
∑

ϕi, leading

to

⟨i⟩ = ϕ1
ϕtot

3− ϕ1/ϕ
∗

(1− ϕ1/ϕ∗)3
≃ 2imax , (C.5)
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again using (C.3) and expanding for ϕtot/ϕ
∗ ≫ 1. We can derive an expression for

the free energy as a function of the conserved quantity alone ϕtot, making use of

Eq.(C.1) together with Eq.(C.3)

f =
kBT

v0

[

(1− ϕtot) ln(1− ϕtot) + ϕtot ln
ϕ1
ϕ∗

− ϕ1
1− ϕ1/ϕ∗

+
χ

kBT
ϕtot(1− ϕtot)

]

.

(C.6)
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Appendix D

Gelation transition for two and three-
dimensional aggregates

We now prove the existence of a gelation transition for 2 and 3-dimensional aggre-

gates, in the thermodynamic limit. For this purpose, we recall (5.11) and we scruti-

nize the series

∞
∑

i=1

ϕi =
∞
∑

i=1

i

(

ϕ1
ϕ∗

)i

exp

(

∆ω

kBT
i
d−1

d − 1

)

. (D.1)

We notice that when N → ∞, this series in converges only if ϕ1/ϕ∗ ≤ 1. Thus we get

an upper bound for the series, namely

∞
∑

i=1

ϕi ≤
∞
∑

i=1

i exp

(

∆ω

kBT
i
d−1

d − 1

)

≡ ϕSG . (D.2)

Approximating the series with the integral, we get an estimation of ϕSG

ϕSG =







2
(6−6∆ω+3∆ω2−∆ω3)

∆ω4 ϕ∗ d = 2 ,

−3
2

∆ω3

(2−2∆ω+∆ω2)
ϕ∗ d = 3 .

(D.3)

As outlined in the main section, the gelation transition occurs at ϕSG ∼ ϕ∗.
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