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Institute for Molecular Cell Biology and Genetics for an outstanding and productive collabo-
ration. The countless discussions with them and their experiments were the bedrock of this
work.

Finally, I would like to thank the many people at both institutes who have helped me with
the innumerable little problems that have occurred in the last years.



4



Abstract

Morphogens are signaling molecules that play a key role in animal development. They spread
from a restricted source into an adjacent target tissue forming a concentration gradient. The
fate of cells in the target tissue is determined by the local concentration of such morphogens.
Morphogen transport through the tissue has been studied in experiments which lead to the sug-
gestion of several transport mechanisms. While diffusion in the extracellular space contributes
to transport, recent experiments on the morphogen Decapentaplegic (Dpp) in the fruit fly
Drosophila provide evidence for the importance of a cellular transport mechanism that was
termed “planar transcytosis”. In this mechanism, morphogens are transported through cells
by repeated rounds of internalization and externalization.

Starting from a microscopic theoretical description of these processes, we derive systems
of nonlinear transport equations which describe the interplay of transcytosis and passive dif-
fusion. We compare the results of numerical calculations based on this theoretical description
of morphogen transport to recent experimental data on the morphogen Dpp in the Drosophila
wing disk. Agreement with the experimental data is only achieved if the parameters entering
the theoretical description are chosen such that transcytosis contributes strongly to transport.

Analyzing the derived transport equations, we find that transcytosis leads to an increased
robustness of the created gradients with respect to morphogen over-expression. Indications
for this kind of robustness have been found in experiments. Furthermore, we theoretically
investigate morphogen gradient formation in disordered systems. Here, an important question
is how the position of concentration thresholds can be defined with high precision in the noisy
environment present in typical developing tissues. Among other things, we find that the di-
mensionality of the system in which the gradient is formed plays an important role for the
precision. Comparing gradients formed by transcytosis to those formed by extracellular diffu-
sion, we find substantial differences that may result in a higher precision of gradients formed
by transcytosis. Finally, we suggest several experiments to test the theoretical predictions of
this work.
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Chapter 1

Introduction

The development of higher organisms is a fascinating process. Amazingly, a single nearly
uniform fertilized egg cell develops into a complex organism consisting of cells that perform a
great variety of different functions. This enormous increase in complexity during development
has intrigued scientists for ages [74].

Over the last century, many general processes that play a significant role in the development
of all organisms were identified in experiments. Among these key mechanisms are cell division,
morphogenesis, i.e. the emergence of the shape of the organism, cell migration, cell death and
the growth of the organism by several orders of magnitude [103, 65]. A process of paramount
importance for the emergence of complex organisms is cell differentiation. In this work, we
will focus on issues related to this process.

1.1 Morphogens and cell differentiation

While all cells in an organism contain the same genetic information which is stored in their
DNA, the functions they perform can be very different. Striking examples in Humans are the
morphological and functional differences between nerve cells in the brain, liver cells, white and
red blood cells, or skin cells.

All these different cells of the organism are descendants of the same fertilized egg cell
and result from cell divisions. The process that leads to different cell functions or “fates”
during the development of the organism is called “cell differentiation”. A cell fate is generally
determined by a certain set of genes that are expressed in the cell [55]. Here, “expression” of
a gene means that the information stored in the DNA that is present in all cells is actually
used to produce corresponding RNA molecules which are usually used as a template for the
subsequent production of proteins. RNA and protein production are called “transcription”
and “translation” respectively [1, 103, 65].

As cells of certain types are located at very well-defined positions in the adult organism,
cell differentiation must be precisely established in a manner that is insensitive to fluctua-
tions and changes of the environmental conditions. In order to understand development, it is
consequently a highly relevant question how the observed patterns of cell differentiation are
established and maintained in a developing organism.

The idea that concentration gradients of certain molecules play a role in this process dates
back over 100 years [69, 70, 35]. In the middle of the last century, Turing coined the term
“morphogens” for certain diffusing molecules that self-organize into spatial patterns which
are subsequently used to structure the organism [94]. In the wake of this seminal theoretical
work, reaction-diffusion mechanisms of biological pattern formation were studied extensively,
in particular by Meinhardt and his coworkers [38, 67, 19, 58, 76]. Such mechanisms may indeed
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10 CHAPTER 1. INTRODUCTION

Figure 1.1: Schematic of a morphogen gradient controlling cell differentiation. The morphogens are
produced in the source and spread into the adjacent target tissue where they are partly degraded so
that a graded concentration profile is established. In the schematic, two different target genes of the
morphogen are expressed in the target cells if the morphogen concentration exceeds two corresponding
threshold values. These different cell responses are indicated in light blue and red respectively. Figure
modified from [41].

underlie the pigmentation patterns seen in certain animal coats like the stripe patterns in the
zebra or the angelfish [76, 103].

However, the modern concept of morphogens is different from Turing’s original idea. In
1969, Wolpert suggested that morphogens are produced in cells which are located in a spatially
restricted source region [101]. From this source, they spread into the adjacent tissue which is
called the “target tissue”. The morphogens are degraded throughout this tissue or possibly
only in a “sink” region located at some distance to the source. This setup leads to the formation
of a graded profile of morphogen concentration in the target tissue which is called “morphogen
gradient”. The key concept is that the fates of the cells in the target tissue are determined
by the local concentration of the morphogen which contains positional information about the
distance to the morphogen source, see Fig. 1.1 for an illustration. According to their classical
definition, morphogens induce the cell fates in a direct manner, i.e. cell differentiation is
controlled by their concentration alone without intermediates [64]. Note, that there are other
signaling molecules that affect cell differentiation but are not classified as morphogens because
they do not match some of the criteria just pointed out [65, 64].
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The cells in the target tissue detect the morphogen concentration via receptor molecules on
their surface that the morphogens can bind to. They respond by adopting a certain cell fate that
depends on the number of receptor molecules on their surface that are bound to morphogens
[26, 86, 13]. The different fates are generally identified by the expression state of certain genes,
the “target genes” of the morphogen. These genes are either strongly expressed or hardly
expressed at all in the cells of the target tissue. Their expression switches discontinuously
between these two states at certain threshold values of the morphogen concentration, see
Fig. 1.1.

In principle, the local concentration of several different such morphogens distributed in
gradients originating from spatially distinct sources provides sufficient information to determine
cell fates at well-defined positions in the tissue.

To further clarify the role of morphogen gradients in animal development, it is important
to mention that the cells of the organism differentiate progressively during development. This
means that the cell fates become more and more precisely specified as development proceeds.
The same morphogen molecule usually acts at different stages of the development of one
organism and can trigger very different responses in cells depending on their differentiation
history. In this sense, cells have a different competence to respond to the morphogen [103].
This is the reason why a very limited number of different morphogen molecules that are often
used many times in the development of one organism and frequently even in several different
species can lead to a much larger number of different cell fates.

There is growing experimental evidence for the existence of morphogens that act in agree-
ment with the concept specified above [91, 45]. In the late 1980s, Driever and Nüsslein-Volhard
experimentally demonstrated the existence of a gradient of the protein Bicoid that acts as a
morphogen in the Drosophila embryo [22, 23, 24, 25]. More recently discovered morphogens
are the molecules Hedgehog (Hh) [5] and Wingless (Wg) [105] both of which play a role in
the development of the fruit fly Drosophila. Note however, that there are some doubts about
the direct action of Wingless [64]. Several further examples are given by the members of the
TGF-β superfamily, a class of structurally similar signaling molecules [66] like Activin, Bone
Morphogenetic Proteins 2 and 4 (BMP2 and BMP4), Squint, and Sonic Hedgehog (Shh) which
act in various contexts in vertebrates and amphibians [15, 21, 46, 12, 85, 64]. Another promi-
nent member of the TGF-β superfamily is the morphogen Decapentaplegic (Dpp) which plays
a role in several stages of Drosophila development [36, 37, 84, 98, 62, 73]. While, so far, most
of the morphogens were identified in animals, there are signs that there are similar molecules
affecting pattern formation in plants [8].

1.2 Dpp in the Drosophila wing disk

Development has been experimentally investigated in a variety of model organisms [44, 64, 45].
Here, we focus on a model system in which several morphogens have been identified and some
of “the most sophisticated studies of morphogen properties and functions” [107] have been done
— the “wing imaginal disk” or simply “wing disk” of the fruit fly Drosophila melanogaster
[51]. The wing disk exists in the larvae stage of Drosophila development. This disk undergoes
shape changes during later stages of development and ultimately develops into the wing of the
adult animal, see Fig. 1.2 B. The wing disk is patterned by gradients of the morphogens Hh,
Wg, and Dpp as shown schematically in Fig. 1.2 C. Note, that 19 similar imaginal disks exist
in the Drosophila larvae which are precursors of the head, the legs, the antenna, and other
parts of the adult fly, see Fig. 1.2 A.

Although much more generally applicable, the theoretical aspects of morphogen gradient
formation investigated in this work are motivated by the situation of Dpp in the wing disk. It
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A

B

C

Figure 1.2: Imaginal disks in Drosophila development and the patterning of the wing disk. (A) Imaginal
disks in the larvae stage of Drosophila development. The adult structures that are formed from these
disks are indicated. (B) The patterning of the wing disk determines the structure of the wing in the
adult animal. The dorsal, ventral, anterior, and posterior compartments of the wing disk and the adult
structure are indicated by the initial letters of these terms respectively. The wing disk is folded along
the dorsal-ventral compartment boundary line to form the adult wing as indicated. (C) Schematic of
the gradients of the morphogens Dpp, Hh, and Wg and the expression domain of their respective target
genes in the wing disk. Figure modified from [51, 78].



1.2. DPP IN THE DROSOPHILA WING DISK 13

Figure 1.3: Dpp in the Drosophila wing disk. (A) Double staining of a developing wing showing the Dpp
source labeled in green and the cell profiles labeled in red. The Dpp source in the wing primordium is
indicated by the arrowhead, the one in the peripodial epithelium by the asterisk. (B) Double staining of
a z-section of a developing wing at the level of the dashed blue line in A, showing cell profiles labeled in
red, superimposed by GFP-Dpp expression shown in green in the lower panel. (C) Detail of GFP-Dpp
localization (green) in the region of the developing wing corresponding to the yellow box in A. Cell
profiles are labeled red in the right panel. (D,E) Schematic representation of the developing wing in
a xz- (D) and xy-section (E). Note the position of the Dpp source (cells filled in green at the left in
E) both in the wing primordium (arrowhead) and the peripodial epithelium (red in D; asterisk). Bars
correspond to 50 µm. Anterior to the left, posterior to the right. Figure modified from [59].
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is consequently important to get acquainted with a few details concerning this system.
The wing disk is a single layered epithelium which forms a flat pouch consisting of two

cell layers, which are connected at the edges, see Fig. 1.3. One cell layer consists of columnar
epithelial cells and includes the part of the tissue that will later develop into the wing blade.
This epithelial cell layer is called the “wing primordium”. The other layer is called the “peripo-
dial epithelium”. The wing disk is separated into an anterior and a posterior compartment.
Cells which produce the morphogen Dpp are located within a narrow band, approximately
five cell diameters wide, along the boundary between these two compartments. In the wing
primordium, a gradient of the morphogen Dpp forms adjacent to this source in both compart-
ments in a region that is shown by the yellow box indicated in Fig. 1.3 A. The measurements
of this region are approximately 100 by 50 cell diameters where a typical cell diameter in this
xy-plane of the wing disk is 4µm. In the z-direction which is vertical to this plane, the cells
are about 30µm high but Dpp is mostly confined to a sheet of only about 5µm height in the
z-direction [34].

The target genes of Dpp which are called spalt (sal), optomotor-blind (omb), and vestigal
(vg) are expressed in this region. Their respective expression domain is controlled by Dpp in
a concentration-dependent manner [87, 62, 73] as illustrated in Fig. 1.2 C.

It is noteworthy that Dpp itself is a target gene of the morphogen Hh which is expressed in
the posterior compartment of the wing disk and forms a gradient over up to ten cell diameters
into the anterior compartment, see Fig. 1.2 C. Apart from Dpp and Hh, the morphogen Wg is
expressed in a source stripe that is roughly orthogonal to the stripe of the Dpp source. The Wg
source is located along the boundary between the dorsal and the ventral compartment of the
wing disk and gradients of Wg form in these two compartments, see Fig. 1.2 C. In principle,
the combination of the Dpp and Wg morphogen gradients can provide complete positional
information about the location of a cell in the two dimensional epithelium.

Recently, the Dpp gradient has been visualized in the wing disk by using a GFP-Dpp fu-
sion protein of a green fluorescent protein (GFP) and Dpp [34, 92]. This GFP-Dpp protein
can be visualized by excitation with a laser of wavelength 488nm. It has been experimentally
demonstrated that GFP-Dpp has a very similar functionality as endogenous Dpp, i.e. un-
modified Dpp as it is present in wild type flies, and can consequently be assumed to behave
almost identical. In a seminal series of semi-quantitative experiments, GFP-Dpp was found
accumulated in structures inside the cells and could also be detected in the extracellular space
surrounding the cells. It was detected up to 40 cell diameters away from the source [34]. While
there is no evidence for a localized Dpp sink in the wing disk, it was found that GFP-Dpp
is degraded throughout the target tissue on a time scale of a few hours. The time scale of
gradient formation was estimated to be six to eight hours. Moreover, it was shown that Dpp
spreading is nondirectional in the wing disk [34].

Furthermore, the role of endocytosis in Dpp gradient formation was studied [34]. Endocy-
tosis is a process in which the cells internalize molecules from their surface. In this process,
the plasma membrane on the cell surface invaginates and forms a vesicle that is pinched off the
membrane with the help of a protein called Dynamin. This vesicle is subsequently transported
through the interior of the cell [1]. Inside the cell, the contents of the vesicle can be separated
and sorted in a specific way. For example, they can be degraded in a so-called “lysosome” or
returned to the cell surface by a process termed exocytosis.

Endocytosis can be blocked in the wing disk by the use of “shibire”, a thermo-sensitive
mutation of the dynamin gene [14]. Cells carrying the shibire mutation can perform endocy-
tosis at temperatures of about 25◦C. At a higher temperature of 34◦C endocytosis is almost
completely blocked in these cells [34].

An experiment was performed in which endocytosis was blocked in the whole target tissue.
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Figure 1.4: GFP-Dpp depletion behind shibire clones, i.e. patches of endocytosis defective cells. GFP-
Dpp is shown in green, the bright green stripe constitutes the source of GFP-Dpp producing cells. The
shibire clones are outlined in white. Note the depletion of GFP fluorescence in the region behind the
clones indicated by the dashed yellow lines. See [34] and main text for details on the experiment. Figure
modified from [34].

It was observed that the GFP-Dpp gradient, that is present in the target tissue before the block
of endocytosis, vanishes in the following six hours [34]. In another experiment, endocytosis was
only blocked in a relatively small patch of cells in the target tissue, called a “shibire clone”,
after a front of GFP-Dpp molecules moving towards this patch of cells had been initiated from
the Dpp source. A depletion of GFP-Dpp could be observed behind the shibire clone five hours
after blocking endocytosis in this clone, see Fig. 1.4. At later times this depletion diminished
[34]. Both experiments lead to the suggestion that endocytosis plays an important role in Dpp
transport [34, 33, 41]. We will carefully analyze the implications of these experimental data in
chapter 2.

1.3 Open questions

Over the last decades, substantial progress has been made in the understanding of various
issues related to morphogen gradients and cell differentiation [102, 90, 35]. However, there is
a considerable number of open questions remaining.

One of these is how the morphogen gradient, once established, is perceived by the cells, i.e.
which are the molecular mechanisms inside the cell that lead to the control of gene expression
[45]. It is well-established that the cells detect the local morphogen concentration via receptor
molecules that change their conformation when bound to a morphogen molecule as compared to
their unbound state [65]. The cell fate is then controlled by the absolute number of morphogen-
bound receptor molecules [26, 86] or the ratio of bound and unbound receptor molecules [13].

When morphogen-bound receptors are present, a series of molecular interactions, called
a “signaling pathway”, is triggered inside the cell. This pathway ultimately leads to the
activation of proteins that control the transcription of the target genes [72, 65]. However,
in the Drosophila wing disk as in most systems, only some of the molecular components
participating in this process could so far be identified [72, 41]. It is consequently unclear how
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the concentration-dependent response to the morphogen occurs [72]. While certain signaling
pathways have been identified [65], the systematic quantitative study of these networks of many
different interacting molecules and genes is an emerging field [3, 30, 95, 49, 53, 104, 75, 80].

A different but equally important question is how morphogen gradients are formed in
developing organisms [90, 33, 96]. The morphogen molecules are secreted by the cells in the
source region but how are they transported into the target tissue? And how is it possible that
a precise pattern of gene expression is established there that is insensitive to perturbations?
These are the main questions that we will address in this work.

1.4 Morphogen transport and gradient formation

Suggestions for mechanisms by which morphogen gradients can be formed were made shortly
after Wolpert had introduced the concept [101]. In 1970, Crick suggested that these gradients
could be established by passive diffusion of the morphogens [18]. He supported this proposal
with theoretical arguments concerning the time scale needed for the formation of a gradient
by passive diffusion. Notably, he suggested that the morphogens diffuse through the cells and
not in the extracellular space surrounding them.

Similar to Crick’s original idea, it is widely believed today that morphogens can passively
diffuse in the extracellular space which surrounds the cells [89, 93], see Fig. 1.5 A. Experimental
data indicating that extracellular diffusion is probably the dominant transport mechanism have
been obtained for some morphogens like for example Wg [89]. Moreover, gradient formation
based on passive extracellular diffusion has recently been investigated theoretically [28, 60,
29, 59]. While this is one possibility how these molecules could be transported, several other
mechanisms have been suggested.

One of these mechanisms is called “planar transcytosis” [39, 6, 34]. In this mechanism,
the morphogens are internalized into the cell after binding to a receptor molecule on the cell
surface. They are subsequently transported through the cell interior by active mechanisms,
and finally externalized at a different location on the cell surface. Repetition of this process
results in transport of the morphogen over many cell diameters, see Fig. 1.5 B. Evidence for
the importance of this mechanism is given by the results of the experiments studying the role
of endocytosis in Dpp transported discussed in section 1.2 [34].

Another possibility is that the morphogens bind to large molecules called “glypicans” which
are present on the cell surface and are subsequently transported by diffusion in the cell mem-
brane, see Fig. 1.5 C. While this mechanism is vaguely defined and could not be clearly dis-
tinguished in experiments so far, recent data have shown a role of glypicans in morphogen
transport [7, 47, 48]. Although apparently not appreciated by the authors of these articles, a
very similar mechanism called “bucket brigade” in which morphogen transport is partly due
to diffusion of the receptor-bound morphogen in the cell membrane has been suggested earlier
as a result of theoretical considerations [56].

Morphogens could also be transported through long thin projections called “cytonemes”
that have been shown to exist in the wing disk [83]. These cytonemes could connect cells in
the target tissue to source cells, thus providing tubes through which the morphogens could
move by diffusion, convection, or even active transport, see Fig. 1.5 D. However, the function
of cytonemes is unclear and their role in morphogen transport is largely hypothetical.

Another possibility is that morphogens are carried along with the cells which are displaced
during the growth of the tissue [81]. Here, repeated cell divisions in which the morphogens
present inside the cell and on its membrane are divided on the two daughter cells and movement
resulting from tissue growth leads to the formation of a gradient. As the completion of one
cell division cycle typically occurs on a time scale of several hours, this mechanism leads to a
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A B

C D

Figure 1.5: Schematic of possible morphogen transport mechanisms. (A) Transport by extracellular
diffusion. The morphogens are produced and secreted by the source cells which are shown in darker
gray. They move through the tissue by passive diffusion in the extracellular space surrounding the cells.
(B) Transport by transcytosis. The morphogens bind to receptor molecules on the cell surface. These
complexes are then internalized into the cell and can subsequently be externalized at a random location
on the cell surface. The morphogens can then detach from the receptor molecule. Repetition of this
process leads to transport over many cell diameters as shown. (C) Transport by diffusion in the cell
membrane. The morphogen molecules bind to a molecule that is attached to the cell membrane, e.g. a
glypican or a receptor. These complexes than move around the cell surface by passive diffusion in the
cell membrane. The morphogens can detach from the molecule in the cell membrane and subsequently
bind to one that is located on the surface of a different cell. This results in transport over many cell
diameters. (D) Transport via cytonemes which are membrane tubes that connect the source cells to the
cells in the target tissue. The morphogens could move through these tubes by passive diffusion, active
transport or convection.
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slow formation of gradients. Due to this fact, this mechanism is unlikely to be the dominant
contribution to the transport of morphogens like Dpp [93].

Independently of the transport mechanism, it has been suggested that morphogens are not
transported as individual molecules but rather bundled in membrane vesicles called argosomes
[43].

While a considerable amount of data concerning the transport of different morphogens
has been obtained [34, 92, 89, 43, 7, 47, 68, 48], these data have so far not lead to the clear
identification of a dominant transport mechanism. This is partly due to a lack of quantitative
data. While the existence of the suggested morphogen transport mechanisms is often beyond
doubt, the question is rather how much they contribute to transport.

For the formation of a stable morphogen gradient, not only transport but also degradation
of the morphogen is needed. Degradation can occur inside the cells following the internalization
of the morphogen or in the extracellular space where certain molecules, so-called proteases,
can degrade the morphogens. While the rate of degradation is known to be position- or
concentration-dependent for some morphogens, there are usually no localized morphogen sinks
in the tissue [93, 33].

1.5 Robustness and precision of morphogen gradients

It is hard to imagine how reliable morphogen gradients with concentration thresholds located
at well-defined positions can form in a developing organism where cells are constantly dividing
and noise is ubiquitous. For this reason, many biologists have rejected the idea that these
gradients play a role in the patterning of tissues for a long time [74]. Even now that the
existence of morphogen gradients has been experimentally demonstrated, the question how
they can reliably fulfill their task during development remains.

It has been shown experimentally for Dpp in the Drosophila wing disk that the morphogen
production in the source cells can be strongly enhanced without affecting the development
of the fly significantly [71]. This suggests that the Dpp gradient is robust to changes in the
Dpp production rate. Such robustness to perturbations is anticipated to be present in many
biological systems [3, 42, 57]. The remarkable robustness of morphogen gradients has recently
been investigated theoretically and mechanisms that lead to robust gradients were suggested
[28, 29, 9]. Moreover, it was found that time-dependent noise in the morphogen secretion rate
of the source can disrupt the robustness of the gradient [32].

The presence of molecule number fluctuations and disorder due to cell-to-cell variability in
developing tissues is generally anticipated to lead to relatively strong fluctuations of the local
morphogen concentration in a gradient. A strong variability of the gradient of the morphogen
Bicoid has indeed been observed in the Drosophila embryo [54]. As the concentration thresholds
of the gradient must be located at well-defined positions in order to precisely pattern the tissue,
such a variability is problematic. In the Drosophila embryo, it appears that interactions with
other molecules that could not be clearly identified lead to a high precision of the resulting gene
expression patterns [54]. In general, however, such backup mechanisms cannot be expected to
be present in systems where morphogens act directly on the cells in the target tissue. Thus, it
is a relevant question if a high precision of morphogen gradients can be achieved in disordered
systems or if other mechanisms are generally needed to achieve a precise patterning of the
tissue. While diffusion in disordered media has been studied extensively [50, 10], the presence
of disorder has so far received little experimental and virtually no theoretical attention in
connection with morphogen gradient formation.
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1.6 Overview of this work

This work is a mainly theoretical investigation of morphogen transport and gradient formation.
We focus on two transport mechanisms which are supported by considerable experimental
evidence — diffusion in the extracellular space and transcytosis.

In chapter 2, we relate a theoretical description of morphogen transport which captures
these two transport mechanisms to recent experimental data for the morphogen Dpp in the
Drosophila wing disk. We investigate in how far two limits of our description in which mor-
phogen transport is primarily due to extracellular diffusion and transcytosis respectively are
in agreement with these data. It turns out that transcytosis is in semi-quantitative agreement
with the experimental data whereas extracellular diffusion is inconsistent in some points.

In chapter 3, we present and analyze our theoretical description of morphogen transport
and degradation in detail. The two limits of this description in which diffusion and transcytosis
dominate transport are discussed. Effective nonlinear transport equations for both limits are
derived. Chapter 3 is rather technical and focused on theoretical aspects.

In chapter 4, two key results which follow from the theoretical foundations developed
in chapters 3 and 5 are discussed. Firstly, we show that morphogen gradients formed by
transcytosis are robust, i.e. they do not depend sensitively on the morphogen production
rate of the source cells. This robustness is lost if extracellular diffusion gives a significant
contribution to transport. Secondly, the precision of morphogen gradients, i.e. their ability
to define the position of concentration thresholds in the target tissue with high accuracy,
is discussed. It is argued that high precision can only be achieved in systems that are at
least two dimensional. Moreover, we reason that transcytosis and possibly also other active
transport mechanisms can achieve a higher precision than passive diffusion. These are generic
experimentally testable predictions of our theoretical investigation.

Chapter 5 deals with the effects of spatial disorder on steady state morphogen gradients.
Among other things, it is shown that the uncertainty of the local morphogen concentration
usually increases with increasing distance to the morphogen source in a way that is charac-
teristic of the dimensionality of the system in which the morphogen gradient is formed. The
chapter is very technical and strongly concentrates on the theoretical aspects of the effects of
disorder.

In chapter 6, we conclude with a summary of the main results of this work. The biological
relevance of these findings is discussed and experiments to test predictions of our theoretical
investigation are suggested. In appendix A, we present potentially relevant generalizations of
our theoretical description of transport. Among other things, we apply the method used in
chapter 3 to develop a theoretical description of the glypican model of morphogen transport
in section A.3. In appendix B, we discuss the shortcomings of a recently suggested model
of morphogen transport by extracellular diffusion [60]. In appendix C, we compare results
obtained from our description of morphogen transport to additional experimental data. In
most of the remaining appendices, we show details of the calculations performed in this work.

A reader more interested in theoretical problems and technical aspects should concentrate
on chapters 3 and 5 while those more interested in the biological relevance of this work should
focus on chapters 2 and 4. Chapter 6 is recommended for everyone who would like to get
briefly acquainted with the main results of this work.
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Chapter 2

Dpp transport in the Drosophila
wing disk

In this chapter, we present recent experimental data on morphogen gradient formation and
apply a theoretical description of morphogen transport to the specific situation of Dpp in
the Drosophila wing disk. We restrict ourselves to this system because it has been studied
extensively in semi-quantitative experiments. Each experiment is compared to numerical cal-
culations based on a theoretical description of morphogen transport which we will discuss and
analyze in detail in chapter 3.

The description captures key processes like the diffusion of morphogens in the extracellular
space with a diffusion coefficient D0, morphogen binding and un-binding to and from receptor
molecules that are located on the cell surfaces which is characterized by rates kon and koff ,
internalization of these receptor-ligand complexes into the cell at rate bint and their subsequent
externalization at rate bext. Free morphogens are degraded by proteases in the extracellular
space with rate edeg and ligands bound to receptors are degraded inside the cells with rate
bdeg. These processes are schematically shown in Fig. 2.1. Moreover, the production and
intracellular trafficking of free receptor molecules by the cells is included in the description.
These are internalized and externalized with rates fint and fext respectively. In addition, each
cell produces receptors at a rate fsyn and degrades them at a rate fdeg. The receptor production
saturates at a maximal surface receptor concentration Rmax. Finally, cells belonging to the
morphogen source produce morphogens at rate ν.

In this description, morphogens can be transported over many cell diameters by diffusion
in the extracellular space and transcytosis, see Fig. 1.5 A and B. Transcytosis occurs when
a morphogen binds to a receptor, is internalized into a cell, transported through its interior,
and subsequently externalized at a different location of the surface of the same cell. Repeating
this process together with morphogens being passed from the cell surface to the surface of
neighboring cells leads to long range transport.

The relative contributions of the two mechanisms to morphogen transport depend on the
parameter values. In section 2.2, we will perform a comparison of experimental data to calcu-
lations using a parameter choice for which transcytosis contributes dominantly to morphogen
transport. In section 2.3, we will carry out the same comparison using a different parameter
choice for which extracellular diffusion dominates. We will refer to these theoretical descrip-
tions with different parameter sets as the “transcytosis regime” and the “diffusion regime”
respectively. We study these regimes in order to find out in how far they are in agreement with
the experimental data. Note, that we have previously discussed the diffusion regime in [59]
where we called this description the “diffusion, binding, and trafficking model with saturating
surface receptor concentration” (DBTS model).

21
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bint

D0

kon

koff

bext

bdeg

edeg

receptor ligand

Figure 2.1: Schematic representation of the key processes captured by our theoretical description of
morphogen transport. Cells are shown in light gray, the extracellular space in white. The rates of
morphogen-receptor binding and un-binding, internalization and externalization of morphogen-receptor
pairs are denoted kon, koff , bint and bext. Degradation of morphogens occurs inside the cells with rate
bdeg and in the extracellular space with rate edeg. The diffusion of morphogens in the extracellular
space is characterized by a diffusion coefficient D0. Moreover, free receptors are produced, internalized,
and externalized by the cells at rates fsyn, fint, and fext respectively (not shown). See chapter 3 for a
more detailed discussion of our theoretical description of morphogen transport.

2.1 Parameters and boundary conditions

In Table 2.1, we show the two sets of parameters which are used throughout this chapter for
the transcytosis regime and the diffusion regime and compare them to those used in a previous
theoretical study of Dpp transport in the wing disk [60] and to values measured in cell cultures.
Since these parameters have not yet been measured experimentally for Dpp and its receptor
Thick-veins in the wing disk, we choose their values within plausible limits given by typical
values measured for similar systems. For both the diffusion and the transcytosis regime, we
have applied several different parameter sets in numerical calculations attempting to obtain
the best possible agreement with the experimental data. The two parameter sets used here
lead to a reproduction of the time scale of gradient formation and the length scale of the Dpp
gradient in wild type wing disks. When we were unable to obtain good agreement with all
experimental data discussed here, we tried to achieve the best consistency with the “shibire
clone assay”, see below.

The extracellular diffusion coefficient D0 is chosen much smaller in the transcytosis regime
than in the diffusion regime in which D0 corresponds approximately to the free diffusion co-
efficient for a particle with the size of a Dpp molecule in a watery liquid [60]. In a tissue,
D0 could be effectively reduced to a very low value if the morphogen molecules bind to cell
membranes or components of the extracellular matrix because this would severely obstruct
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transcytosis extracellular diffusion Lander et al. EGF/EGFR
koff [min−1] 4 6 × 10−4 6 × 10−4 0.34
bint[min−1] 4 0.6 0.036 0.3
fint[min−1] 1.2 0.36 0.036 0.03
bext[min−1] 8 0.04 0.004 0.058
fext[min−1] 8 0.03 0.003 0.058
bdeg[min−1] 0.012 0.002 0.002 0.002
fdeg[min−1] 0.004 0.006 0.006 0.002
edeg[min−1] 0.008 0 0 0.04
konR0[min−1] 6.7 2.4 0.72 (3.73)
ν/R0[min−1] 0.053 0.48 0.032 -
f0
syn/R0[min−1] 1.6 × 10−3 0.072 0.072 -

D0[µm2/s] 1.5 × 10−3 10 10 -
Rmax/R0 1.6 20 - -
ψ 2.0 1.0 - -

Table 2.1: Parameter values used in the numerical calculations in this chapter. The notation used here is
extensively explained in section 3.1.1. R0 denotes the steady state number of receptor molecules present
on the surface of one cell in the absence of ligand. Values measured for the epidermal growth factor
(EGF) and its receptor (EGFR) in B82 fibroblasts [52, 61, 88, 17] and those suggested by Lander et al.
[60] are given for comparison. The value of kon measured for the EGF/EGFR system has been converted
to the units used here by assuming a volume of the extracellular space per cell of 3.2 × 10−14 liters
and a surface receptor number per cell of R0 = 1, 000. The rates of ligand and receptor synthesis per
cell are denoted ν and f0

syn respectively. In the calculations in the extracellular diffusion regime which
are based on (3.28), the ligand current jx across the source boundary of the area of interest (AOI) is
obtained from the ligand production rate ν via jx = νd/2a2, where d = 20µm is the width of the source
and a = 4µm is the cell diameter. In the calculations in the transcytosis regime, the rate of ligands
appearing in the system at x = 0 is 3ν capturing the source of three cells width. Due to the discrete
lattice structure used in the transcytosis regime, the extracellular diffusion coefficient D0 had to be
estimated using a = 4µm.

their free diffusion. The other rates in the transcytosis regime are mostly about an order of
magnitude larger than in the diffusion regime. To estimate the contribution of transcytosis
to transport for both parameter sets, we have calculated the effective diffusion coefficient Dtc

in the absence of extracellular diffusion for a small morphogen concentration λ and with the
receptor concentration ρ at its equilibrium value in the absence of morphogens ρ0. For the
parameters in the transcytosis regime, we find Dtc ≈ 0.04µm2/s and for those in the diffusion
regime Dtc ≈ 1.7 × 10−6µm2/s. The analytic expression of Dλ(λ, ρ) for a two dimensional
triangular lattice as discussed in section 3.2.2 was used with a = 4µm to calculate these values.
Here, a denotes the average diameter of the cells in the plane in which transport occurs.

We use R0, the steady state number of receptor molecules present on the surface of one
cell in the absence of ligands, as a molecule number scale in our description. We further
define r0 as a molecule number per unit area in two dimensions via r0 = R0/a2. We do not
specify an actual value for R0 because we only need to compare relative molecule numbers or
concentrations to interpret our results. The number of receptor molecules per cell in the wing
disk which corresponds to R0 is believed to be on the order of 103 [40, 60].

Geometry of the wing disk and boundary conditions Let us first discuss the geometry
of the wing disk. In principle, we need to take the complete geometry of the wing disk described
in 1.2 into account in a mathematical description of the ligand kinetics. However, we are only
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Figure 2.2: Schematic of the geometry and boundaries of the area of interest (AOI) used for the
numerical calculations in the transcytosis regime in this chapter. The spatially extended morphogen
source is only explicitly described in the calculations corresponding to the shibire rescue assay, see
section 2.2.2, and the region labeled “clone” only plays a role in the calculations corresponding to the
shibire clone assay, see section 2.2.3.

interested in the ligand kinetics inside an area of interest (AOI) that is given by the region
in the posterior compartment of the wing primordium in which the Dpp gradient forms. This
region is outlined by the dashed white lines in Fig. 1.3 A and C. The ligand kinetics inside this
rectangular AOI should depend only weakly on the kinetics outside, if the size of the AOI is
chosen sufficiently large and reasonable boundary conditions are specified at the edges of the
AOI. We will now discuss our choice of boundary conditions at these edges which we refer to
as “source boundary”, “distal boundary”, and “side boundaries”, see Fig. 2.2. For simplicity,
it is assumed that the Dpp source is homogeneous in the y-direction and mirror symmetric
about its center line which coincides with the source boundary of the AOI used here. As we
are only interested in gradient formation in either the anterior or the posterior compartment
of the wing disk, this symmetry allows us to describe the source by a three cell wide stripe
next to the source boundary where ligand is injected into the extracellular space with no flux
boundary conditions imposed at the source boundary. This corresponds to half the source
diameter of approximately six cells in the wing disk.

Let us consider the distal boundary on the opposite side of the AOI with respect to the
source. As the wing disk does not end there, an out-flux of ligand across this boundary is
present which becomes small if the ligand concentration is small close to this distal boundary.
This out-flux is possibly reduced by an inward current in the opposite direction stemming
from secreting cells in the peripodial epithelium, see Fig. 1.3. The total current across this
boundary is assumed to be negligible if the distal boundary is located sufficiently far away
from the source. Thus, we impose zero flux at this boundary and choose the width of the AOI
such that this choice of boundary condition does not affect the results near the source where
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the gradient develops.
At the remaining side boundaries of the AOI, we impose periodic boundary conditions.

This corresponds to the assumption that the whole system is translation invariant and extends
infinitely in the y-direction. This is justified because, although certainly not infinite, the region
of the wing disk where the Dpp gradient forms is approximately homogeneous in the y-direction
over a considerable range, see Fig. 1.3. In principle, one could also choose no flux boundary
conditions at these side boundaries. The specific choice does not affect the results for the
situations studied in this chapter.

The initial conditions depend on the specific experimental setup and will be discussed for
each experimental situation separately.

2.2 Comparison to our theoretical description in the transcy-
tosis regime

We now compare experimental data to results from calculations based on the theoretical de-
scription of morphogen transport introduced in section 3.1.1 with the set of parameters for
the transcytosis regime as shown in Table 2.1. All numerical calculations for the transcytosis
regime in this section are based on the discrete microscopic description of morphogen transport
with receptor kinetics. Specifically, the two dimensional description on a triangular lattice in
which the cells are hexagons is used, see section 3.2.1. Since in most experiments discussed
here, both endogenous Dpp and fluorescently labeled GFP-Dpp are present in the system, we
account for the presence of two distinguishable but otherwise identical ligand species where
appropriate, see section A.1 of the appendix for details.

2.2.1 Gradient formation in wild type

In this section, we discuss morphogen gradient formation in the wild type situation. To visualize
the morphogen Dpp in these experiments, a green-fluorescent-protein-tagged chimera (GFP-
Dpp) is used which fluoresces when excited with a 488nm laser beam. It has been demonstrated
that the functionality of this GFP-Dpp is very similar to that of Dpp [34]. Using the UAS/Gal4
expression system that enables the expression of transgenetic constructs like GFP-Dpp in well-
defined regions of the tissue in Drosophila [11], GFP-Dpp is expressed in the same source
region as endogenous Dpp. It has been demonstrated that these modifications have very little
effect on the development of the flies [34]. Hence, these details can be neglected here and we
can assume that the GFP-Dpp observed in these experiments behaves like endogenous Dpp in
wild type flies. Details concerning the experimental methods used to obtain the data presented
here can be found in [34, 59, 7, 78].

Experimental data Using the thermo-sensitivity of the UAS/Gal4 system, the production
of GFP-Dpp in the source is suddenly started when the temperature is shifted from 16◦C to
25◦C. The following time development of GFP-Dpp gradient formation was studied [34]. It
was found that the visible gradient is formed within approximately eight hours and extends
more than 30 cell diameters into the target tissue which lies adjacent to the source [34]. After
two hours, GFP-Dpp is detected up to twelve and after four hours up to 20 cell diameters away
from the source [34]. GFP-Dpp fluorescence is visible in punctate structures inside the cells
while less fluorescence can be detected in the extracellular space, see Fig. 2.3 E-K. Extracellular
GFP-Dpp was observed by antibody staining against GFP using a specific protocol [59]. Note,
that in this experiment even before the temperature shift, there is a gradient of endogenous
Dpp which is not labeled with GFP present in the tissue.
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Functional Dpp is over-expressed in these experiments because, in addition to the normal
synthesis of endogenous Dpp, GFP-Dpp is produced in the source cells. The rate of GFP-
Dpp production was experimentally estimated to be roughly five times larger than that of
endogenous Dpp [40]. So, in these experiments, the source secretes approximately six times
as many morphogen molecules per unit time as in a wild type fly in which only endogenous
Dpp is produced. The findings that the flies still develop in a relatively normal way and that
the expression patterns of the target genes of Dpp in the wing disk are hardly affected is
remarkable. These observations suggest that the formation of the Dpp gradient is insensitive
to the Dpp secretion rate of the source although they do not provide direct evidence for this.
In section 4.1, we will study this feature in detail.

As a side note, it shall be mentioned that Dpp transport in the wing disk was shown to
be nondirectional on length scales that are large compared to the cell diameter a. Patches
of GFP-Dpp producing cells, so-called GFP-Dpp flip-out clones, were created and GFP-Dpp
was found symmetrically in all directions around these clones in the surrounding tissue [34]. If
transport were directional, one would expect to see an asymmetric distribution around these
clones.

Apart from the GFP-Dpp profile, the receptor distribution was investigated. Using a
specific antibody raised against the Dpp receptor Thick-veins (Tkv), it was found that the
receptor is distributed in a “counter-gradient” with low receptor levels near the Dpp source
and high levels far away from it [92, 59]. This observation suggests that the presence of
Dpp causes the cells to reduce their receptor levels, e.g. by reducing receptor production or
enhancing receptor degradation. It was further observed that the receptor mRNA is distributed
in a similar counter-gradient as the actual receptor protein [63] which provides support for the
view that the lower receptor concentrations near the Dpp source originate in a reduced receptor
production that is triggered by the presence of Dpp in a concentration dependent manner. This
phenomenon is called “receptor down-regulation”.

Calculation in the transcytosis regime We performed numerical calculations based on
our description of morphogen transport in the transcytosis regime to check if these experimental
data can be reproduced. As both endogenous Dpp and GFP-Dpp are present in the tissue in
this experiment, we use the description for two ligand species, see chapter A.1 of the appendix.
We first set the production rate of unlabeled ligand which corresponds to endogenous Dpp
to ν∗ = ν/5 and that of the labeled ligand corresponding to GFP-Dpp to zero. The system
was then evolved until it was very near its steady state. This situation corresponds to the
above experiment before the temperature shift. Mimicking the temperature shift at t = 0, the
production rate for GFP-Dpp was then suddenly raised to the value ν shown in Table 2.1 while
ν∗ was left unmodified.

The following time development of the profiles of the receptor and labeled ligand concen-
trations is shown in Fig. 2.3 A-D. Due to our specific parameter choice, the labeled ligand
forms a gradient over roughly 30 cell diameters. The system is very close to its steady state at
t = 8h. The approach to this steady state is reminiscent of a front of ligands propagating away
from the source with decreasing velocity. A counter-gradient of the receptor concentration is
present at all times.

In summary, the numerical calculations for the transcytosis regime are able to reproduce
the experimentally observed ligand and receptor profiles.
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Figure 2.3: GFP-Dpp gradient formation under wild-type conditions. (A-D) Time development of gra-
dient formation calculated using our theoretical description of morphogen transport in the transcytosis
regime with parameters as shown in Table 2.1. The concentration profiles of the total ligand λ (A), the
receptor-bound ligand s+ + si (B), the extracellular ligand l + s+ (C), and the total receptor ρ (D) are
shown at t = 1h, 3h, 5h, 7h (solid black lines), and in steady state (red lines). All concentrations are
normalized to the steady state cell surface receptor concentration in the absence of ligands r0. (E-G)
Gradient of total GFP-Dpp in the wing disk measured by GFP fluorescence (E) and antibody staining
against GFP (F), overlay of both (G). (H-K) Gradient of GFP-Dpp measured by GFP fluorescence
after applying an extracellular staining protocol (H) and extracellular GFP-Dpp measured by antibody
staining against GFP (J), overlay of both (K). (L) Quantified fluorescence as a function of the distance
to the Dpp source of the gradient shown in E (green) and of that shown in F (red). (M) Quantified
fluorescence as a function of the distance to the Dpp source of the gradient shown in H (green) and of
that shown in J (red). Images (E-M) are taken from [59]. Scale bars in E-K correspond to 10µm.
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2.2.2 Shibire rescue assay

The shibire mutation in Drosophila is a thermo-sensitive mutation that affects the protein
Dynamin which is needed to perform endocytosis [14]. In the “shibire rescue assay”, the role
of Dynamin-dependent endocytosis in gradient formation is studied. Mutant flies are used
that behave similarly to wild type flies at 25◦C, the permissive temperature of the shibire
mutation. If the temperature is raised to 34◦C, the restrictive temperature of the shibire
mutation, endocytosis is blocked in all cells of the wing disk except for those of the Dpp source
which are rescued from the effects of the mutation and can be assumed to function normally,
see [34] for details.

Experimental data In shibire rescue wing disks at 25◦C, the observed GFP-Dpp gradients
are similar to those in wild type flies. After shifting to the restrictive temperature of the
shibire mutation, the GFP-Dpp gradient vanishes in the following hours [34]. Six hours after
the temperature shift, the amount of GFP-Dpp found in the target tissue has strongly decreased
and only very little GFP-Dpp is detectable in the extracellular space in a range of three cell
diameters adjacent to the Dpp source. The extracellular, i.e. free and surface receptor bound,
GFP-Dpp concentration profile was investigated separately by antibody staining against GFP.
It was found that the extracellular GFP-Dpp concentration in the gradient region is strongly
reduced six hours after the temperature shift [59], see Fig. 2.4 D-F. The total and extracellular
GFP-Dpp levels in the source appear almost unchanged in these experiments. Moreover, the
total and extracellular receptor concentrations were investigated by antibody-staining. No
large changes of these concentrations in comparison to control experiments could be detected
after six hours at the restrictive temperature [59], see Fig. 2.4 G-L.

In our theoretical description of morphogen transport, endocytosis corresponds to the in-
ternalization step, in which a receptor-ligand complex or a free receptor is transported from
the surface of a cell into its interior. Hence, the effect of a temperature shift for a shibire
rescue wing disk translates to the reduction of the internalization rates for the bound and free
receptor, bint and fint, for all cells except for those in the source region. As experimental data
indicate that endocytosis is almost completely blocked in shibire mutants, we could reduce
these rates to zero. However, we consider it more realistic to assume that there is some resid-
ual endocytosis in shibire mutant cells which was previously suggested in [60]. Consequently,
we strongly reduce bint and fint to 3% of their wild type values. The amount of this decrease
is somewhat arbitrary. The rates can be reduced to another small fraction of their original
values or zero without significantly changing the following results.

Calculation in the transcytosis regime We performed a numerical calculation corre-
sponding to this experimental situation using the parameter set in the transcytosis regime.
The morphogen source was explicitly described by a three cell wide stripe adjacent to the
source boundary in which each cell feeds morphogen molecules into the extracellular space
which surrounds it at rate ν. The boundary line between this source and the receiving cells is
located at x = 0. We used a steady state gradient calculated for the wild type rates bint and
fint as initial condition and reduced bint and fint as described above at t = 0. The following
evolution of the ligand and receptor profiles is shown in Fig. 2.4. At t = 6h, the total and
the extracellular ligand concentration in the region of the receiving cells have both roughly
decreased by a factor of three, see Fig. 2.4 A and B. At that time, the surface receptor con-
centration in the immediate proximity of the source region has risen by a factor of up to three
compared to its value at t = 0. Farther away from the source the surface receptor concentration
has only slightly increased by a factor of around 1.5, see Fig. 2.4 C.
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Figure 2.4: Shibire rescue assay for the conditions used in [34, 59] in comparison to results of calculations
based on our theoretical description of morphogen transport in the transcytosis regime. A source region
of three cell diameters width located at x < 0 was explicitly simulated, see main text for details. (A-
C) Time development of the profiles of the total ligand concentration λ (A), the extracellular ligand
concentration l+s+ (B), and the surface receptor concentration s++r+ (C). Lines are separated by one
hour. The profiles at t = 6h, the time at which the experimental observations were made, are shown by
the red lines. The insets in A-C show a magnified view of the region 0 ≤ x ≤ 20. All concentrations are
normalized to the steady state cell surface receptor concentration in the absence of ligands r0. (D,E)
Double labeling showing GFP-Dpp (green) and immunostaining of extracellular GFP-Dpp (red) for a
shibire rescue fly (D) and a heterozygous control (E) that were kept at 34◦C for six hours. Note, that
the range of the extracellular GFP-Dpp gradient is strongly reduced in D. (F) Normalized fluorescence
intensity profiles of extracellular GFP-Dpp in the control (red line) and the shibire rescue fly (blue
line). (G,H) Double labeling showing GFP-Dpp (green) and immunostaining of the Dpp-receptor Tkv
(red) for a shibire rescue fly (G) and a heterozygous control (H) that were kept at 34◦C for six hours.
(I) Normalized fluorescence intensity profiles of Tkv immunostaining in the control (red line) and the
shibire rescue fly (blue line). No significant change of the receptor levels in the receiving tissue is
observed. (J,K) Double labeling showing GFP-Dpp (green) and immunostaining of surface Tkv (red)
for a shibire rescue fly (J) and a heterozygous control (K) that were kept at 34◦C for six hours. (L)
Normalized fluorescence intensity profiles of surface Tkv in the control (red line) and the shibire rescue
fly (blue line). No significant change of the surface receptor levels in the receiving tissue is observed.
Scale bars 10µm. See [59] for more details on the experiments. D-L are taken from [59].
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Figure 2.5: Modified shibire rescue assay [7] in comparison to the results of a corresponding calculation
based on our theoretical description of morphogen transport in the transcytosis regime. (A,B) Time
development of the total (A) and extracellular (B) ligand profiles obtained from the calculation, see
main text for details. Lines are separated by one hour. The profiles at t = 3h are shown in red. The
concentrations are normalized to the steady state cell surface receptor concentration in the absence of
ligands r0. (C,D) Total GFP-Dpp fluorescence in the wing disk of a shibire rescue fly kept at 16◦C
(C) and after three hours at 32◦C (D). (E,F) Extracellular GFP-Dpp detected by antibody staining at
16◦C (E) and after three hours at 32◦C (F). (C-F) were taken from [7].

The calculation with parameters in the transcytosis regime leads to results that are con-
sistent with the ligand profiles experimentally observed in the shibire rescue assay. The
same statement holds for the receptor profiles. The slight increase of the receptor concen-
trations found in the calculation would be hard to detect by the relatively insensitive method
of antibody-staining used to measure the receptor concentrations in the experiments. Note,
that a sufficiently large extracellular ligand degradation rate edeg is crucial for the rapid de-
crease of the ligand concentration in the region of the receiving cells because most of the ligand
that is initially inside the cells is externalized after the reduction of the internalization rate
bint and fint.

Modified shibire rescue assay A shibire rescue experiment was also performed under dif-
ferent conditions. Belenkaya et al. [7] first kept the flies at 16◦C where endocytosis works
but almost no GFP-Dpp is produced by the source cells. They then shifted the temperature
to 32◦C for 3 hours. At this temperature, endocytosis in shibire mutant cells is significantly
reduced but not as strongly as at 34◦C [34, 77]. The extracellular and total ligand profiles
were then observed by antibody staining against GFP and measuring GFP fluorescence respec-
tively. Extracellular and total GFP-Dpp was detected in a graded distribution that extended
approximately ten cell diameters into the target tissue, see Fig. 2.5 C-F.

Calculation in the transcytosis regime We performed numerical calculations correspond-
ing to this situation for the transcytosis regime. As initial condition, we used a tissue devoid
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of ligand in steady state. Mimicking the temperature shift at t = 0, the ligand production rate
in the source was increased to ν. Simultaneously, the internalization rates bint and fint were
reduced by a factor of five to simulate a reduction of endocytosis that is less pronounced than
in the previous simulation corresponding to the experiment done at 34◦C. The resulting pro-
files of the total and extracellular ligand concentrations are shown in Fig. 2.5. The gradients
of total and extracellular ligand reach approximately ten cell diameters away from the source
at t = 3h.

The ligand and receptor profiles obtained from the numerical calculations with parameters
in the transcytosis regime are thus consistent with those observed experimentally in the modi-
fied shibire rescue assay. However, we would like to point out that this modified shibire rescue
experiment is only of limited value because it appears evident that the initiation of GFP-Dpp
production in the source cells leads to some increase of total and extracellular GFP-Dpp in
the receiving cells.

2.2.3 Shibire clone assay

The “shibire clone assay” is a more sophisticated means for studying the role of endocytosis
in Dpp transport. Again, mutant flies are used that behave like wild type flies at 25◦C,
the permissive temperature of the shibire mutation. Upon heating the flies to the restrictive
temperature 34◦C, endocytosis is blocked, but only in small patches of cells in the wing disk
which are called “shibire clones” [34]. The remaining tissue can perform endocytosis normally.
Moreover, the Dpp source cells secrete GFP-Dpp in large amounts only after the temperature
shift to 34◦C, while endogenous Dpp is secreted by these cells independently of the temperature.
This experiment is less invasive than the shibire rescue assay because only few cells in the tissue
are affected by the shibire mutation. The remaining cells possess one functional copy of the
dynamin gene and can be considered to behave similar to wild type cells. A detailed account of
how this complicated experiment is performed and how shibire clones are created in developing
flies is given in [34].

Experimental data Following the temperature shift, GFP-Dpp propagates from the source
into the receiving tissue towards the clones. After a certain time, typically five hours, a
transient GFP-Dpp depletion behind the clones is observed [34], see Fig. 1.4. Here, “behind”
refers to the side of the clone that lies distal to the source. At twelve hours after the temperature
shift, this depletion cannot be observed anymore. This suggests that the shadow has been filled
by GFP-Dpp moving around or through the clone. Inside the clones, relatively small amounts
of GFP-Dpp are observed during this whole time span.

The shibire clone assay has been repeated by Belenkaya et al. [7] who used essentially the
same procedure as described above. Five hours after the temperature shift to 34◦C, the extra-
cellular ligand profiles were observed using antibody staining against GFP. An accumulation
of extracellular GFP-Dpp was detected in shibire clones.

The Dpp receptor levels at the restrictive temperature were also experimentally investigated
using shibire clones. In the experiments by Belenkaya et al., slightly increased total receptor
levels were observed in shibire clones after five hours of endocytic block [7]. We, however,
were not able to detect a significant change of the surface receptor levels as compared to the
wild type situation [59]. Independent of these details, we would like to emphasize that there
is no evidence for a reproducible rapid increase of the surface receptor concentration in shibire
clones at the restrictive temperature.
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Figure 2.6: Profiles of the total ligand concentration λ in a calculation corresponding to the shibire
clone assay based on our theoretical description of morphogen transport in the transcytosis regime.
(A,B) Profiles of the total ligand concentration at t = 5h (A) and at t = 24h which is very close to the
steady state (B). The region corresponding to the clone is indicated by the transparent white boxes, see
also Fig. 2.2. (C-E) Time development of the total ligand concentration λ along slices in the x-direction
through the clone (C), far away from the clone (D), and along a slice in the y-direction behind the clone
(E) as indicated by the dashed lines in A. Profiles are shown at t = 1h, 3h, 5h, 7h, and in steady state.
The profiles at t = 5h at which time the observations in the experiments were made [34] are shown in
red and those in the steady state by broken lines. (F) Contrast of the ligand depletion behind the clone
as defined in equation (2.1). The two positions at which the values of λ are compared to calculate the
contrast are indicated by the arrows in B. All concentrations are normalized to the steady state cell
surface receptor concentration in the absence of ligands r0.
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Calculation in the transcytosis regime We performed numerical calculations in the tran-
scytosis regime corresponding to this experimental setup. As initial condition, a steady state
gradient of the unlabeled ligand as in the calculation corresponding to the wild type experi-
ment described in section 2.2.1 was used. Mimicking the effects of the temperature shift, the
production rate of the labeled ligand was raised from 0 to ν at t = 0. Simultaneously, the
internalization rates bint and fint were reduced to 3% of their wild type values in a rectangular
patch of 5 × 8 cells located at a distance of six cells from the source, see Fig. 2.2. This patch
mimics a typical shibire clone. Note, that this is the same way the effect of the shibire mutation
at 34◦C was described in the calculation corresponding to the shibire rescue assay discussed in
section 2.2.2.

The following time development of the obtained ligand and receptor profiles is shown in
Fig. 2.6. A depletion of the total ligand concentration is seen behind the clone. A dimensionless
measure for the strength of this “shadow” is given by the contrast c defined as

c(t) = 1 − λb(t)
λo(t)

, (2.1)

where λb(t) denotes the total labeled ligand concentration directly behind the clone and λo(t)
that at a position of equal distance to the source but far away from the clone. The two locations
used here are indicated by the arrows in Fig 2.6 B. The time development of the contrast is
shown in Fig 2.6 F. It is apparent that the contrast is largest in the beginning and decreases
with time.

There is no significant amount of intracellular ligand present inside the clone region at
any time during this simulation. In Fig. 2.7, we show the corresponding distributions of
extracellular ligands. In the part of the clone region facing the source, an accumulation of
extracellular ligand is seen at five hours and later times, see Fig. 2.7 E.

While the exact shape of the two dimensional ligand profiles and the function c(t) depend
on the specifics of the somewhat arbitrarily chosen clone geometry, the qualitative behavior
described here is independent of these details. Consequently, we find that the ligand profiles
inside and outside of the clone region obtained from the numerical calculations for the transcy-
tosis regime are consistent with those observed experimentally. The very large contrast in the
first hours cannot be observed in the experiments because at these times, there is only very
little GFP-Dpp near the clone, see Fig. 2.6 C and E. At t = 5h, detectable amounts of ligand
are present around the clone and the contrast is still above 0.75 which explains why a shadow
can be observed in the experiments at this time. After t = 12h, the contrast decays to values
below 0.6 which is probably too small to be detectable in the experiments. Note, that the con-
trast c(t) overestimates the intensity of shadows because only the ligand concentration at one
point directly behind the clone enters whereas in the experiments, the fluorescence intensity
in a larger region behind the clone is observed. Finally, we would like to mention that the
accumulation of extracellular ligand inside the clone region does not occur if the internalization
rates bint and fint are reduced to zero in the clone region.

In summary, we find that the transcytosis regime of our description is in semi-quantitative
agreement with the key experiments on Dpp that were discussed in this section.

2.3 Comparison to our theoretical description in the extracel-
lular diffusion dominated regime (DBTS model)

In this section, we compare the data of three key experiments — gradient formation in wild
type, the shibire clone assay, and the shibire rescue assay — to calculations based on our
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Figure 2.7: Profiles of the extracellular ligand concentration l + s+ in a calculation corresponding to
the shibire clone assay based on our theoretical description of morphogen transport in the transcytosis
regime. (A,B) Profiles of the extracellular ligand concentration at t = 5h (A) and at t = 24h which
is very close to the steady state (B). The region corresponding to the clone in which bint and fint are
reduced to 3% of their wild-type values is indicated by the transparent white boxes, see also Fig. 2.2.
(C-E) Time development of the extracellular ligand concentration l + s+ along slices through the clone
in the x-direction (C), far away from the clone in the x-direction (D), and through the clone in the
y-direction (E) as indicated by the dashed lines in A. Profiles are shown at t = 1h, 3h, 5h, 7h, and in
steady state. (F) Surface receptor concentration s+ + r+ along the same slice as in C. The profiles at
t = 5h at which time the observations in the experiments were made [7] are shown in red and those
in the steady state by broken lines. All concentrations are normalized to the steady state cell surface
receptor concentration in the absence of ligands r0.
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Figure 2.8: Gradient formation corresponding to wild-type conditions obtained from calculations based
on the theoretical description of morphogen transport in the diffusion regime (3.28). (A-D) Time
development of gradient formation. The concentration profiles of total ligand λ (A), extracellular
ligand l + s+ (B), free extracellular ligand l (C), and total receptor ρ (D) are shown during gradient
formation. The lines are separated by two hours and the respective steady states are shown by the
broken lines. The initial conditions imposed at t = 0 were l = s+ = si = 0, r+ = r0, and ri = fint/f0

ext,
where r0 = f0

synf0
ext/a2fdegfint. All concentrations are normalized to r0. Parameters as shown in Table

2.1 with rmax = Rmax/a2. Figure modified from [59].

theoretical description in the diffusion regime. We previously presented these results in [59]
where we called the diffusion regime of our description the “diffusion, binding, and trafficking
model with saturating surface receptor concentration” (DBTS model).

For all calculations discussed here, the set of reaction-diffusion equations of the DBTS
model (3.28) is solved for an AOI of 200µm × 200µm with boundary conditions as introduced
above. This AOI is equivalent to the one used in the calculations for the transcytosis regime
as a typical cell diameter in the wing disk is a = 4µm. The set of parameters in the diffusion
regime shown in Table 2.1 with rmax = Rmax/a2 is used. The use of equations (3.28) implies
that we always neglect the presence of endogenous Dpp in the tissue and that we use a slightly
different description of the receptor kinetics than in the transcytosis regime as will be discussed
in section 3.4. The results presented here are not significantly affected by these details, see
also chapter B of the appendix.
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2.3.1 Gradient formation in wild type

We performed a numerical calculation corresponding to gradient formation in wild type as
described in section 2.2.1 using the set of parameters in the diffusion regime. As initial con-
dition, a tissue devoid of ligand in steady state was used. The resulting time development
of the ligand and receptor profiles is shown in Fig. 2.8. The ligand profiles are consistent
with the experimental observations. Note, however, that the ligand profiles exhibit differences
compared to the results of the calculation with parameters in the transcytosis regime. The
free extracellular ligand gradient is established over a considerable range after a short time of
about two hours. The total ligand concentration increases over the whole gradient range during
gradient formation, i.e. its time development does not resemble a front propagating away from
the source. These differences between the diffusion regime and the transcytosis regime could
so far not be distinguished in the experiments because there are no reliable data on the time
development of the free extracellular morphogen concentration during gradient formation.

2.3.2 Shibire rescue assay

We repeated the calculation corresponding to the shibire rescue assay described in section
2.2.2 using the set of parameters in the diffusion regime. As before, we explicitly included
the morphogen source in our description. The source is mimicked by a stripe of 10µm width
located at x < 0 in which the free extracellular ligand concentration l is increased at a constant
rate ν/2a2 with the remaining kinetics unaltered. As discussed above, zero flux boundary
conditions are imposed at the edge of this stripe at x = −10µm. The block of endocytosis
at the restrictive temperature 34◦C is mimicked by setting the corresponding rates bint and
fint to zero. In Fig. 2.9, we show the time development of the resulting profiles of ligand and
receptor concentration. While the total ligand concentration λ slightly increases outside of the
source region, a strong increase of the extracellular ligand concentration l+ s+ and the surface
receptor concentration s+ + r+ is found there.

This is in contrast to the experimental data which show a strong decrease of the total and
extracellular Dpp concentration and no significant increase in surface receptor levels [59]. The
increase of the extracellular ligand concentration l+ s+ and the surface receptor concentration
s+ + r+ occurs because the main effect of endocytosis in the diffusion regime of our descrip-
tion is to remove receptor bound ligands and free receptors from the cell surface and thus
the extracellular space. Consequently, a reduction of endocytosis leads to an increase of the
extracellular ligand and receptor concentrations.

One should ask the question if better agreement with the experimental data can be achieved
for a different parameter choice in the diffusion regime. It appears impossible that the extra-
cellular ligand concentration could decrease because blocking endocytosis effectively reduces
ligand degradation and does not directly affect ligand transport as long as the set of param-
eters is in the diffusion regime. We have also numerically verified that a larger extracellular
degradation rate edeg does not change the behavior described above. Moreover, the results
presented here do not change significantly if the effect of the shibire mutation is mimicked
by strongly reducing the internalization rates bint and fint to a value that is still larger than
zero. In principle, the increase of the surface receptor concentration could be suppressed by
choosing a smaller value for Rmax. However, as we will see below, a strong increase of the
surface receptor concentration is needed to obtain results consistent with experimental data in
the shibire clone assay.
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Figure 2.9: Results from a calculation corresponding to the shibire rescue assay. The ligand and receptor
profiles were calculated using the theoretical description of morphogen transport in the diffusion regime
(3.28). A source region of 10µm width located at x < 0 was explicitly simulated, see main text for
details. (A) Time development of the total ligand concentration λ. Lines are separated by one hour.
The initial profile is shown by the broken line. The red line corresponds to the time at which the
experimental observations were made. (B) As in A but for the extracellular ligand concentration l+s+.
(C) As in A but for the surface receptor concentration s+ + r+. Note the strong increase of the
extracellular ligand and surface receptor concentrations outside of the source region. All concentrations
are normalized to r0 = f0

synf0
ext/a2fdegfint. Figure modified from [59].

2.3.3 Shibire clone assay

We performed two dimensional calculations corresponding to the shibire clone assay with es-
sentially the same geometry as described in 2.2.3. We use a slightly different position of the
clone in the AOI: it is located at 25µm distance to the source and extends 25µm in the x-
direction and 50µm in the y-direction. The block of endocytosis at the restrictive temperature
is mimicked by setting the corresponding rates bint and fint to zero in the clone region. The
resulting ligand profiles and the time development of the contrast of the shadow behind the
clone as defined in equation (2.1) are shown in Fig. 2.10. The contrast reveals that, consistent
with the experiments, there is a strong shadow at t = 5h which then decreases and actually
turns into an “anti shadow”, an accumulation of ligand behind the clone, at later times. In
the clone region a similar total ligand concentration as around it is observed at t = 5h. The
extracellular ligand and receptor concentrations increase dramatically in the clone region, see
Fig. B.1 F and G.

In this calculation, the appearance of a shadow has its origin in this strong, swift increase
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of the free surface receptor concentration in the clone region. This increase is achieved by a
choice of sufficiently large values for Rmax and fext, see Table 2.1. The shadow arises because
a large amount of ligand binds to free receptors on the surface of cells in the clone region
and is thus immobilized. It disappears when the surface receptors in that region are mostly
occupied by ligands so that the extracellular diffusion of ligands through the clone is no longer
obstructed. Thus, a rapid increase of the surface receptor levels and a strong accumulation of
extracellular ligands are necessary for the formation of a shadow in the diffusion regime. To
verify this, we have performed numerical calculations in which lower values of Rmax and f0

ext

were used. The contrast of the shadow at t = 5h was strongly reduced for significantly smaller
values of these parameters. It should also be mentioned that setting the internalization rates
bint and fint to a strongly reduced value in the clone region instead of setting them to zero does
not change our results significantly.

While the ligand profiles found outside of the clone region are consistent with the experi-
mental data, neither a strong accumulation of extracellular ligand nor of cell surface receptor
was detected in shibire clones after five hours at the restrictive temperature [59, 34]. Slight
increases of the total receptor and extracellular Dpp levels could be detected in shibire clones
[7]. However, the speed and the magnitude of the accumulation are not in agreement with
those found in the numerical calculation.

In summary, we have illustrated in this section that a parameter choice for which transport
is dominated by extracellular diffusion leads to results that are inconsistent with some of
the experimental data available for the shibire clone and rescue experiments. This is of key
importance because it suggests that transcytosis is the dominant transport mechanism used in
morphogen gradient formation for Dpp in the wing disk. However, one should keep in mind
that unknown processes which are not included in our theoretical description might alter these
results.

2.4 Interpretation of morphogen profiles in clone experiments

In the experimental study of morphogen transport in Drosophila, it is a frequently used tech-
nique to create patches of mutant cells, i.e. clones, which have different properties than the
cells in the remaining tissue. An example of such an experiment was discussed in section 2.2.3.
One then tries to extract information about the effects of the mutation in the clone cells by
observing how the ligand profiles are affected by the presence of the clone. For example, a de-
pletion of ligand behind a clone suggests that ligand transport through the clone is obstructed
and the investigated mutation thus plays a role in transport. In this section, we discuss the
effects of clones on the ligand profiles to put such conclusions drawn from experimental data
on a stronger basis. A mainly numerical investigation of this problem was performed in [27].

Distortion of steady state profiles We study a simple linear system capable of gradient
formation in two space dimensions. Ligand transport is described by the diffusion equation
with degradation term ∂tc = D�c − kc. Here, c(�x, t) denotes the ligand concentration, D the
effective diffusion coefficient, and k the effective degradation rate. Motivated by the geometry
of the wing disk, a typical tissue in which morphogen gradients are formed, we study the steady
state solutions of this equation in the half-space x ≥ 0 with a ligand source located at x < 0.
The boundary conditions are D∂xc|x=0 = −j0 and c(∞, y) = 0. This system gives a rough
linear approximation to more detailed descriptions of gradient formation like those discussed
in chapter 3. We assume that inside the clone, the values for D and k are different than in the
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Figure 2.11: Schematic of the geometry used in section 2.4 with a clone region C in which D and k have
different values than outside of it.

remaining tissue, see Fig. 2.11. The equation describing this scenario in two dimensions is

∂tc(�x, t) = ∇ · (D + δD(�x))∇c(�x, t) − (k + δk(�x)) c(�x, t), (2.2)

with δD(�x) = δD χC(�x) and δk(�x) = δk χC(�x). Here, δD and δk are constants quantifying
the difference of the effective diffusion coefficient and degradation rate inside the clone region
compared to the outside and χC is the characteristic function of the clone region C with
χC(�x) = 1 if �x ∈ C and χC(�x) = 0 if �x /∈ C.

Assuming that |δD| � D and |δk| � k, we can perturbatively calculate the steady state
solution of equation (2.2). We formally introduce a small parameter ε and use the ansatz
c(x) = c0(x) + εc1(x) + . . . to solve the equation

∇ · (D + εδD(�x))∇c(�x) − (k + εδk(�x)) c(�x) = 0,

to each order in ε. The unperturbed solution for ε = 0 is c0(�x) = c0(x) = c0
0e

−x/ξD , where
ξD =

√
D/k is the diffusion length. To first order in ε, we have

D�c1(�x) − kc1(�x) = −∇ · δD(�x)∇c0(�x) + δk(�x)c0(�x)

with the boundary condition ∂xc1(�x) = 0 at x = 0. The free Green’s function of the operator
(D(∂2

x + ∂2
y) − k) is

G0(�x, �x′) =
−1

2πD
K0(|�x − �x′|/ξD),

where K0 is a modified Bessel function of the second kind [97]. From this, we can construct
the Green’s function G+ satisfying ∂xG+(�x, �x′)|x=0 = 0 using a mirror image technique:

G+(x, y, x′, y′) = G0(x, y, x′, y′) + G0(x, y,−x′, y′).
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behind δD > 0 δD < 0 δD = 0
δk > 0 ? − −
δk < 0 + ? +
δk = 0 + − 0

in front δD > 0 δD < 0 δD = 0
δk > 0 − ? −
δk < 0 ? + +
δk = 0 − + 0

Table 2.2: Effects of a clone on the concentration profile in front of and behind the clone, i.e. for x < L1

and x > L2 respectively. Here, “+” denotes an accumulation, “−” a depletion, “0” no effect, and for
“?” no general statement can be made because the effect depends on the absolute values of δD and δk.

Using this, we find for the first order correction c1(�x):

c1(�x) =
∫ ∞

0
dx′

∫ ∞

−∞
dy′ G+(�x, �x′)

[−∇�x′ · (δD(�x′)∇�x′c0(x′)) + δk(�x′)c0(x′)
]

=
∫
C
dx′dy′

[
δD c′0(x

′)∂x′G+(�x, �x′) + δk c0(x′)G+(�x, �x′)
]

(2.3)

where we have used ∇�x′ · (δD(�x′)∇�x′c0(x′)) = ∂x′(δD(�x′)∂x′c0(x′)) and integrated by parts
once. Higher order corrections can be calculated iteratively. Note, that this perturbative
approach is only valid if |δD| and |δk| are sufficiently small for this iteration to converge.

It is not possible to express the integral in (2.3) in terms of elementary functions. Nev-
ertheless, we can identify important properties of the solution. Since the integration extends
only over the clone region C and G+(�x, �x′) rapidly decays for increasing |�x − �x′| on a length
scale given by ξD, we see that the ligand profile is only affected in the clone region and its
vicinity. We further have G+(�x, �x′) < 0 and sufficiently far away from the source boundary
located at x = 0, ∂x′G+(�x, �x′) > 0 if x < x′ and ∂x′G+(�x, �x′) < 0 if x > x′. In many cases, this
enables us to identify the sign of c1(�x) for x < L1 and x > L2, with L1 = inf{x|�x ∈ C} and
L1 = sup{x|�x ∈ C}, see also Fig. 2.11. This means that we can identify if there is a depletion
or an accumulation of ligands in front of and behind the clone respectively. The results of
these considerations are summarized in Table 2.2.

We have also evaluated (2.3) numerically to get a better impression of how the ligand
profiles are distorted by the clone. The resulting distortions c1(�x) of the steady state profile
are shown in Fig. 2.12 for several different cases. They illustrate the results summarized in
Table 2.2.

In the light of these results, we understand the steady state ligand profiles observed in the
clone experiments and the corresponding numerical calculations better. The shibire clone in the
calculations for a parameter choice in the extracellular diffusion dominated regime discussed
in 2.3.3 leads to an enlarged effective diffusion coefficient in the clone region and to a reduced
effective degradation rate. This is why an accumulation of ligand both in front of and behind
the clone is observed in steady state. Note that without a reduction of the degradation rate,
a ligand depletion should be observed in front of the clone. In the corresponding calculation
in the transcytosis regime discussed in 2.2.3, we found a ligand accumulation in front of the
clone and a depletion behind it. This is consistent with a reduced effective diffusion coefficient
in the clone region. Indeed, morphogen transport by transcytosis can be characterized by an
effective diffusion coefficient that becomes small if the internalization rate bint is reduced to
small values as we will show in section 3.1.2.
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Figure 2.12: First order correction c1(�x) of the two dimensional steady state concentration profiles in the
presence of a rectangular clone located in the region 10 ≤ x ≤ 20 and −10 ≤ y ≤ 10. The morphogen
source is located at x < 0. For simplicity, we use the dimensionless parameters D = 5, k = .1 δD/D =
±.4, and δk/k = ±1. The zeroth order solution of the steady state profile is c0(x) = exp(−x/ξD).

Approach to the steady state So far, we have discussed the effects of clones in the steady
state. However, one should also consider the time development of the ligand profiles in and
around clones during the approach to the steady state. This is relevant because in the shibire
clone experiment, a transient ligand depletion behind the clone is observed that is not apparent
when the system is close to its steady state.

Let us revisit the results of the calculation in the transcytosis regime discussed in 2.2.3.
There, a ligand depletion with decreasing contrast was found behind the clone region. This
is consistent with the experimental data because, for a certain time span, the contrast could
be sufficiently large to be detected in experiments and then fall below detectable values. The
behavior found in the numerical calculation can be understood if we go to the extreme situation
of vanishing diffusion coefficient in the clone region. This situation is described by imposing
zero-flux boundary conditions along the border of the clone region. Ligands can only reach
the region behind the clone by moving around it. This takes longer than reaching a region of
equal distance to the source boundary located away from the clone because a larger distance
has to be covered by the ligands. This is the origin of the decreasing contrast of the shadow
shown in Fig. 2.6 F.

The time development found in the calculations in the diffusion regime discussed in 2.3.3
can also be explained. There, a complicated kinetics in the clone region leads to the formation
of a ligand depletion behind the clone that changes into an accumulation during the approach
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to the steady state, see Fig. 2.10 F. In the beginning, the effective diffusion coefficient in the
clone region is reduced because large numbers of ligands get trapped by binding to free surface
receptors. This leads to a ligand depletion behind the clone because the ligand flow through the
clone region is reduced. The surface receptors in the clone region then become more and more
occupied allowing ligands to diffuse freely through this region. This causes an increase of the
effective diffusion coefficient with time which in turn results in a rapid padding of the region
behind the clone with ligands moving from the source through the clone region. Note, that the
effective degradation rate for ligands is zero in the clone region at all times in this calculation
because the extracellular degradation rate is zero and internalization of receptor-bound ligands
does not occur.

2.5 Fluorescence recovery after photo-bleaching experiments

We measured the apparent diffusion coefficient D for GFP-Dpp in the wing disk using fluores-
cence recovery after photo-bleaching (FRAP). In our particular application of this method, the
fluorescent GFP molecules are photo-bleached in a 10µm wide stripe near the the Dpp source
and parallel to it by irradiation with a laser beam of wavelength 488nm. In the following hour,
the fluorescence intensity in the photo-bleached region is recorded and quantified [78, 77].
Since the transport mechanism on hand is unknown but nondirectional, it is a reasonable null
hypothesis that the transport phenomenon observed obeys the linear diffusion equation. For
simplicity, we neglect the degradation and production of GFP-Dpp molecules. Preliminary
experimental data indicate that both processes have only a small influence on the observed
fluorescence during the time span of about one hour in which the FRAP experiments are done,
so that their negligence should lead to a relatively small error [40].

As we discuss in more detail below, one can extract the apparent diffusion coefficient D from
the fluorescence recovery curve. The relation between GFP-Dpp concentration and detected
fluorescence is assumed to be linear for this. This is reasonable if one operates in a regime
where the maximum fluorescence is well below the saturation threshold of the photon detector.
Control experiments indicate that this is indeed the case [40]. Both wild type wing disks and
shibire rescue wing disks were investigated at 34◦C and 25◦C [78, 77]. These temperatures
correspond to a restrictive and a permissive temperature of the shibire mutation respectively.

We have solved the one dimensional linear diffusion equation ∂tc(t, x) = D∂2
xc(t, x) for the

initial condition c(0, x) = cb for −w/2 ≤ x ≤ w/2 and c(0, x) = cu otherwise. This corresponds
to a photo-bleached stripe of width w in which the concentration of fluorescent molecules is
reduced to a value cb which is smaller than the value cu present in the un-bleached region.
By assuming a homogenous concentration cu outside of the photo-bleached region, we make a
small error since in the experiments a stripe in a graded concentration profile is bleached. From
the solution c(t, x), we have calculated the time development of the average concentration f(t)
in the region −w/2 ≤ x ≤ w/2:

f(t) = w−1

∫ w/2

−w/2
dx c(t, x) = (cu − cb)

[
1 −

(
2

√
Dt

πw2

(
e

−w2

4Dt − 1
)

+ erf
(

w

2
√

Dt

))]
+ cb,

(2.4)
where erf(z) = 2π−1/2

∫ z
0 dq exp(−q2) is the error function [97]. The time evolution of the

average fluorescence in the photo-bleached stripe was extracted from the experimental data
by quantifying the fluorescence intensity using Zeiss image analysis software. Finally, the
parameters D, cb, and cu were optimized to obtain the best possible agreement of f(t) with the
experimental fluorescence recovery curve. The nonlinear least-squares Marquardt-Levenberg
algorithm as implemented in gnuplot [99] was used for this procedure. Exemplary recovery
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Figure 2.13: Experimental fluorescence data and exemplary fit curves for fluorescence recovery after
photo-bleaching (FRAP) experiments on GFP-Dpp in the Drosophila wing disk. (A-G) Projection
of the GFP fluorescence in five individual sections measured by confocal time-lapse microscopy [78]
before photo-bleaching (A) and 0 (B), 10 (C), 20 (D), 30 (E), 40 (F), and 50 (G) minutes after photo-
bleaching a 10µm wide stripe near the GFP-Dpp source. (H) The fitted fluorescence recovery curves
(f(t) − cb)/(cu − cb) which are shown by lines are compared to the corresponding data obtained from
eight experiments in wild type wing disks at 25◦C which are shown by different symbols. Scale bars
correspond to 10µm. Experimental data courtesy of P. Pantazis [78, 77]. Figure modified from [78].
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25◦C 34◦C
wt 0.03 ± 0.02 (n=8) 0.008 ± 0.002 (n=3)
shi 0.006 ± 0.002 (n=3) 0 (n=3)

Table 2.3: Apparent diffusion coefficient of GFP-Dpp in the wing disk measured using FRAP in wild
type (wt) and in shibire (shi) mutant animals at different temperatures as indicated. The units are
µm2/s. The values are averages of n repetitions of each experiment under identical conditions [78, 77].
For the shibire mutant at 34◦C, the fluorescence recovery in the photo-bleached region was very weak
corresponding to a diffusion coefficient D ≈ 0. Experimental data courtesy of P. Pantazis [78, 77].

curves with the corresponding fit curves f(t) and the original experimental data are shown in
Fig. 2.13. Note, that due to technical difficulties, the recovery in the photo-bleached region
can only be followed for approximately one hour after photo-bleaching. This time span is
insufficient to obtain complete fluorescence recovery in the photo-bleached region which would
simplify the analysis of these data [4] and presumably lead to a smaller variability of the
apparent diffusion coefficients extracted from individual experiments.

The apparent Diffusion coefficients D thus extracted from the recovery curves are shown
in Table 2.3. The values found in wild type at the higher temperature 34◦C are slightly lower
than at 25◦C. In the shibire rescue disks at the permissive temperature the apparent diffusion
coefficient is comparable to that found in wild type. At the restrictive temperature 34◦C, no
significant fluorescence recovery can be observed in the photo-bleached stripe in shibire rescue
wing disks which corresponds to D ≈ 0. These quantitative data provide further evidence for
a role of endocytosis in Dpp transport.
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Chapter 3

Theoretical description of
morphogen transport

In this chapter, we develop a theoretical description of morphogen transport and gradient
formation. The description is motivated by the formation of the gradient of the morphogen
Dpp in the Drosophila wing disk as introduced in sections 1.2 and 2.2.1. This is a typical
setting for morphogen gradient formation. The contributions to morphogen transport taken
into account are passive diffusion in the extracellular space and transcytosis, see section 1.4.
In section A.3 of the appendix, we also investigate transport of morphogens by diffusion in the
cell membrane. Further generalizations of the description are discussed in the remainder of
appendix A.

The wing disk is an epithelium that consists of a single cell layer, see Fig. 1.3. Moreover,
Dpp in the wing primordium is mostly observed in a sheet that extends over about 200×100µm
in the xy-plane but only about 5µm in the z-direction [34], see section 1.2. These observations
show that the transport of Dpp occurs essentially in two dimensions. It is also a reasonable
approximation to neglect the folding of the wing disk in the three dimensional space and thus
to assume it to be planar.

We will first develop a description of morphogen transport and degradation in one space
dimension and later generalize it to two space dimensions. This description reflects the sym-
metries of the system on length scales that are large compared to one cell diameter. The
non-directionality of Dpp transport that has been experimentally observed on such a length
scale [34] suggests that the mathematical description should be invariant under rotations and
space inversion. Our description has these symmetries which are only violated by boundary
effects. Note, that this is an idealization of the situation present in a tissue like the wing disk.
Strictly speaking, the two dimensional arrangement of the cells breaks rotational invariance.
However, due to the disordered nature of this arrangement, no distinguished direction is de-
fined in the tissue, so that the assumption of rotational symmetry should give a very good
approximation to the real situation. A one dimensional description is of interest because the
geometry of the region of the wing disk in which the Dpp gradient forms is approximately
translation invariant in the direction parallel to the Dpp source over a considerable range, see
Fig. 1.3 C.

While we discuss boundary conditions in general here, one must keep in mind that the
correct boundary and initial conditions depend on the specific system and experimental setup
on hand. We gave a detailed specification of these boundary and initial conditions for several
experiments performed in the wing disk in chapter 2. If appropriate parameters and boundary
conditions are applied, the theoretical description developed here is, in fact, very general
and applicable to many systems in which molecules are transported by passive diffusion and
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Figure 3.1: Schematic representation of transport by transcytosis in a chain of cells of diameter a
indexed by n. The rates of ligand-receptor binding and un-binding, internalization and externalization
of ligand-receptor pairs are denoted kon, koff , bint and bext. Degradation of ligand occurs inside the
cells with rate bdeg and in the extracellular space with rate edeg. Ligands can also hop directly between
neighboring extracellular spaces at a rate p which describes their movement in the extracellular space
around the cells by passive diffusion (not shown). Figure modified from [9].

transcytosis. To reflect this generality, we will mostly refer to the transported molecules as
“ligands” instead of “morphogens”. In general, ligands are molecules that can bind to a
corresponding receptor molecule.

3.1 One dimensional description of morphogen transport

We define our discrete microscopic description of ligand transport by transcytosis and passive
extracellular diffusion in this section and derive effective transport equations that are valid on
length scales large compared to one cell diameter. Here, we first discuss a one dimensional
description which we will generalize to two space dimensions in section 3.2.

3.1.1 Microscopic one dimensional description

A one dimensional model to describe ligand transport is schematically shown in Fig. 3.1.
Ligands can bind to and detach from receptors on the cell surface. They exist as free molecules
only in the narrow space between cells where they can move by diffusion. Effective long-range
transport can be achieved by transport through the cell interior (transcytosis), diffusion around
the cells in the surrounding extracellular space, or a combination of both. Transcytosis occurs
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when a ligand binds to a receptor, is internalized into a cell and subsequently externalized at a
different location of the surface of the same cell. Repeating this process together with ligands
being passed from the cell surface to the surface of neighboring cells leads effectively to long
range transport. This process can be characterized by rates kon and koff for receptor binding
and un-binding of ligands and the rates bint and bext of internalization and externalization of
receptor-ligand complexes. Free ligands can hop directly from one gap between the cells to the
adjacent ones at a rate p. This describes their free diffusion in the extracellular space around
cells. Also important for gradient formation is the degradation of ligands with rate edeg in the
extracellular space and of ligands bound to receptors inside the cell with rate bdeg.

If cells possess a polarity and define a direction in the plane in which transport occurs,
transcytosis can have a bias and lead to directed transport. Here, we consider the simpler
case where cells are apolar in the plane where transport occurs and transport is nondirectional
which is probably the case in the wing disk at early stages of development. In section A.2, we
discuss the effects of a bias.

In principle, the diffusion of receptor-bound ligands in the cell membrane also leads to
transport between different positions on the surface of one cell [56]. Here, we neglect this
phenomenon assuming that the time scale of ligand transport over one cell diameter by this
process is much larger than those of transport by free extracellular diffusion or transcytosis.
In section A.3 of the appendix, we discuss the treatment of diffusion in the cell membranes in
our description.

Description with receptor kinetics The kinetics of free receptors and the production and
degradation of receptors by the cells has to be taken into account. Free receptors are inter-
nalized and externalized with rates fint and fext respectively. In addition, each cell produces
receptors with a rate fsyn. Newly produced receptors appear on the cell surface [61]. In exper-
iments, evidence has been obtained that the rate of receptor synthesis depends on the number
of free and ligand-bound receptor molecules present in the cell [61, 92] so that fsyn is a function
of these quantities, see below. Internalized free receptors are degraded with rate fdeg.

In one space dimension, we consider a linear chain of cells. We denote the distance between
the centers of two neighboring cells by a and the width of the gap between two cells by b. In
biologically relevant cases the volume fraction of the extracellular space is much smaller than
that of the cells which implies b � a. The time-dependent concentrations of internal free and
ligand-bound receptors are denoted by R

(i)
n and S

(i)
n . R

(l)
n and R

(r)
n denote the concentrations of

free receptors on the left and right cell surfaces respectively, S
(l)
n and S

(r)
n for the ligand-bound

receptors accordingly. Here, n indexes the cells, see Fig. 3.1. Finally, the concentration of
free extracellular ligands between cells n and n + 1 is denoted by Ln. The kinetics of this
microscopic description is given by

∂tLn = koff(S(r)
n + S

(l)
n+1) − kon(R(r)

n + R
(l)
n+1)Ln +

p

2
(Ln+1 + Ln−1 − 2Ln) − edegLn

∂tR
(r)
n =

fsyn

2
+ koffS(r)

n − konR
(r)
n Ln − fintR

(r)
n +

fext

2
R(i)

n

∂tS
(r)
n = −koffS(r)

n + konR
(r)
n Ln − bintS

(r)
n +

bext

2
S(i)

n

∂tR
(l)
n =

fsyn

2
+ koffS(l)

n − konR
(l)
n Ln−1 − fintR

(l)
n +

fext

2
R(i)

n

∂tS
(l)
n = −koffS(l)

n + konR
(l)
n Ln−1 − bintS

(l)
n +

bext

2
S(i)

n

∂tR
(i)
n = −fextR

(i)
n + fint(R(l)

n + R(r)
n ) − fdegR

(i)
n

∂tS
(i)
n = −bextS

(i)
n + bint(S(l)

n + S(r)
n ) − bdegS

(i)
n . (3.1)
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Receptor internalization, externalization, and degradation as well as ligand un-binding are
described by first order rate equations, receptor binding by a second order process. Reflecting
the non-directionality of transport, the description (3.1) is invariant under space inversion
(x → −x).

The rate of receptor synthesis fsyn in (3.1) is a constant. In a more realistic description of
the receptor kinetics, the rate of receptor synthesis fsyn depends on R

(l)
n + R

(r)
n and S

(l)
n + S

(r)
n :

fsyn = f0
syn


1 −

R
(l)
n + R

(r)
n + ψ

(
S

(l)
n + S

(r)
n

)
Rmax


 , (3.2)

where f0
syn is a basal rate of receptor synthesis and Rmax is the saturation value of the surface

receptor concentration at which the production of new receptors stops. The dimensionless
parameter ψ allows for an enhancement, ψ < 1, or a reduction, ψ > 1, of receptor synthesis
caused by the presence of ligands bound to receptors on the cell surface — phenomena known
to biologists as receptor “up-regulation” and “down-regulation” respectively [61]. For Dpp in
the Drosophila wing disk, receptor down-regulation has been observed [92], while up-regulation
can occur for other morphogens [16]. Independent of the specific choice of the function fsyn,
a realistic approach to the biological situation should satisfy fsyn → 0 for (R(l)

n + R
(r)
n + S

(l)
n +

S
(r)
n ) → ∞. This expresses the existence of a negative feedback loop in which the presence of

receptors negatively regulates the production of new receptors.

Constant surface receptor approximation We now discuss a simpler situation where the
cells maintain the surface receptor number R constant everywhere. This simplification will be
useful for the identification of key properties of the transport mechanism. In the description of
this situation, the free receptor number on the left and right cell surface in (3.1) are replaced
with R

(l/r)
n → (R/2−S

(l/r)
n ) and the equations for the kinetics of the free receptor concentrations

are obsolete. The equations describing ligand transport in this approximation are thus

∂tLn = koff(S(r)
n + S

(l)
n+1) − kon(R − S(r)

n − S
(l)
n+1)Ln +

p

2
(Ln+1 + Ln−1 − 2Ln) − edegLn

∂tS
(r)
n = −koffS(r)

n + kon

(R

2
− S(r)

n

)
Ln − bintS

(r)
n +

1
2
bextS

(i)
n

∂tS
(l)
n = −koffS(l)

n + kon

(R

2
− S(l)

n

)
Ln−1 − bintS

(l)
n +

1
2
bextS

(i)
n

∂tS
(i)
n = −bextS

(i)
n + bint(S(l)

n + S(r)
n ) − bdegS

(i)
n . (3.3)

Boundaries effects The descriptions (3.1) and (3.3) are valid in the bulk of the lattice. We
also have to specify the kinetics at the boundaries of this lattice. To describe the effects of a
ligand source located at n = 0 in (3.1), we modify the equation for the free ligand:

∂tL0 = koffS
(l)
1 − konR

(l)
1 L0 +

p

2
(L1 − L0) − edegL0 + ν, (3.4)

where ν is the rate at which ligands from the source enter the system. At the position n = N
where the lattice ends, we have

∂tLN = koffS
(r)
N − konR

(r)
N LN +

p

2
(LN−1 − LN ) − edegLN , (3.5)

which corresponds to a zero flux boundary condition at this edge of the lattice. The equation
for ∂tL0 and ∂tLN in the description with the constant surface receptor approximation (3.3)
are modified accordingly at the boundaries.
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3.1.2 Transport equations in the transcytosis dominated limit

In this section, we derive effective continuous transport equations for ligand transport corre-
sponding to the discrete descriptions (3.1) and (3.3). Such an effective description is of great
value because it makes an analytic investigation of the transport phenomenon possible which
greatly simplifies the identification of its properties. Here, we focus on the limit in which
extracellular diffusion gives a small contribution to the ligand current, i.e. a situation in which
the time scale for crossing a length of one cell diameter a by transcytosis is much smaller than
that for crossing the same distance by diffusion in the extracellular space around the cells. In
section 3.4, we will treat the opposite limit in which extracellular diffusion dominates ligand
transport.

Description with receptor kinetics In order to derive effective continuous transport
equations for the transport phenomenon defined by (3.1), we introduce the densities l(t, x),
r(l/r)(t, x), ri(t, x), s(l/r)(t, x), and si(t, x), such that x = na, Ln(t)/a = l(t, x), R

(l)
n (t)/a =

r(l)(t, x), R
(r)
n (t)/a = r(r)(t, x), R

(i)
n /a = ri(t, x), S

(l)
n (t)/a = s(l)(t, x), S

(r)
n (t)/a = s(r)(t, x), and S

(i)
n /a =

si(t, x). Kinetic equations for these are obtained by replacing the discrete densities R
(i)
n , R

(l/r)
n ,

S
(i)
n , S

(l/r)
n , and Ln in (3.1) with the continuous densities ri, r(l/r), si, s(l/r), and l. The spatial

separation of the quantities defined on the lattice as indicated in Fig. 3.1 is taken into account
by including terms up to second order in a power series expansion in x. Moreover, it is conve-
nient to change to the densities r±(t, x) = r(l)(t, x)±r(r)(t, x) and s±(t, x) = s(l)(t, x)±s(r)(t, x)
so that r+ and s+ measure the total free and ligand bound surface receptor concentrations
per cell and r− and s− the polarization of these concentrations on the cell surface respectively.
This yields the continuous equations

∂tl = koffs+ − (akonr+ + edeg)l − ab2kon

8
l∂2

xr+ +
b2koff

8
∂2

xs+ +
pa2

2
∂2

xl

−abkon

2
l∂xr− +

bkoff

2
∂xs−

∂ts+ = akonlr+ + bextsi − (bint + koff)s+ +
ab2kon

8
r+∂2

xl +
(a − b)2bext

8
∂2

xsi − abkon

2
r−∂xl

∂tsi = −(bext + bdeg)si + bints+ +
(a − b)2bint

8
∂2

xs+ − (a − b)bint

2
∂xs−

∂ts− = akonlr− − (bint + koff)s− +
ab2kon

8
r−∂2

xl − abkon

2
r+∂xl +

(a − b)bext

2
∂xsi

∂tr+ =
fsyn

a
+ fextri − fintr+ − akonlr+ + koffs+ − (ab2)kon

8
r+∂2

xl

+
(a − b)2fext

8
∂2

xri +
abkon

2
r−∂xl

∂tri = −(fext + fdeg)ri + fintr+ +
(a − b)2fint

8
∂2

xr+ − (a − b)fint

2
∂xr−

∂tr− = −fintr− − akonlr− + koffs− − ab2kon

8
r−∂2

xl +
abkon

2
r+∂xl +

(a − b)fext

2
∂xri. (3.6)

Here, it is reasonable to neglect higher order terms because the most important contribution to
ligand transport on large length scales comes from the second order terms. This is due to the
fact that first order terms must not appear in an effective transport equation due to the mirror
symmetry of the original description. The next higher order contribution would come from
fourth order terms that are insignificant for the long wavelength behavior we are interested in
here.

In the absence of degradation and production, there are two conserved quantities in the
system, namely the total ligand number and the total receptor number. Indeed, the kinetic
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equation for the total ligand density λ = l + si + s+ that follows from (3.6) can be written as
a continuity equation with sink term

∂tλ = −∂xj − bdegsi − edegl. (3.7)

Here, the total ligand current is

j =
abkon

2
lr− +

(a − b)bint

2
s− − bkoff

2
s− − ab2kon

8
(r+∂xl − l∂xr+)

−(a − b)2bext

8
∂xsi − (a − b)2bint + b2koff

8
∂xs+ − pa2

2
∂xl. (3.8)

Note, that the terms involving r− and s− appear directly whereas all other terms are pro-
portional to derivatives of r+, s+, si, or l. The kinetics of the total receptor density ρ =
ri + r+ + si + s+ is given by another continuity equation with source and sink terms:

∂tρ = −∂xjρ +
fsyn

a
− fdegri − bdegsi (3.9)

with the total receptor current

jρ =
(a − b)

2
(fintr− + bints−) − (a − b)2

8
(fext∂xri + fint∂xr+ + bext∂xsi + bint∂xs+) . (3.10)

The individual terms of the currents j and jρ are difficult to interpret. However, it will become
clear below that the terms in jρ do not give rise to transport over large distances whereas this
is the case for the terms in j.

The equations (3.7) and (3.9) have the unpleasant property that they relate the time
development of λ and ρ to that of all the individual quantities whose time development is
given by the set of coupled partial differential equations (3.6). It would be better if the
kinetics of λ and ρ could be described by equations which only involve these two quantities.
This can be achieved by making use of a time scale separation.

As we are interested in transport over many cell diameters, we assume that the relaxation
time scale τa of the kinetics in one cell is much smaller than the time scale τL for transport
on a large length scale L. In the absence of free diffusion, i.e. p = 0, this is given because
the time scale for transport over N cells is τL � Nτa because N cells have to be crossed,
L ≈ Na. For small ligand concentrations we may expect diffusive behavior so that τL ≈ N2τa.
In either case, the two time scales are separated if N is sufficiently large. In the presence of
free diffusion, p must be small for this separation of time scales to endure.

We can exploit τa � τL by making an adiabatic approximation in which the system equi-
librates infinitely fast locally. This is done by setting the time derivatives in (3.6) to zero and
solving the resulting equations for l, ri, r−, si, s−. Here, we also assume that the production
and degradation terms are small compared to the other rates and only include the leading
order terms in a power series expansion in these rates. Formally, this corresponds to setting
bdeg = edeg = fdeg = fsyn = 0. To leading order, this yields the relations

l =
koffs+

konar+

si =
bints+

bext

s− =
konalr− − abkon

2 r+∂xl + (a−b)bext

2 ∂xsi

bint + koff

ri =
fintr+

fext
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Figure 3.2: Coefficients Dλ(λ, ρ), Dρ(λ, ρ), and kλ(λ, ρ) in the transport equation (3.12) as a function
of the dimensionless ratio λ/ρ of the total ligand concentration λ and the total receptor concentration
ρ. (A,B) The solid lines show the coefficients Dλ and Dρ in presence of extracellular diffusion with
p/bdeg = 10/3. Broken lines show these coefficients with p = 0. Inset in A: the solid line shows kλ with
edeg/bdeg = 2/3 and the broken line with edeg = 0. Parameters are: koff/bdeg = bint/bdeg = fint/bdeg =
1000/3, konaρ/bdeg = 8000/3, bext/bdeg = fext/bdeg = 2000/3.
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r− =
koffs− + abkon

2 r+∂xl + (a−b)fext

2 ∂xri

fint + konal
. (3.11)

Note, that we have kept the first order terms for r− and s−. This is done to retain all
second order terms when inserting (3.11) into (3.8) and (3.10). Using (3.11), one can express
l, ri, r−, si, s− in terms of r+ and s+ and spatial derivatives thereof. Finally, r+ and s+ can be
expressed in terms of ρ and λ. Mathematically, there are two solutions for this but only one of
them satisfies the physical requirement that s+ = 0 for λ = 0 and r+ = 0 for ρ = 0. Thus, we
can uniquely express l, ri, r±, si, and s± in terms of λ and ρ in the adiabatic approximation.

Using these expressions, we can cast (3.7) and (3.9) into two coupled partial differential
equations for only two densities λ and ρ:

∂tλ = ∂x (Dλ(λ, ρ)∂xλ + Dρ(λ, ρ)∂xρ) − kλ(λ, ρ)λ, (3.12)
∂tρ = νsyn(λ, ρ) − kρ(λ, ρ)ρ (3.13)

The other quantities can be calculated from λ, ρ, and their first spatial derivatives via (3.11).
This description of ligand transport is much easier to study than the discrete description (3.1)
we started with and will be of great value for the remainder of this work.

The explicit expressions for Dλ(λ, ρ), Dρ(λ, ρ), kλ(λ, ρ), and kρ(λ, ρ) in (3.12, 3.13) which
follow from the derivation just described are rather involved. For p = 0, they can be found in
section D.1 of the appendix. For small ligand concentrations, λ = 0, these expressions read:

Dλ(0, ρ) =
a2bextkoff (2 (fext + fint) (bint + koff) p + abintfextkonρ)

4 (bint + koff) (bext (fext + fint) koff + a (bext + bint) fextkonρ)
Dρ(0, ρ) = 0

kλ(0, ρ) =
bextedeg (fext + fint) koff + abdegbintfextkonρ

bext (fext + fint) koff + a (bext + bint) fextkonρ

kρ(0, ρ) =
fdegfint

fext + fint
. (3.14)

In Fig. 3.2, the coefficients Dλ, Dρ and kλ are displayed as a function of the ligand concentration
λ for a typical choice of the parameters.

The receptor production rate in (3.13) following from the discrete description (3.1) is
νsyn(λ, ρ) = fsyn/a. Instead of being constant, it can be a different function of the ligand
and receptor concentrations as discussed in section 3.1.1. In correspondence with the more
realistic function (3.2) in the discrete case, we choose

νsyn(λ, ρ) =
f0
syn

a

(
1 − r+(λ, ρ) + ψs+(λ, ρ)

rmax

)
, (3.15)

so that the receptor production saturates at some maximum total surface receptor concentra-
tion rmax for ψ = 1. As in (3.2), the dimensionless parameter ψ allows for an enhancement,
ψ < 1, or reduction, ψ > 1, of receptor synthesis caused by the presence of ligands bound to
receptors on the cell surface.

Constant surface receptor approximation We now discuss the simpler situation de-
scribed by (3.3) in which the cells maintain the surface receptor number R constant every-
where. In this case, an analogous derivation can be performed and leads to the result that
ligand transport on large length scales is described by a single nonlinear diffusion equation:

∂tλ = ∂x (D(λ)∂xλ) − k(λ)λ . (3.16)
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Figure 3.3: Effective diffusion coefficient D(λ) in the transport equation for the constant surface receptor
approximation (3.16) as a function of the ligand concentration λ/r for p/bdeg = 10/3 (solid line) and
p = 0 (dashed line). Inset: effective degradation rate k(λ) as a function of λ/r for edeg = 0 (dashed line)
and edeg/bdeg = 2/3 (solid line). The total surface receptor concentration is denoted by r. Parameters
as in Fig. 3.2.

Here, the effective diffusion coefficient D(λ) in the absence of free diffusion, p = 0, and the
effective degradation rate k(λ) are given by

D(λ) =
a2bextbintkoffakonrC−(λ)

4A(λ)(2akonrkoff(bext + bint) + bintC−(λ))

k(λ) =
C+(λ)
akonλ

(
bdegbint

2bext (bext + bint)
+

edegkoff

C−(λ)

)
. (3.17)

In these expressions, r = R/a and

A(λ) =
[−4bext(bext + bint)a2k2

onrλ + (bintakonr + bextB+(λ))2
]1/2

B±(λ) = koff + akon(λ ± r)
C±(λ) = bintakonr ∓ A(λ) ± bextB±(λ). (3.18)

These coefficients D(λ) and k(λ) are shown as a function of λ in Fig. 3.3. Note, that in general
only a appears as a length scale in the explicit expressions of the coefficients which appear in
(3.12, 3.13) and (3.16), i.e. the ratio of the cell diameter a − b and the diameter of the gap
between cells b is insignificant for transport on large length scales.

Boundary effects So far, we have developed continuous descriptions for the ligand and
receptor concentrations in the bulk. In a continuous description, we also need to define bound-
ary conditions which correspond to the treatment of the boundary sites of the lattice in the
discrete description defined in (3.4) and (3.5). These boundary conditions can be obtained



56 CHAPTER 3. THEORETICAL DESCRIPTION OF MORPHOGEN TRANSPORT

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30

λ
/r

0

x/a

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30

λ
/r

0

x/a

1.32

1.36

1.4

1.44

1.48

0 5 10 15 20 25 30

ρ
/r

0

x/a

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30

(s
+

+
s i

)/
r 0

x/a

A B

C D

Figure 3.4: Time development of gradient formation in our description of ligand transport. Ligand
densities in the presence of a source at x = 0 at different times tbdeg = 0.72, 2.16, 3.6 during gradient
formation (black lines) and in steady state (red lines). Lines indicate solutions to (3.12), while symbols
indicate solutions to (3.1) for comparison. (A-C) Time development of the profiles of the total ligand
density λ(x), the total receptor density ρ(x), and the receptor bound ligand density si(x)+s+(x) in the
absence of extracellular diffusion, i.e. for p = 0. (D) Like A but with p/bdeg = 10/3. All concentrations
are normalized to the steady state value of the surface receptor concentration in the absence of ligands
r0. Initial conditions at t = 0: λ(x) = 0 and ρ(x) = (1 + fint/fext)r0. Parameters as in Fig. 3.2 with
ψ = 2, j0/bdegar0 = 175/6, and j = 0 at x/a = 50.

from the requirement that the flux of ligands across the boundaries must be the same in the
discrete and continuous descriptions. The description of the source (3.4) at n = 0 translates to
imposing a λ-current j0 = −(Dλ(λ, ρ)∂xλ+Dρ(λ, ρ)∂xρ) = ν at x = 0. The zero flux boundary
condition (3.5) simply translates to a vanishing current of λ, i.e. j = 0, at these boundaries in
the continuous description.

Comparison of discrete and continuous descriptions For several different parame-
ter choices, we have numerically verified that the solutions of (3.12, 3.13) and (3.16) are in
good agreement with the corresponding discrete microscopic description on large length scales,
see Figures 3.4 and 3.5. For simplicity, we sometimes use the same notation for the quan-
tities appearing in the discrete descriptions and the corresponding ones in the continuous
descriptions. In the previous chapter, for example, we denoted the total ligand concentration
Ln + S

(l)
n + S

(r)
n + S

(i)
n in the discrete description by λ which was actually defined as the total

ligand concentration in the continuous description. This slightly imprecise notation is justified
by the good agreement between the continuous and discrete descriptions.

It is important to be aware of the fact that the description via (3.12, 3.13) or (3.16)
is inappropriate if p is too large, i.e. if extracellular diffusion contributes significantly to
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Figure 3.5: Time development of gradient formation in the description of ligand transport with constant
surface receptor approximation. Ligand densities λ(x) in the presence of a source at x = 0 at different
times tbdeg = 0.72, 2.16, 3.6 during gradient formation (black lines) and in the steady state (red lines).
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development of λ(x) in the absence of extracellular diffusion, i.e. for p = 0. (B) Like A but with
p/bdeg = 100/3. Parameters as in Fig. 3.2 with j0/bdegR = 25/3 and j = 0 at x/a = 50.

ligand transport, or if the degradation and production rates bdeg, edeg, fdeg, fsyn are not
much smaller than the other rates. This is a consequence of the approximations made in
the derivation: the degradation rates were treated as a small perturbation in (3.11) and the
adiabatic approximation clearly becomes invalid if p is sufficiently large to make the time scales
τa and τL comparable.

3.2 Two dimensional description of morphogen transport

3.2.1 Microscopic two dimensional description

In this section, we generalize the theoretical description of ligand transport for the constant
surface receptor approximation given by (3.3) to two space dimensions. The generalization of
the description with receptor kinetics (3.1) is conceptually identical but notationally more cum-
bersome. One can choose different lattice structures in two dimensions. Obvious possibilities
are a square lattice or a triangular lattice in which the cells have the shape of hexagons. One
could even use lattices with more than one cell type or irregular lattices. A disordered lattice
structure would give the best account of the situation in a developing tissue. For simplicity, we
have decided to use a triangular lattice with hexagonal cells in our description, see Fig. 3.6 D
for an illustration. This lattice structure is an idealization since it neglects the irregular cell
arrangement in a tissue, compare Fig. 3.6 B and D.

It is straightforward to generalize (3.3) to two dimensions. Taking into account that the
externalization of the ligand-receptor complexes can occur on all surfaces of the cell with equal
probability, the equations for the kinetics on a two dimensional lattice are

∂tLm = koff

∑
〈m,(n,j)〉

Sn,j − Nkon

2


2R

N
−

∑
〈m,(n,j)〉

Sn,j


Lm − edegLm

∂tSn,j =
bext

N
S(i)

n − (bint + koff)Sn,j +
Nkon

2

(
R

N
− Sn,j

)
L〈n,j〉
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Figure 3.6: Ligand transport in two dimensions. (A) Tissue in the region of the wing disk where the
Dpp gradient forms. Cell membranes are labeled in red, the morphogen Dpp is shown in green. (B)
Schematic of this tissue. Source cells which produce ligands are shown in darker gray, the cells in the
target tissue in light gray. The ligands spread from the source into the target tissue by transcytosis and
diffusion in the extracellular space surrounding the cells. (C) The rates for the various processes are
denoted as in one dimension, see Fig. 3.1. Receptor bound ligands can be present on the six surfaces of
each cell and inside the cells. The concentration of the receptor-bound ligands on surface j of cell n is
denoted Sn,j , that inside cell n is termed S

(i)
n . Free ligands exist in the gaps between two cell surfaces.

Their concentration in gap m is denoted Lm. (D) Triangular lattice structure with hexagonal cells used
for the discrete theoretical description of ligand transport in two dimensions. The source cells which are
shown in darker gray secrete ligands into the extracellular spaces surrounding them. The cell diameter
is a.
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∂tS
(i)
n = −bextS

(i)
n + bint

N∑
j=1

Sn,j − bdegS
(i)
n , (3.19)

where the 〈·, ·〉 denote adjacent lattice sites, S
(i)
n is the internal bound ligand concentration in

cell n, Sn,j the surface bound ligand concentration on surface j of cell n, Lm the free ligand
concentration in extracellular space m, and N denotes the number of surfaces per cell. The
free ligand concentration Lm is always defined in the middle between two surfaces of adjacent
cells. The sum over 〈m, (n, j)〉 in (3.19) extends over the values of Sn,j on those two surfaces.
The notation used here is illustrated in Fig. 3.6 C for a triangular lattice with N = 6. At the
boundaries of the lattice, the equation for ∂tLm in (3.19) is modified analogously to the one
dimensional situation, see (3.4, 3.5).

3.2.2 Effective transport equations for transcytosis in two dimensions

In two dimensions, a formal derivation of transport equations for the transcytosis dominated
limit starting from the discrete description (3.19) is aggravated by the fact that one has to
introduce a two dimensional lattice structure that generally breaks rotational symmetry. How-
ever, rotational invariance is to be anticipated in a tissue with disordered cell arrangement
because there is no distinguished direction defined on length scales large compared to one cell
diameter in such a tissue. The demand of rotational invariance puts constraints on the general
form of the transport equation in two dimensions.

Furthermore, in the absence of ligand degradation, the total ligand number is a conserved
quantity. This implies that the equation describing the time development of the total ligand
concentration λ is a continuity equation. Thus, in the case of the constant total surface
receptor approximation, transport in two dimensions is described by a rotationally invariant
second order continuity equation for the total ligand concentration λ. The presence of ligand
degradation should appear as a sink term in this equation.

If we finally consider that the two dimensional description should in essence reduce to the
one dimensional one for boundary and initial conditions that lead to translation invariance in
one direction, we obtain the general form

∂tλ = ∇ · (D(λ)∇λ) − k(λ)λ (3.20)

for the transport equation describing transcytosis in two dimensions.
The coefficients D(λ) and k(λ) in (3.20) depend on the two dimensional cell arrangement

and are usually different from those in the one dimensional case (3.17). For a regular lattice
like the triangular lattice shown in Fig. 3.6 D, (3.20) is only approximately valid. We have
calculated D(λ) and k(λ) to give a good approximation to the discrete description defined on
the triangular lattice structure shown in Fig. 3.6 D. This was done by projecting this lattice
structure on a one dimensional lattice. We then proceeded with the derivation as in the
one dimensional case described in section 3.1.2. We find the same k(λ) as in one dimension,
see (3.17). The effective diffusion coefficient D(λ) simply changes by a factor of 2/3, i.e.
D(2d)(λ) = (2/3)D(1d)(λ) with D(1d)(λ) from (3.17).

As in one dimension, the continuous densities of the quantities corresponding to those
defined in the discrete microscopic description can be related to λ via an adiabatic approxima-
tion similar to (3.11). While the concentration of receptor-bound ligands on the cell surface
s+(�x) =

∑N
j=1 Sn,j/a2, the concentration of internalized receptor-bound ligand si(�x) = S

(i)
n /a2,

and the free ligand concentration l(�x) = Lm/a2 are scalars as in the one dimensional case, a
vector �s(�x, t) =

∑N
j=1 Sn,j�aj/a2 appears in the two dimensional case. Here, the �aj define the

location of the N surfaces of the cell with respect to its center, see Fig. 3.6 C. The vector
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Figure 3.7: Ligand densities λ(�x) in two dimensions. The solution to the continuous transport equation
(3.20) is compared to that of the discrete description (3.19) in presence of a region which the ligand
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the discrete (A,C) and continuous description (B,D) respectively. The rectangular region which the
ligand cannot enter appears in white. It looks smaller in A and C than in B and D because in the
discrete description, ligands can still bind to surface receptors on the cells located at the edge of the
region so that λ > 0 for these cells, see also section F.2 of the appendix. (E-G) Profiles of λ(�x, t) along
the slices indicated in B at tbdeg = 0.72, 2.16, 3.6 (black lines) and in steady state (red lines). Lines
indicate solutions to (3.20), while symbols indicate solutions to (3.19) for comparison. (H) Contrast of
the depletion of λ(�x, t) shown in G, see (2.1) for definition. Initial condition: λ(�x) = 0. Parameters as
in Fig. 3.2 with p = 0, j0a/bdegR = 25/3 at x = 0, j = 0 at y/a = ±25 and at x/a = 50.
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�s corresponds to s− in the one dimensional situation and measures the polarization of the
distribution of receptor bound ligands on the cell surface.

By the same considerations as discussed above, the description with receptor kinetics (3.12,
3.13) generalizes to

∂tλ = ∇ · (Dλ(λ, ρ)∇λ + Dρ(λ, ρ)∇ρ) − kλ(λ, ρ)λ,
∂tρ = νsyn(λ, ρ) − kρ(λ, ρ)ρ, (3.21)

where the coefficients Dλ(λ, ρ), Dρ(λ, ρ), kλ(λ, ρ), and kρ(λ, ρ) again depend on the lattice
structure. We have calculated these coefficients for a triangular lattice lattice structure as
outlined above and find D

(2d)
λ (λ, ρ) = (2/3)D(1d)

λ (λ, ρ) and D
(2d)
ρ (λ, ρ) = (2/3)D(1d)

ρ (λ, ρ),
where the expressions for the one dimensional case are shown explicitly in section D.1. The
degradation rates kλ and kρ are the same as in the one dimensional situation. Moreover, the
rate of receptor synthesis νsyn is the same as in one dimension, see (3.15), except for a factor
of 1/a:

νsyn(λ, ρ) =
f0
syn

a2

(
1 − r+(λ, ρ) + ψs+(λ, ρ)

rmax

)
.

Boundary effects In the absence of ligand degradation, the equations for ∂tλ in (3.20)
and (3.21) are continuity equations as in one dimension. Thus, a homogeneous ligand source
located at x < 0 injecting ligands into the system at rate ν per cell is described by fixing
a λ-current j0 = ν/a across the boundary line at x = 0. The zero flux boundary condition
is realized by a vanishing current of λ, i.e. j = 0, at the corresponding boundaries in the
continuous description.

Comparison of discrete and continuous description We have compared solutions of the
continuous equation (3.20) to those of the discrete description for a two dimensional geometry
containing a rectangular region which the ligand cannot enter, see Fig. 3.7. The agreement
between both descriptions is reasonably good. As in one dimension, the continuous description
becomes inappropriate for large degradation rates or a large hopping rate p which describes
extracellular diffusion. Moreover, the use of a particular lattice structure in the discrete mi-
croscopic description in two dimensions always leads to a small discrepancy in comparison to
the continuous description which does not account for the respective lattice anisotropy.

3.3 Analysis of the effective transport equations

Given the effective transport equations for transcytosis found in the previous sections, let us
now discuss essential properties of this transport mechanism. Since we have shown that the
two dimensional case is closely related to the one dimensional one, we concentrate on the one
dimensional situation here and discuss features which are apparent in (3.12, 3.13) and (3.16).

3.3.1 Properties of transcytosis

For small λ, Dλ and kλ approach finite values. In this limit, (3.12) becomes a linear diffusion
equation with degradation. On large length scales, transcytosis is consequently indistinguish-
able from passive diffusion for small ligand concentrations. For large λ, Dλ and kλ exhibit
the asymptotic behavior Dλ ≈ D0 + c1(ρ)λ−2, and kλ ≈ edeg + c2(ρ)λ−1, with the diffusion
constant of the extracellular diffusion D0 = pa2/2, c1(ρ) = abextfintkoffρ/4kon(bext + bint) and
c2(ρ) = bdegbintρ/(bext + bint). Furthermore, Dρ ≈ −D0 − c1(ρ)λ−2 in this limit. A maximum
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of Dλ can occur for intermediate values of λ if p is not too large. Similarly, there is a minimum
of Dρ as a function of λ for small p.

In the special case D0 = 0, Dρ as well as Dλ vanish in the absence of receptors, i.e.
for ρ = 0, and if either binding or un-binding of ligands from the receptor, internalization
or externalization of occupied or free receptors is suppressed, i.e., if either one of the rates
kon, koff , bint, bext, fint, or fext vanishes. This reflects that in the absence of extracellular
diffusion, transport is generated by repeated internalization and externalization of ligand-
bound receptors as well as ligands binding to and un-binding from surface receptors. In the
limit of fast internalization or fast un-binding, ligand is confined to the cell interior or the
extracellular space, respectively, and transport is consequently hampered. Indeed for D0 = 0,
Dλ → 0 if bint → ∞ or if koff → ∞.

The functions D(λ) and k(λ) appearing in the simplified equation for the constant surface
receptor approximation (3.16) have virtually the same properties as just discussed for Dλ and
kλ from (3.12). For example the asymptotic behavior for large λ is essentially the same: D(λ) ≈
D0 + c′1λ−2 and k ≈ edeg + c′2λ−1, where the constants are different: c′1 = abintkoffr/(4kon) and
c′2 = bdegbintr/bext.

Comparing (3.13) and (3.9), we see that jρ = 0. This demonstrates that the terms in (3.10)
do not give rise to transport over large distances. They are merely caused by transport within
one cell. Thus, the continuous description reflects that receptors are confined to one cell in the
discrete description. Interestingly, in (3.12), a coupling term exists with effective coefficient
Dρ(λ, ρ) which describes ligand currents induced by gradients of the receptor concentration.
This additional term ∝ ∂xρ gives a contribution to the ligand current that is directed upwards
a receptor gradient since Dρ ≤ 0. This contribution to the current comes up, because the
ligand affinity for a region increases with the receptor concentration in that region. In the
limit of small ligand concentrations this term can be interpreted as a drift term since Dρ ∝ λ
for small λ.

3.3.2 Simple limits

The system (3.12, 3.13) becomes simpler if some of the transport steps are assumed to be much
faster than the others, i.e. if the corresponding rates are very large. For example in the limit
of very fast binding, kon → ∞,

Dλ(λ, ρ) =
−a2bextbintfextfintkoffρ

B(λ, ρ)

Dρ(λ, ρ) =
a2bextbintfextfintkoffλ

B(λ, ρ)

kλ(λ, ρ) =
bdegbint

bext + bint

kρ(λ, ρ) =
bdegbint(fext + fint)λ + (bext + bint)fdegfint(ρ − λ)

(bext + bint)(fext + fint)ρ
, (3.22)

with

B(λ, ρ) = 4(bintfextfint(bint + koff) + bext(bintfextfint + fextfintkoff

−bint(fext + fint)koff))λ − 4(bext + bint)fextfint(bint + koff)ρ.

A closer look at this limit is worthwhile because in actual biological systems, it is well possible
that the binding step is fast due to the small volume of the gaps between cells. There are no
free ligand molecules in this limit, l = 0 via (3.11). As all ligands are bound to receptors, free
diffusion does not contribute to the current and p does not appear in (3.22). All ligands are
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bound to a receptor which imposes the restriction λ ≤ ρ. Many of the properties discussed
above for the general case can be read directly from the expressions (3.22). Due to the con-
straint λ ≤ ρ, however, the statements for the asymptotic behavior for λ → ∞ do not apply
anymore. Furthermore, Dλ does no longer exhibit a maximum as a function of λ. It either
grows or decreases monotonically depending on the parameter choice.

In principle, one can write down simpler expressions like in (3.22) for many different limits.
If several transport steps are much faster than the others, only the ratios of the corresponding
parameters enter the simplified description. For example, if the binding and un-binding of the
ligand to the receptor is much faster than all other processes the effective diffusion coefficient
and degradation rate do not depend on kon and koff individually but only on the ratio kon/koff .
The number of parameters can thus be reduced to obtain the minimal description for a given
situation. A trivial example is the situation kon � koff � bext � bint in (3.16), for which we
obtain the effective diffusion coefficient

lim
bext→∞

lim
koff→∞

lim
kon→∞

D(λ) = binta
2/4,

which reflects that the slowest process — in this case the internalization of ligands — limits
transport. Note, that the limits taken above do not commute, e.g. D(λ) = 0 for koff � kon as
pointed out is section 3.3.1.

3.3.3 Analytical steady state solution

It is useful to have an analytical solution of the steady state gradients generated by the
transport equations (3.12, 3.13) and (3.16) where the ligand current is j = −Dλ(λ, ρ)∂xλ −
Dρ(λ, ρ)∂xρ and j = −D(λ)∂xλ respectively. We calculate the steady state solution corre-
sponding to a gradient formed in the half space x ≥ 0 in the presence of a source which is
located at x = 0. The effect of the source is captured by a boundary condition on the current
j = j0 > 0 at x = 0. Here, j0 is proportional to the rate of ligand secretion from the source
cells. Starting from the initial condition λ(x) = 0 and ρ(x) = ρ0, the ligands spread into the
region x ≥ 0, where they build up a gradient. Here, ρ0 denotes the equilibrium value of the
total receptor concentration in the absence of ligands. The steady state ligand profile λ(x) is
established after very long times, i.e. for t → ∞. The typical time scale for the relaxation
of the ligand distribution into the steady state can be estimated by linearizing the transport
equations about the steady state profile λ(x). If j0 is small so that the ligand concentration
λ for x ≥ 0 is small, (3.16) simplifies to a linear equation ∂tλ = D(0)∂2

xλ − k(0)λ. It can be
shown that the time scale of gradient formation is then given by k(0)−1. As λ always becomes
small sufficiently far away from the source, we expect essentially the same relaxation time for
larger currents j0.

In the steady state, (3.13) with the condition ∂tρ = 0 yields a relation ρ(λ). This combined
with (3.12) leads to the steady state equation

∂x(D(λ)∂xλ) − k(λ)λ = 0, (3.23)

with D(λ) = Dλ(λ, ρ(λ)) + Dρ(λ, ρ(λ))∂λρ(λ) and k(λ) = kλ(λ, ρ(λ)). We assume that the
steady state relation ρ(λ) is a monotonic function of λ and converges to finite values ρ∞ for
λ → ∞ and ρ0 for λ → 0. This expresses that each cell only contains a limited number of
receptors and is never completely devoid of receptors. It implies that ∂λρ = 0 for large λ,
so that in this limit D(λ) ≈ Dλ(λ, ρ∞) in (3.23). The steady state equation of the simplified
description (3.16) in which the surface receptor concentration is assumed to be constant is an
equation of the same general form as (3.23).
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In the steady state, the total ligand concentration decreases monotonically with increasing
distance from the source. The corresponding distribution λ(x) which follows from (3.23) can
be determined exactly. It is given by

x = −
∫ λ(x)

λ(0)
dλ′D(λ′)/j(λ′) . (3.24)

Here, j(λ) is the steady state current:

j(λ) =
(

2
∫ λ

0
dλ′ k(λ′)D(λ′)λ′

)1/2

. (3.25)

For small λ, the ligand profile decays as λ ∝ exp(−x/ξ) with ξ =
√

D(0)/k(0). Furthermore,
in the limit of large λ and in the absence of free diffusion D0 = 0, the steady state profile can
be formally described by a singularity which occurs at a position x∗ < 0. The approach to this
singularity is characterized by

λ ∼ (x − x∗)−1(− ln (x − x∗))−1/2. (3.26)

This singularity results from the asymptotic behavior of the current j for large λ � λT :

j2(λ) ≈ j(λT )2 + 2edegc1(ρ∞) ln(λ/λT ) + 2c1(ρ∞)c2(ρ∞)(1/λT − 1/λ).

Here, λT denotes a crossover value beyond which the asymptotic behavior becomes valid.
Therefore the current diverges as j2 ≈ 2c1(ρ∞)edeg lnλ. Note, that the limit of vanishing edeg

is singular. For edeg = 0, the current reaches for large λ a finite maximal value jmax and the
steady state profile diverges as λ ≈ c1(ρ∞)/(x − x∗)jmax.

The situation is different if free diffusion in the extracellular space is present. Then, D(λ)
in (3.23) changes its asymptotic behavior to D ≈ c1(ρ∞)/λ2 +D0. For large λ, (3.23) becomes
linear and the steady state solution decays exponentially on a length scale ξd =

√
D0/edeg.

This implies that λ(x) does not have a formal singularity at a finite x∗.
Note, that the whole discussion of steady states in this section also applies to the simpler

description (3.16) in which the surface receptor concentration is assumed to be constant. In
section 4.1, we will use these results to discuss the robustness of steady state gradients formed
by transcytosis and extracellular diffusion.

3.4 Extracellular diffusion dominated limit and DBTS model

In order to ultimately identify the mechanism of morphogen gradient formation present in
a given system, it is important to develop mathematical descriptions of all possibly relevant
transport mechanisms so that these can be compared to the available experimental data.
As pointed out in section 1.4, extracellular diffusion is widely believed to be the dominant
transport mechanisms for some morphogens. For this reason, we discuss the extracellular
diffusion dominated limit of the transport phenomenon defined by (3.1) in this section.

It is assumed that extracellular diffusion gives the dominant contribution to the ligand
current. We consequently neglect the contribution of transcytosis. This approach is valid if
the rates are such that the effective diffusion coefficient resulting from transcytosis D(λ, ρ)|p=0

in (3.12) is much smaller for all values of λ and ρ than the extracellular diffusion constant D0.
This situation arises if D0 is large and at least one of the rates kon, koff , bint, and bext is very
small.
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The derivation of the continuum limit of (3.1) is straightforward for this situation. Only the
equation for the time development of the free ligand concentration contains a linear diffusion
term. All other quantities can be described by a coupled set of ordinary differential equa-
tions. Together, these constitute a set of reaction-diffusion equations. Such reaction-diffusion
systems have been studied extensively in pattern formation [67, 58]. It is also unproblematic
to generalize this system to two space dimensions. With the notation used throughout this
chapter, the kinetic equations in two dimensions read

∂tl = D0�l − kona
2lr+ + koffs+ − edegl

∂ts+ = kona
2lr+ − (bint + koff) s+ + bextsi

∂tsi = bints+ − (bext + bdeg) si

∂tr+ =
fsyn

a2
+ koffs+ + fextri − konlr+ − fintr+

∂tri = fintr+ − (fext + fdeg) ri. (3.27)

To obtain agreement with the diffusion, binding, and trafficking model with saturating
surface receptor concentration (DBTS model) that was first introduced in [59], we describe the
receptor production by the cells in a slightly different way than in (3.27). Newly synthesized
receptors appear inside the cells and not on the cell surface. This is done in order to facilitate
the comparison to previous results [60], see chapter B of the appendix for details. Moreover, the
receptor externalization rates fext and bext depend on the total surface receptor concentration
s+ + r+ such that this concentration saturates at a maximal value rmax. In section B.3, we
discuss the small differences which occur from this treatment of the receptor kinetics compared
to the one used above. The corresponding kinetic equations in two dimensions read:

∂tl = D0�l − kona
2lr+ + koffs+ − edegl

∂ts+ = kona
2lr+ − (bint + koff) s+ + b0

ext

(
1 − s+ + r+

rmax

)
si

∂tsi = bints+ −
(

b0
ext

(
1 − s+ + r+

rmax

)
+ bdeg

)
si

∂tr+ = koffs+ + f0
ext

(
1 − s+ + r+

rmax

)
ri − konlr+ − fintr+

∂tri =
f0
syn

a2
+ fintr+ −

(
f0
ext

(
1 − s+ + r+

rmax

)
+ fdeg

)
ri, (3.28)

where l again denotes the concentration of free extracellular ligands, s+ is the concentration
of ligand bound receptors on cell surfaces, si is the concentration of ligand bound receptors
inside cells, and r+ and ri are the concentrations of free receptors outside and inside the cell,
respectively.

It must be emphasized that a model which is very similar to this limit of our description
was first introduced by Lander et al. [60]. Our discrete description (3.1) captures processes
that were neglected in the model studied in that work, namely the transport of ligands through
the cells by transcytosis. Unfortunately, some technical and conceptual flaws were made in [60]
which lead to doubtful conclusions about the role of extracellular diffusion and receptor binding
in morphogen transport, see chapter B of the appendix for details. A thorough investigation
of the two dimensional ligand profiles obtained from (3.28) was performed in [59]. The main
results found in that article are presented in section 2.3 and chapter B of the appendix.
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Chapter 4

Robustness and precision of
morphogen gradients

In this chapter, we discuss two key properties of morphogen gradients — robustness and
precision.

The “robustness” of morphogen gradients quantifies their sensitivity to fluctuations and
larger changes of the morphogen secretion rate of the source cells. It has been observed in
experiments that over-expression of the morphogen Dpp in the Drosophila wing disk does
not significantly affect the patterning of the tissue [71]. As target gene expression is directly
controlled by the morphogen concentration, a possible explanation for this observation is that
the morphogen gradient itself does not change significantly in this situation. In section 4.1, we
will use the effective transport equations derived in chapter 3 to investigate this property in
our description of morphogen gradient formation.

The shape and functionality of adult structures and tissues often shows only very slight
variations between different animals of the same species. As these structures are a result of the
processes that occur during the development of the organism, one may expect that the spatial
patterns of gene expression in a developing tissue are defined in a reliable and reproducible
way. In fact, such reproducibility of accurate gene expression patterns during development has
been observed in the Drosophila embryo [54]. It could be achieved if the morphogen gradients
that control gene expression in the tissue are themselves reliable in specifying concentration
thresholds at well-defined positions. We refer to this property of a morphogen gradient as
“precision”. In general, the precision of a gradient is reduced by the disorder and noise that is
present in a developing tissue. In section 4.2, we will discuss how precise gradient formation
can be achieved.

4.1 Robustness of morphogen gradients

We investigate the robustness of steady state morphogen gradients in this section. We have
previously discussed most of the results presented in this section in [9]. We start from the
one dimensional continuous description of transcytosis (3.12, 3.13) and investigate the effects
of extracellular diffusion in section 4.1.2. The results presented here remain valid in the two
dimensional case.

Definition of robustness We examine steady state gradients formed in the half space x ≥ 0
in the presence of a source which is located at x = 0. The effect of the source is captured
by a boundary condition on the current j = j0 > 0 at x = 0. Here, j0 is proportional to the

67
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rate of ligand secretion from the source cells. We define the robustness R of the gradient such
that R becomes large if changes of j0 have little influence on the ligand profile λ(x) in the
steady state. This implies that the gradient is robust with respect to fluctuations of the ligand
secretion rate if R is large.

This robustness can be quantified by an appropriate response function of the system that
measures the sensitivity of the steady state gradient to changes of j0. A useful definition for
the dimensionless robustness is

R(j0, λ) = a(j0∂j0x(λ))−1, (4.1)

where x(λ) is the inverse function of the steady state profile λ(x). Here, a robustness of
R(λ) = 1 implies that under a 100% increase of j0 the position at which the ligand profile
attains the fixed value λ is displaced by about one cell diameter a, see Fig. 4.1. Thus for
R(λ) ≥ 1, the shift of the position x where the ligand concentration has the value λ cannot be
detected by the cells in the target tissue even under significant changes of j0.

4.1.1 Robustness of gradients formed by transcytosis

In order to examine the robustness of gradients, we use the analytical solution (3.24, 3.25)
of the corresponding steady states, see section 3.3.3. The general form and the properties of
this analytical solution are identical for the description with receptor kinetics (3.12, 3.13) and
that in the constant surface receptor approximation (3.16), see section 3.3.3. The discussion
of robustness in this section consequently applies to both cases.

In absence of extracellular diffusion, the singular behavior (3.26) of the steady state profile
near x = x∗ has remarkable consequences for the robustness of gradient formation. Using the
robustness R defined in (4.1), we see from (3.24) that R is independent of λ. For steady state
equations of the general form (3.23), the definition (4.1) can be rewritten as

R = a(j0∂j0x)−1 = a∂λ0j0/D(λ0) = ak(λ0)λ0/j0 (4.2)

where λ0 = λ(x = 0) and (3.24) and (3.25) have been used. The robustness is thus completely
determined by the ratio of the effective degradation rate and the ligand current at x = 0.
High degradation rates and small currents lead to a robust gradient. Using the asymptotic
behavior of the steady state profile for D0 = 0, we find that the robustness increases rapidly
for large currents j0 as R ∼ j−1

0 ej2
0/j2

c with j2
c = 1/2c1(ρ∞)edeg. For small j0, R � a/ξ becomes

constant. For small edeg, R ∼ j−1
0 decreases with increasing j0 as long as j0 < jmax and grows

rapidly as R ∼ j−1
0 ej2

0/j2
c for j0 > jmax. In Fig. 4.1, we illustrate this behavior of the robustness

of steady state gradients for a small and a large value of j0.

4.1.2 Robustness with extracellular diffusion

The situation is different if free diffusion in the extracellular space is present. As discussed in
section 3.3.3, the singularity in the steady state solution disappears for D0 > 0. For small D0,
the robustness approaches a finite value Rmax = a/ξd as j0 → ∞. Thus, Rmax is an upper
bound for the robustness that can be achieved. Clearly, a small extracellular diffusion length
ξd that can be due to a small D0 or large edeg leads to large robustness. Rmax becomes greater
than 1 and the cells in the target tissue are thus insensitive to a 100% increase of j0 if the
diffusion length in the extracellular space ξd is smaller than the cell diameter a. In Fig. 4.2,
R(j0) is shown for different values of ξd/a and Fig. 4.1 C shows an example for the effect of the
presence of extracellular diffusion on the robustness of the gradient. Note, that the continuous
description used here is only valid for small D0.
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Figure 4.1: Non-robust and robust steady state gradient in our description of morphogen transport
with constant surface receptor approximation (3.16). (A) Ligand profiles in the steady state for D0 = 0
and j0/bdegR = 7 where robustness is small, R ≈ 0.1. The profile (solid line) is strongly affected by
halving (dotted line) or doubling (dashed line) the ligand current of the reference state. The positions
of an arbitrarily chosen concentration threshold are indicated. (B) Ligand profiles in the steady state
for D0 = 0 and j0/bdegR = 70 where robustness is large, R ≈470. The profile (solid line) is virtually
unaffected by halving (dotted line) or doubling (dashed line, covered by the solid line) the ligand
current of the reference state. (C) Like B but with extracellular diffusion at rate D0/a2bdeg = 50 which
reduces robustness to R ≈ 0.32. The insets show the respective profiles of the receptor-bound ligand
concentration s+ +si which is the biologically relevant quantity. Parameters are bint/bdeg = bext/bdeg =
3 × 103, konR/bdeg = 1.1 × 104, and koff/bdeg = 7 × 102.

For large values of D0, we can use the extracellular diffusion dominated limit (3.28). It can
be shown that the robustness of steady state gradients is very small in this limit. This is due
to the fact that the ligand current in this description is linear. Increasing the ligand current
imposed at x = 0 actually leads to a reduction of robustness in this limit as has been pointed
out in [60]. It can be verified by numerical calculations that modifications to the ligand current
imposed at the source boundary have a strong impact on the resulting steady state gradients.

In summary, we find that morphogen gradients can be extremely robust to changes in the
morphogen secretion rate of the source cells if transport is dominantly due to transcytosis.
The presence of extracellular diffusion reduces this robustness that is completely lost when
extracellular diffusion is the dominant transport mechanism.

4.2 Precision of morphogen gradients

In this section, we investigate the precision of steady state morphogen gradients, i.e. the
ability of these gradients to specify concentration thresholds at well-defined distances to the
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Figure 4.2: Robustness R of steady state ligand profiles as a function of the ligand current j0 from the
source for different values of the ratio of the diffusion length ξd and the cell size a. Our description
of morphogen transport with constant surface receptor approximation (3.16) was used to calculate R.
Parameters as in Fig. 4.1. Figure taken from [9].

morphogen source as illustrated in Fig. 1.1. This is generally alleviated by the presence of fluc-
tuations in the system. These affect morphogen transport and degradation and consequently
lead to fluctuations of the morphogen concentration profile in the steady state.

One type of fluctuations is due to the finite particle numbers in the system. In the steady
state gradients which are reached after long times, these lead to temporal fluctuations about
the mean value of the morphogen concentration. For the biological systems we are most
interested in here, the morphogen and receptor numbers are anticipated to be relatively large.
They are estimated to be at least on the order of several hundred per cell [26]. However,
one must keep in mind that in a morphogen gradient far away from the morphogen source,
the number of morphogen molecules always becomes small and particle number fluctuations
cannot be neglected in general. This, however, is insignificant for the biological situation
because experimental data indicate that target gene expression cannot be controlled by less
than several hundred receptor-bound morphogens per cell [26, 86]. Thus the part of the gradient
far away from the source where the particle numbers in the steady state are very small and
strongly fluctuating is not used to determine cell fates. This is why we neglect fluctuations
due to the finite particle numbers and assume that another type of fluctuations in the system
has a dominant impact.

This different type of fluctuations is caused by the disorder in the system. Disorder emerges
because the cells in a tissue are generally not completely identical even if they are all of the
same cell type. For example, they exhibit stochastic variations in size and shape. Cell surface
proteins are also present in different amounts on the surfaces of different cells. Moreover, the
cell division cycles of cells in a tissue are not synchronized. Consequently, different cells in
the same tissue are generally in different stages of the cell cycle which may affect their func-
tion. Such differences are not restricted to the cells. The extracellular space can have different
properties at different locations of the tissue as well. For example, the concentrations of extra-
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Figure 4.3: Cellular individuality in our one dimensional description of morphogen transport with
receptor kinetics (3.1) or with the constant surface receptor approximation (3.3). The rates for the
various processes depend on the cell or extracellular space n and are stochastically distributed around a
mean value. The rates bint, bext, bdeg, fint, fext, and fdeg depend on the cell number n. We show this only
for the rates describing the kinetics of the morphogen-bound receptors. Analogously, the rates kon, koff ,
p, and edeg depend on the index n of the extracellular space. Here, the hopping rate p describes the
extracellular diffusion of the morphogens.

cellular molecules, the extracellular volume fraction, and the actual shape of the extracellular
space surrounding the cells depend on the location within a given tissue.

In chapter 5, we will calculate the effects of such disorder on steady state concentration
profiles formed in a simple model of morphogen gradient formation by extracellular diffusion.
This model is described by a diffusion equation with degradation term for the extracellular
morphogen concentration c(t, �x):

∂tc = ∇x · [(D + η(�x))∇xc] − (k + ζ(�x))c, (4.3)

where the effective diffusion coefficient D and the degradation rate k fluctuate in space. Their
spatial fluctuations are captured by the noise terms η(�x) and ζ(�x) respectively. We investigate
morphogen gradient formation in the half-space x > 0 in different space dimensionalities d.
The presence of the morphogen source is described by a current j0 imposed at the boundary
located at x = 0. This boundary is a point in d = 1, a line in d = 2, and a plane in d = 3. The
current j0 across this boundary can also fluctuate.

For each different realization of the disorder, the steady state gradient c(�x) following from
(4.3) will be different. We consequently study the statistical properties of c(�x) in an ensemble
of realizations of the disorder. In chapter 5, we will mathematically define this problem and
develop a method for calculating the moments and the normalized standard deviation Σ(x)
of the morphogen concentration c(x) in steady state as a function of the distance x to the
morphogen source. Σ(x) is a measure for the relative error of the local morphogen concentration
at position x. Due to the symmetries of the problem, all moments of c(�x) depend only on the
distance x to the source boundary independent of the space dimensionality.

In section 5.2, we will also calculate the effects of fluctuations in our more detailed descrip-
tion of morphogen transport that was introduced in chapter 3. Here, disorder due to cellular
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individuality is introduced by assigning random values to the rates describing the trafficking
and degradation of morphogens and receptors in each cell, see Fig. 4.3 for an illustration.

Here, we discuss the origin and the biological relevance of disorder in morphogen gradient
formation. As the different noise amplitudes entering our description have not been measured
in experiments, we concentrate on generic results that are independent of these values. In-
teresting points of examination are the role of different space dimensionalities and the impact
of fluctuations in the bulk of the system compared to that of fluctuations at the boundary.
Moreover, it is important to investigate if the different transport mechanisms have different
implications for the precision of morphogen gradient formation.

4.2.1 Microscopic origin of fluctuations

Let us first discuss in more detail how the disorder in the tissue leads to random fluctu-
ations of the parameters entering the theoretical description. In the simple description of
morphogen gradient formation by extracellular diffusion (4.3), the effective degradation rate
k captures the removal of morphogens from the extracellular space by extracellular degrada-
tion and their internalization into cells after binding to cell surface receptors. The spatial
fluctuations ζ(�x) of this degradation rate originate in stochastically different concentrations of
extracellular molecules that affect the removal of the morphogen from the extracellular space.
These molecules can be extracellular proteases that destroy the morphogen or cell surface
molecules like the morphogen receptors.

In (4.3), the passive diffusion of morphogens in the extracellular space is characterized by
an effective diffusion coefficient D. This is not a free diffusion coefficient for a particle with the
size of a morphogen molecule in a watery liquid because all kinds of interactions with molecules
of the extracellular matrix and on cell surfaces that the morphogen can temporarily bind to
cause a reduction of the effective diffusion coefficient D. The spatial fluctuations η(�x) of this
effective extracellular diffusion coefficient have multiple roots. One origin is stochastically dif-
ferent distances over which the morphogens have to diffuse through the extracellular space to
cover a distance of one cell diameter a in the tissue. These different lengths of path connecting
equidistant points in the extracellular space are a natural result of the disordered cell arrange-
ment in the tissue, see Fig. 4.4 A for an illustration. The spatially varying concentrations of
cell surface molecules and extracellular matrix components which the morphogen can bind to
are another origin of fluctuations of the extracellular diffusion coefficient. These components
can be more abundant at some places of the extracellular space than at others. Hence, the
morphogen is typically trapped at these places for a longer time, see Fig. 4.4 B. In summary,
fluctuations in the distribution of the different components of the extracellular matrix and the
disordered cell arrangement in the tissue which both affect transport are taken into account
by a fluctuating effective diffusion coefficient.

The fluctuations of the other parameters than D0 in the more detailed description of mor-
phogen transport from chapter 3 capture other effects of stochastic cell-to-cell variability in a
tissue. Several rates entering this theoretical description effectively describe complicated active
processes performed by the intracellular molecular machinery. For example, the internaliza-
tion of cell surface proteins that is described by a simple rate bint requires several different
proteins that have to be produced by the cell. The numbers of these proteins vary from cell
to cell due to the randomness in their transcription, translation, and degradation [31]. These
differences in the protein numbers lead to different abilities of the cell to internalize proteins
from its surface which can be described by different effective rates for this process [80]. This
is the origin of the fluctuations of the rates like bint, bext, bdeg, fint, fext, fdeg, and fsyn which
effectively capture such cellular processes in our theoretical description.

The gene expression in the source cells is also a stochastic process. This stochasticity leads
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Figure 4.4: Microscopic origin of the space-dependent fluctuations of the effective diffusion coefficient
D in the case of transport by extracellular diffusion. (A) It takes longer for the morphogen to diffuse
along the curved path which connects points (a) and (b) than along the straight path connecting the
equidistant points (b) and (c). In a coarse-grained description, this leads to a reduced hopping rate
between points (a) and (b) compared to that between points (b) and (c). This hopping rate is the same
for hopping in both directions which corresponds to case A discussed in section 5.1. (B) The morphogen
can diffuse away from point (a) faster than from point (b) because extracellular proteins which it can
bind to are much more abundant at (b). In a coarse-grained description, this leads to a reduced rate of
hopping away from point (b) compared to that for hopping away from point (a) which corresponds to
case B discussed in section 5.1.
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to variations in the rate ν at which these cells produce new morphogen molecules and secrete
them into the extracellular space surrounding them. This is the origin of the fluctuations of
the current j0 imposed at the source boundary which is proportional to ν.

The fluctuations of the rates kon and koff describing binding and un-binding of morphogens
to and from cell surface receptors respectively have a different origin. Receptors exist in
different conformations and the rates of ligand binding and un-binding depend on these con-
formations. The receptors can also form complexes with other proteins or among themselves
which can affect the ligand affinity. These phenomena are stochastic and consequently cause
fluctuations of the effective rates kon and koff . Moreover, the binding of ligands to receptors on
the cell surface is usually a diffusion-limited process, so that the fluctuations of the extracel-
lular environment which have an impact on the extracellular diffusion coefficient as discussed
above affect the binding rate kon. Finally, spatial fluctuations of the number of extracellular
proteases which are involved in extracellular morphogen degradation cause fluctuations of the
rate edeg. While the presence of all these fluctuations is beyond doubt, their magnitude in the
biological systems we are interested in here has so far not been estimated from experimental
data.

4.2.2 Definition of precision

It is useful to define a measure of the precision of a morphogen gradient that quantifies how
accurately the position of a concentration threshold in the target tissue is specified. In agree-
ment with the notation used in chapter 5, we denote the average steady state gradient of an
ensemble of realizations of the disorder by c0(x) = 〈c(x)〉. A dimensionless measure for the
precision of the gradient at a given distance x from the source is

P(x) = a

(
(∂xc0(x))2

〈(c(x) − c0(x))2〉
)1/2

. (4.4)

The precision P(x) becomes large at x if the variance of the morphogen concentration 〈(c(x)−
c0(x))2〉 is small or if the gradient is steep there, i.e. if (∂xc0(x))2 is large. This is illustrated
in Fig. 4.5. For P(x) = 1 the uncertainty of the morphogen concentration at x is sufficiently
small to define the position of a concentration threshold with an uncertainty of about one cell
diameter a. Thus, for P(x) ≥ 1, the morphogen gradient can be considered precise at x.

As the steepness of the gradient becomes small and the relative uncertainty of c(x) usually
increases for large x, one expects P(x) to be a monotonically decreasing function for large
x. This implies that there is a critical distance xc from the source boundary such that the
gradient is precise for 0 ≤ x ≤ xc. The whole gradient can be called precise if xc is larger than
the distance of the concentration threshold farthest away from the source. The linear decay
length of the gradient gives a length scale for this distance. Thus, we call the gradient precise
if xc is larger than this decay length.

In the simple model of morphogen gradient formation by extracellular diffusion (4.3), one
can express the precision defined in (4.4) as

P(x) =
ac0(x)

ξD 〈(c(x) − c0(x))2〉1/2
=

a

ξDΣ(x)
, (4.5)

where Σ(x) = 〈(c(x) − c0(x))2〉1/2/c0(x) denotes the normalized standard deviation of c(x)
and ξD =

√
D/k is the diffusion length. This reveals an inverse relationship between the

precision of morphogen gradients and Σ(x) which is the quantity we will calculate throughout
chapter 5. Since we have only used ∂xc0(x) = −c0(x)/ξD, this result also holds in any other
situation where c0(x) decays exponentially. Note, that the simple relation (4.5) between P(x)
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Figure 4.5: Morphogen gradients in a system with disorder. (A) Schematic of steady state gradients
c(x) for 20 realizations of the disorder. Each realization of the disorder leads to different fluctuations
of c(x) about the mean gradient which is shown in red and coincides with the gradient in the absence
of disorder in the schematic. From many such realizations, the standard deviation of c(x) at each
position can be calculated. The standard deviation is shown by the error-bars in the inset. (B) The
schematic shows a fictive morphogen gradient with the source located at x = 0. The local morphogen
concentration c at a position x has an uncertainty σc that is given by the standard deviation of c.
This uncertainty σc leads to an uncertainty σx of the position where the concentration c is present. As
illustrated, the uncertainty σx depends on σc and the steepness of the gradient at x. This motivates
our definition of the precision P(x) given by (4.4).
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and Σ(x) does not hold for morphogen gradients λ(x) formed by transcytosis. This is due to the
nonlinear nature of the transport equations for transcytosis. Equation (4.5) holds only in the
linear regime, i.e. in regions where the morphogen concentration λ is small. For large currents
j0 imposed at x = 0, the morphogen profile near x = 0 is characterized by the singularity
(3.26). This implies that the profile λ(x) is very steep there and the precision is larger than in
the linear case.

In order to achieve a reliable patterning of the target tissue, a precision P(x) ≥ 1 over
a distance that is on the order of the gradient range is needed. One way to increase the
precision P(x) is to make the gradient steeper. There are limitations to this because having
a steep gradient conflicts with having a gradient with morphogen concentrations of the same
order of magnitude that extends over a large structure that has to be patterned. Moreover,
steepness requires a high effective morphogen degradation rate which implies a high turnover
of morphogens. These must be produced consuming the limited resources available. Thus, the
precise definition of the position of concentration thresholds in the proximity of the morphogen
source is only possible if the fluctuations of the local morphogen concentration are not too
strong there.

4.2.3 Effects of disorder on the precision of gradients

In this section, we discuss the implications of the results found in chapter 5 for morphogen
gradients in real biological systems.

Role of space dimensionality A fundamental result is that the dimensionality of the space
in which the gradient is formed has an enormous impact on the resulting uncertainty of the
local morphogen concentration which is measured by the normalized standard deviation Σ(x).
In the simple description of morphogen gradient formation by extracellular diffusion (4.3), the
precision P(x) is much smaller in one dimension as compared to two dimensions for the same
values of the effective diffusion coefficient D, the effective degradation rate k, and the current
j0 imposed at the source boundary at x = 0 and the same amplitudes σD, σk, and σj0 of the
corresponding noise terms. This is true both near the source and asymptotically for large x,
see Fig. 4.6 A. Going from two to three dimensions, another strong increase of the precision
occurs. A similar effect is observed in the more detailed description of morphogen transport.

This reflects that, in one dimension, a strong fluctuation at a position x0 strongly affects the
steady state concentration profile at all positions x > x0 because all morphogens moving from
the source to x have to pass x0. In two dimensions this effect is weaker because the morphogens
can reach any position �x on many different paths so that the effects of the fluctuations of D
and k are partly averaged out.

The role of the space dimensionality d can be identified by looking at the behavior of Σ(x)
for large x. We show in chapter 5 that Σ(x) increases asymptotically following a power-law
Σ(x) ∼ xφ that is characteristic of the space dimensionality d. According to (4.5), the precision
decreases correspondingly as P(x) ∼ x−φ. The general formula for the exponent φ as a function
of the space dimensionality d is

φ = (3 − d)/4

for d < 3. This shows how the precision rapidly increases with increasing space dimensionality
and suggests that d = 3, where we find Σ(x) ∼ ln(x), is the upper critical dimension beyond
which the fluctuations of D and k become irrelevant.

Apart from the fluctuations of D and k, the impact of fluctuations of the current j0 imposed
at the boundary is qualitatively different in two dimensions than in one dimension. While
boundary fluctuations in one dimension lead to an increase of Σ(x)2 by an additive constant
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Figure 4.6: (A,B) Precision P(x) of gradients in the simple description of extracellular diffusion (4.3).
Logarithmic plot of P(x) in one dimension (red lines), in two dimensions (blue lines), and in three
dimensions (green lines). For the solid lines, only k is fluctuating and for the broken lines both k and
the current j0 imposed at x = 0 are fluctuating. The precision P(x) was calculated from the analytical
results shown in Fig. 5.5 A using (4.5). (B) Precision P(x) in two dimensions. The blue line shows
P(x) if only k is fluctuating, the red line if both D and k are fluctuating, the magenta line if D and k
are fluctuating in a fully correlated way, and the green line if D, k and the current j0 imposed at the
boundary at x = 0 are fluctuating. P(x) was calculated from the analytical results shown in Fig. 5.4 A
using (4.5). (C,D) Precision P(x) of gradients formed in one dimension in the transcytosis dominated
limit of our more detailed description of morphogen transport shown in Fig. 4.3 with constant surface
receptor approximation. The lines show P(x) for the gradients of the free extracellular morphogen con-
centration l (red), the surface receptor-bound morphogen concentration s+ (magenta), the internalized
receptor-bound morphogen concentration si (blue), and the total morphogen concentration λ (green).
The linear regime in which j0 is very small is shown in C. The nonlinear regime where j0 is large and
most receptor molecules are occupied near the source at x = 0 is shown in D. The precision P(x) in
C and D was calculated from the numerical data shown in Fig. 5.8 C and D. See chapter 5 for details
about how the data shown in this figure were calculated.
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and thus affect the precision at all distances x from the source, they result in a decreasing
contribution to Σ(x) that ultimately goes to zero with increasing distance x from the source in
two dimensions. This leads to a precision P(x) that increases with x near the source boundary
at x = 0, see green line in Fig. 4.6 B. This feature is even more pronounced in three dimensions,
i.e. the fluctuations of the boundary current cause an increase of the precision with x that is
even faster than in two dimensions, see dashed lines in Fig. 4.6 A.

This behavior is again due to an averaging effect that occurs for d > 1. At a position �x very
close to the source, the steady state concentration c(�x) is strongly affected by the fluctuations
of the current j0 across a narrow region of the source boundary near �x. Farther away from the
source, the concentration is affected by a wider part of the source boundary over which the
fluctuations of j0 are effectively averaged. This leads to a reduction of the fluctuations of c(�x)
and consequently to an increase of precision.

In summary, we find that if relevant disorder is present in the system, the precision of
gradient formation is relatively low in one space dimension. This suggests that the minimal
dimension in which precise gradients can be formed is d = 2. At least, it appears highly
advantageous to pattern tissues via morphogen gradients in geometries that are at least two
dimensional. This may seem insignificant in cases like the wing disk, where the adult structure,
i.e. the wing of the fly, is itself two dimensional. However, there are formidable examples of
developing organisms where patterning first occurs in a two dimensional geometry that is later
reduced to an essentially one dimensional one by letting the cells in parts of the tissue die in
a programmed way by a process called apoptosis. The formation of digits, i.e. fingers or toes,
in the development of the chick and other vertebrates is such an example. First, the pattern
of the digits is formed in a two dimensional plate-like tissue. After the correct formation of
this pattern, the cells in the tissue between the digits die by apoptosis leaving behind several
essentially one dimensional structures [103]. At first glance, apoptosis seems wasteful. Our
results concerning the precision of morphogen gradients in different space dimensions are a
possible explanation for the ample use of this mechanism in development.

Impact of boundary fluctuations Another interesting issue is the relative importance of
fluctuations at the boundary compared to fluctuations in the bulk of the system. For the
simple description of morphogen gradient formation (4.3), the fluctuations of the current j0

across the boundary at x = 0 generally reduce the precision P(x) significantly near the source,
see Fig. 4.6 A and B. If the same relative widths for the fluctuations of D, k, and j0 are used,
the fluctuations of j0 usually give the largest contribution to the uncertainty Σ(x) near the
source located at x = 0. For larger distances x to the source, the bulk fluctuations become
dominant. However, in a biological system, the precision of the gradient is only relevant in the
proximity of the morphogen source because that is where the concentration thresholds which
control cell fate determination are located. Thus, it is important to have a sufficiently high
precision of the morphogen concentration in that region. These two considerations combine
to the conclusion that in order to achieve the formation of a precise gradient, it is of great
importance to reduce the impact of the fluctuations of the ligand current across the source
boundary. In the description of extracellular diffusion with disorder (4.3), there is no other
way of doing this than to directly reduce the amplitude σj0 of the fluctuations of the boundary
current j0. This is due to the linearity of the description.

The situation is different in the transcytosis dominated limit of our more detailed descrip-
tion of morphogen gradient formation. For small currents j0 across the boundary at x = 0,
the fluctuations of this current also lead to a strong reduction of the precision of the gradi-
ent of the total morphogen concentration λ(x) close to the source. However, in the nonlinear
regime which is reached by a high value of j0, we find a significantly increased precision. This
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Figure 4.7: Precision of steady state gradients formed in the one dimensional description of morphogen
gradient formation with receptor kinetics discussed in section 3.1.1. The precision P(x) was calculated
from the data shown in Fig. 5.6. (A) Precision P(x) of steady state gradients with parameters in
the transcytosis regime with a small morphogen secretion rate ν/R0bdeg � 1. We show P(x) for the
gradients of the different quantities as indicated in the key. (B) Like A but with a large morphogen
secretion rate ν/R0bdeg = 13.3. (C) Like A but with parameters in the diffusion regime and ν/R0bdeg =
207.
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comparison of the precision P(x) that was obtained from calculations in the linear and the
nonlinear regime of transcytosis is shown in Fig. 4.6 C and D for the constant surface recep-
tor approximation and in Fig. 4.7 A and B for the description with receptor kinetics. The
increase of precision in the nonlinear regime is mainly due to the robustness of the gradients
that are insensitive to comparatively large changes of j0 in this regime as discussed in section
4.1. This suppression of boundary fluctuations from the source and the increased steepness
of the gradient near the source lead to an increase of the precision in the nonlinear regime of
transcytosis.

Role of local correlations Studying the simple description of morphogen gradient for-
mation (4.3), we further find that local correlations between the fluctuations of the effective
diffusion coefficient D and those of the effective degradation rate k can have a strong impact
on the uncertainty Σ(x), see section 5.1. A positive correlation leads to a slower asymptotic
increase of Σ(x) and in fact to a decrease of Σ(x) everywhere except for a small region ex-
tremely close to the source. Consequently, the precision P(x) is increased as a result of such
correlations, compare the magenta line and the red line in Fig. 4.6 B.

In section 5.2, we show that in the transcytosis dominated limit of our theoretical descrip-
tion of morphogen transport with disorder illustrated in Fig. 4.3, well-defined local correlations
between the fluctuations of the effective diffusion coefficient D(λ) that characterizes transcy-
tosis and the corresponding effective degradation rate k(λ) appear quite naturally. Let us
exemplify the origin of such correlations by looking at the internalization rate bint. Suppose
that bint is slightly increased in a given cell. This usually leads to faster transport of ligand-
receptor complexes from one position on the surface of this cell to another one simply because
the internalization step which is part of this transport process occurs faster. Moreover, mor-
phogen degradation is enhanced because the enhanced internalization of the morphogen leads
to an increase of the amount of morphogens present inside the cell which is a prerequisite
for intracellular degradation. Thus, both the effective diffusion coefficient D(λ) characterizing
transcytosis and the effective degradation rate k(λ) are increased by the fluctuation of the rate
bint. This example illustrates how positive correlations between the fluctuations of the effective
diffusion coefficient and the effective degradation rate naturally occur in transcytosis.

Fluctuations of the other rates can be demonstrated to have similar effects. In transcyto-
sis, both positive and negative correlations between the resulting fluctuations of the effective
diffusion coefficient and the effective degradation rate can occur. As we have discussed above,
positive correlations can strongly decrease the uncertainty Σ(x) of the local morphogen con-
centration and thus increase the precision P(x). The capability of the system to control
correlations between the fluctuations that occur is consequently of potential value.

Correlations between the fluctuations of D and k could also be present in a system where a
gradient is formed by extracellular diffusion. For example, the presence of a fictive extracellular
protein could lead to a reduction of the extracellular degradation rate and could at the same
time lead to a decrease of the effective extracellular diffusion coefficient. For example, this
protein would have to inhibit a protease that is needed for morphogen degradation and also bind
the diffusing morphogen thus obstructing its Brownian motion. However, this is speculative and
it appears unlikely that such well-defined correlations between the passive processes occurring
in the extracellular space exist in real systems. On the other hand, they are almost inevitable
in active transport mechanisms like transcytosis as illustrated by the example discussed above.
If morphogen gradient formation has to be precise, this is a potential advantage of active
transport processes over passive ones.
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Precision of microscopic quantities So far, we have discussed the precision of morphogen
gradients without taking into account the individual gradients of the free morphogen con-
centration l, the surface receptor-bound morphogen concentration s+, and the internalized
receptor-bound morphogen concentration si for which the precision P(x) can be calculated
separately in the more detailed description of morphogen gradient formation with disorder
shown Fig. 4.3. In Fig. 4.6 C,D and Fig. 4.7, we see that the gradients of these microscopic
quantities usually have a different precision than the gradient of the total morphogen con-
centration λ(x). The biologically relevant gradient is most likely that of the receptor-bound
morphogen concentration, see section 1.1.

If morphogen transport is dominated by extracellular diffusion, the uncertainty of this gra-
dient can certainly be higher than that of the free extracellular morphogen gradient because
it is accessorily affected by intracellular noise. However, it cannot be lower than that of the
free extracellular morphogen gradient because the cells can only attempt to accurately detect
the free extracellular morphogen concentration present at the position in the tissue where they
are located. There is no way to reduce the uncertainty of the extracellular morphogen con-
centration in this process as long as we stick to the plausible assumption that intracellular
and extracellular fluctuations are uncorrelated. The data for the precision of morphogen gra-
dients formed in the extracellular diffusion dominated regime of our more detailed description
of morphogen gradient formation shown in Figures 4.7 C and 5.6 C support this argument:
the precision of l(x) is much larger than that of s+(x) and si(x) and the normalized standard
deviation of l(x) is smaller.

The situation is different the limit in which transport is dominated by transcytosis. In
Fig. 4.7 A and B, we see that the precision of the biologically relevant gradient s+(x) + si(x)
can be higher than that of the extracellular morphogen gradient l(x) or the gradients of the
other quantities in this limit. This behavior is in contrast to the situation that arises in the
extracellular diffusion dominated limit, see Fig. 4.7 C. Comparing Fig. 4.7 A and B, we further
see that the precision of the quantities s+, si, r+ and ri is increased at most positions x in
the nonlinear regime of transcytosis if compared to the linear one. Interestingly, the precisions
of the receptor bound morphogen concentrations Ps+(x), Psi(x), and Ps++si(x) increase as a
function of x near the source and rapidly reach a relatively high value.

In summary, we find that morphogen gradient formation by passive extracellular diffusion
has some apparent disadvantages in comparison to transcytosis as far as the precision of gra-
dient formation is concerned: the boundary fluctuations cannot be suppressed, well-controlled
local correlations which could counteract the effects of fluctuations in the bulk are probably un-
available, and the highest precision is achieved for the gradient of free extracellular morphogens
which cannot be directly detected by the cells.
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Chapter 5

Gradient formation in disordered
systems

In this chapter, we investigate morphogen gradients which are formed in a disordered environ-
ment. The origins of disorder and its relevance for morphogen gradient formation in biological
systems were explained in section 4.2. Here, we treat the theoretical aspects of this problem
in detail.

The disorder in a developing tissue can be characterized by spatiotemporal fluctuations of
the properties of the tissue. In a theoretical description of morphogen transport like the one
we introduced in chapter 3, the presence of disorder and cell-to-cell variability can be captured
by allowing certain parameters of the description to depend on the location in a stochastic
manner. In a discrete description like (3.1), it is reasonable to assign random values to the
parameters for each cell. These parameters are distributed around a mean value following
a certain probability distribution. The mean value of this distribution corresponds to the
parameter value in a description that does not account for the disorder in the system like the
ones we have discussed in chapter 3.

We assume that the time scale on which the disorder changes is larger than the time
scale of relaxation into the steady state and do not deal with temporal fluctuations and the
relaxation kinetics. Instead, we focus on the effects of frozen spatial disorder on steady state
morphogen gradients. We develop a method for calculating the spatial correlation functions
of the morphogen concentration in the steady state. These depend on the distance from the
morphogen source in such a frozen disorder scenario. From the two point correlation function,
we calculate the variance and finally the normalized standard deviation that measures the
relative error of the local morphogen concentration. This is a quantity of immediate relevance
for the precision of morphogen gradients as we discussed in chapter 4. We apply the method
to two examples: a diffusion model with particle decay that can be regarded as a simple
description of morphogen transport by extracellular diffusion and the more detailed description
of morphogen transport from chapter 3.

5.1 Diffusion with particle decay

To introduce the problem and the methods we use, a simple class of discrete systems that are
capable of gradient formation is studied in this section. We investigate a mean field description
of non-interacting decaying particles which are hopping on a lattice. In sections 5.1.1 and 5.1.2,
we treat the one dimensional situation and discuss the generalization to higher space dimensions
in section 5.1.3.
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Figure 5.1: Schematic of the hopping model with random barrier heights (A) and random trap depths
(B). (A) The hopping rates pn are the same for hopping over each barrier in both directions. (B) The
rates pn for hopping away from a site n are the same for both directions. In A and B, the particles also
decay at a rate kn which randomly depends on the lattice site (not shown).

5.1.1 Diffusion with frozen disorder

Consider non-interacting, decaying particles which are hopping non-directionally on a semi-
infinite one dimensional lattice. The hopping rate and the decay rate depend on the position on
the lattice. There are two obvious realizations of this discrete kinetics that conserve the particle
number in the absence of degradation, see Fig. 5.1. These are well-known from the study of
random lattice systems [2]. The “barrier height” between two lattice sites can depend on the
location (case A). Alternatively, the “trap depth” at one site can depend on the location (case
B). The problem of morphogen transport in a disordered environment that we are interested in
here can be formally described by the same kinetic equations used for these systems although
the origin of the fluctuations of the hopping rate is quite different. Usually these hopping
rates are determined by an energy landscape in which the particles move. However, in section
4.2, we explained that these models can be viewed as an effective description of morphogen
transport by passive diffusion in the extracellular space of a tissue that is coarse-grained on a
length scale given by the average cell diameter a, see Fig. 4.4. It is reasonable to use a as a
coarse-graining length because the fluctuations of the ligand concentration on this length scale
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are those perceived by the cells in the tissue.
The mean field equation in the bulk which describes case A is

∂tCn = pn−1(Cn−1 − Cn) + pn(Cn+1 − Cn) − knCn, for n > 0, (5.1)

where Cn denotes the particle number at lattice site n, pn−1 is the rate for particle hopping
between sites n and n − 1 in both directions, and kn is the rate of particle decay at site n.
The lattice begins at site n = 0. The treatment of this boundary has to be specified. We
investigate both a fixed particle number C0 = C0

0 = const. and a constant influx of particles
at a rate ν into the system at n = 0. The latter is described by

∂tC0 = ν + p1(C1 − C0) − k0C0. (5.2)

The mean field description of case B is

∂tCn = pn−1Cn−1 + pn+1Cn+1 − 2pnCn − knCn, for n > 0, (5.3)

where pn denotes the rate of hopping away from site n. The corresponding equation for C0

with an influx of particles at rate ν is

∂tC0 = ν + p1C1 − p0C0 − k0C0. (5.4)

In the following, we investigate a frozen disorder configuration of this system in which the
pn are distributed randomly around a mean value p, i.e. pn = p + ηn. Here, ηn is a random
variable with 〈ηn〉 = 0. Moreover, the correlator is assumed to be 〈ηnηj〉 = σ2

pδnj . This
implies that the values of ηn at different lattice sites are uncorrelated. The kn are distributed
analogously, i.e. kn = k + ζn with 〈ζn〉 = 0 and 〈ζnζj〉 = σ2

kδnj . The ηn and ζn can be
correlated at each lattice site: 〈ηnζj〉 = Ckpδnj . Note, that in case A this implies that the
degradation rate kn at site n is correlated with the hopping rate to the right pn. It could also
be correlated with the hopping rate to the left pn−1. Only the numerical results presented in
the following depend very weakly on this subtle difference. Note, that a correlation with both
pn and pn−1 would lead to nonlocal correlations in the system. We do not treat this here and
restrict ourselves to the simpler case of local correlations.

In addition to the rates pn and kn, the rate of ligand influx into the system ν can be
fluctuating, i.e. ν = ν0 + χ where χ is a random variable with 〈χ〉 = 0, 〈χ2〉 = σ2

ν , and
〈χηn〉 = 〈χζn〉 = 0 for all n ≥ 0. In the case of a fixed concentration at n = 0, one can
introduce fluctuations at the boundary very similarly: C0 = C0

0 + γ̃ with a random variable γ̃
satisfying 〈γ̃〉 = 0, 〈γ̃2〉 = σ2

C , and 〈γ̃ηn〉 = 〈γ̃ζn〉 = 0. The variances σp, σk, σν , and σC of the
noise terms ηn, ζn, χ, and γ̃ are assumed to be small compared to the mean values p, k, ν0, and
C0

0 respectively. Our discussion is mostly independent of the specific probability distributions
of ηn, ζn, χ, and γ̃. It is only required that these distributions are tightly localized around
their mean value zero.

One can formally derive continuous descriptions of (5.1) and (5.3), see section E.1 of the
appendix. The continuum limit of case A is

∂tc(x, t) = ∂x(D + η(x))∂xc(x, t) − (k + ζ(x))c(x, t) (5.5)

and that of case B

∂tc(x, t) = ∂2
x(D + η(x))c(x, t) − (k + ζ(x))c(x, t). (5.6)

Here x = na, c(x, t)|x=na = Cn(t)/a, and D = pa2 with the lattice constant a. The continuum
limit of the noise correlators is 〈η(x)η(x′)〉 = σ2

Daδ(x − x′), 〈ζ(x)ζ(x′)〉 = σ2
kaδ(x − x′), and

〈η(x)ζ(x′)〉 = CkDaδ(x − x′) respectively. Here σD = σpa
2 and CkD = Ckpa

2.
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Mean value Fluctuations Width of distribution
Diffusion coefficient D η σD

Degradation rate k ζ σk

Current at x = 0 j0 χ σj0

Concentration at x = 0 c0
0 γ σc

Table 5.1: Notation used for the simple diffusion models with disorder in section 5.1.

For x → ∞, the boundary condition c(x) = 0 has to be satisfied. The boundary condition
at x = 0 that corresponds to fixing the concentration at site n = 0 in the discrete descriptions
above is c(0, t) = c0

0 + γ with c0
0 = C0

0/a and γ = γ̃/a. The variance of γ is 〈γ2〉 = σ2
caδ(x−x′)

with σc = σC/a. A fixed particle influx at site n = 0 at rate ν = ν0 + χ corresponds to a fixed
current j0 + χ at x = 0 with j0 = ν0. For case A, this imposes the constraint

(D + η(x)) ∂xc(x, t)
∣∣∣
x=0

= −j0 − χ (5.7)

and in case B we have
∂x(D + η(x))c(x, t)

∣∣∣
x=0

= −j0 − χ. (5.8)

For convenience, the notation used throughout this section is summarized in Table 5.1.
These continuous equations are still a description of the underlying discrete systems, i.e.

we do not take the limit a → 0 here. This implies that the continuum description is only
valid on length scales that are large compared to a. Here, we are interested in the behavior of
the system on such large length scales. The fluctuations of D and k at different positions x
are actually correlated on a length scale a. In the correlators, one should consequently use a
discrete delta function like δa(x) = 1/a if −a/2 < x < a/2 and δa(x) = 0 otherwise. We use the
Dirac delta functions in these correlators for mathematical convenience. This is a reasonable
approximation on length scales that are much larger than a. For the delta function at x = 0
that appears in the noise correlators for x = x′, we formally use δ(0) = 1/a where necessary.
Note, that in the formal continuum limit which is obtained for a → 0, the fluctuations of D
and k vanish unless one lets the relative noise amplitudes σD/D and σk/k diverge.

5.1.2 Effects of the disorder on the steady state

The time development defined by equations (5.1) and (5.3) in the absence of particle decay, i.e.
with kn = 0, has been studied extensively in previous work [2]. In fact, the long time behavior
of such systems can be solved exactly [2]. Here, however, we investigate a strikingly different
problem, namely the formation of steady state profiles in presence of a localized particle source
with particle decay throughout the system. The presence of a source located at x = 0 breaks
the space inversion symmetry. Moreover, even in the steady state, there is a non-vanishing
particle current throughout the system because particles constantly enter from the source and
decay in the bulk. This implies that detailed balance is violated in the steady state. For the
satisfaction of detailed balance, it is required that the net particle current vanishes everywhere.
Consequently, we are looking at non-equilibrium steady states. This highlights the qualitative
difference to the previously investigated situation without particle production and decay in
which the system relaxes into an equilibrium steady state [2].

Let us now investigate the effects of the disorder on the steady state gradients that are
reached for t → ∞. Due to the presence of multiplicative noise in (5.1) and (5.3), the calculation
of the steady state solutions in both cases A and B is a nontrivial problem. Using a small noise
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approximation, we apply a perturbative approach to calculate the spatial correlation functions
of the particle concentration c(x) in steady state. To begin with, we calculate the first order
correction of the steady state profile that is due to the presence of the disorder.

Effects of disorder in case A It is assumed that the amplitude of the noise is small, i.e.
σD/D � 1 and σk/k � 1. The smallness is formally expressed by a factor ε which is introduced
in (5.5):

∂x(D + εη(x))∂xc(x) − (k + εζ(x))c(x) = 0. (5.9)

The ansatz
c(x) = c0(x) + εc1(x) + ε2c2(x) + . . .

combined with (5.9) yields a differential equation with boundary conditions for each order in
ε. The O(ε0)-equation is identical to the one without fluctuations, D∂2

xc0 − kc0 = 0. The
O(ε1)-equation is

(D∂2
x − k)c1(x) = −∂xη(x)∂xc0(x) + ζ(x)c0(x). (5.10)

In fact, the equations for all higher order corrections can be obtained by iteration:

(D∂2
x − k)cj+1(x) = −∂xη(x)∂xcj(x) + ζ(x)cj(x), j ≥ 0. (5.11)

The boundary conditions for c0(x), c1(x), etc. at x = 0 are obtained by requiring that the
boundary condition on c(x) is satisfied to each order in ε. For a fixed concentration, c(0) = c0

0,
this simply implies c0(0) = c0

0, c1(0) = γ, and c2(0) = c3(0) = · · · = 0. If the current is fixed at
x = 0, (5.7) has to be satisfied. To O(ε0), this yields Dc′0(0) = −j0 where the prime denotes
the derivative with respect to x. To O(ε1), we have

c′1(0) = −D−1
(
η(0)c′0(0) + χ

)
(5.12)

and the boundary conditions for all higher order terms are obtained by iteration:

c′j+1(0) = −D−1η(0)c′j(0), j ≥ 1.

For small noise amplitudes, we may assume that the iteration scheme (5.11) converges
rapidly. In the following, we will consequently focus on calculating c0(x) and c1(x) and neglect
higher order corrections. For c0, we find the same steady state solution as for the problem
without disorder: c0(x) = c0

0e
−x/ξD , where ξD =

√
D/k is the diffusion length and c0

0 =
j0/

√
kD.

Equation (5.10) can be solved by using a Green’s function G(x, x′) of the linear operator
(D∂2

x−k). The Green’s function must satisfy (D∂2
x−k)G(x, x′) = δ(x−x′). It is straightforward

to calculate the free Green’s function G0(x, x′) using Fourier transforms:

G0(x, x′) =
−1

2
√

kD
e−|x−x′|/ξD .

Using a mirror image technique, one can construct two different Green’s functions which satisfy
the boundary condition G(0, x′) = 0 and ∂xG(x, x′)|x=0 = 0 respectively. These Green’s
functions explicitly read

G±(x, x′) =
−1

2
√

kD

(
e−|x−x′|/ξD ± e−(x+x′)/ξD

)
, (5.13)

where at the boundary G−(0, x′) = G−(x, 0) = 0 and ∂xG+(x, x′)|x=0 = ∂x′G+(x, x′)|x′=0 = 0.
Note, that the first derivatives of G+ are not defined at x = x′ by (5.13). The first derivative of
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G0(x, x′) vanishes because the free Green’s function should satisfy G0(x, x′) = G0(x′, x). This
implies ∂xG0(x, x′) = −∂xG0(x′, x) which is only satisfied for x = x′ if ∂xG0(x, x′)|x=x′ = 0.
Thus, we formally choose the derivative of the absolute value function ∂x|x||x=0 = 0. This
corresponds to defining Θ(0) = 1/2 for the Heaviside function at x = 0. While this choice will
simplify our notation at some points, the results in this section do not depend on it.

Applying the Green’s function method, the solution to equation (5.10) is

c±1 (x) = −Dγ∂x′G±(x, x′)
∣∣∣
x′=0

− G±(x, 0)
(
η(0)c′0(0) + χ

)
+
∫ ∞

0
dx′ G±(x, x′)

(
−∂x′η(x′)∂x′c0(x′) + ζ(x′)c0(x′)

)
= −Dγ∂x′G±(x, x′)

∣∣∣
x′=0

− G±(x, 0)χ

+
∫ ∞

0
dx′

(
η(x′)c′0(x

′)∂x′G±(x, x′) + G±(x, x′)ζ(x′)c0(x′)
)
, (5.14)

where the first terms come from the boundary condition imposed at x = 0. We use a condensed
notation for both choices of the boundary condition at x = 0: c+

1 denotes the solution for a
fixed current and c−1 the solution for a fixed concentration at x = 0. For the choice G−(x, x′),
−Dγ∂x′G−(x, x′)|x′=0 = γ exp(−x/ξD), so that the first order correction c−1 (x) satisfies the
required boundary condition. One can easily verify that the condition (5.12) is satisfied for
c+
1 (x). Note, that in our notation ∂xG+(x, 0)|x=0 = D−1 �= ∂xG+(x, x′)|x=x′=0 = 0. From

(5.14), we can see that 〈c±1 (x)〉 = 0 which implies that in the presence of disorder, the mean
value of c(x) is not shifted compared to the solution in the absence of noise. This is valid
to first order in perturbation theory. The second and higher order corrections that can be
calculated by applying the iteration scheme given in (5.11) and (5.12) lead to a small shift of
the mean value of c(x).

In principle, one could calculate all correlation functions 〈c(x1)c(x2) . . . 〉 from (5.14) and
the corresponding noise correlators 〈η(x1)η(x2) . . . 〉, 〈ζ(x1)ζ(x2) . . . 〉, et cetera. We exploit
(5.14) to calculate the two point correlation function 〈c(x1)c(x2)〉 and from that the second
moment of c(x). To first order, the mean is 〈c(x)〉 = c0(x) because c(x) = c0(x) + c1(x) and
〈c1(x)〉 = 0. The variance of c(x) is thus

〈
(c(x) − 〈c(x)〉)2〉 = 〈c1(x)2〉 for which we obtain

using (5.14):

〈c±1 (x)2〉 = D2
(
∂x′G±(x, x′)

∣∣∣
x′=0

)2
σ2

c + G±(x, 0)2σ2
j0

+
∫ ∞

0
dx′

∫ ∞

0
dx′′

(
σ2

Daδ(x′ − x′′)c′0(x
′)∂x′G±(x, x′)c′0(x

′′)∂x′′G±(x, x′′)

+σ2
kaδ(x′ − x′′)G±(x, x′)G±(x, x′′)c0(x′)c0(x′′)

+2CkDaδ(x′ − x′′)c′0(x
′)∂x′G±(x, x′)G±(x, x′′)c0(x′′)

)
= D2

(
∂x′G±(x, x′)

∣∣∣
x′=0

)2
σ2

c + G±(x, 0)2σ2
j0

+a

∫ ∞

0
dx′
(
σ2

Dc′0(x
′)2(∂x′G±(x, x′))2 + σ2

kG±(x, x′)2c0(x′)2

+2CkDG±(x, x′)c0(x′)c′0(x
′)∂x′G±(x, x′)

)
. (5.15)

Using the explicit expressions for the Green’s functions and c0(x), this integral can be solved
and expressed in terms of elementary functions. A dimensionless measure of the relative
uncertainty of the concentration at x is the normalized standard deviation

Σ(x) =

〈
(c(x) − 〈c(x)〉)2

〉1/2

〈c(x)〉 =
〈c1(x)2〉1/2

c0(x)
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where the last equality holds to first order in perturbation theory. Using (5.15), one obtains
for case A

Σ±(x) =
(
Σ±

B(x)2 + Σ±
k (x)2 + Σ±

D(x)2 + Σ±
kD(x)

)1/2 , with

Σ+
B(x)2 =

(
σj0

j0

)2

Σ−
B(x)2 =

(
σc

c0
0

)2

Σ±
k (x)2 =

a

8ξD

(σk

k

)2
(

1 ± 2 ∓ e−2x/ξD +
2x

ξD

)

Σ±
D(x)2 =

a

8ξD

(σD

D

)2
(

1 ∓ 2 ± 3e−2x/ξD +
2x

ξD

)

Σ±
kD(x) =

a

4ξD

CkD

kD

(
1 ± e−2x/ξD − 2x

ξD

)
, (5.16)

where Σ+(x) corresponds to a fixed current and Σ−(x) to a fixed concentration at x = 0.
This result satisfies Σ−(0) = σc/c0

0 as it is required for a fixed concentration at x = 0 while
Σ+(0) �= 0. The asymptotic behavior of Σ±(x) for large x is independent of the boundary
condition used at x = 0:

Σ±(x)2 ≈ ax

4ξ2
D

((σk

k

)2
+
(σD

D

)2 − 2CkD

kD

)
. (5.17)

We see that the normalized standard deviation of the concentration grows as Σ(x) ∼ √
x for

large x. Notably, positive correlations between D and k lead to a reduction of this increase.
We have performed numerical calculations of the discrete description of case A for the

two boundary conditions. A large number of steady state gradients was calculated for different
realizations of the disorder using a Gaussian distribution for the random variables. From these,
the first and second moments of Cn at all lattice sites n were calculated, see Fig. 4.5 A for an
illustration and section F.4 of the appendix for more details. The resulting normalized standard
deviation is shown in Fig. 5.2 for the different boundary conditions. The good agreement with
the results of the perturbative calculation is remarkable. If only D is fluctuating, a decrease
of Σ+(x) near the boundary at x = 0 is observed. This is at odds with a picture in which the
disorder leads to an accumulating loss of precision of the concentration c(x) with increasing
distance from the particle source. However, this notion remains valid sufficiently far away from
the source. For the degenerate case 2CkD/kD = (σD/D)2 + (σk/k)2, the asymptotic behavior
given in (5.17) shows that Σ(x) becomes constant for large x. The numerical calculations
confirm this intriguing result, see Fig. 5.2.

Effects of disorder in case B We apply the same method to case B. Again, c0(x) is
the steady state without noise. The iteration scheme for the calculation of c1(x) and higher
corrections is

(D∂2
x − k)cj+1(x) = −∂2

xη(x)cj(x) + ζ(x)cj(x), j ≥ 0. (5.18)

For a fixed concentration at x = 0, the boundary conditions at x = 0 are again c0(0) = c0
0,

c1(0) = γ, and c2(0) = c3(0) = · · · = 0. For a fixed current at x = 0, (5.8) has to be satisfied.
To O(ε0), this yields Dc′0(0) = −j0, to O(ε1)

c′1(0) = −D−1
(
∂xη(x)c0(x)

∣∣∣
x=0

+ χ
)

,
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Figure 5.2: Normalized standard deviation Σ(x) of the steady state concentration c(x) for the simple
diffusion model with disorder in one dimension. The symbols indicate results from numerical calculations
in which steady state gradients were calculated for many (typically 100,000) realization of the disorder.
The lines show the corresponding analytical results (5.16) and (5.20) for Σ(x). The red lines show
Σ(x) if only D is fluctuating, the blue lines if only k is fluctuating, the green lines if both D and k are
fluctuating, and the magenta lines if D and k are fluctuating in a fully correlated way. (A,B) Case A
with the current j0 (A) and the concentration c0

0 (B) imposed at x = 0. (C,D) Case B with the current j0
(C) and the concentration c0

0 (D) imposed at x = 0. Parameters are ξD/a =
√

50, σj0/j0 = σc/c0
0 = 0,

σD/D = σk/k = 0.1. In the fully correlated case 2CkD/kD = (σD/D)2 + (σk/k)2 while CkD = 0
otherwise. A Gaussian distribution was used for the noise terms in the numerical calculations.
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and higher order corrections can be obtained iteratively. With the same Green’s functions
G±(x, x′) as defined above, the solution to equation (5.18) for x ≥ 0 is

c±1 (x) = −Dγ∂x′G±(x, x′)
∣∣∣
x′=0

− G±(x, 0)χ − η(0)c0(0)∂x′G±(x, x′)
∣∣∣
x′=0

−
∫ ∞

0
dx′

(
η(x′)c0(x′)∂2

x′G±(x, x′) − ζ(x′)G±(x, x′)c0(x′)
)
, (5.19)

where we have integrated by parts twice. From (5.19), we calculate the variance

〈c±1 (x)2〉 = D2σ2
c

(
∂x′G±(x, x′)

∣∣∣
x′=0

)2
+ σ2

j0G±(x, 0)2

+σ2
Dc0(0)2(∂x′G±(x, x′))2

∣∣∣
x′=0

+ σ2
Dac0(0)2(∂x′G±(x, x′))∂2

x′G±(x, x′)
∣∣∣
x′=0

+a

∫ ∞

0
dx′

(
σ2

Dc0(x′)2(∂2
x′G±(x, x′))2 + σ2

kG±(x, x′)2c0(x′)2

−2CkDG±(x, x′)c0(x′)2∂2
x′G±(x, x′)

)
,

where we have used Θ(0) = 1/2 which affects the result only at x = 0. Using the explicit
expressions for G±(x, x′) the normalized standard deviation for x > 0 can be calculated:

Σ±(x) =
(
Σ±

B(x)2 + Σ±
k (x)2 + Σ±

D(x)2 + Σ±
kD(x)

)1/2 , with

Σ±
D(x)2 =

a

8ξD

(σD

D

)2
(
−7 ± 2 ∓ 9e−2x/ξD +

2x

ξD

)
+

3 ∓ 1
2

(σD

D

)2

Σ±
kD(x) =

a

4ξD

CkD

kD

(
3 ∓ 2 ± 5e−2x/ξD − 2x

ξD

)
. (5.20)

Here, Σ±
B(x) and Σ±

k (x) are as in (5.16). Note, that Σ−
D(x) is discontinuous at x = 0 with

Σ−
D(0) = 0. The asymptotic behavior of Σ(x) for large x is identical to that in case A given

by (5.17).
The normalized standard deviation again grows as Σ(x) ∼ √

x for large x. In fact, this is a
characteristic behavior for the one dimensional situation: independent of which rates fluctuate
and whether the case of random barrier heights or random trap depths is used, the asymptotic√

x-behavior that is reminiscent of a random-walk is found.
As for case A, we have performed numerical calculations to verify these results. A com-

parison of the numerically calculated normalized standard deviation to Σ+(x) and Σ−(x) from
(5.20) is shown in Fig. 5.2. The agreement is remarkable. Note that Σ(x) is generally much
larger for small x in case B than in case A although the same values for the parameters were
applied. The shapes of the curves for case A and case B are also very different. Finally, the
boundary condition imposed at x = 0 has a strong impact on Σ(x) near this boundary.

5.1.3 Generalization to two and three space dimensions

Motivated by the fact that morphogen gradient formation often occurs in an essentially two di-
mensional geometry, we now generalize these calculations to two space dimensions. To simplify
the discussion, we restrict our attention to case A.

Disorder in two dimensions The discrete mean field kinetics for the particle number Cn,m

at site (n, m) in the bulk of a square lattice with sites indexed by n ∈ N0 in the x-direction
and by m ∈ Z in the y-direction reads for n ≥ 1

∂tCn,m = pn−1↔n,m(Cn−1,m − Cn,m) + pn↔n+1,m(Cn+1,m − Cn,m) + pn,m−1↔m
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Figure 5.3: Two dimensional hopping model with particle decay for case A. The decay rate of the
particles at the lattice site (n, m) is kn,m. The hopping rate from that site to site (n, m + 1) and vice
versa is pn,m↔m+1 and accordingly for hopping in the other directions. For clarity, we only illustrate
the hopping to and away from site (n, m).

×(Cn,m−1 − Cn,m) + pn,m↔m+1(Cn,m+1 − Cn,m) − kn,mCn,m. (5.21)

The notation is further clarified in Fig. 5.3. The boundary is located on the line n = 0. Either
the concentrations at the lattice sites on this boundary are fixed, C0,m = C0

0,m, or a constant
influx of particles at rate νm into the system is imposed there:

∂tC0,m = νm + p0↔1,m(C1,m − C0,m) + p0,m−1↔m(C0,m−1 − C0,m)
+p0,m↔m+1(C0,m+1 − C0,m) − k0,mC0,m. (5.22)

For simplicity, we will denote the multi-indices of p by Greek letters in the following. The pα

and kn,m are assumed to be distributed around a mean like in the one dimensional situation:
pα = p + ηα with 〈ηα〉 = 0, 〈ηαηβ〉 = σ2

pδαβ , and kn,m = k + ζn,m with 〈ζn,m〉 = 0, 〈ζn,mζi,j〉 =
σ2

kδniδmj . Local correlations between pα and kn,m can be introduced in several ways, e.g.
via 〈ηn↔n+1,mζi,j〉 = 〈ηn,m↔m+1ζi,j〉 = Ckpδniδmj which means that the degradation rate at
a site is correlated with the hopping rates to the top and to the right. The details of this
choice do not affect our results significantly. The C0

0,m and the νm are stochastic variables
with C0

0,m = C0
0 + γ̃m, νm = ν0 + χ̃m, where 〈γ̃m〉 = 0, 〈χ̃m〉 = 0, 〈γ̃mγ̃k〉 = σ2

Cδmk, and
〈χ̃mχ̃k〉 = σ2

νδmk.
The continuum limit is obtained as in the one dimensional case, see section E.1 of the

appendix. With �x = (x, y) and ∇ = (∂x, ∂y), it reads

∂tc(�x, t) = ∇ · ((D + η(�x))∇c(�x, t)) − (k + ζ(�x))c(�x, t), (5.23)

where c(�x, t)|x=na,y=ma = Cn,m/a2. The boundary conditions translate to c(0, y) = c0
0 + γ(y)

with c0
0 = C0

0/a2 and γ(y)|y=ma = γ̃m/a2 for a fixed concentration at x = 0 and

(D + η(�x))∂xc(�x, t)
∣∣∣
x=0

= −(j0 + χ(y)) (5.24)
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with j0 = ν0/a and χ(y)|y=ma = χ̃m/a for a fixed current. Finally, the noise correlators
are 〈η(�x)η(�x′)〉 = σ2

Da2δ(�x − �x′), 〈ζ(�x)ζ(�x′)〉 = σ2
ka

2δ(�x − �x′), 〈η(�x)ζ(�x′)〉 = CkDa2δ(�x − �x′),
〈γ(y)γ(y′)〉 = σ2

caδ(y − y′), and 〈χ(y)χ(y′)〉 = σ2
j0

aδ(y − y′). Here σD = σpa
2, CkD = Ckpa

2,
σj0 = σν/a, and σc = σC/a2.

Effects of the disorder in two dimensions The steady state of (5.23) can be calcu-
lated iteratively as in the one dimensional situation. We again calculate c0(�x) and c1(�x).
Evidently, the unperturbed steady state is the same as for the one dimensional situation,
c0(�x) = c0(x) = c0

0 exp(−x/ξD). The first order correction c1(x, y) must satisfy c1(0, y) = γ(y)
for fixed concentration at x = 0 and

∂xc1(x, y)
∣∣∣
x=0

= −D−1(η(0, y)c′0(0) + χ(y)) (5.25)

if the current is fixed at x = 0.
The free Green’s function for the operator (D(∂2

x + ∂2
y) − k) satisfying (D(∂2

x + ∂2
y) −

k)G0(�x, �x′) = δ(�x − �x′) is

G0(�x, �x′) =
−1

2πD
K0(|�x − �x′|/ξD),

where K0 is a modified Bessel function of the second kind [97]. Using a mirror image tech-
nique, one can construct Green’s functions G±(�x, �x′) that satisfy G−(�x, �x′)|x=0 = 0 and
∂xG+(�x, �x′)|x=0 = 0 respectively:

G±(x, y, x′, y′) = G0(x, y, x′, y′) ± G0(x, y,−x′, y′). (5.26)

With this, the solution for c1(�x) is

c±1 (�x) = −
∫ ∞

−∞
dy′
(
D γ(y′)∂x′G±(�x, �x′)

∣∣∣
x′=0

+
(
η(0, y′)c′0(0) + χ(y′)

)
G±(x, y, 0, y′)

)
+
∫ ∞

0
dx′

∫ ∞

−∞
dy′G±(�x, �x′)

(
ζ(�x′)c0(x′) −∇ · (η(�x′)∇c0(x′))

)
= −

∫ ∞

−∞
dy′
(
D γ(y′)∂x′G±(�x, �x′)

∣∣∣
x′=0

+ χ(y′)G±(x, y, 0, y′)
)

+
∫ ∞

0
dx′

∫ ∞

−∞
dy′
(
G±(�x, �x′)ζ(�x′)c0(x′) + η(�x′)c′0(x

′)∂x′G±(�x, �x′)
)
, (5.27)

where ∇ · (η(�x′)∇c0(x′)) = ∂x′η(�x′)∂x′c0(x′) was used. The first term is due to the respective
boundary condition on c1(�x). As we show in section E.2 of the appendix ∂xG+(x, y, 0, y′)|x=0 =
D−1δ(y − y′), so that c+

1 (�x) satisfies (5.25). It can be shown in a very similar way that
c−1 (�x)|x=0 = γ(y).

To first order, the variance of c(�x) is consequently

〈c±1 (�x)2〉 = a

∫ ∞

−∞
dy′
(

σ2
cD

2
(
∂x′G±(�x, �x′)

∣∣∣
x′=0

)2
+ σ2

j0G±(x, y, 0, y′)2
)

+a2

∫ ∞

0
dx′

∫ ∞

−∞
dy′
(
σ2

kG±(�x, �x′)2c0(x′)2 + σ2
Dc′0(x

′)2(∂x′G±(�x, �x′))2

+2CkDc0(x′)c′0(x
′)G±(�x, �x′)∂x′G±(�x, �x′)

)
. (5.28)

By symmetry, 〈c1(�x)2〉 is independent of y. This enables us to numerically evaluate (5.28)
as a function of x. It is not possible to express the integral explicitly in terms of elementary
functions. However, one can extract the asymptotic behavior for large x. As we show in section
E.3.1 of the appendix 〈c1(�x)2〉 ∼ exp(−2x/ξD)

√
x. Consequently, the normalized standard
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Figure 5.4: Normalized standard deviation Σ(x) of the steady state concentration c(x) for the simple
diffusion model with disorder in two dimensions. The symbols indicate results from numerical calcu-
lations in which steady state gradients were calculated for many (typically 100,000) realizations of the
disorder. The lines show the corresponding analytical results for Σ(x) that follow from (5.28). The
blue lines show Σ(x) if only k is fluctuating, the red lines if both D and k are fluctuating, the magenta
lines if D and k are fluctuating in a fully correlated way, and the green lines if D, k and the respective
quantity imposed at the boundary at x = 0 are fluctuating. (A) Normalized standard deviation Σ(x)
with the current j0 imposed at x = 0. (B) Σ(x) with the concentration c0

0 imposed at x = 0. Parameters
as in Fig. 5.2 with σj0/j0 = σc/c0

0 = 0.1. A Gaussian distribution was used for the noise terms in the
numerical calculations.
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Dimensionality Σ(x) ∼
1d x1/2

2d x1/4

3d ln(x)

Table 5.2: Asymptotic behavior of the normalized standard deviation of the concentration c(x) in steady
state for different space dimensionalities.

deviation grows asymptotically as Σ(x) =
√〈c1(�x)2〉/c0(x) ∼ x1/4. Note, that the fluctuations

of the current or concentration imposed on the boundary line x = 0 have a more subtle effect
on the normalized standard deviation than in one dimension where they lead to an additional
constant in Σ(x)2.

Again, we have performed numerical calculations to verify these results. A comparison of
the numerically calculated normalized standard deviation to the analytic result following from
(5.28) is shown in Fig. 5.4.

Effects of the disorder in three dimensions Naturally, one can calculate the normalized
standard deviation in three dimensions as well. As the procedure remains the same, we discuss
this only briefly for case A here. We are interested in the steady state solution of (5.23)
with �x = (x, y, z) and ∇ = (∂x, ∂y, ∂z) in the half-space x ≥ 0. Either the concentration
or the current is imposed on the boundary plane x = 0, i.e. c(�x)|x=0 = c0

0 + γ(y, z) or
∂xc(�x)|x=0 = −D−1(j0 + χ(y, z)).

We calculate the free Green’s function G0(�x, �x′) of the operator (D�− k) in three dimen-
sions in section E.2 of the appendix. Using G0, the Green’s functions for the two boundary
conditions at x = 0 can again be constructed:

G±(�x, �x′) =
−1

4πD

(
e−r/ξD

r
± e−rm/ξD

rm

)
, (5.29)

with r = ((x − x′)2 + (y − y′)2 + (z − z′)2)1/2 and rm = ((x + x′)2 + (y − y′)2 + (z − z′)2)1/2.
The result for the variance of c(�x) to first order in perturbation theory is

〈c±1 (�x)2〉 = a2

∫ ∞

−∞
dy′
∫ ∞

−∞
dz′
(
σ2

cD
2
(
∂x′G±(�x, �x′)

)2 + σ2
j0G±(�x, �x′)2

) ∣∣∣
x′=0

+a3

∫ ∞

0
dx′

∫ ∞

−∞
dy′
∫ ∞

−∞
dz′
(
σ2

kG±(�x, �x′)2c0(x′)2 + σ2
Dc′0(x

′)2(∂x′G±(�x, �x′))2

+2CkDc0(x′)c′0(x
′)G±(�x, �x′)(∂x′G±(�x, �x′))

)
. (5.30)

We have integrated (5.30) numerically. The resulting normalized standard deviation Σ(x) is
shown in Fig. 5.5 A for a fixed current at the boundary. Asymptotically, Σ(x) ∼ ln(x) as we
show in section E.3.2 of the appendix.

Role of space dimensionality The results for the different dimensions are compared to
each other for the same choice of parameters D, k, j0, σD, σk, CkD, and σj0 in Fig. 5.5 and
Table 5.2. It can be seen that the fluctuating rates lead to a severely slower asymptotic increase
of the normalized standard deviation with increasing dimensionality of the space. The general
formula for the exponent φ in the asymptotic behavior of Σ(x) ∼ x−φ as a function of the
space dimensionality d is

φ = (3 − d)/4
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Figure 5.5: Normalized standard deviation Σ(x) for the simple diffusion model with disorder for different
space dimensionalities. All calculations were done for case A with j0 imposed at x = 0. (A) Logarithmic
plot of Σ(x) in one dimension (red lines), in two dimensions (blue lines), and in three dimensions (green
lines). For the solid lines, only k is fluctuating and for the broken lines both k and j0 are fluctuating.
Shown are the analytical results for Σ(x) given by (5.16), (5.28), and (5.30) for the different space
dimensionalities respectively. (B) Normalized standard deviation Σ(x) in two space dimensions with
zero flux boundary conditions imposed at y = ±W/2a for different values of W/a. The symbols show
the numerical results for W/a = 1, W/a = 2, W/a = 5, W/a = 10, W/a = 25, and W/a = 50 from
top to bottom. The analytic results for the one dimensional case (red line) and the two dimensional
case (blue line) are shown for comparison. In these calculations, k, D, and j0 are fluctuating. (C)
Double-logarithmic plot of the Σ(x) for large x in one and two dimensions. In these calculations, k
and D are fluctuating. Numerical results are shown by crosses (one dimension) and open symbols (two
dimensions). In two dimensions, Σ(x) was multiplied by a factor of five. For comparison, functions
proportional to x1/2 and x1/4 are shown in red and blue respectively. The inset shows the same data
using linear axes. Parameters as in Fig. 5.2 with σj0/j0 = 0.1 and CkD = 0.
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for d < 3. It appears that d = 3 is the upper critical dimension beyond which the fluctuations
of D and k become irrelevant.

It is of great value to use the behavior of Σ(x) for large x to identify the fundamental
influence of the space dimensionality on the accumulation of the uncertainty of the morphogen
concentration with increasing distance to the source. However, the space dimensionality d also
has a strong effect on Σ(x) near the source boundary at x = 0. In Fig. 5.5, it can be seen that
Σ(x) near x = 0 strongly decreases with increasing space dimensionality as well.

The effect of the fluctuating ligand current j0 across the boundary at x = 0 is of partic-
ular interest. In one dimension it leads to the trivial addition of a constant to Σ(x)2 that
consequently causes an increase of Σ(x) at all distances x from the source. In two and three
dimensions it gives a contribution to Σ(x) that decays with increasing x where this decay
becomes faster with increasing space dimensionality, see Fig 5.5 A. For identical values of the
relative noise strengths σD/D, σk/k, and σj0/j0, we see that the fluctuations of j0 give a large
contribution to Σ(x) near the source in all dimensions. All these observations regarding the
effects of the fluctuations of the boundary condition at x = 0 remain qualitatively unaltered if
the ligand concentration c0

0 instead of the current j0 is imposed at the boundary at x = 0.
One may argue that real biological systems are always three dimensional and, strictly

speaking, that is true. However, in the theory we deal with systems that extend infinitely
in all directions. If, in a two dimensional geometry, side boundaries with zero flux boundary
conditions are introduced at y = ±W/2, so that the region in which the gradient forms is
constrained to a stripe of width W , the disordered system is more accurately described using
a one dimensional description for small values of W . This is illustrated in Fig. 5.5 B, where
we show Σ(x) in two dimensions for different values of W . With decreasing W , the shape of
Σ(x) undergoes a transition from the two dimensional to the one dimensional behavior. This
is also the justification for using a two dimensional geometry instead of a three dimensional
one when dealing with gradient formation in a narrow sheet containing one cell layer.

Note, that the results found in this section are very general. They do not depend on
the choice of the parameters D and k because the non-dimensionalization via t → t/k and
x → ξDx of equations (5.5) and (5.6) leads to equations in which only the noise terms depend
on selectable parameters. The only parameters determining the results are thus the relative
noise strengths σD/D, σk/k, σj0/j0 or σc/c0, and the ratio of the diffusion length and the
lattice constant ξD/a. This feature makes an unbiased comparison of the different space
dimensionalities possible.

5.2 Detailed description of morphogen transport with disorder

In this section, we discuss the effects of disorder in the more detailed theoretical description
of morphogen gradient formation discussed in chapter 3. We focus on steady state gradients
formed by transcytosis. A reasonable approach to describing the disorder due to cell-to-cell
variability in the discrete description of morphogen transport (3.1) is to assume that the rates
entering the microscopic description are slightly different in different cells and extracellular
spaces. While we discussed the origins of this disorder in section 4.2, we focus on the mathe-
matical treatment here.

5.2.1 One dimensional description with receptor kinetics

We assume in the discrete description (3.1) where the receptor production rate is given by (3.2)
that all the parameters α ∈ M with M = {bint, bext, bdeg, kon, koff , edeg, fint, fext, fdeg, f

0
syn, Rmax, p}

depend on the lattice site. The αn are distributed around a mean, αn = α0 + ηα,n, with
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〈ηα,nηβ,k〉 = σ2
αδnkδαβ . This implies that different parameters are uncorrelated which we as-

sume for simplicity. In the one dimensional description we further assume that bint,n, bext,n,
bdeg,n, fint,n, fext,n, fdeg,n,f0

syn,n, and Rmax,n are defined at the same location as S
(i)
n , inside

the cell, and that kon,n, koff,n, edeg,n, and pn are defined at the same location as Ln, in the gap
between two cells, see Fig. 4.3 for an illustration. We use case B discussed above to describe
the fluctuations of the extracellular diffusion coefficient. In the transcytosis dominated limit,
it is possible to derive an effective transport equation for transcytosis with disorder by treating
the space-dependent rates in the same way as the concentrations in the derivation shown in
section 3.1.2. This treatment is valid if the noise amplitudes are small, i.e. σα � α0 for α ∈ M.
It results in a different transport equation:

∂tλ = ∂x

(
Dλ(λ, ρ)∂xλ + Dρ(λ, ρ)∂xρ +

∑
α∈M

Fα(λ, ρ)∂xα
)
− kλ(λ, ρ)λ

∂tρ = νsyn(λ, ρ) − kρ(λ, ρ)ρ, (5.31)

where the expressions of Dλ, Dρ, kλ, νsyn, and kρ are the same as in the description without
disorder (3.12, 3.13) as shown in (D.1). However, they implicitly depend on x through the
x-dependent parameters α(x), with α ∈ M. Compared to the transport equation for λ without
disorder (3.12), additional terms appear in the ligand current in (5.31) that involve functions
Fα. Explicit expressions of the Fα for all parameters α ∈ M follow from the derivation of
(5.31). The Fα are identical to zero for α ∈ {bdeg, edeg, fdeg, fsyn, Rmax}. General properties
for all the other Fα are Fα ∝ λ for small and Fα ∼ λ−3 for large λ.

The continuum limit of the noise correlators is 〈ηα(x)ηβ(x′)〉 = σ2
αaδ(x − x′)δαβ . For a

fixed current j0 of ligands into the system at x = 0, the boundary condition

(
Dλ(λ, ρ)∂xλ + Dρ(λ, ρ)∂xρ +

∑
α∈M

Fα(λ, ρ)∂xα
)∣∣∣

x=0
= −j0 − χ (5.32)

has to be satisfied. Here, χ is a stochastic variable describing the fluctuations of j0.

There are several striking differences between this problem and the simple diffusion model
with disorder discussed in section 5.1.2. Firstly, the differential equations describing transcy-
tosis in a disordered system are nonlinear. Secondly, well-defined correlations between the
effective diffusion coefficient and the effective degradation rate arise in general because both
depend on the rates describing transcytosis. For example, a fluctuation of the internalization
rate bint at a position x leads to a correlated modification of both Dλ and k at x. Thirdly,
we see that additional terms in the ligand current, namely the Fα, appear that are important
for the results even in the linear regime of small ligand concentrations. Consequently, it is
worthwhile to investigate the effects of disorder on the steady state gradients formed by tran-
scytosis. The differences in comparison to the simple diffusion model from section 5.1.2 are of
particular interest.

Using our discrete description of morphogen transport with disorder, we have numerically
calculated the normalized standard deviation Σ(x) for a parameter choice in the transcytosis
regime and one in the diffusion regime. The results are shown in Fig. 5.6. We support these
numerical data by analytical results in the next section.
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Figure 5.6: Normalized standard deviation Σ(x) for morphogen gradients formed in one dimension.
Σ(x) was numerically calculated using the one dimensional description of morphogen transport with
receptor kinetics (3.1). (A,B) Σ(x) for the different quantities l, s+, si, r+, ri, and λ as shown in the key
for parameters in the transcytosis regime with ν/R0bdeg � 1 (A) and ν/R0bdeg = 13.3 (B) which leads
to a steady state that is strongly affected by the nonlinearity of the description. (C) Like A and B but
with parameters in the diffusion regime and ν/R0bdeg = 207. Parameters are as shown in Table 2.1
with konR0 = 20min−1 in the transcytosis and konR0 = 2.4min−1 in the diffusion regime. R0 denotes
the steady state concentration of surface receptors in the absence of ligand. In the calculations, all
parameters α ∈ M of the description are fluctuating with σα/α0 = 0.1. A Gaussian distribution was
used for the noise terms.
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5.2.2 One dimensional description with constant surface receptor approxi-
mation

For the sake of simplicity, we restrict the discussion to the case of the constant surface receptor
approximation in the following. Here, (5.31) reduces to

∂tλ = ∂x

(
D(λ)∂xλ +

∑
α∈Mc

Fα(λ)∂xα

)
− k(λ)λ, (5.33)

where Mc = {bint, bext, kon, koff} and the explicit expressions for D(λ) and k(λ) are the same
as in (3.16) with space-dependent parameters α(x) for α ∈ Mc. Explicit expressions for the
functions Fα(λ) are given in (D.2) in the appendix. The behavior of these functions Fα(λ) for
large and small λ is identical to that of the Fα(λ, ρ) which appear in (5.31) as discussed in the
previous section. Note, that we have kept the constant total surface receptor concentration R
as a non-fluctuating parameter. The boundary condition (5.32) at x = 0 simplifies to(

D(λ)∂xλ +
∑

α∈Mc

Fα(λ)∂xα
)∣∣∣

x=0
= −j0 − χ. (5.34)

Assuming that the noise amplitudes are small, i.e. σα � α0 for all α ∈ Mc, one can
perturbatively solve this nonlinear equation as for the simple diffusion models discussed in
section 5.1. To do that, we decompose α(x) = α0 + εηα(x) and expand the coefficients

D(λ) = D0(λ) + ε
∑

α∈Mc

(
∂αD0(λ)

)
ηα(x) + O(ε2)

k(λ) = k0(λ) + ε
∑

α∈Mc

(
∂αk0(λ)

)
ηα(x) + O(ε2)

Fα(λ) = F 0
α(λ) + O(ε), (5.35)

where we have introduced the short notation D0(λ) = D(λ)|ηα=0 for all α ∈ M and accordingly
for k0(λ) and F 0

α(λ). Note, that D0(λ) and k0(λ) are exactly the same functions as D(λ) and
k(λ) in (3.16) respectively. Using this, we obtain the steady state equation

∂xD0(λ)∂xλ−k0(λ)λ+ ε
∑

α∈Mc

[
∂x

(
∂αD0(λ)ηα(x)∂xλ + F 0

α(λ)∂xηα(x)
)− ∂αk0(λ)ηα(x)λ

]
= 0.

(5.36)
The ansatz λ(x) = λ0(x) + ελ1(x) + ε2λ2(x) + . . . yields the equation without disorder (3.16)
for λ0(x). The solution for λ0 is the same as in the absence of disorder which is given by (3.24)
and (3.25). To O(ε1), we obtain the equation for λ1(x):

∂xD0(λ0)∂xλ1 − k0(λ0)λ1 + ∂xD0′(λ0)(∂xλ0)λ1 − k0′(λ0)λ0λ1

= −
∑

α∈Mc

[
∂x

(
∂αD0(λ0)ηα(x)∂xλ0 + F 0

α(λ0)∂xηα(x)
)− ∂αk0(λ0)ηα(x)λ0

]
, (5.37)

where D0′(λ0) = ∂λD0(λ)|λ=λ0(x) and accordingly for k0′(λ0). At x = 0, λ1 must satisfy the
boundary condition

(
D0(λ0)∂x + D0′(λ0)λ′

0

)
λ1

∣∣∣
x=0

= −
[
χ +

∑
α∈Mc

(
F 0

α(λ0(0))η′α(0) + ∂αD0(λ0(0))ηα(0)λ′
0(0)

)]
.

Note, that the linear operator L(x) = ∂xD0(λ0)∂x − k0(λ0) + ∂xD0′(λ0)(∂xλ0) − k0′(λ0)λ0

acting on λ1 on the left side of (5.37) is x-dependent through λ0(x) which makes an analytical
calculation of its Green’s function impossible. Using the condition L(x)G+(x, x′) = δ(x − x′)
with ∂xG+(x, x′)|x=0 = 0, one could numerically calculate the Green’s function G+(x, x′) and
use the Green’s function method as above to calculate the variance 〈λ1(x)2〉.
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Linear regime In order to obtain analytical results, we now study the steady state of (5.33)
for small λ. In this case, we can approximate (5.36) as

D0(0)∂2
xλ − k0(0)λ + ε

∑
α∈Mc

[
∂x

(
∂αD0(0)ηα∂xλ + F 0′

α (0)λ∂xηα

)− ∂αk0(0)ηαλ
]

= 0,

where we have kept the leading order term F 0′
α (0)λ =

(
∂λF 0

α(λ)|λ=0

)
λ. In this linear ap-

proximation, the Green’s function G+(x, x′) can be calculated analytically because the linear
operator acting on λ1 is no longer x-dependent as it was in (5.36). In fact, the operator(
D0(0)∂2

x − k0(0)
)

and the corresponding Green’s function G+(x, x′) are the same as for the
simple diffusion model with disorder in 5.1.2 if we identify D = D0(0) and k = k0(0).

Applying the perturbative approach as above, we find λ0(x) = λ0
0 exp(−x/ξ) with ξ =

(D0(0)/k0(0))1/2 and λ0
0 = j0(D0(0)k0(0))−1/2. The equation for λ1(x) reads

(
D0(0)∂2

x − k0(0)
)
λ1

= −
∑

α∈Mc

[
∂x

(
∂αD0(0)ηα(x)∂xλ0 + F 0′

α (0)λ0(x)∂xηα(x)
)− ∂αk0(0)ηα(x)λ0(x)

]
,

and for the boundary condition of λ1 at x = 0, we find:

λ′
1(0) = −D0(0)−1

(
χ +

∑
α∈Mc

(
F 0′

α (0)λ0(0)η′α(0) + ∂αD0(0)ηα(0)λ′
0(0)

))
. (5.38)

Consequently, the solution λ1(x) for x ≥ 0 reads

λ1(x) = −G+(x, 0)χ +
∑

α∈Mc

∫ ∞

0
dx′ ηα(x′)

(
∂αD0(0)

(
∂x′λ0(x′)

)
∂x′G+(x, x′)

+G+(x, x′)∂αk0(0)λ0(x′) − F 0′
α (0)∂x′λ0(x′)∂x′G+(x, x′)

)
, (5.39)

where we have integrated by parts twice and made use of ∂x′G+(x, x′)|x′=0 = 0. From (5.39),
the variance 〈λ1(x)2〉 can be calculated:

〈λ1(x)2〉 = σ2
j0G+(x, 0)2 + a

∑
α∈Mc

∫ ∞

0
dx′ σ2

α

(
∂αD0(0)

(
∂x′λ0(x′)

)
∂x′G+(x, x′)

+G+(x, x′)∂αk0(0)λ0(x′) − F 0′
α (0)∂x′λ0(x′)∂x′G+(x, x′)

)2
, (5.40)

where we have used 〈ηα(x)ηβ(x′)〉 = σ2
αaδ(x−x′)δαβ . Note, that the integral in (5.40) depends

on ∂x′G+(x, x′)|x′=x the value of which was discussed in section 5.1.2. We can now calculate
the normalized standard deviation Σλ(x) =

√〈λ1(x)2〉/λ0(x) from (5.40). The explicit result
is shown in (D.3) in the appendix. For large x, the asymptotic behavior of Σλ is

Σλ(x)2 ≈
∑

α∈Mc

σ2
αa

4D0(0)3k0(0)
(
D0(0)∂αk0(0) − k0(0)∂αD0(0)

)2
x,

i.e. we find the
√

x-increase for large x as for the simple diffusion model. This asymptotic
behavior is also valid for the nonlinear problem (5.37).
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Figure 5.7: Normalized standard deviation Σ(x) for morphogen gradients formed by transcytosis in
one dimension. Σ(x) for the different quantities l, s+, si, and λ was calculated numerically using the
one dimensional description of morphogen transport with constant surface receptor approximation (3.3)
with disorder, see main text. The results are shown by symbols and compared to the corresponding
analytical results following from (5.40) and (5.41) which are shown by lines. The morphogen production
rate ν/Rbdeg � 1 for all calculations so that the linear approximation is valid. (A) Normalized standard
deviation Σ(x) if the rates bint, bext, kon, koff , bdeg, and edeg are all fluctuating. (B) Like A but with the
current at the boundary j0 also fluctuating. (C-H) Σ(x) if only bint (C), only bext (D), only kon (E),
only koff (F), only bdeg (G), and only edeg is fluctuating (E) respectively. In C-F, the magenta lines
are covered by the red lines (C and D) or the blue lines (E and F). In G and H, all lines are on top of
each other. Parameters are b0

int = b0
ext = k0

onR = k0
off with b0

int/b0
deg = 600, e0

deg/b0
deg = 0.3, p0 = 0, and

σj0/j0 = σα/α0 = 0.1 for all α ∈ Mc.
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Figure 5.8: Impact of fluctuations of the current at the boundary on the normalized standard deviation
Σ(x) for morphogen gradients formed by transcytosis in one dimension in the linear and in the nonlinear
regime. The symbols show Σ(x) for the different quantities l, s+, si, and λ calculated numerically using
the one dimensional description of morphogen transport with constant surface receptor approximation
(3.3) with disorder. The analytical results for the linear regime following from (5.40) and (5.41) are
shown by lines. (A,B) Normalized standard deviation Σ(x) if the rates bint, bext, kon, koff , bdeg, and edeg

are all fluctuating for ν/Rbdeg � 1 which is in the linear regime (A) and for ν/Rbdeg = 40 which is
in the nonlinear regime (B). (C,D) Like A,B but with the current at the boundary j0 also fluctuating.
Parameters as in Fig. 5.7.
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5.2.3 Fluctuations of microscopic quantities

We can further use the result for the variance of the total ligand concentration λ to calculate
the variances of the microscopic quantities in the description of transcytosis, i.e. the free ligand
concentration l(x), the surface bound ligand concentration s+(x), and the internal bound ligand
concentration si(x) separately. These are related to each other via the adiabatic approximation
(3.11). For the quantity q ∈ {l, s+, si}, we denote the first order correction of q(x) by q1(x).
For small λ, the relations q(λ) which follow from the adiabatic approximation (3.11) can be
approximated as q(λ) ≈ (∂λq|λ=0)λ = q0′λ. The first order correction q1(x) is then

q1(x) = q0′λ1(x) +
∑

α∈Mc

(∂αq0′)λ0(x)ηα(x),

which leads to the variance

〈q1(x)2〉 = (q0′)2〈λ1(x)2〉 +
∑

α∈Mc

(
σ2

α(∂αq0′)2λ0(x)2 + 2q0′(∂αq0′)λ0(x)〈λ1(x)ηα(x)〉) . (5.41)

The variance of all q ∈ {l, s+, si} can be calculated using (5.41) and (5.39).
We have again performed numerical calculations to verify these results. For each situation,

between 20,000 and 100,000 steady state gradients were calculated for different realizations
of the disorder using Gaussian distributions for the random variables. It is straightforward
to calculate the normalized standard deviation from these. A comparison of the numerically
calculated normalized standard deviation to the analytic result following from (5.40) and (5.41)
is shown in Fig. 5.7. We also show numerical results in the nonlinear regime in Fig. 5.8. We
see that in the nonlinear regime, the uncertainty of λ caused by the fluctuations of the current
at the boundary are strongly reduced. Moreover, the shape of the curves Σq(x) is affected
differently for the different quantities q in the proximity of the source boundary.

5.2.4 Two dimensional description

In principle, one can generalize the analytical treatment to the two dimensional situation.
For the description of transcytosis with disorder in the constant surface receptor receptor
approximation, the same symmetry considerations as used in section 3.2.2 can be applied to
derive the general form of the two dimensional equation from (5.33). The result is

∂tλ = ∇ ·
(

D(λ)∇λ +
∑

α∈Mc

Fα(λ)∇α

)
− k(λ)λ,

where the coefficient functions D(λ), k(λ), and Fα(λ) have to be calculated for the two dimen-
sional lattice structure used.

In Fig. 5.9, we show the results of numerical calculations based on the discrete two dimen-
sional description on a triangular lattice as defined in section 3.2.2. The disorder is introduced
analogously to the one dimensional case. These calculations were done in the linear regime
where λ is small and most receptors are unoccupied. As in the case of the simple diffusion
models, we find that the uncertainty of λ is smaller in two dimensions than in one dimension
for the same parameter choice and increases more slowly with increasing x. Asymptotically,
the normalized standard deviation Σ(x) grows again as x1/4.
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Figure 5.9: Normalized standard deviation of gradients formed by transcytosis in two dimensions. Σ(x)
for the different quantities l, s+, si, λ and s+ + si was calculated numerically using the two dimensional
description of morphogen transport with constant surface receptor approximation (3.19) with disorder,
see main text. The morphogen production rate ν/Rbdeg � 1 for all calculations. (A-C) Normalized
standard deviation Σ(x) if only the degradation rate bdeg is fluctuating (A), if only the internalization
rate bint is fluctuating (B), and if the rates bint, bext, kon, koff , bdeg, and edeg are all fluctuating (C).
Note the slower increase of Σ(x) with increasing x in comparison to the one dimensional case shown in
Fig. 5.7. Parameters as in Fig. 5.7.
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Chapter 6

Summary and outlook

In this work, we theoretically investigated morphogen transport and gradient formation by
extracellular diffusion and transcytosis. The most important results of this investigation were
presented in chapters 2 and 4. In chapter 2, we related a theoretical description of morphogen
transport which we have developed to experimental data for the morphogen Dpp which acts in
the Drosophila wing disk. In chapter 4, the implications of a detailed theoretical analysis for
the robustness and precision of steady state morphogen gradients were presented and discussed.

Comparison to experiments on Dpp in the Drosophila wing disk In section 2.2, we
introduced key experiments that were performed to study the impact of endocytosis on the
transport of the morphogen Dpp in the wing disk. In the “shibire rescue assay”, endocytosis
is blocked in all cells of the target tissue but not in the source cells while in the “shibire clone
assay”, endocytosis is only blocked in a relatively small patch of mutant cells in the target
tissue. In the shibire rescue assay, the concentration of Dpp is strongly reduced in the target
tissue after several hours and in the shibire clone assay, a depletion of Dpp is observed in and
behind the patch of mutant cells, see Fig. 1.4. The outcome of both experiments suggests a role
of endocytosis in Dpp transport [34, 33] but, due to the complexity of the system, commonsense
is insufficient to draw serious conclusions from the data [60, 59].

In order to address the unsolved question how morphogens like Dpp are transported in
developing tissues, we performed a quantitative comparison of results obtained from our theo-
retical description of morphogen transport to these experimental data. Two different parameter
sets were used in this comparison: one for which transport is dominated by passive diffusion in
the extracellular space and another one for which morphogen transport is dominantly due to
transcytosis. In the latter case, the extracellular diffusion coefficient D0 is very small which can
occur if the morphogen molecules bind to the cell membranes, cell surface molecules, and ex-
tracellular matrix components. This can strongly reduce their ability to move rapidly through
the extracellular space. Since the parameters entering our description have so far not been
measured in experiments, we chose their values within plausible limits and in order to get the
best possible agreement with the experimental data.

For the parameter set that leads to transport dominantly due to transcytosis, the results
obtained from calculations which correspond to the experimental setups mentioned above are
in semi-quantitative agreement with the observations that were made in the experiments, see
Fig. 2.4 and 2.6. We further showed that a parameter set for which extracellular diffusion
dominates morphogen transport leads to results that are inconsistent with some of the ex-
perimental data. Most notably, we found a strong accumulation of cell surface receptors and
extracellular morphogens in cells in which endocytosis is blocked in the numerical calculations,
see Fig. 2.9 and 2.10, while no such accumulation of comparable magnitude could be observed
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in experiments [59]. Some of our results are at odds with previous theoretical findings on Dpp
gradient formation by extracellular diffusion [60]. The origins of this discrepancy are due to
technical and conceptual shortcomings in [60] that are carefully discussed in [59] and chapter
B of the appendix.

Theoretical description of morphogen transport In section 3.1.1, we presented a micro-
scopic description of morphogen transport in which cells are discrete entities. This description
captures key processes like the diffusion of morphogens in the extracellular space, binding and
un-binding of the morphogens to and from receptor molecules that are located on the cell
surfaces, internalization of these receptor-ligand complexes into the cell and their subsequent
externalization, see Fig. 3.1. Moreover, the production and intracellular trafficking of receptor
molecules by the cells is included in the description. We were able to show that this micro-
scopic description is well approximated by a set of two nonlinear transport equations (3.12,
3.13) for the total morphogen concentration and the total receptor concentration if transport
is dominated by transcytosis, see section 3.1.2. The effective diffusion coefficient that charac-
terizes morphogen transport by transcytosis in these equations is concentration dependent. In
the different limit in which transport is dominated by extracellular diffusion, the microscopic
description is well approximated by a set of nonlinear reaction-diffusion equations, see section
3.4.

Robustness of morphogen gradients In the limit of our description in which morphogen
transport is dominated by transcytosis, we were able to analytically calculate the steady state
solution which corresponds to the morphogen gradient in biological systems. Investigating
this analytic solution, we uncovered a remarkable property of morphogen gradients formed by
transcytosis. If the ligand current j0 imposed at the source boundary which is proportional
to the morphogen secretion rate of the morphogen source cells is sufficiently large, these gra-
dients are insensitive to relatively large changes of this secretion rate. In fact, the secretion
rate can be increased by 100% and more without significantly changing the distance x to the
source at which a certain concentration of the morphogen is present. This robustness of the
gradients is independent of the specific values of the parameters entering the description. It is
rather due to a characteristic asymptotic power-law behavior of the concentration-dependence
of the effective diffusion coefficient which characterizes morphogen transport by transcytosis.
This nonlinearity results from the effects of receptor saturation at high morphogen concen-
trations and leads to a formal singularity (3.26) of the morphogen concentration in steady
state. This singularity constitutes the origin of the observed robustness, see section 4.1. We
further demonstrated that the presence of extracellular diffusion reduces the robustness that
is ultimately lost if the typical length over which a morphogen molecule can move through the
extracellular space by diffusion exceeds one cell diameter, see Fig. 4.1 and 4.2.

Robustness is important for the reliable patterning of tissues by morphogen gradients during
development. In the case of Dpp in the wing disk, indications for the type of robustness we
studied here were indeed observed in experiments [71]. Different mechanisms that lead to
robustness were previously discussed for other morphogens and different systems [28, 29]. It
was shown that if transport is dominated by extracellular diffusion, a nonlinear extracellular
ligand degradation rate can increase robustness [29]. However, there is no direct experimental
evidence for such behavior in the case of Dpp, which is why we have kept the extracellular
degradation term linear in our theoretical description.

Precision of morphogen gradients In section 4.2, we discussed the precision with which
morphogen gradients can define concentration thresholds at a given distance to the morphogen



109

source in the target tissue. In the absence of other potential mechanisms to accurately pattern
the developing tissue in a well-defined way, a high precision of the morphogen gradient is
needed. In biological systems, morphogen molecule number fluctuations and the disorder due
to the cell-to-cell variability affect morphogen gradient formation and reduce precision. In this
work, we assumed that the disorder has a dominant impact and neglected effects due to the
finite morphogen molecule numbers.

In a simple model of morphogen gradient formation by extracellular diffusion (4.3), the
disorder in the system can be captured by a spatially fluctuating effective diffusion coefficient
and degradation rate. Here the fluctuations of the diffusion coefficient are due to fluctuations of
the properties of the extracellular space. For example, the concentration of extracellular matrix
components which the morphogens can bind to may fluctuate as a function of the position in
the tissue, see Fig. 4.4 B. Moreover, the disordered cell arrangement leads to fluctuation of the
effective diffusion coefficient, see Fig. 4.4 A. Similarly, fluctuations of the effective degradation
rate are due to fluctuations in the concentrations of molecules like extracellular proteases
that play a role in morphogen degradation. In this simple model, we were able to analytically
calculate how the uncertainty of the local morphogen concentration in the steady state gradient
behaves as a function of the distance to the morphogen source. This uncertainty or imprecision
is measured by the normalized standard deviation Σ(x) of the morphogen concentration at
x. The imprecision usually increases with increasing distance to the source. It was shown
that the precision increases drastically with increasing space dimensionality of the system in
which the gradient is formed, see Fig. 5.5. For large x, the uncertainty of the concentration
increases in a way that is characteristic of the space dimensionality d of the system: Σ(x) ∼ xφ

with φ = (3 − d)/4 for d < 3. We have identified d = 3 as the upper critical dimension
beyond which the fluctuations in the system become irrelevant. We also demonstrated that
correlations between the fluctuations of the effective diffusion coefficient and those of the
effective degradation rate can strongly increase the precision of the gradient, see Fig. 4.6 B.
Moreover, we found that fluctuations of the morphogen secretion rate of the source cells usually
contribute strongly to the imprecision of the gradient in the proximity of the morphogen source.

Furthermore, we numerically investigated the effects of disorder in our detailed descrip-
tion of morphogen transport. Here, the disorder is due to cell-to-cell variability and captured
by fluctuations of the parameters entering the description. For the same relative amplitude
of the fluctuations of these parameters, the biologically relevant gradient of receptor-bound
morphogens has a higher precision at most positions if transport is dominated by transcytosis
than if it is dominated by extracellular diffusion, see Fig. 4.7. While this result may depend
on our particular parameter choice, we were able to identify several potential causes of this
behavior. Firstly, the robustness of morphogen gradients formed by transcytosis leads to a
reduced impact of fluctuations of the morphogen secretion rate of the source cells on the im-
precision of the gradient. Secondly, well-defined correlations between the fluctuations of the
effective diffusion coefficient characterizing transcytosis and those of the corresponding effec-
tive degradation rate arise because the fluctuations of the microscopic parameters describing
transcytosis affect both. We argued that for transcytosis and probably also for other active
transport processes such correlations occur quite naturally while they are less likely to occur
if morphogens are transported by passive diffusion. This implies that active mechanisms can
in principle form more precise gradients than passive ones. In addition, we found that for
morphogen gradients formed by passive diffusion unlike for those formed by transcytosis, the
gradient of the free extracellular morphogen concentration has the highest precision. A high
precision of this gradient is useless because the cells do not directly detect the free extracellular
morphogen concentration. Only the concentration of morphogens that are bound to a receptor
can determine the cell fate.
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Discussion While we focused on transcytosis and extracellular diffusion in this work, other
mechanisms of cell-to-cell ligand transport can be effectively described by equations (3.12, 3.13)
or (3.16) with coefficients whose functional form must be derived from a detailed microscopic
description of the transport mechanism using the method exemplified in chapter 3. An example
for this is given by the “glypican model” of morphogen transport introduced in section 1.4.
We derive an effective transport equation for this model in section A.3 of the appendix.

While our theoretical description of morphogen transport captures the processes that are
widely believed to be most relevant in biological systems like the wing disk, it is important to
keep in mind that we highly simplified these processes and neglected several additional aspects
that could play a role. For example, we disregarded a possible contribution to ligand transport
that could result from the diffusion of receptor-bound ligands in the cell membrane. Moreover,
we did not account for cell divisions and tissue growth in our description. This is justified
because in the case of Dpp, gradient formation occurs on a time scale of eight hours that is
shorter than the time scales during which the tissue grows significantly. However, in a more
sophisticated description that includes cell divisions, one could study the role of morphogen
gradients in the regulation of tissue size. This is an interesting topic because Dpp is known to
play a role in growth regulation [40].

More importantly, the presence of different receptor types which is quite common for sig-
naling molecules of the TGF-β superfamily like Dpp was neglected in our description. These
receptors can form dimers or other complexes and, in general, the affinity of the ligand is
different for these different receptor types and complexes. The trafficking of receptors inside
the cell is also more involved than in our description in which it is effectively captured by a
few effective parameters. Among other things, only a component of the receptor complex with
low ligand affinity could be externalized or the ligand could be separated form the receptor
during intracellular trafficking.

In fact, such processes might explain why the rate koff of ligand un-binding from the re-
ceptor which we need in the transcytosis regime to obtain results that are consistent with the
time scales of gradient formation observed in experiments is significantly larger than values of
koff which are typically measured for TGF-β receptors [106], see Table 2.1. It has also been
argued, that endocytosis would be too slow to explain the formation of morphogen gradients
by transcytosis on the time scales that are observed in experiments [60]. However, the corre-
sponding rate bint has so far not been measured in the wing disk and the value of bint that is
needed in the transcytosis regime to obtain gradient formation over 30 cell diameters within
eight hours as observed in the experiments is only one order of magnitude larger than values
that have been measured in cultures of cancer cells [61], see Table 2.1. These may have quite
different properties than the much smaller cells in the wing disk which might perform endo-
and exocytosis faster.

These concerns show that to identify the mechanism by which morphogens are transported,
it is of great importance to quantitatively measure the time scales on which the individual
microscopic processes entering our description occur. From these, the effective rates used in
our theoretical description could be estimated even if the underlying microscopic processes are
more complicated. While such measurements may have appeared almost impossible a short
time ago, new experimental tools like the photo-activatable green fluorescent protein (PA-
GFP) whose fluorescence can be “switched on” as desired by irradiation with a laser beam of
405nm wavelength [79] and two photon microscopy that allows for an activation of intracellular
PA-GFP in only one cell or even exclusively in a small region of the extracellular space [20]
seem to open the door for these quantitative experiments that might be accomplished within
the next few years [78].

To conclude the criticism of the simplifying assumptions made in our theoretical investi-
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gation, let us come to the description with disorder. Investigating the precision of morphogen
gradients, we have neglected time-dependent disorder due to cell-to-cell variability and pos-
sible effects due to the finite morphogen and receptor molecule numbers in our description.
Moreover, in the analysis of transcytosis with cell-to-cell variability in section 5.2, we have dis-
regarded possible correlations between the fluctuations of the individual parameters describing
the intracellular trafficking. Although it is reasonable to disregard these aspects for simplicity,
one could study time-dependent disorder by introducing temporal fluctuations of the rates in
the respective microscopic description of morphogen transport. The effects of finite molecule
numbers could be studied in a stochastic description based on master equations.

Outlook The analysis of the theoretical description of morphogen transport that was devel-
oped in this work lead to several predictions that can be tested in experiments. While some of
these require detailed knowledge about the values of the parameters entering the description,
several others are independent of these values and rely only on fundamental aspects of the
underlying transport mechanisms.

Firstly, one can experimentally test if the GFP-Dpp gradient in the wing disk is robust to
changes of the GFP-Dpp secretion rate in the source cells as predicted. While indications for
such robustness have been found in previous work [71], it has so far not been observed directly
for the morphogen gradient. It is possible to breed Drosophila flies that do not express endoge-
nous Dpp but only GFP-Dpp under the control of a thermo-sensitive gene expression system.
Keeping these flies at different temperatures at which the production rate and presumably
also the secretion rate of GFP-Dpp is different, one could measure the resulting steady state
GFP-Dpp gradients. If transcytosis is the dominant transport mechanism, the range of the ob-
served GFP-Dpp gradient should increase going from low to intermediate temperatures where
relatively little GFP-Dpp is secreted. Increasing the temperature further so that GFP-Dpp
secretion becomes stronger and stronger, the observed change of the GFP-Dpp gradient should
decrease until only a small change should be observed when the robust regime is reached. If
transport is dominated by extracellular diffusion, this robustness should not be observed unless
other mechanisms are at work [29]. Such other mechanisms that lead to robustness even if
transport is due to extracellular diffusion could possibly be identified if changes in the receptor
profiles were observed [29].

Secondly, the effective diffusion coefficient of GFP-Dpp can be measured in FRAP exper-
iments, see section 2.5. One could photo-bleach GFP in stripes at different distances to the
GFP-Dpp source at which the concentrations of GFP-Dpp are different and calculate the ap-
parent diffusion coefficient from the observed recovery. This way, a concentration-dependence
of the effective diffusion coefficient could be uncovered. If transport is dominated by tran-
scytosis, our theoretical analysis showed that the effective diffusion coefficient depends on the
morphogen concentration and becomes small for large concentrations, see Fig. 3.2. In contrast,
one would expect to find an increase of the apparent diffusion coefficient with the morphogen
concentration if transport is dominated by extracellular diffusion because for increasing con-
centrations, the cell surface receptors and other extracellular molecules that the morphogens
can bind to, are increasingly occupied so that free morphogen diffusion in the extracellular
space is less obstructed. Thus, the identification of a concentration-dependence of the appar-
ent diffusion coefficient can give indications about the underlying transport mechanism.

Furthermore, several results concerning the precision of morphogen gradients could be
investigated in experiments. Quantifying the concentration gradients of these molecules via
fluorescent labels in many different animals at the same developmental stage under identical
conditions, an average concentration gradient and its variance as a function of the distance
x to the morphogen source could be calculated. Here, it would be important to average out
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fluctuations that occur on a length scale that is smaller than one cell diameter when quantifying
the concentration. The normalized standard deviation Σ(x) of the morphogen concentration
at x could then be calculated from these measurements. In fact, such a measurement was
performed for the morphogen Bicoid that acts in the Drosophila embryo [54] but unfortunately,
the data was not analyzed in a way that would allow for a comparison to our theoretical
predictions. To apply our results for gradient formation in disordered systems, one would also
have to verify that the fluctuations of the morphogen concentration are due to the disorder
and do not result from temporal fluctuations of the morphogen molecule numbers. A possible
way of doing this would be to measure these molecule numbers. This way, one could verify
that they are relatively large in the region of interest.

According to the results discussed in chapter 5, Σ(x) usually increases with increasing
distance to the morphogen source. At a larger distance to the source, this increase should
follow a power-law characteristic of the dimensionality of the system in which the gradient
is formed. However, this behavior may be hard to observe due to the fluctuations of the
background fluorescence and finite molecule number effects in the experiments. These may
cover the fluctuations of the morphogen concentration caused by the disorder as the morphogen
concentration is relatively small far away from the source. In two and three dimensional
systems, a decrease of Σ(x) with increasing x near the source would be an indication for
relatively strong fluctuations of the morphogen secretion rate of the source cells, see Fig. 5.3.
Using specific antibody staining protocols, Σ(x) could possibly also be measured separately for
the gradient of the free morphogen concentration in the extracellular space. If the imprecision
of this extracellular morphogen gradient is smaller than that of the total gradient, that would
be an indication that extracellular diffusion contributes strongly to transport while a larger
uncertainty of the extracellular gradient would suggest that other transport mechanisms like
transcytosis dominate, see section 4.2.

In principle, the uncertainty Σ(x) could be measured for gradients of several different
morphogens that are formed by different mechanisms. This way, one could test the general
prediction that the precision of morphogen gradients increases with increasing dimensionality
of the structure in which these gradients are formed. While all experiments suggested here
are in principle feasible, one must keep in mind that unpredictable technical problems and the
limited accuracy of the resulting data could aggravate the test of some of our predictions.

In order to fully exploit the growing possibilities of performing quantitative experiments on
morphogen transport and gradient formation, a comparison to a detailed theoretical description
of the underlying processes is necessary. Overall, this work demonstrated that theory can help
in understanding the implications of experimental data and lead to the suggestion of new
experiments in which predictions of the theoretical analysis can be tested.



Appendix A

Generalizations of the description of
morphogen transport

In this chapter, we present generalizations of our description of morphogen transport. Firstly,
we derive a description for two distinguishable ligand species. Secondly, we investigate the
effects of a directional bias. Thirdly, we discuss the effects of diffusion in the cell membrane.

A.1 Two ligand species in the theoretical description of mor-
phogen transport

In this section, we derive the transport equations for a scenario in which two ligand species
that can bind to the same receptor are present. This is not merely of academic interest since, in
the most important experiments, morphogens are tagged by a fluorescent protein. Often, both
tagged and un-tagged (endogenous) morphogens are present in the tissue at the same time.
In a typical experimental setup, the un-tagged species is produced at the source and initially
distributed in a steady state gradient. The production of the tagged species is switched on at
t = 0. Afterwards, it begins to partly oust the other species, see also section 2.2. This is a
powerful setup for studying gradient formation. However, to avoid a possible misinterpretation
of the experimental data caused by effects due to the presence of two different ligand species,
a thorough theoretical description must include both ligand species.

Fusing a fluorescent protein to the ligand does not strongly effect its properties. Thus, it
can be assumed that the kinetics for both species is described by the same set of parameters.
However, the initial and boundary conditions can generally differ for the two species. We
denote the quantities involving the un-tagged ligand by an asterisk. It is straightforward to
generalize the discrete one dimensional description (3.1) to this situation:
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Figure A.1: Coefficients Dλ, Dλ∗ , and Dρ in the transport equations (A.5) for two ligand species as
a function of the ratio λ/ρ of the total ligand concentration of one species λ and the total receptor
concentration ρ. The coefficients are shown for different values of the total concentration of the other
ligand species λ∗: for the solid lines λ∗ = 0, for the dashed lines λ∗/ρ = 0.5, and for the dotted lines
λ∗/ρ = 1. Parameters as in Fig. 3.2.
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Figure A.2: Time development of gradient formation with two different ligand species. Ligand densities
in the presence of a source at x = 0 at different times tbdeg = 0.72, 2.16, 3.6 during gradient formation
(black lines) and in steady state (red lines). Lines indicate solutions to (A.5), while symbols indicate
solutions to (A.1) for comparison. (A-C) Time development of the profiles of the total concentration of
the first ligand species λ(x) (A), the total concentration of the second ligand species λ∗(x) (B), and the
total receptor concentration ρ(x) (C). All concentrations are normalized to the steady state value of the
surface receptor concentration in the absence of ligands r0. Initial condition: steady state profile of λ∗

and ρ with j∗0/bdegar0 = 35/6 and λ = 0. At t = 0, the current of ligands of the first species is raised
from 0 to j0/bdegar0 = 175/6. Parameters as in Fig. 3.2 with D0 = 0, ψ = 2, and j = 0 at x/a = 50.
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One goes to the continuous description as demonstrated in section 3.1.2 and finds two separate
continuity equations for the two ligand species:

∂tλ = −∂xj − bdegsi − edegl, with λ = l + s+ + si

∂tλ
∗ = −∂xj∗ − bdegs

∗
i − edegl

∗, with λ∗ = l∗ + s∗+ + s∗i . (A.2)

For j and j∗ the same expressions as in (3.8) are obtained. The continuity equation for the
total receptor concentration ρ = ri + r+ + si + s+ + s∗i + s∗+ reads
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The adiabatic approximation for l, si, s−, and ri is the same as above (3.11) and accordingly
for l∗, s∗i , s∗−. But
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Exploiting these relations and (A.2,A.3), one obtains the system of transport equations

∂tλ = ∂x(Dλ(λ, λ∗, ρ)∂xλ + Dρ(λ, λ∗, ρ)∂xρ + Dλ∗(λ, λ∗, ρ)∂xλ∗) − kλ(λ + λ∗, ρ)λ,
∂tλ

∗ = ∂x(Dλ(λ∗, λ, ρ)∂xλ∗ + Dρ(λ∗, λ, ρ)∂xρ + Dλ∗(λ∗, λ, ρ)∂xλ) − kλ(λ + λ∗, ρ)λ∗,
∂tρ = νsyn(λ, λ∗, ρ) − kρ(λ + λ∗, ρ)ρ. (A.5)

The explicit expressions for the coefficient functions are rather involved. The rate of receptor
synthesis is
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We only mention some key properties of the remaining functions. Dλ(λ, λ∗, ρ) and Dρ(λ, λ∗, ρ)
have essentially the same properties as discussed above for only one ligand species. There
is a contribution to currents of one ligand species that is driven by gradients of the other
species. The corresponding coefficient Dλ∗(λ, λ∗, ρ) can be positive or negative depending on
the concentrations. For λ = 0, Dλ∗ = 0 in (A.5) as required for the conservation of λ. The
dependence of Dλ∗ on λ and λ∗ is shown in Fig. A.1.

We now briefly discuss the steady state solution of (A.5). At x = 0, boundary conditions
for both ligand species have to be imposed. We restrict ourselves to imposing the currents
j0 and j∗0 . In general, the ligand source produces different amounts of the two species, hence
j0 �= j∗0 . The steady state for λtot = λ + λ∗ is the same as calculated above (3.24) for one
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Figure A.3: The drift coefficient Vβ from (A.9) as a function of λ/ρ for β = .1. Parameters as in Fig. 3.2.

ligand species with the current j0,tot = j0 + j∗0 imposed at x = 0. The distributions for the
individual species are obtained via λ(x) = λtot(x)j0/(j0 + j∗0) and λ∗(x) = λtot(x)j∗0/(j0 + j∗0).
The properties of the steady state as discussed in section 4.1, most notably its robustness,
consequently remain unaltered.

The presence of two different ligand species can affect the time development of the system.
We have performed numerical calculations for the scenario outlined above: initially, one of
the species is present in a steady state distribution and the production of the other species is
started at t = 0. Fig. A.2 shows the time development for both species. Again, the results
from solving the continuous description (A.5) are compared to the solutions of the discrete one
(A.1). Because of our specific parameter choice, the initially present ligand species generates
a receptor gradient in the opposite direction as compared to the ligand gradient. Due to the
term ∝ ∂xρ in the equation for ∂tλ in (A.5), this situation can help the other species to be
transported away from the source rapidly.

Finally, the transport equations (A.5) can be generalized to the two dimensional situation
using the same arguments as in section 3.2.

A.2 Directional bias in the theoretical description of transcy-
tosis

In this section, we study the effects of a bias in the description of transcytosis. Although exper-
iments on the morphogen Dpp in the Drosophila wing disk have indicated that the macroscopic
transport by transcytosis is non-directional on length scales that are larger than one cell di-
ameter, it is conceivable that this is different in other situations where transcytosis is at work.
A small bias may also have gone unnoticed in the experiments. We generalize the discrete
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Figure A.4: Time development of gradient formation with directional bias. Profiles of the total ligand
concentration λ(x) and the total receptor concentration ρ(x) in the presence of a source at x = 0 at
different times tbdeg = 0.72, 2.16, 3.6 during gradient formation (black lines) and in steady state (red
lines). Lines indicate solutions to (A.8), while symbols indicate solutions to (A.6) for comparison. All
concentrations are normalized to the steady state value of the surface receptor concentration in the
absence of ligands r0. Initial condition: λ(x) = 0 and ρ(x) = (1+fint/fext)r0. Parameters as in Fig. 3.2
with β = .1, D0 = 0, ψ = 2, j0/bdegar0 = 175/6, and j = 0 at x/a = 100.
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description (3.1) by allowing receptor-bound ligand molecules to be preferentially externalized
to either the left or the right surface. We introduce a dimensionless parameter β measuring
this bias. For β = −1/2, all the receptor-bound ligand is externalized on the left surface,
for β = 1/2 on the right surface, and for β = 0, we recover the unbiased description. The
underlying assumption of this description is that the cells have some means to distinguish
between different directions in the tissue and can sort ligand-bound receptors preferentially in
one direction. The kinetic equations of the discrete description with bias read:
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with the kinetics for the remaining quantities as in (3.1). This implies that the externalization
of the free receptors remains unbiased. We proceed as before to derive the continuous equations.
The adiabatic approximation changes to

s− =
konalr− − 2βbextsi − abkon/2 r+∂xl + (a − b)bext/2 ∂xsi

bint + koff
(A.7)

with the other relations as in (3.11). Finally, the transport equations (3.12, 3.13) generalize to

∂tλ = ∂x(Dλ(λ, ρ)∂xλ + Dρ(λ, ρ)∂xρ + Vβ(λ, ρ)λ) − kλ(λ, ρ)λ,
∂tρ = νsyn(λ, ρ) − kρ(λ, ρ)ρ, (A.8)

with the new drift term

Vβ(λ, ρ) = (−2a2βbextbintfextfintkoffkonρ)(bext(fint(bint + koff) + abintkonλ)((fext + fint)koff

+afextkonλ) + abextfextkon(fint(bint + koff) − abintkonλ)ρ
+(fint(bint + koff) + abintkonλ)A(λ, ρ) + abintfextkon(fintkoff(λ + ρ)
+bint(akonλ(λ − ρ) + fint(λ + ρ))))−1, (A.9)

where A(λ, ρ) is defined in (D.1). The other coefficients appearing in (A.8) remain as in the
unbiased case. We will briefly discuss some essential properties of Vβ. Firstly, Vβ = 0 for β = 0
and the unbiased case is recovered. Moreover, Vβ vanishes if either ρ, kon, koff , bint, bext, fint, or
fext is zero and also for bint → ∞ or koff → ∞. The explanation for the breakdown of transport
in these cases were discussed in section 3.3.1 and remain unaltered in the presence of a bias.
The drift is independent of the extracellular diffusion as p does not appear in the explicit
expression for Vβ. For small λ, Vβ adopts a finite value. In the limit of large λ, Vβ vanishes as
Vβ ≈ c3(ρ)λ−2, with c3(ρ) = −βbextfintkoffρ/[(bext + bint)kon]. The fact that Vβ goes to zero as
λ → ∞ again reflects that transport is mediated by a limited number of receptors. Vβ converges
to the value −aβbextbintkoff/[(bext + bint)(bint + koff)] for ρ → ∞. It is a monotonic function of
λ and ρ. For β > 0, Vβ increases as a function of λ, for β < 0 it decreases. In Fig. A.3, we show
Vβ as a function of λ for β = .1, i.e. a bias that leads to preferential transport to the right. We
have numerically verified that the continuous description (A.8) and the original microscopic
description with bias (A.6) are in good agreement on large length scales, see Fig. A.4.

Note, that the steady state solution of (A.8) cannot be obtained analytically as for the
unbiased case. It is consequently not possible to strictly analyze the robustness of the steady
state solution as in section 4.1. As Vβ goes to zero for large ligand densities λ with the same
power law as Dλ and Dρ, one may expect similar robustness properties as in the case β = 0
for large currents j0 imposed at x = 0. Indeed, numerical calculations of the steady state
gradients based on (A.8) show that the robustness endures.

In Fig. A.4, we compare the time development of gradient formation with a bias to the
unbiased case. As may have been anticipated, even a small bias can strongly affect the time
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development and steady state profile of the concentration gradient. For a bias that leads to
preferential transport away from the source, the ligand fills the regions away from the source
more rapidly and the steady state gradient range is extended.

A.3 Diffusion on the cell surface: the glypican model

In this work, we have focused on transcytosis and free extracellular diffusion as mechanisms
of ligand transport. The transport equations we have presented in chapter 3 and the meth-
ods used to derive them are, however, applicable to other cell-to-cell transport mechanisms
than transcytosis. As an example, consider a transport mechanism recently suggested for the
morphogens Hedgehog and Dpp in the Drosophila wing disk [47, 7]. The ligand binds to a so
called glypican molecule on the cell surface. This complex then diffuses on the cell surface. The
ligand can also detach from the glypican it occupies and, after diffusing over a short distance
in the extracellular space, it can attach to a new one that could be located on the surface of a
different cell, see Fig. 1.5.

We can describe this mechanism on the same lattice structure as used above for transcytosis,
see Fig. 3.1. The glypicans play the role of receptors. Note, however, that many ligands can
bind to one glypican. For simplicity, we focus on the transport phenomenon and do not include
ligand degradation or production and degradation of glypican molecules in our description.
Furthermore, the glypican concentration is assumed to be constant on the cell surface. The
description is similar to that of transcytosis with the constant surface receptor approximation
(3.3). But instead of the internalization and externalization of receptor-ligand complexes as
in transcytosis, dislocation of the ligand-glypican complexes in one cell is due to diffusion on
the cell surface and ligand hopping from one glypican to another one on the surface of the
same cell. Both effects are effectively captured in the discrete one dimensional description by
hopping at a rate h between the left and right surface of each cell. Thus, a coarse-grained
discrete description of this mechanism reads

∂tLn = koff(S(r)
n + S

(l)
n+1) − kon(NbsG − S(r)

n − S
(l)
n+1)Ln

∂tS
(r)
n = −koffS(r)

n + kon

(
NbsG/2 − S(r)

n

)
Ln + h(S(l)

n − S(r)
n )

∂tS
(l)
n = −koffS(l)

n + kon

(
NbsG/2 − S(l)

n

)
Ln−1 + h(S(r)

n − S(l)
n ),

where G is the glypican number per cell and Nbs is the number of ligand binding sites per
glypican. Ln denotes the number of free ligands in extracellular space n and S

(l/r)
n are the

numbers of glypican bound ligands on the left and right cell surface respectively. Moreover,
kon and koff are the rates for forward and reverse ligand binding to the binding sites on the
glypicans.

Using the same method as in section 3.1.2, we obtain the effective transport equation
∂tλ = ∂x(Dglyp(λ)∂xλ) where λ is the total ligand concentration and

Dglyp(λ) =
a3ghkoffkonNbs (A(λ) − koff + akon (−λ + gNbs))

4A(λ) (A(λ)h − h (koff + akonλ) + ag (h + koff) konNbs)
, with

A(λ) =
[
−4a2gkon

2λ + (koff + akon (g + λ))2
]1/2

. (A.10)

Here, g = G/a. Dglyp(λ) has properties that are very similar to those of the effective diffusion
coefficient of the transcytosis model. It exhibits a maximum for sufficiently large kon and decays
like Dglyp ∼ λ−2 for large λ. Hence, upon inclusion of ligand degradation in the description,
gradient formation by this mechanism exhibits similar robustness properties as transcytosis.



Appendix B

The diffusion, binding, and
trafficking (DBT) model of
morphogen transport

A theoretical description of morphogen transport that is very similar to our description in the
extracellular diffusion dominated limit (3.28) has been studied by Lander et al. [60]. The
model studied in that work is given by:

∂tl = D0�l − kona
2lr+ + koffs+

∂ts+ = kona
2lr+ − (bint + koff)s+ + bextsi

∂tsi = bints+ − (bext + bdeg)si

∂tr+ = koffs+ + fextri − konlr+ − fintr+

∂tri = fsyn/a2 + fintr+ − (fext + fdeg)ri, (B.1)

where we have modified the notation used in [60] to agree with the one used throughout this
thesis. We will refer to this model as the “diffusion, binding, and trafficking” (DBT) model
[59].

In this chapter, we compare numerical results obtained from this DBT model to our de-
scription of morphogen transport in the extracellular diffusion dominated limit (3.28) and to
the results published in [60]. Moreover, we demonstrate that the different receptor kinetics
used for the numerical calculations in the diffusion regime and the negligence of the presence of
endogenous Dpp used throughout section 2.3 does not significantly affect the results presented
there. The contents of this chapter are largely coincident with those of [59].

B.1 Comparison of the results corresponding to the shibire
clone assay

It has been claimed that the DBT model leads to the formation of a transient shadow in a
one dimensional calculation corresponding to the shibire clone experiment discussed in section
2.2.3 if the internalization rates bint and fint are reduced by a factor of ten in the clone region.
We repeated this calculation in two dimensions and were unable to reproduce these results,
see Fig. B.2. Puzzled by the disagreement of our data compared to published results, we tried
to reproduce the one dimensional calculation exactly as described in [60]. Even then, we did
not obtain the same results, see Fig. B.1. This is due to conceptual and technical weaknesses
in the calculations in [60] which we will now discuss in detail.
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Figure B.1: Concentrations of internal bound ligand si in the presence of a shibire clone calculated in
the DBT model (B.1) and in our description of morphogen transport in the diffusion regime (3.28).
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(Caption of Fig. B.1 continued) (A) Replication of the one dimensional calculations of Lander et al.[60]
for the DBT model. Profiles of internal bound ligand si at 5 hours, 24 hours, and 48 hours obtained
for the same parameters as in [60] (see Table 2.1) with fixed concentration at the boundaries and an
AOI size of Lx = 100µm. The endocytic block in the clone is described by a tenfold reduction of
receptor internalization rates bint, fint. In addition, at time t = 0, the surface receptor concentration
was suddenly increased by a factor of ten inside the clone as described in [60]. Note, that in order to
replicate the results shown in Fig. 7 of [60], the receptor production rate fsyn had also to be reduced
by a factor of ten. After five hours the ligand concentration is reduced behind the clone as compared
to the results of the same calculation in the absence of a clone (dashed line). This corresponds to a
shadow in the experiments. At 24 hours, the shadow is weak. This is not a steady state situation
since after 48 hours, an accumulation of ligand behind the clone and depletion in the clone occur. (B)
One dimensional calculation as described in A, but with correct receptor production rate fsyn in the
clone region (not reduced by a factor of ten). A shadow builds up which increases in time and persists.
(C) One dimensional calculation as in B (i.e. with corrected fsyn), but further corrected with surface
receptor concentration in the clone region which increases gradually according to the DBT model. (D)
Distribution of internal bound ligand in a two dimensional calculation for the DBT model with an
AOI of size 200µm × 200µm at 5 hours, 24 hours, and 48 hours along a section through the clone in
x-direction as in Fig. B.2 C (solid line) and Fig. B.2 D (dashed line). Note that the one dimensional
and two dimensional calculations generate similar profiles for the geometry of AOI and clone size chosen
(compare C and D). Note also that in both cases there is a shadow that persists in the steady state.
(E) Ligand distributions as described in D, but obtained from our description of morphogen transport
in the diffusion regime for zero internalization rates. A shadow is present at 5 hours and has disap-
peared at 24 hours. There is no internal bound ligand inside the clone. In A-E, the clone extends from
x = 25µm to x = 50µm. (F) Total surface receptor concentration s+ + r+ in the center of the clone.
The dotted line corresponds to the calculation shown in A, the dashed line to B, and the solid line to the
calculation shown in D (a similar profile corresponds to C). (G) Total surface receptor concentration,
s+ + r+, in the center of the clone for the calculation shown in E. All concentrations are normalized to
r0 = fsynfext/fdegfint. Figure modified from [59].

Geometry and boundary conditions The geometry and boundary conditions discussed
here differ from those introduced in [60]. There, the one dimensional case is considered ex-
clusively, i.e. the concentrations of ligands and receptors are independent of y, even in the
presence of a clone. At the boundaries at x = 0 and x = 100µm, Lander et al. imposed
the ligand concentrations. In particular, at x = 100µm, the concentration was fixed to l = 0
which implies that all ligands that reach x = 100µm are instantaneously degraded. Such a
Dpp sink does not exist in the wing disk. This sink has a significant influence on the shape of
the gradient obtained in the calculations of Lander et al. with AOI size Lx = 100µm, while
the difference becomes insignificant for Lx = 200µm (see Fig. B.3).

At x = 0, the boundary conditions imposed by Lander et al. are also problematic. These
boundary conditions imply that at x = 0µm, the ligand concentration is imposed by the
secreting cells but is unaffected by the exchange of ligands between secreting and non-secreting
cells via diffusion. We refer to the boundary conditions imposing the ligand concentration and
the ligand current as “concentration boundary conditions” and “current boundary conditions”,
respectively.

We also performed one dimensional calculations in the presence of a clone (Fig. B.1). In
these calculations, the clone region is represented by an interval on the x-axis. We find that
a one dimensional description can generate ligand profiles which qualitatively correspond to
the profiles in the x-direction of a two dimensional calculation (Fig. B.2), if the extension of
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Figure B.2: Gradients in the DBT model describing a tissue with shibire clone. Kinetics of the total
ligand distribution λ in the DBT model in an AOI of size 200µm × 200µm. The AOI contains a
rectangular region, inside which the internalization rates bint and fint are reduced by a factor of ten
after t = 0. This region covers the intervals 25µm ≤ x ≤ 50µm and −25µm ≤ y ≤ 25µm and describes
the effects of a temperature shift on a shibire clone. (A) Distribution of the total ligand concentration
λ at t = 5h. (B) Distribution of λ in steady state. (C-E) Total ligand concentration along the dashed
lines indicated in A,B. Solid black lines are separated by two hours. The red line represents the
distributions after five hours, the time when the observations were made in the experiments discussed
in [34]; the dashed lines represent the steady state distributions. The inset in C displays the profile of
total extracellular ligand l + s+. (F) Contrast of the shadow as a function of time. The contrast c is
defined as in (2.1). Note, that the contrast still increases after five hours and that the shadow persists.
Results in A-F were obtained by solving Equations B.1 with parameter values of Lander et al. as given
in Table 2.1 and with the boundary conditions jx = 0 at x = 200µm, jx = νd/2a2 at x = 0, and jy = 0
at y = ±100µm. Initial conditions l = s+ = si = 0, r+ = r0, and ri = r0fint/fext. All concentrations
are normalized to r0 = fsynfext/a2fdegfint. Figure modified from [59].
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Figure B.3: Morphogen gradients in the DBT model for different boundary conditions and AOI sizes.
Total ligand concentration λ as a function of the distance x from the source calculated in the DBT
model for different times. Solid curves are separated by intervals of 2h. The dashed curve indicates the
respective steady state. (A) Equations (B.1) were solved with concentration boundary conditions as in
[60], i.e., l = 0 at x = Lx as well as ∂tl = ν̄ − konlr+ + koffs+ at x = 0, where ν̄/r0 = 8 · 10−5s−1. (B)
Equations (B.1) were solved with current boundary conditions, i.e., jx = νd/2a2 for x = 0 and jx = 0
at x = Lx. In both cases Lx = 100µm. Note, that the ligand concentrations differ significantly close to
the distal boundary. (C) Calculation as in A (concentration boundary conditions), but for Lx = 200µm.
(D) Calculation as in B (current boundary conditions), but for Lx = 200µm. Note that for this size,
the ligand profiles do not depend on boundary conditions. Parameters are chosen as in [60], see Table
2.1. The value of ν for current boundary conditions has been chosen such that jx(x = 0) equals the
ligand current at x = 0 in the steady state for concentration boundary conditions with Lx = 200µm.
The initial conditions were l = s+ = si = 0, r+ = r0, and ri = r0fint/fext for all x. Note that the total
ligand concentration has been displayed in ordinates normalized to r0 = fsynfext/a2fdegfint which is a
constant that corresponds to the steady state surface receptor concentration in the absence of ligand.
Figure modified from [59].
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the clone in the y-direction is larger than the distance over which the gradient forms (compare
Fig. B.1 C and D). For the present choice of parameters and an extension of the clone of 50µm
in y-direction, this criterion is satisfied. The contrast c of shadows in the two dimensional
geometry can be determined approximately in a one dimensional calculation by taking the
difference of the concentration behind the clone and the concentration at the same position in
a calculation without a clone. In general, however, a two dimensional description is required
to describe the effects of the clone.

Receptor kinetics inside the clone region Our results show that the DBT model gen-
erates permanent shadows behind the clone, while the DBTS model that corresponds to our
description of morphogen transport in the diffusion regime is able to generate transient shad-
ows similar to those observed in the experiments in [34]. This finding differs from the results
of [60] who argued that the DBT model generates transient shadows. In their one dimensional
calculations of the DBT model, like in ours, endocytosis block is modeled by a tenfold reduction
of the internalization rates at t = 0. However, in their study, the receptor concentrations in
the clone are simultaneously and abruptly set to the steady state values corresponding to the
reduced internalization rates. The latter is not in agreement with the experimental situation
and is not justified by the DBT model. In fact, this corresponds to an immediate tenfold
increase of the surface receptor concentration within the clone at the time of the temperature
shift (see dashed line in Fig. B.1 F). This is different from what is expected to happen in the
experiment according to the DBT model: as the internalization rates in the clone are reduced
in an abrupt fashion at t = 0, the concentration of surface receptors only gradually increases
(Fig. B.1 F; solid line). We have performed the same calculations as described in Lander et
al. but with corrected initial conditions for the receptor concentration (Fig. B.1 C). This one
dimensional calculation qualitatively leads to the same result as already discussed in two di-
mensions: a shadow develops which at hours is weak and becomes more pronounced after long
times (compare Fig. B.1 C and D).

In order to understand how Lander et al. came to the conclusion that transient shadows
occur in the DBT model, we have repeated their calculations. Using the parameter values
and system size, the boundary conditions, and the initial conditions chosen in their article,
we obtain ligand profiles, which differ from those published in their work (Fig. B.1 B). Note
that here the initial surface receptor concentration in the clone is set to a tenfold larger value
as compared to the remaining tissue. This also results in a persistent shadow in the steady
state identical to the situation where the surface receptor level increases gradually (compare
Fig. B.1 B and C). In summary, there are no transient shadows in either calculation.

The fact that these calculations lead to ligand profiles that differ from those published in
[60] points to a technical problem in their calculations. Repeating the calculations of Lander
et al., we noticed that their results could only be reproduced if the receptor production rate
inside the clone was reduced by a factor of ten at t = 0 as compared to the one outside the
clone. The results of our calculations with this additional change in the clone are displayed in
Fig. B.1 A. They coincide with the results published in [60], see Fig. 7 therein. Apparently, in
their calculations the receptor production rate in the clone was reduced by a factor of ten. As
a result, the surface receptor concentration in the clone after undergoing an initial step-wise
increase, relaxes in their calculations to a steady state value which is similar to the steady state
in the tissue outside the clone (Fig. B.1 F, dotted line). In summary, in the case of Lander et
al., the shadow appears because of the sudden step-wise increase of the surface receptor level;
the shadow disappears at 24 hours because the receptor production rate is reduced and the
surface receptor level therefore relaxes to approximately the same steady state as outside the
clone.
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Our results emphasize the facts that the number of dimensions considered (in particular
in the presence of mutant clone), the size of the AOI, the boundary conditions, and the initial
conditions (most notably the levels of surface receptor in the clone at the beginning of the
experiment) are of key importance.

B.2 Description of two ligand species in the DBT model

In the experiments described in section 2.2, the kinetics of GFP-Dpp occurs on a background of
endogenous Dpp, that presumably is in a stationary state. In order to describe the fluorescence
intensity of GFP-Dpp, one should therefore in principle distinguish the concentrations l, s+

and si of non-fluorescent ligand from their GFP-tagged counterparts l∗, s∗+ and s∗i , which are
observed. This leads to a straightforward generalization of (B.1):

∂tl = D0�l − kona
2lr+ + koffs+

∂tl
∗ = D0�l∗ − kona

2l∗r+ + koffs∗+
∂ts+ = kona

2lr+ − (koff + bint)s+ + bextsi

∂ts
∗
+ = kona

2l∗r+ − (koff + bint)s∗+ + bexts
∗
i

∂tsi = bints+ − (bext + bdeg)si

∂ts
∗
i = bints

∗
+ − (bext + bdeg)s∗i

∂tr+ = koff(s+ + s∗+) + fextri − kon(l + l∗)r+ − fintr+

∂tri = fsyn/a2 + fintr+ − (fext + fdeg)ri (B.2)

Furthermore, we introduce the production rate ν∗ of GFP-Dpp. The levels of expression of
GFP-Dpp are about five times higher than those of the endogenous Dpp [40].

Figure B.4 shows that the profiles of GFP-Dpp in the presence of endogenous Dpp obtained
from (B.2) are very similar to the profiles obtained with the DBT model, (B.1). Here, the
secretion rate ν∗ of GFP-Dpp is seven times that of the secretion rate ν of endogenous Dpp.
Note, that for the parameter values given in Table 2.1, this result is independent of the ratio
of the production rates ν and ν∗ of endogenous Dpp and GFP-Dpp, respectively, as long as
the total Dpp production rate, ν + ν∗, is constant. This is a consequence of the fraction of
ligand bound surface receptors being low.

The situation is slightly different in our description of morphogen transport in the diffusion
regime because the occupancy of surface receptors is not very low. In particular, if we describe
the experimental situation of a shibire clone in the receiving tissue using our description of
morphogen transport in the diffusion regime (3.28) with the parameters values given in Ta-
ble 2.1, the maximal concentration of surface receptors Rmax has to be increased in order to
obtain shadows of the same contrast as in the case without endogenous Dpp.

B.3 Receptor production in the diffusion regime

In the DBT model (B.1) and in our description of morphogen transport in the diffusion regime
(3.28), the receptor production rate fsyn appears in the equation for the distribution ri of
free internal receptors. This reflects the appearance of newly formed receptor molecules in
endosomes inside the cells. The conventional biosynthetic pathway, however, does not involve
endosomal structures [1]. Instead newly produced receptors appear directly on the cell surface.
This can be incorporated into the DBT model like in our description of morphogen transport
in the diffusion regime by modifying the kinetic equations for the distributions of free internal
and free surface receptors. In our description (3.28) the equations describing the kinetics of
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Figure B.4: Competition of GFP-Dpp with endogenous Dpp. Total GFP-Dpp profiles λ∗ obtained from
a two dimensional calculation of the DBT model in which endogenous Dpp and GFP-Dpp were treated
separately according to (B.2) compared to those obtained from the calculation shown in Fig. B.2. The
same geometry and parameters as depicted in Fig. B.2 were applied. The production rate of GFP-Dpp
was chosen seven times larger than that of endogenous Dpp. All concentrations are normalized to
r0 = fsynfext/a2fdegfint. Figure modified from [59].



B.3. RECEPTOR PRODUCTION IN THE DIFFUSION REGIME 129

λ
/r

0

distance y to clone center [µm]

distance x to source [µm]

λ
/r

0
λ

/r
0

distance x to source [µm]

co
nt

ra
st

time [h]

0
2
4
6
8

10
12
14
16
18

-100 -75 -50 -25 0 25 50 75 100

0

5

10

15

20

25

30

0 25 50 75 100 125 150 175 200

0

5

10

15

20

25

30

0 25 50 75 100 125 150 175 200

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

λ
/r

0
λ

/r
0

λ
/r

0
co

nt
ra

st

time [h]

R eceptor synthesis to
endosome

R eceptor synthesis to
plasma membrane

distance x to source [µm]

distance x to source [µm]

distance y to clone center [µm]

0

5

10

15

20

-100 -75 -50 -25 0 25 50 75 100

0
5

10
15
20
25
30
35
40

0 25 50 75 100 125 150 175 200

0
5

10
15
20
25
30
35
40

0 25 50 75 100 125 150 175 200

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

Figure B.5: Receptor synthesis in our description of morphogen transport in the diffusion regime.
Total ligand profiles obtained from a two dimensional calculation with receptor synthesis directed to
the plasma membrane according to (B.3) compared to those obtained from the calculation shown in
Fig. 2.10. For the calculation shown on the right, the rate of receptor synthesis f0

syn was modified just
like fext and bext to obtain cell surface receptor saturation. Note, that r0 = f0

syn(1+fext/fdeg)/a2fint in
the calculation on the right. Otherwise the same parameters as for the calculation shown in Fig. 2.10
were used. The initial conditions for the calculation on the right were l = s+ = si = 0, r+ = r0, and
ri = fintr0/(fdeg + fext). Figure modified from [59].
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r+ and ri are replaced by

∂tr+ =
f0
syn

a2

(
1 − s+ + r+

rmax

)
+ koffs+ + f0

ext

(
1 − s+ + r+

rmax

)
ri − kona

2lr+ − fintr+

∂tri = fintr+ −
(

f0
ext

(
1 − s+ + r+

rmax

)
+ fdeg

)
ri . (B.3)

Note, that this corresponds to the same description of receptor synthesis we used for the
transcytosis limit of our description of morphogen transport as discussed in section 3.1.2.

Numerical solutions of the modified models show only a minor effect of this change on the
kinetics, see Fig. B.5.



Appendix C

Indirect assays on Dpp in the wing
disk

A number of experiments with flies carrying mutations that affect the intracellular trafficking
were performed. In these experiments, the Dpp gradient could not be observed directly using
fluorescent labels for technical reasons [34]. Instead, the expression patterns of the target
genes were analyzed. As target gene expression is controlled by the morphogen concentration,
see section 1.1, a possible explanation for an altered range of target gene expression is that
the morphogen gradient itself has changed its range accordingly. Alternatively, the change in
gene expression could be due to cell autonomous effects of the mutation on the intracellular
signal transduction mechanism. Since we do not know which one of these two explanations is
correct, these experiments give only indirect information on morphogen transport and gradient
formation. In this section, we nevertheless investigate the effects of these mutations on the
morphogen gradient.

Experimental data The modifications studied in these experiments involve Rab proteins
that affect the intracellular trafficking pathways. Only the cells outside of the source in the pos-
terior compartment of the wing disk are subject to the mutation. The specific mutations stud-
ied are called DRab5S43N, and DRab7Q67L. Moreover, the effects of DRab5 over-expression
(DRab5 OE) were investigated. These modifications affect the intracellular trafficking in that
they impair endocytosis (DRab5S43N), enhance endocytosis (DRab5 OE), and enhance intra-
cellular degradation (DRab7Q67L) respectively. The magnitude of these effects has so far not
been quantified in experiments.

In the DRab5S43N experiment, a reduced range of the expression of the Dpp target gene
Spalt (sal) was observed, compare Fig. C.1 G and H. It was further found that DRab5 over-
expression leads to an enhanced range of sal expression and that expression of DRab7Q67L
again results in a reduced range of sal expression, compare Fig. C.1 G to I and J.

Calculation in the transcytosis regime We have numerically calculated steady state
gradients corresponding to these experiments using our theoretical description of morphogen
transport in the transcytosis regime. We mimic the effect of DRab5S43N by reducing the
internalization rates bint and fint to 10% of their wild-type values shown in Table 2.1. The
resulting steady state gradients of receptor-bound morphogens and internalized morphogens
for this situation are compared to the respective wild-type gradients in Fig. C.1 A and B.
The gradient of internalized morphogens is clearly reduced. The gradient of receptor-bound
morphogens changes its shape in a more complicated way: the positions of lower concentration
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Figure C.1: Steady state profiles corresponding to the Rab experiments obtained from calculations
based on our theoretical description of morphogen transport in the transcytosis regime. (A,B) Steady
state gradients of the receptor-bound ligand s+ + si (solid line in A) and the internal receptor bound
ligand si (solid line in B) from a calculation in which bint and fint were reduced to 10% of their wild-type
values to mimic the effects of the DRab5S43N mutation. The respective wild-type gradients calculated
as in Fig. 2.3 are shown by the broken lines. The concentrations are normalized to the steady state cell
surface receptor concentration in the absence of ligands r0. (C,D) As in A,B but for a calculation in
which bint and fint were increased by a factor of two to mimic the effect of Rab5 over-expression. (E,F)
As in A,B but for a calculation in which bdeg was increased by a factor of five to mimic the effects of
the DRab7Q67L mutation. (G-J) Experimental data showing the expression domain of the sal gene in
red (taken from [34]). The modifications of the Rab proteins are present in the region below the white
broken line that indicates the boundary between the anterior and the posterior compartment of the
wing disk.
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thresholds are shifted closer to the source whereas those of higher thresholds are shifter farther
away.

To address the DRab5 OE experiment, we have numerically calculated the steady state
gradient using rates bint and fint that are increased outside of the source region by an arbitrarily
chosen factor of two. The resulting steady state profiles of receptor-bound morphogens and
internalized morphogens are shown in Fig. C.1 C and D. Compared to the wild-type situation
the range of internalized morphogens is clearly enhanced whereas the gradient of receptor-
bound morphogens is hardly affected.

To compare the results of the DRab7Q67L experiment to our theoretical description, a
steady state was calculated with the rate bdeg increased by an arbitrarily chosen factor of
five. The resulting steady state profiles of receptor-bound morphogens and internalized mor-
phogens are shown in Fig. C.1 E and F. Both gradients extend over a strongly reduced range
in comparison to the respective wild type gradients.

Note, that the changes of the gradients which result from the calculation corresponding
to the DRab5S43N and DRab5 OE experiments depend on the parameter choice since the
effective diffusion coefficient derived in 3.1.2 can both increase or decrease if bint is increased
depending on the values of the other rates. Moreover, the qualitative change of the effective
ligand degradation rate under modifications of bint depends on the ratio edeg/bdeg. One could
try to find a fine-tuned parameter set in which the range of the gradient of receptor-bound
morphogens obtained from the calculations would better agree to the range of sal expression
observed in these experiments. But this would be of little value since it is not clear anyway if
the receptor-bound morphogen number on the cell surface, inside the cell in the endosome, or
the sum of both is the quantity that controls signal transduction inside the cell [41].

The interpretation that the modifications of the Rab proteins affect the morphogen gradient
itself and not only the intracellular signal transduction mechanisms is consistent with the
results obtained from numerical calculations based on our theoretical description of transcytosis
if we assume that gene expression is controlled by the number of receptor-bound morphogens
inside the cell. We would like to emphasize once more that due to the indirect nature of these
experiments, the results discussed in this section are far less relevant for the investigation of
morphogen transport than those discussed in sections 2.2.2 and 2.2.3.
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Appendix D

Explicit expressions for coefficients

Here, we show the explicit expressions for the coefficient functions that appear in the transport
equation (3.12, 3.13) and (5.33). Some of the calculations to derive these functions were
performed using Mathematica [100].

D.1 Coefficients in the transport equations (3.12, 3.13)

The following are the explicit expressions for the coefficients in the one dimensional description
of morphogen transport (3.12, 3.13) in the absence of extracellular diffusion, i.e. p = 0.

Dλ(λ, ρ) = −a3bextbint(bext + bint)fext
2fintkoffkonρ[−2bint(bext(fext + fint)koff

+a(bext + bint)fextkonλ)2 + 2A(λ, ρ)(−(bintfext(2fint(bint + koff) + abintkonλ))
+bext(−2fextfintkoff + bint(fintkoff + fext(−2fint + koff − akonλ))))
+2abint(bext + bint)fextkon(A(λ, ρ) − 2bext(fext + fint)koff

+2a(bext + bint)fextkonλ)ρ − 2a2bint(bext + bint)
2fext

2kon
2ρ2]−1

Dρ(λ, ρ) = a4bextbint(bext + bint)fext
2fintkoffkon

2λρ[2((−(fint(bint + koff)) − abintkonλ)
(bext(fext + fint)koff + a(bext + bint)fextkonλ)(A(λ, ρ)
+bext(fext + fint)koff + a(bext + bint)fextkonλ)
+a(bext + bint)fextkon(−(A(λ, ρ)fint(bint + koff)) + aA(λ, ρ)bintkonλ
+2(fint(bint + koff) + abintkonλ)(−(bext(fext + fint)koff)
+a(bext + bint)fextkonλ))ρ − a2(bext + bint)

2fext
2kon

2

×(fint(bint + koff) + abintkonλ)ρ2)]−1

kλ(λ, ρ) = [bdegbint(abintfextkon(λ + ρ) − A(λ, ρ) + bext(fintkoff

+fext(koff + akon(λ + ρ))))][2a(bext + bint)
2fextkonλ]−1

kρ(λ, ρ) = [(− ((bext + bint) fdegfint) + bdegbint (fext + fint)) (−A(λ, ρ)
+bext (fext + fint) koff + a (bext + bint) fextkonλ)
+a (bext + bint) fext ((bext + bint) fdegfint + bdegbint (fext + fint)) konρ]
×[2a(bext + bint)

2fext (fext + fint) konρ]−1, with

A(λ, ρ) = [(bext(fintkoff + fext(koff + akon(λ − ρ))) + abintfextkon(λ − ρ))2

+4abext(bext + bint)fext(fext + fint)koffkonρ]1/2 (D.1)
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D.2 Explicit expressions for the Fα(λ) in (5.33)

With A(λ) as in (3.18) and D(λ) as in (3.17), we find for the functions Fα(λ) appearing in
(5.33) in the absence of extracellular diffusion, i.e. for p = 0:

Fbint
(λ)/D(λ) =

A(λ) − bextkoff − akon(bintr + bext(λ + r))
2abext(bext + bint)kon

Fkon(λ)/D(λ) =
A(λ) − bextkoff − akon(bintr + bext(r − λ))

2abextk2
on

Fbext(λ)/Fbint
(λ) = −bint/bext

Fkoff
(λ)/Fkon(λ) = −kon/koff . (D.2)

Moreover, for p > 0, we find

Fp(λ) =
a(A(λ) − bextkoff + akon(bextλ − (bext + bint)r))

4bextkon
.

D.3 Normalized standard deviation for transcytosis

The explicit result for the normalized standard deviation Σλ(x) of the total ligand concentration
in our theoretical description of transcytosis with disorder which follows from (5.40) is

Σλ(x)2 =
∑

α∈Mc

σ2
α

8k0(0)2ξ4

[
8F 0′

α (0)2 + 2ax
(
∂αk0(0) − ∂αD0(0)/ξ2

)2
ξ2

+
a

ξ
e−2x/ξ

(−ξ2∂αk0(0) + 3∂αD0(0) + 6F 0′
α (0)

) (
ξ2∂αk0(0) + ∂αD0(0) − 2F 0′

α (0)
)

−a

ξ

(
4F 0′

α (0)2 +
(
∂αD0(0) − 3ξ2∂αk0(0)

) (
ξ2∂αk0(0) + ∂αD0(0)

)) ]
, (D.3)

where ξ =
√

D0(0)/k0(0).



Appendix E

Supplementary analytic calculations

E.1 Derivation of continuous equations for the diffusion model
with disorder

We demonstrate the derivation of the continuous equations describing the simple diffusion
model with disorder from chapter 5.1. We restrict ourselves to the one dimensional situation
here. The derivation is analogous in two dimensions. For case A, the discrete description in
the bulk is (5.1)

∂tCn = pn−1(Cn−1 − Cn) + pn(Cn+1 − Cn) − knCn.

The continuous equation is obtained by replacing the Cn, pn, and kn with smooth functions
c(x), p(x), and k(x) and making a power series expansion to second order in x. For this, the
Cn and kn are put on the sites of a lattice with lattice constant a and the pn on the bonds
connecting these sites, see Fig. 5.1. This yields

∂tc(x) =
(
p(x) − a

2
p′(x)

)(
−ac′(x) +

a2

2
c′′(x)

)
+
(
p(x) +

a

2
p′(x)

)
×
(

ac′(x) +
a2

2
c′′(x)

)
− kc(x) + O(3)

= p(x)a2c′′(x) + a2p′(x)c′(x) − kc(x) + O(3)
= ∂xp(x)a2∂xc(x) − kc(x) + O(3) = ∂xD(x)∂xc(x) − kc(x) + O(3),

where D(x) = p(x)a2. For case B, the discrete description in the bulk is (5.3)

∂tCn = pn−1Cn−1 + pn+1Cn+1 − 2pnCn − knCn.

Proceeding as for case A, we find

∂tc(x) = −2p(x)c(x) +
(

p(x) + ap′(x) +
a2

2
p′′(x)

)(
c(x) + ac′(x) +

a2

2
c′′(x)

)

+
(

p(x) − ap′(x) +
a2

2
p′′(x)

)(
c(x) − ac′(x) +

a2

2
c′′(x)

)
− kc(x) + O(3)

= a2p′′(x)c(x) + a2pc′′(x) + 2a2p′(x)c′(x) − kc(x) + O(3)
= ∂2

xp(x)a2c(x) − kc(x) + O(3) = ∂2
xD(x)c(x) − kc(x) + O(3).

E.2 Green’s functions of D�− k

E.2.1 Derivation of Green’s function in three dimensions

Here, we exemplarily show how the free Green’s function G0(�x, �x′) of the operator (D�− k)
in three dimensions can be calculated using Fourier transforms. The calculations in one and
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two dimensions are similar. The equation to solve is

(D�− k)G0(�x, �x′) = δ(�x, �x′),

with G0(�x, �x′) → 0 for |�x − �x′| → ∞. Doing a Fourier transform �x → �q yields

−(Dq2 + k)G̃0(�q, �x′) = (2π)−3/2ei�q·�x′
,

with q = |�q|. We can identify

G̃0(�q, �x′) =
−(2π)−3/2ei�q·�x′

Dq2 + k
.

Finally, we apply the inverse Fourier transform

G0(�x, �x′) = (2π)−3/2

∫ ∞

−∞
d3q G̃0(�q, �x′)e−i�q·�x

= 2π(2π)−3/2

∫ π

0
dθ

∫ ∞

0
dq

−(2π)−3/2eiq|�x′−�x| cos θq2 sin θ

Dq2 + k

=
−e−

√
k/D|�x−�x′|

4πD|�x − �x′| ,

where we have introduced spherical coordinates in which θ denotes the angle between �q and
�x′ − �x.

E.2.2 Properties at the boundary in two dimensions

The Green’s function G+(x, y, x′, y′) = G0(x, y, x′, y′) + G0(x, y,−x′, y′) defined in (5.26) in
section 5.1.3 where G0(�x, �x′) = −K0(|�x − �x′|/ξD)/2πD satisfies

∂xG+(x, y, 0, y′)
∣∣∣
x=0

= δ(y − y′).

This can be seen as follows. Firstly,

∂xG+(x, y, 0, y′) =
1

πξD

K1(
√

x2 + (y − y′)2/ξD)x√
x2 + (y − y′)2

,

with the modified Bessel function of the second kind K1 [97]. For y �= y′, this vanishes if x = 0.
For y ≈ y′, we can write

∂xG+(x, y, 0, y′)
∣∣∣
x=0

= lim
ε↘0

∂xG+(x, y, 0, y′)
∣∣∣
x=ε

= lim
ε↘0

1
π

ε

ε2 + (y − y′)2
= δ(y − y′),

where it was used that K1(z) ≈ z−1 for z � 1.

E.3 Asymptotic behavior of the normalized standard deviation

E.3.1 Two dimensions

For the simple diffusion model with disorder in two dimensions discussed in section 5.1.3, the
normalized standard deviation Σ(x) of the steady state concentration c(x) grows as x1/4 for
large x. For simplicity, we only show this for fluctuating k here. We can use the free Green’s
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function because for large x the effect of the boundary condition imposed at x = 0 is negligible,
G±(�x, �x′) ≈ G0(�x, �x′). Using (5.28), we have

Σ(x)2 =
〈c1(�x)2〉
c0(x)2

=
(

σkac0
0

2πDc0(x)

)2 ∫ ∞

0
dx′

∫ ∞

−∞
dy′ e−2x′/ξDK0

(√
(x − x′)2 + (y − y′)2/ξD

)2

=
( σka

2πD

)2
e2x/ξD

∫ x

−∞
dx′

∫ ∞

−∞
dy′ e−2(x−x′)/ξDK0

(√
x′2 + y′2/ξD

)2

=
( σka

2πD

)2
(∫ L

−∞
dx′ +

∫ x

L
dx′
)∫ ∞

−∞
dy′ e2x′/ξDK0 (r/ξD)2 ,

where 1 � L < x, ξD =
√

D/k, and r =
√

x′2 + y′2. The first integral gives an addi-
tive constant and for the second integral, we can apply the asymptotic expansion K0(z) ≈√

π/2 e−zz−1/2 for large z. This yields

Σ(x)2 ∼
∫ x

L
dx′

∫ ∞

−∞
dy′

e−2(r−x′)/ξD

r
=
∫ π/2

−π/2
dφ

∫ x/ cos φ

L/ cos φ
dr e−2r(1−cos φ)/ξD

=
∫ π/2

−π/2
dφ

∫ x

L
dr e−2r(sec φ−1)/ξD sec φ

= 2
∫ x

L
dr

∫ ∞

1
dw

e−2r(w−1)/ξD

√
w2 − 1

= 2
∫ x

L
dr e2r/ξDK0 (2r/ξD)

∼
∫ x

L
dr r−1/2 ∼ x1/2,

where we have substituted φ = arcsec w and used the asymptotic expansion of K0 again.

E.3.2 Three dimensions

In three dimensions, the normalized standard deviation Σ(x) of the steady state concentration
c(x) grows as ln x for large x. For simplicity, we only show this for fluctuating k here. We use
the free Green’s function because for large x the effect of the boundary condition imposed at
x = 0 is negligible, G±(�x, �x′) ≈ G0(�x, �x′). Using (5.30), we have

Σ(x)2 =
〈c1(�x)2〉
c0(x)2

= a3

(
σkc

0
0

4πDc0(x)

)2 ∫ ∞

0
dx′

∫ ∞

−∞
dy′
∫ ∞

−∞
dz′ e−2x′/ξD

e−2|�x−�x′|/ξD

|�x − �x′|2

= a3
( σk

4πD

)2
e2x/ξD

∫ x

−∞
dx′

∫ ∞

−∞
dy′
∫ ∞

−∞
dz′ e−2(x−x′)/ξD

e−2r/ξD

r2

= a3
( σk

4πD

)2
∫ x

−∞
dx′

∫ ∞

−∞
dy′
∫ ∞

−∞
dz′

e−2(r−x′)/ξD

r2

= a3
( σk

4πD

)2
(∫ L

−∞
dx′ +

∫ x

L
dx′
)∫ ∞

−∞
dy′
∫ ∞

−∞
dz′

e−2(r−x′)/ξD

r2

where 1 � L < x, ξD =
√

D/k, and r =
√

x′2 + y′2 + z′2. The first integral gives an additive
constant, so we have

Σ(x)2 ∼
∫ x

L
dx′

∫ ∞

−∞
dy′
∫ ∞

−∞
dz′

e−2(r−x′)/ξD

r2
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= 2π

∫ π/2

0
dθ sin θ

∫ x/ cos θ

L/ cos θ
dr e−2r(1−cos θ)/ξD

= 2π

∫ π/2

0
dθ tan θ

∫ x

L
dr e−2r(sec θ−1)/ξD

= 2π

∫ x

L
dr

∫ ∞

1
dw

e−2r(w−1)/ξD

w

= 2π

∫ x

L
dr e2r/ξD Γ(0, 2r/ξD) ∼ ln(x),

where we have substituted θ = arcsec w and Γ(0, z) =
∫∞
z dt e−tt−1 is the incomplete gamma

function which has the asymptotic behavior Γ(0, z) ∼ e−zz−1 for large z [97].



Appendix F

Numerical methods

F.1 Kinetic equations of the extracellular diffusion dominated
limit

We numerically solved the kinetic equations of the extracellular diffusion dominated limit (3.28)
and the DBT model (B.1) by using the Euler discretization forward in time. In the forward
Euler scheme, the partial derivatives in space and time of a function f are approximated by

∂xf(x, t) =
f(x + ∆x, t) − f(x, t)

∆x

∂tf(x, t) =
f(x, t + ∆t) − f(x, t)

∆t
.

We now explicitly describe the discretization scheme.

One dimension Consider a system that is homogenous in the y-direction. Then only the
kinetics in the x-direction has to be determined and we are left with a one dimensional system.
In order to describe the area of interest (AOI), we introduce a one dimensional lattice of size
L with the sites being separated by a distance ∆x. The ligand and receptor distributions
are sampled on the sites. We define ln = l(n∆x, t), where n = 0, . . . , N = L/∆x, and
correspondingly s+,n, si,n, r+,n, and ri,n. Primed quantities denote the distributions at time
t + ∆t, e.g., l′n = l(n∆x, t + ∆t). In the bulk, i.e., for n = 1, . . . , N − 1, the discretization of
the kinetic equations of the DBT model (B.1) is then given by

l′n = ln + ∆t

[
jn − jn+1

∆x
− konlnr+,n + koffs+,n

]
s′+,n = s+,n + ∆t [konlnr+,n − (bint + koff)s+,n + bext)si,n]
s′i,n = si,n + ∆t [bints+,n − (bext + bdeg)si,n]
r′+,n = r+,n + ∆t [koffs+,n + fextri,n − konlnr+,n − fint)r+,n]
r′i,n = ri,n + ∆t [w + fintr+,n − (fext + fdeg)ri,n] . (F.1)

Here,

jn = −D0

∆x
(ln − ln−1) .

The equations of our theoretical description of morphogen transport in the diffusion dominated
limit (3.28) are discretized analogously.
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Two dimensions In the two dimensional case, the AOI is represented by a triangular lattice
with lattice constant ∆. The sites can then be indexed by two indices m and n, where m =
0, . . . , Nx = Lx/

√
3∆ and n = 0, . . . , Ny = 2Ly/∆. Explicitly,

lm,n =
{

l(m
√

3∆, n
2 ∆) for n even

l((m + 1
2)
√

3∆, n
2 ∆) for n odd

(F.2)

and correspondingly for the other densities. The terms in (F.1) describing ligand binding to
and un-binding from receptors are readily modified to this situation. The current from site
(m′, n′) to site (m, n) is proportional to −(lm′,n′−lm,n)/∆ and the discretization of the diffusion
term reads

2D0

3∆2

∑
n.n.

(lm′,n′ − lm,n) . (F.3)

Here, the sum over the sites (m′, n′) extends over all nearest neighbors of the site (m,n).

F.2 Discrete description of transcytosis

We numerically integrated the kinetic equations of the discrete description of morphogen trans-
port (3.1, 3.3, A.1) and their corresponding generalizations to two dimensions like (3.19) by
using the Euler discretization forward in time that was introduced in F.1. In the figures
showing the time development calculated using the discrete one dimensional description of
morphogen transport, the total ligand concentration at the position of cell n was calculated
as Ln + S

(l)
n + S

(r)
n + S

(i)
n , the extracellular ligand concentration as Ln + S

(l)
n + S

(r)
n , and the

total receptor concentration as S
(l)
n + S

(r)
n + S

(i)
n + R

(l)
n + R

(r)
n + R

(i)
n . In two dimensions, the

total ligand concentration at the position of one cell was calculated accordingly by summing
up the receptor-bound ligand concentrations inside this cell and on its surfaces and one half of
the free ligand concentration in the surrounding extracellular space.

F.3 Effective transport equation for transcytosis

The effective transport equations in the transcytosis limit (3.12, 3.13) and (3.16) were solved
using the Euler discretization forward in time, see section F.1. The discretization of the ligand
current that involves a concentration dependent diffusion coefficient D(λ) is not straightfor-
ward. We explain our discretization of (3.16). The treatment of (3.12, 3.13) is analogous. We
introduce a one dimensional lattice with N sites that are separated by a distance ∆x. The
ligand concentration λ is sampled on the sites of this lattice. We define λn = λ(n∆x, t), where
n = 0, . . . , N . Let us denote the total ligand concentration on site n at time t + ∆t by λ′

n, i.e.
λ′

n = λn(t + ∆t), while λn denotes λn(t). The discretization of (3.16) is then given by

λ′
n = λn + ∆t

(
jn − jn+1

∆x
− k(λn)λn

)
,

where the ligand current jn between sites n and n − 1 is calculated as

jn = −D(λn) + D(λn−1)
2∆x

(λn − λn−1).

The effective transport equation in two dimensions (3.20) was solved analogously using a square
lattice.



F.4. ENSEMBLE AVERAGES FOR FROZEN DISORDER 143

F.4 Ensemble averages for frozen disorder

In the descriptions of morphogen transport with disorder discussed in chapter 5, different
realizations of the disorder were generated by numerically calculating random numbers for
the corresponding noise terms. A Gaussian distribution was used for these random numbers.
Specifically, the random number generator for Gaussian deviates discussed in [82] was used.
The steady states were calculated by letting the kinetics of the system given by the corre-
sponding equations evolve for a long time. These kinetic equations were again solved using
the Euler discretization forward in time, see section F.1. It was made sure that the system
had evolved sufficiently long so that it was very close to its steady state at the end of the
numerical calculation by demanding that the relative change of the concentration Cn at each
lattice site had become very small, i.e. |(C ′

n − Cn)/∆tCn| < ε, where ε = 10−15 was typically
used. It was also verified that a longer evolution of the system did not change the resulting
normalized standard deviation Σ(x). This way typically 20,000 to 100,000 steady states for
different realizations of the disorder were calculated.

The integrals that appear in the analytical results (5.28) and (5.30) for the variance of the
concentration c(x) in two and three dimensions were numerically integrated using Mathematica
[100].
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