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Abstract

During the development of multicellular organisms, organs grow to well-defined shapes
and sizes. The proper size and patterning of tissues are ensured by signaling molecules
as e.g. morphogens. Secreted from a restricted source, morphogens spread into the ad-
jacent target tissue where they form a graded concentration profile. Upon binding of
the morphogens to receptors on the cell surfaces, the morphogenetic signal is transduced
inside the cell via the phosphorylation of transcription factors, which subsequently regu-
late the expression of different target genes. Thus, cell fates are determined by the local
concentration of such morphogens.

In this work, we investigate three key aspects of morphogenetic signaling processes in
growing tissues. First, we study the mechanics of tissue growth via cell division and cell
death. We examine the rearrangements of cells on large scales and times by developing
a continuum theory which describes the growing tissue as an active complex fluid. In
our description we include anisotropic stresses generated by oriented cell division, and
we show that average cellular trajectories exhibit anisotropic scaling behaviors. Our
description is used to study experimentally measured shape changes of the developing
wing disk of the fruit fly Drosophila melanogaster.

Second, we focus on the spreading of morphogens in growing tissues. We show that
the flow field of cell movements due to oriented cell division and cell death causes a drift
term in the morphogen transport equation, which captures the stretching and dilution
of the concentration profile. Comparing our theoretical results to recent experiments in
the Drosophila wing disk, we find that the transport of the morphogen Dpp is mainly
intracellular. We moreover show that the decay length of the Dpp gradient increases
during development as a result of changing degradation rate and diffusion coefficient,
whereas the drift of molecules due to growth is negligible. Thus growth does not affect
the decay length of the gradient, but the decay length of the gradient might affect the
tissue growth rate as discussed in this work.

Finally, we develop a microscopic theoretical description of the intracellular trans-
duction machinery of morphogenetic signals within an individual cell. Our description
captures the kinetics of the trafficking of proteins between different cellular compart-
ments in response to receptor-bound signaling molecules. Analyzing experimental data
at the Drosophila neuromuscular junction, we show that the morphogenetic signaling is
modulated by synaptic signaling via neuronal action potentials.
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Chapter 1

Introduction

The development of multicellular organisms from a single nearly uniform fertilized egg
cell is a fascinating process. By repeated rounds of cell divisions, spatial cell packings
are formed, mostly in two-dimensional sheets such as epithelia, or in three-dimensional
tissues. Besides cell division, cell death (apoptosis) can play an important role during
development. As the tissues grow and develop, cells of different type emerge and build
such complex structures as our eyes, hands, or brain [99, 88].

1.1 Quantitative approaches to developmental pattern for-

mation

Since all cells are descendants of the fertilized egg cell, they all contain the same ge-
netic information stored in their DNA [4]. The symmetry breaking that accounts for the
differentiation of cells has raised the interest of theorists for more than fifty years. In
the 1950s, Turing suggested that certain molecules, which he called morphogens, diffuse
and self-organize into spatial patterns that subsequently structure the organism [94].
In systems of reaction-diffusion equations, he showed that patterns can emerge from
initially homogeneous molecule concentrations due to instabilities triggered by statisti-
cal fluctuations. Based on Turing’s ideas, biological pattern formation resulting from
reaction-diffusion systems has been studied extensively [42, 72, 29, 58, 75], and may
indeed underlie the pigmentation patterns of spots and stripes found e.g. in cheetah,
zebra, or angelfish coats [75, 99].

However, the modern definition of morphogens was coined by Wolpert in 1969 [98].
Produced and secreted from a localized source, morphogens spread into the adjacent
target tissue and form a graded concentration profile, called morphogen gradient. Thus,
positional information is conveyed to target cells based on their position within the
morphogen concentration gradient. Today, a number of proteins have been identified to
act as morphogens [48, 91], among which are secreted ligands of the Hedgehog (Hh) [11],
Wingless (Wg) [101], and TGF-β protein families [69].

Binding to receptors on the cell surfaces, morphogens can induce the activation of
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Figure 1.1: Schematic representation of TGF-β signaling. TGF-β ligands such as the
morphogens Dpp or Activin bind to receptors on the cell surface as e.g. the protein
Thickveins (Tkv). The activated ligand-receptor complexes induce the phosphorylation
of cytosolic Mad, which can then enter the cell nucleus and act there as transcriptional
regulators of about 300 target genes. Figure modified from [95].

transcription factors within the cells [69, 86], as e.g. the phosphorylation of the pro-
tein Mothers-against-Dpp (Mad) in response to TGF-β ligands such as Decapentaplegic
(Dpp) or Activin [83, 97, 50, 57], see Fig. 1.1. The activated transcription factors me-
diate the morphogenetic signal by regulating the transcription of different genes in the
cell. Often, these target genes are either strongly expressed or hardly expressed at all,
and cells switch between these two states of gene expression at certain threshold values
of the morphogen concentration [11, 51, 85]. Hence morphogens control cell fates by
regulating the cellular protein production.

The role of TGF-β signaling molecules during development has e.g. been studied
at the neuromuscular junction of the fruit fly Drosophila melanogaster [4, 99]. This
connection between a neuron and a muscle cell forms during embryogenesis [21] and
grows during larval stages to adjust itself to the growth of the muscle [82]. To match
the growth of muscle and synapse during larval development, cell-to-cell communication
takes place involving the TGF-β signaling pathway [59, 1, 68, 70, 80].

In the past two decades, cellular signal transduction machineries have been broadly
investigated as examples of complex networks [96, 13, 95, 5]. It has been shown that
signaling systems which contain a feedback between two or more proteins can be bi-
stable [6], which might be relevant for the switching between the different states of gene
expression. Another important issue is the robustness of signaling networks [10, 51],
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Figure 1.2: The morphogen Dpp in the developing Drosophila wing disk. (A) Top view
on the wing disk. Cell contours are labeled in red, Dpp in green. The Dpp source is
indicated by a arrowhead. (B) Profile view on the wing disk at the level of the dashed
blue line in A. The cell contours are labeled in red, superimposed by Dpp (green). (C)
Detail of the Dpp localization (green) corresponding to the yellow box in A. Cells labeled
in red. (D,E) Schematic of the developing wing in a xz- (D) and xy-section (E). Cells
filled in green represent cells of the Dpp source (arrowhead in D). Bars correspond to
50µm. Anterior to the left, posterior to the right. Figure modified from [60].

because the functionality of a cell should not depend sensitively on parameters that are
likely to fluctuate.

Robustness can also be achieved in the formation of the morphogen gradients [34, 35,
47, 20]. The mechanisms by which morphogens are transported in the tissue have been
discussed controversially in recent years [45, 64]. One possibility is that morphogens
simply diffuse in the extracellular space surrounding the cells [28], which e.g. seems
to be the case for the morphogen Activin in the frog Xenopus [71]. Alternatively, it
has been proposed that morphogens might bind to large molecules on the cell surface
and are subsequently transported by passive diffusion in the cell membrane [54, 12].
Furthermore, morphogens could also be transported through cytonemes which are long
thin membrane tubes that connect cells in the tissue [78].

However, recent experiments on the morphogen Dpp [90, 39, 100, 65, 74] in the wing
imaginal disk of the fruit fly suggest another transport mechanism [36]. Dpp is produced
in a specific source region which is a narrow stripe with a width of a few cell diameters
located at the center of the wing disk, see Fig. 1.2. The wing disk is an essentially two-
dimensional larval structure formed from one layer of cells from which the adult fly wing
develops [27, 41]. It is divided into an anterior (A) and a posterior (P) compartment. In
the P compartment, the morphogen Hh is produced and spreads into the A compartment,
where it forms a short-ranged gradient and induces the production of Dpp [11]. Dpp
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Figure 1.3: Schematic of morphogen transport by transcytosis in a chain of cells of
diameter a indexed by n. The rates kon, koff , bint and bext characterize ligand-receptor
binding and unbinding, internalization and externalization. Degradation of ligands in
the extracellular space occurs with rate edeg and with rate bdeg inside the cell. Figure
modified from [17].

spreads non-directionally into the adjacent target tissue where it is degraded on the time
scale of a few hours. Thereby it forms a concentration gradient which extends to more
than 30 cell diameters [36]. In experiments, in which the internalization of receptor-
bound Dpp molecules into the cells (endocytosis) was blocked, Dpp was only found in
the extracellular space about two cell diameters away from the source [36]. These results
suggest that Dpp is transported by a process called transcytosis, in which the molecules
bind to receptors on the cell surfaces, are internalized into the cells, subsequently recycled
and again released from the receptors at a different position on the cell surface [37].

A theoretical description of morphogen transport by transcytosis has been developed
in recent years [60, 17, 18, 19]. Due to the symmetry of the disk, a one-dimensional
description of morphogen concentration profiles as a function of the distance x to the
source is appropriate [63, 60], see Fig. 1.2. Fig. 1.3 illustrates schematically a simple
model to describe transcytosis [17, 18, 19]. Ligands bind and unbind to receptors on the
cell surface at rates kon and koff , respectively. The rates bint and bext characterize the
internalization and externalization of receptor-bound ligands, respectively. Free ligands
in the extracellular space are degraded at rate edeg, receptor bound ligands inside the cell
are degraded at rate bdeg. The kinetics of the number of free ligands in the extracellular
space and of receptor-bound ligands inside the cell and on the cell surface is described by
a system of nonlinear rate equations [17, 18, 19]. From this discrete microscopic model,
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Figure 1.4: Cellular mechanisms to control tissue size and shape. (A) Cell division
with random orientation of the division axis maintains the tissue shape and leads to a
homogenous increase in tissue size. (B) Cell division with preferred orientation of the
cell division axis (here the horizontal axis) leads to anisotropic tissue growth and thus
changes in the tissue shape. (C) Cell shape changes can cause convergence and extension
of the tissue. Here the red cell bonds shrink and new bonds (blue) are formed, leading
to a rearrangement in cell neighbors. Figure modified from [66].

Bollenbach et al. derived an effective continuum description of morphogen transport
[17, 18, 19]. Using a separation of time scales between processes on the cell and tissue
level, rapid variables in the system can be adiabatically eliminated. In the continuum
limit, an effective nonlinear diffusion equation for morphogen transport has been derived.
The diffusion coefficient and degradation rate, which characterize morphogen transport
on the macroscopic scale, are functions of the morphogen concentration and depend on
the microscopic rates of the discrete model, see Fig. 1.3.

1.2 Growth of cellular tissues during development

Another important developmental process in addition to pattern formation is the coor-
dination of tissue size and shape. The building blocks of this process are cell division,
apoptosis, cell shape changes and cell rearrangements [66], see Fig. 1.4.

Developing tissues can be considered as soft materials with visco-elastic properties
[40]. Since active processes take place in cells, such as the cytoskeleton dynamics and
cell division, developing tissues can be described as active complex fluids. The generic
physical properties of such active fluids have recently been discussed in the hydrodynamic
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BA

Figure 1.5: The role of the morphogen Dpp in the regulation of tissue growth in the
Drosophila wing. (A) Wing stump as a result of loss of Dpp production. (B) Wing
outgrowth induced by extra Dpp expression in a clone in the receiving tissue. The
outgrowth exceeds the clone by far, which is marked by blue and red lines. A is shown
at 1.5× the magnification in B. Figure modified from [100].

limit by continuum descriptions [49, 61]. The most striking feature of a developing tissue
that results from active processes is growth. Cells undergo a cell cycle during which they
double in size and then divide into two daughter cells. Cell division thus involves forces
and mechanical work performed to move the neighboring cells in order to create space
for newly produced daughter cells [23, 67, 87, 32]. In addition, apoptosis leads to the
removal of cells, and the liberated space is then occupied by neighboring cells. As a
consequence of cell division and apoptosis, cells move relative to each other so that
cellular packings are remodeled and cells change their nearest neighbors [43].

Important model systems for the study of tissue growth and shape changes during
development are the imaginal disks of the fruit fly, such as the wing disk (see Fig. 1.2). It
has been observed that cell division in these essentially two-dimensional larval structures
is oriented [9]. This implies that the cell division axis has a preferred orientation and
can be characterized by an angular distribution [9, 93]. An important open question is
the role of oriented cell division for shape changes of a growing tissue.

Another open question is how morphogen transport is modified by tissue growth, and
how growth is regulated. What controls the cell division rate and, when the proper size
is reached, what tells the tissue to stop growing? Experiments with the fruit fly have
shown that the morphogen Dpp is involved in the regulation of growth of the wing disk.
If Dpp production is suppressed in the disk, the wing does not grow but forms a little
stump, see Fig. 1.5, A. If extra Dpp is produced in a clone within the receiving tissue of
the wing disk, an outgrowth of an ectopic wing can be observed as shown in Fig. 1.5, B
[100]. Moreover, it has been shown that the growth rate is approximately homogenous
in space within the wing disk [44, 73]. It remains a demanding challenge to answer the
question how the graded concentration profile of a morphogen as Dpp can account for
uniform tissue growth [84, 30, 66, 3].
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1.3 Overview of this work

This work is a mainly theoretical investigation of morphogenetic signaling processes in
growing tissues. We study these developmental processes on three different levels of
detail. First, we discuss cell rearrangements in a growing tissue, second we consider the
spreading of morphogens through the rearranging cells of the tissue, and third we study
the signaling cascade triggered by the morphogenetic signal within an individual cell.

In chapter 2, we consider the mechanics of anisotropic tissue growth that results from
oriented cell division (see Fig. 1.4, B) and apoptosis. We develop a continuum theory
which describes the tissue as an effective viscous material with active stresses generated
by cell division. We study the effects of anisotropies of cell division on cell rearrangements
and show that average cell trajectories exhibit anisotropic scaling behaviors. We discuss
the resulting shape changes of a growing epithelium and compare our theoretical results
to measured shape changes of the developing wing disk of the fruit fly. We show that
the disk grows anisotropically, and that the strength of the anisotropy depends on the
level of Dpp expression.

In chapter 3, we investigate morphogen spreading in growing tissues. Based on
the theoretical description of morphogen spreading via transcytosis by Bollenbach et
al. [17, 18, 19], we show that tissue growth leads to an additional drift term in the
effective diffusion equation that describes morphogen transport. This drift term captures
the stretching and dilution of the morphogen gradient that results from growth. Our
theoretical studies are applied to experimental data on the Dpp gradient in the growing
Drosophila wing disk. We show that Dpp transport is mainly intracellular in agreement
with transcytosis whereas extracellular diffusion is inconsistent with our results. The
kinetic parameters of Dpp spreading are measured during wing disk development. We
show that the growth effects of dilution and stretching are negligibly small throughout
development, i.e. growth does not change the decay length of the Dpp gradient. Finally,
we discuss possible rules how Dpp could regulate the growth of the wing disk. We show
that the relative rate of change of the cellular P-Mad concentration, which mediates
Dpp signaling (see Fig. 1.1), is independent on position and shows a unique relation to
the growth rate. Therefore, we can define a possible rule how P-Mad might control the
uniform growth rate and trigger the stop of wing disk growth.

Eventually, chapter 4 deals with the intracellular transduction machinery of TGF-β
signaling on the single cell level. In a microscopic model, we describe the kinetics of
intracellular Mad trafficking in response to the receptor-mediated TGF-β signal with a
system of coupled ordinary differential equations. We compare our theoretical descrip-
tion to experimental data on developmental signaling events at the Drosophila neuro-
muscular junction. We determine several rate constants of intracellular signaling and
show that developmental signaling via TGF-β ligands is modulated by neuronal signaling
via synaptic activity.
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Chapter 2

Dynamics of anisotropic tissue

growth

In this chapter, we present a coarse-grained physical description of cell movements in
growing tissues which takes into account the physical properties of cells in the tissue,
in particular tissue viscosity [14]. As a novelty compared to existing approaches [23,
67, 87, 32], we include anisotropic stresses in our description caused by oriented cell
division. We first develop a continuum theory in which the growing tissue is described
as a viscous fluid medium (see section 2.1). With our description, we study the flow
profiles of cell movements that result from oriented cell division and apoptosis in two-
dimensional epithelia, which provide the basis for our description of morphogen gradients
in growing tissues (see chapter 3).

We furthermore perform numerical simulations of a discrete model in which individ-
ual cells are described as elastic objects that can slide relative to each other subject to
friction forces (see section 2.2). In our discrete fluid model, fluctuations resulting from
cell division and apoptosis are taken into account. We use the numerical results for the
discrete cellular system to test the applicability of our continuum description.

On the basis of our continuum theory, we finally study shape changes of epithelia
that result from oriented cell division and apoptosis (see section 2.3). We compare our
theoretical results with recent experiments in which the shape of the Drosophila wing
disk was measured at different stages during development. We show that the growth
of the Drosophila wing disk is indeed anisotropic, and we find that the strength of the
anisotropy of growth depends on the level of Dpp expression.

2.1 Continuum description

Our continuum theory of anisotropic tissue growth is based on balances of cell number
and forces and extends earlier approaches [23, 67] by taking anisotropic stresses into
account. This description allows us to study the flow profiles of cell rearrangements in
growing tissues in which cell division is oriented.

17



18 2.1. Continuum description

2.1.1 Balances of cell number and forces

We introduce the cell density ρ(r, t) at position r and time t as the number of cells per
area (volume) in d = 2 (d = 3) dimensions within an area (volume) element. These
elements are large compared to the size of a single cell but small compared to the size
of the tissue. The velocity v(r, t) is defined as the averaged velocity of cells situated in
the corresponding area (volume) element at r. In a growing tissue, cell number balance
is given by

∂tρ+ ∂k(ρvk) = (kg − ka)ρ . (2.1)

Here kg and ka are the growth and apoptosis rates which account for cell division and
cell death, respectively. In general, both rates can depend on space and time.

Momentum conservation involves the rate of change of momentum density, the di-
vergence of the momentum flux density tensor and external bulk forces representing
momentum sources and sinks [62]. For our system, inertial forces are small as compared
to other forces and are neglected. We decompose the momentum flux density tensor in
the stress tensor σik and the isotropic pressure P , which depends on cell density accord-
ing to P (r, t) = χ(ρ(r, t)−ρp)/ρp, where χ is the bulk elastic modulus and ρp a reference
cell density. Force balance in the tissue is thus given by

∂k(σik − Pδik) + f ext
i = 0 , (2.2)

where f ext
i is an external force density.

2.1.2 Constitutive relation for anisotropic tissue growth

The stress tensor is related to the flow velocity of cells by a constitutive material relation.
We ignore inertial forces and focus on the long time limit when the tissue behaves as a
viscous fluid. In addition, we take into account the anisotropic active stresses which are
on average generated by oriented cell division. The stress tensor can be written as

σik = η

(

∂ivk + ∂kvi −
2

d
δik∂lvl

)

+ ζδik∂lvl − µkg

(

pipk −
1

d
δik

)

. (2.3)

Here η and ζ are the shear and bulk viscosity, respectively. The vector p is a unit
vector which describes the preferred axis of cell divisions, see Fig. 2.1. Hence σik is
invariant with respect to p → −p. The anisotropic stress results from oriented cell
division. Therefore, we assume this stress to be proportional to the growth rate kg. The
strength of the anisotropic stress is characterized by the coefficient µ ≥ 0 which has
units of viscosity. The special case µ = 0 describes isotropic cell divisions. Considering
a constant external pressure Pext, we furthermore impose the boundary conditions,

σnn = P − Pext and σnt = 0 , (2.4)

where the indices n and t denote the components of the stress tensor normal and tangen-
tial to the tissue boundary, respectively. The Eqs. (2.1)-(2.4) describe the full dynamics
of growing tissues.
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Figure 2.1: Cellular arrangement in the xy-plane presented as a Voronoi diagram [7] (A)
and by circular disks (B). The vector p (here p = ex) defines the preferred orientation of
cell division. The angle ϕ describes the orientation of the cell division axis with respect
to the preferred axis. In our simulations, we divide a cell by generating a new cell and
placing both cells (gray) at a distance ε on the cell division axis in opposite directions
of the original position of the mother cell.

2.1.3 Growth of incompressible tissues

We now focus on two-dimensional epithelia. In order to provide some general insights
in the anisotropic growth, we consider the incompressible limit in which the cell density
is constant, ρ(r, t) = ρ0. Furthermore, we do not consider external forces acting on the
tissue, i.e. f ext

i = 0, and we assume for simplicity that the growth rate kg, the apoptosis
rate ka, the preferred orientation of cell division p, the magnitude of the anisotropic
stress µ and the viscosities η and ζ are independent of position but could be functions
of time. We choose a coordinate system such that cell division is oriented preferentially
along the x-axis, i.e. p = ex. In that case, the dynamic equations (2.1) and (2.2) together
with the constitutive relation (2.3) are given by

∇ · v = kg − ka , (2.5)

η∆v = ∇P . (2.6)

Cell division and cell death lead to a non-vanishing divergence of the velocity field. The
pressure P plays the role of a Lagrange multiplier to impose the constraint (2.5) for
∇ · v. Note that the anisotropic stress of Eq. (2.3) disappears in the force balance (2.6)
since it is homogeneous in space so that its divergence vanishes. However, the boundary
conditions for the stress given by Eq. (4) do involve the anisotropy of the stress. For
arbitrary tissue shapes, the resulting flow field is given by

v =

(

(k0 + k1)x

(k0 − k1)y

)

, (2.7)

where k0 = (kg −ka)/2 and k1 = kgµ/(4η), and the pressure P = Pext + ζ(kg−ka) which
is independent of position. Interestingly, we find that the anisotropy of tissue growth
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characterized by k1 is not only determined by the anisotropy of cell division, but does
also depend on the tissue viscosity η.

In general, the shape of the tissue is deformed under the flow (2.7). For the simple
case of an elliptical tissue boundary, the shape stays elliptical during growth. However,

the lengths lx and ly of the two main axes change with time as lx(t) = l
(0)
x exp(

∫ t
0 dt

′[k0(t
′)+

k1(t
′)]) and ly(t) = l

(0)
y exp(

∫ t
0 dt

′[k0(t
′)−k1(t

′)]), where l
(0)
x and l

(0)
y are the initial lengths.

For kg, ka and µ constant in time, the area A of the tissue grows as A(t) = A0 e
(kg−ka)t.

The rate kg − ka is therefore related to the effective cell doubling time t2 via t2 =
ln 2/(kg − ka). Changes of general tissue shapes are discussed in section 2.3, where our
theory is compared to recent experimental data showing the shape changes of the wing
imaginal disk of the fruit fly Drosophila melanogaster during development.

For arbitrary tissue shapes and time independent kg, ka and µ, average cell trajec-
tories follow flow lines that are described by the power law

y = y0

(

x

x0

)

k0−k1
k0+k1

, (2.8)

where (x0, y0) denotes a reference position on the trajectory. There are two important
cases which we want to discuss: (i) ka = 0, where no apoptosis occurs, and (ii) kg = ka,
where cell division and cell death are balanced. In case (i), Eq. (2.8) also holds for time
dependent kg, because in this case the ratio (k0 − k1)/(k0 + k1) is independent of time.
Several cases can be distinguished. For µ = 0, k1 = 0 so that growth is isotropic and
flow lines are radial. For 0 < µ < 2η, the tissue grows at a higher rate along the x-axis
than along the y-axis. In the special situation where µ = 2η, k1 = k0 and thus the tissue
grows only in one dimension. Finally for µ > 2η, the tissue shrinks along the y-axis
and grows rapidly along the x-axis. In case (ii), the velocity field is v = (k1x,−k1y),
and the flow lines obey y = y0(x/x0)

−1. This result also holds for time dependent
ka. In this case, the two-dimensional tissue undergoes so-called convergence-extension
rearrangements which imply a spontaneous shear deformation [53]. The growth of a
compressible tissue is discussed in appendix A.1.

2.2 Discrete model

In order to test our continuum theory for anisotropic tissue growth and to obtain so-
lutions to Eqs. (2.1)-(2.4) in more complex situations where parameters are position
dependent, we define a discrete representation of tissue growth in two dimensions fol-
lowing related approaches [32]. This discrete model generates robustly the large scale
features of cell rearrangements in growing tissues, but it is not intended to capture details
of deformations on the cell scale as e.g. discussed in [76, 31, 38].
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Figure 2.2: Potential force f = −dV/dr between two cells with centers at distance r.
The force is chosen to be piecewise linear. For r ≥ d, the force vanishes. For a < r < d,
it is attractive with strongest attractive force f1 < 0 at r = b. And for r < a, it is
repulsive with maximal force f0 > 0 at r = 0.

2.2.1 Dynamic equations

We represent cells as elastic objects with the center of the i-th cell located at position
xi. Static forces between the N cells are described by the potential function

U(x1,x2, ...,xN ) =
∑

i,j

i<j

V (|xi − xj|) , (2.9)

where V (r) is a pair potential for two cells with centers at distance r = |xi − xj |. The
pair potential describes adhesive forces as well as elastic forces which keep cell centers
at a preferred distance a. The potential force f = −dV/dr is chosen to be piecewise
linear as defined in Fig. 2.2. The dynamics is described by balancing potential forces
with friction forces that account for tissue viscosity. Neglecting for simplicity differences
between compressional and shear viscosities, we write the balance of forces acting on cell
i as

η̄
∑

{j;i}

(

dxi
dt

− dxj
dt

)

= −∇iU(x1,x2, ...,xN ) . (2.10)

Here η̄ denotes the tissue viscosity on the scale of a cell, and the sum is over the cells j
which are neighbors of cell i. Neighbors of cell i are defined as the n nearest cells and
in addition all cells for which i is within the n nearest neighbors.

Eq. (2.10) is a discrete form of the force balance Eq. (2.6). We can therefore relate
the parameters of the discrete model to the parameters and phenomenological quantities
used in Eqs. (2.2) and (2.3). In the vicinity of the preferred cell density ρp ≃ 2/(

√
3a2),

the pressure can be estimated as P ≃ −
√

3V ′/a. The bulk elastic modulus is thus given
by χ ≃

√
3/2(V ′′ − V ′/a).
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2.2.2 Oriented cell division and apoptosis

Cell division is implemented as a stochastic process. If cell i is dividing at time t, a
new cell is created and both cells are positioned with their centers on opposite sides of
a circle with radius ε = a/4 and center at the original position xi, see Fig. 2.1. The axis
of cell division is characterized by the angle ϕ ∈ [−π/2, π/2] with respect to the x-axis.
The cell division angle ϕ is a random variable drawn from a distribution Q(ϕ). In the
case of isotropic cell division, Q(ϕ) = 1/π. Anisotropies of cell division are captured by
a distribution Q with a peak at a preferred orientation ϕ = 0, given by the x-axis, see
Fig. 2.1. For simplicity, we use a piecewise constant distribution function to describe
anisotropies of cell division with Q(ϕ) = 1/(∆ϕ) for −∆ϕ/2 < ϕ < ∆ϕ/2 and Q = 0
otherwise, i.e. ∆ϕ describes the spread of the division angles around the x-axis. The
anisotropic repositioning of the cell pair during division induces a force dipole via the
potential U (see Eq. (2.9) and Fig. 2.2). On average, these force dipoles generate the
anisotropic active stress in the continuum limit described by Eq. (2.3).

The division and death events occur at stochastic times. Each cell has an internal
clock which measures its lifetime tL after which the cell divides with probability p and
dies with probability 1 − p. If cell i undergoes apoptosis, it is simply removed from the
system. In our simulations, the cellular lifetime obeys a Gaussian probability distribution
R(tL) with average t̄L and variance σL ≪ t̄L. The effective cell doubling time is t2 =
t̄Lln 2/ln(2p). The growth rate kg and the apoptosis rate ka in the continuum limit are
related to the probability p and the average cell lifetime t̄L by

kg =
p

2p− 1

ln 2p

t̄L
, (2.11)

ka =
1 − p

2p− 1

ln 2p

t̄L
. (2.12)

Therefore the probability p for cell divisions obeys p = kg/(kg+ka). A detailed derivation
of these relations is given in appendix A.2.

After the repositioning or removal of cells corresponding to division and apoptosis,
the system relaxes according to the dynamic Eq. (2.10). In the absence of cell division
and apoptosis, there are no fluctuations in this model. As a consequence the system
relaxes in this case to a stable configuration with elastic properties. As soon as cell
division and apoptosis are introduced, fluctuations appear as a consequence of stochastic
events. The growing and dividing system then behaves like a fluid where cells can
change their neighbors. The resulting flow field can on large scales be described by the
continuum equations introduced above.

We solve the force balance Eq. (2.10) numerically for all cells i = 1, ..., N with
stochastic cell division and death events drawn randomly from the probability p and
the distributions R(t) and Q(ϕ). At the boundary of the tissue, no external forces are
imposed. At each time step the velocities dxi/dt are calculated from Eq. (2.10) using
a matrix inversion, and the positions xi of all cells are updated. For details and the
parameter values used in our numerical simulations, see appendix A.3.
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Figure 2.3: Anisotropic growth for different fluctuation amplitudes ∆ϕ of the orientation
of the cell division axis without apoptosis (p = 1). The characteristic lengths lx and ly
of the simulated tissue in x- and y-direction normalized by the cell diameter a are
displayed as functions of time t relative to the effective cell doubling time t2 = t̄L. Ten
independent realizations are shown for each value of ∆ϕ. The black lines represent linear
fits from which the growth rates kx and ky are determined. Parameter values are given
in appendix A.3, and ξ = 0.165.

2.2.3 Results of numerical simulations

We discuss shape changes and average cell trajectories obtained in our growth simula-
tions. We first consider the case where no apoptosis occurs (p = 1). The anisotropic
shape of an epithelium can be characterized by the variances of cell distributions Iab =

(1/N)
∑

i(x
(i)
a − x̄a)(x

(i)
b − x̄b), where x

(i)
a denotes the components a = x, y of the vector

xi. Fig. 2.3 shows the increase of the linear dimensions lx =
√
Ixx and ly =

√

Iyy as
functions of time for two different angular variations of cell division ∆ϕ. The tissue
grows exponentially with different growth rates kx and ky which depend on ∆ϕ, consis-
tent with Eq. (2.7). Indeed, kx + ky ≃ kg where kg = ln 2/t2, independent of ∆ϕ, see
Fig. 2.4 (inset). The dependence of k1 = (kx − ky)/2 as a function of ∆ϕ is shown in
Fig. 2.4 for three different values of the dimensionless parameter ξ = η̄a/(t̄Lf0). Since
χ ≃ f0/a, the parameter ξ ≃ η̄/(χt2) characterizes the ratio of growth rate and cellular
relaxation rate. The anisotropic component of growth is given by k1/kg ≃ α(π − ∆ϕ),
where α is the slope of the curves in Fig. 2.4. The coefficient α(ξ) depends weakly on
ξ in a non-monotonous manner, see Fig. 2.4. Since k1 ≃ kgµ/(4η), we can determine
µ/η ≃ 4α(π − ∆ϕ) of the continuum limit. Fig. 2.5 represents average trajectories of
cells and their descendants in the xy-plane. The double logarithmic plot reveals that
the average positions exhibit a power law as described by Eq. (2.8). We find that for
each set of parameters, the slope of the linear fit is indeed given by ky/kx.

We now consider the effects of apoptosis in tissues with anisotropic cell division. Fig.
2.6 shows the shape changes of tissues for p = 0.5 and two different choices of ∆ϕ. In
this case no net growth occurs since proliferation and apoptosis are balanced. Displayed

are the relative changes in length of the principal axes lx/l
(0)
x and ly/l

(0)
y , where l

(0)
x,y are
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Figure 2.4: Anisotropic growth rate k1 = (kx − ky)/2 normalized by the total growth
rate kx+ky as a function of ∆ϕ for ξ = 0.00165 (red), ξ = 0.0165 (green), and ξ = 0.165
(blue). No apoptosis occurs (p = 1). The data points and standard deviations are
obtained from ten independent simulations for each set of parameters. The inset shows
the total growth rate kx+ky normalized by the rate kg = ln 2/t2 defined by the effective
cell doubling time t2 = t̄L.

the corresponding values of the initial configuration. The logarithmic plot shows that
the lengths lx and ly grow and shrink exponentially with rates kx and ky as described by
Eq. (2.7). The total growth rate kx+ky ≃ 0, consistent with equal rates for cell division
and cell death. As in the case without cell death, k1 = (kx − ky)/2 depends linearly on
the variation of the cell division angle ∆ϕ.

In summary, we have shown that oriented cell division in a developing organ leads
to anisotropic tissue growth. The anisotropy of growth rates depends on biophysical
properties of cells, in particular on tissue viscosity. Our continuum theory of an incom-
pressible tissue predicts flow fields and cell trajectories which describe well the average
behaviors observed in stochastic simulations of anisotropic growth. In our simulations,
small differences between the observed total growth rate kx + ky and the rate kg defined
by the average cell doubling time arise as a result of tissue compressibility.

The parameter values used in our growth simulations are motivated by studies of
the wing imaginal disk of the fruit fly. Key parameters are the bulk elastic modulus χ
and the viscosity η̄ of the two-dimensional tissue. We estimate χ ≃ χ3dh ≃ 6 10−3 N/m,
where χ3d ≃ 200Pa is the shear modulus of a cell and h ≃ 30µm is the height of the
epithelium. The choice ξ = 0.0165 thus corresponds to a local two-dimensional tissue
viscosity of η̄ ≃ 3Ns/m. Using the tissue height h, this corresponds to a viscosity of
η3d ≃ 105 Pa s which is a typical value that has been reported in experiments [40].

Our work shows that oriented cell division has interesting consequences for cell re-
arrangements in a growing tissue. In the special case where apoptosis balances cell
division, the tissue does not grow but spontaneously undergoes a shear deformation
similar to so-called convergence-extension transformations. Oriented cell division can
therefore control shape changes of tissues during development.
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Figure 2.6: Anisotropic tissue deformation for growth with balanced apoptosis (p = 0.5).
Data for two different fluctuation amplitudes ∆ϕ of the orientation angles of cell division

are shown. The lengths lx and ly normalized to their corresponding initial values l
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x,y

are plotted as a function of time t relative to the average lifetime t̄L. For each value of
∆ϕ, ten independent realizations are shown. The growth rates kx and ky are determined
from linear fits (black lines), and ξ = 0.00165 for all simulations.
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Figure 2.7: Shape change of an epithelium boundary due to anisotropic tissue growth.
The tissue boundary is shown at the initial time t0 and the later time t. The preferred
orientation of the cell division axis is p = ex. The position of a cell which is situated
at the tissue boundary is marked by a dot and described by the radial distances R0(ϕ0)
and R(ϕ(t), t). The polar angle describing the position of the marked cell changes from
the initial angle ϕ0 = ϕ(t0) to the later angle ϕ(t).

2.3 Shape changes of growing epithelia

We now apply our continuum description of anisotropic tissue growth to experimen-
tal data. For that, we first study how the shapes of epithelia change due to the cell
rearrangements described by our theory. We then compare our theoretical results to
experimentally measured shape changes of the Drosophila wing disk. We show that
our theory of the growth of incompressible tissues describes the data very well, and we
estimate the isotropic and anisotropic parts of the growth rate.

In section 2.1.3, we have discussed the flow velocity of cell rearrangements in a
growing incompressible epithelium with preferred orientation of cell division along the
x-axis. We now consider the effect of these cell movements on the shape of an epithelium
boundary which moves with the flow velocity given in Eq. (2.7). For simplicity, we focus
on the case of constant growth rates k0 and k1.

We describe the position of the tissue boundary at time t by

(

x(t)
y(t)

)

= R(ϕ, t)

(

cosϕ
sinϕ

)

, (2.13)

so that the whole information about the tissue shape is captured by the radial distance
R(ϕ, t) of the epithelium boundary in respect to the center of mass of the tissue at
polar angle ϕ. At time t0, we describe the tissue shape by R0(ϕ) ≡ R(ϕ, t0). For
anisotropically growing tissues, cell movements are non-radial. Thus the polar angle
describing the position of a cell which is located at the tissue boundary changes during
development, see Fig. 2.7. From the cell trajectories x(t) = x0exp((k0 + k1)(t − t0)),
y(t) = y0exp((k0 − k1)(t − t0)) that result from the flow velocity (2.7) in the case of
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Figure 2.8: Shapes of the Drosophila wing disk during development. In the polar plots,
7 examples of individual WT (A) and GFP-Dpp disks (B) are illustrated. The disk
ages vary between t0 = 24h and tf = 66h. Details of the experiments are discussed in
appendix A.5.

constant growth rates, the radial distance R(ϕ, t) of the tissue boundary at time t can
be calculated (see appendix A.4) as

R(ϕ, t) = R0(arctan(tan(ϕ)e2k1(t−t0)))ek0(t−t0)
(

sin2ϕe2k1(t−t0) + cos2ϕe−2k1(t−t0)
)−1/2

.

(2.14)
Fig. 2.8 shows experimentally measured shapes of wing imaginal disks at different

stages during development. The experiments are done with two different kinds of wing
disks: wildtype (WT) disks (see Fig. 2.8, A), where the morphogen Dpp is produced in
normal amount, and GFP-Dpp disks (see Fig. 2.8, B), where Dpp fused to the green
fluorescent protein GFP is produced in addition to the endogenous Dpp. These two
different kinds of disks are used in order to study whether Dpp has an influence on the
anisotropy of growth. For the exponential growth phase of the disks (see Fig. A.1), we
determine the effective growth rates keff(ϕ) with which the radial distance R(ϕ, t) of
the disk boundary increases on average at angle ϕ, see appendix A.5. In Fig. 2.9, keff

is plotted for different polar angles. We find that the effective growth rates differ with
varying polar angle. The angular distribution of the growth rates has a maximum along
the x-axis and a minimum near the y-axis for both WT and GFP-Dpp disks. The average
growth rate is slightly smaller for GFP-Dpp than for WT disks, whereas the difference
between the maximal and minimal growth rate is significantly bigger for GFP-Dpp than
for WT disks.

We now compare these results with our continuum theory of anisotropic tissue
growth. For incompressible tissues which grow at the constant rates k0 and k1 with
preferred orientation of cell division along the x-axis (see section 2.1.3), the change
of the disk boundary is described by Eq. (2.14). The effective growth rate keff(ϕ) =
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Figure 2.9: Effective growth rates for the developing Drosophila wing disk during its
exponential growth phase as a function of the polar angle ϕ for WT and GFP-Dpp
disks. The dots represent keff determined from the experimental data, see appendix A.5.
The error bars indicate the standard errors for keff of the individual fits of Eq. (A.16) to
the data. The solid lines represent fits of Eq. (2.15) to the experimentally determined
values of keff .

1
tf−t0

∫ tf
t0

Ṙ(ϕ,t)
R(ϕ,t) dt is thus given by

keff(ϕ) = k0 −
1

2(tf − t0)
log
(

sin2ϕe2k1(tf−t0) + cos2ϕe−2k1(tf−t0)
)

+
1

tf − t0
log

(

R0

(

arctan
(

tan(ϕ)e2k1(t−t0)
))

R0(ϕ)

)

.

(2.15)

We fit this equation to the effective growth rates measured in the wing disk, using k0

and k1 as fit parameters. R0 is determined from the average initial wing disk shape,
see appendix A.5. As best fit parameters, we get k0 = 0.0569 ± 0.0001 h−1, k1 =
0.0036±0.0002 h−1 for WT disks, and k0 = 0.0485±0.0001 h−1 , k1 = 0.0067±0.0002 h−1

for GFP-Dpp disks. The ratio between the isotropic part k0 of the growth rate for GFP-
Dpp disks and WT disks is 0.85, i.e. k0 is in the same range for both types of disks.
Note, however, that the anisotropic part k1 of the growth rate is increased by a factor
of 1.9 in GFP-Dpp disks in respect to WT disks.

In summary, we have shown that our continuum theory of anisotropic tissue growth
provides a good description for the shape changes of the Drosophila wing disk. For the
exponential growth phase of the disk, we have determined the growth rates k0 and k1,
from which we can calculate the effective cell doubling time t2 = ln 2/(2k0) (see section
2.1.3) as t2 = 6.09± 0.01 h for WT disks and t2 = 7.15± 0.01 h for GFP-Dpp disks. The
data shows that tissue growth is not homogeneous. It is faster along the x-axis (DV
boundary) than along the y-axis (AP boundary). Since apoptosis is negligible during
the exponential growth phase, we can estimate the strength of the anisotropic stress
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generated by oriented cell division normalized by the tissue viscosity via µ/η = 2k1/k0.
We find µ/η = 0.13 ± 0.01 for WT disks and µ/η = 0.28 ± 0.01 for GFP-Dpp disks. In
the case of Dpp overexpression, the anisotropic stress is thus increased by a factor of
2.2 as compared to WT disks. This suggests that the morphogen Dpp is involved in the
regulation of the orientation of the cell division axis. Dpp builds a graded concentration
profile along the x-axis which coincides with the preferred axis of cell division. However,
the mechanism how Dpp might regulate the orientation of cell division remains unclear
and is subject to future work. As a first step, we study in sections 3.2 and 3.3 how Dpp
is spread in the growing wing disk, and in section 3.4 we discuss possible rules how Dpp
could control the isotropic part k0 of the growth rate.



30 2.3. Shape changes of growing epithelia



Chapter 3

Morphogen gradients in growing

tissues

After the study of cell rearrangements in growing epithelia in the preceding chapter, we
now focus on the spreading of morphogens within growing tissues. For the situation
where growth effects can be neglected, it was shown that morphogen spreading via
transcytosis can effectively be described by a nonlinear diffusion equation [17, 18, 19],
see section 1.1. Based on the flow profiles of cell movements that result from oriented
cell division and apoptosis, we show that tissue growth leads to an additional drift term
in the diffusion equation which captures the stretching and dilution of the morphogen
gradient (see section 3.2). We derive the steady-state profile of the resulting diffusion-
advection equation and discuss its general features.

We apply our theory of morphogen transport in growing tissues to recent experiments
on the spreading of the morphogen Dpp in the developing wing disk. By analyzing flu-
orescence recovery after photobleaching (FRAP) experiments, we determine the kinetic
parameters of Dpp spreading during wing disk development (see section 3.1 and 3.3), and
we show that Dpp transport is mainly intracellular [55]. Using the kinetic parameters,
we numerically calculate the Dpp concentration profile as a function of larval age for the
whole wing disk development (see section 3.3). We show that the Dpp concentration
profile during development is well described by a succession of adiabatically changing
steady-state gradients. Moreover, we find that the growth effects of dilution and stretch-
ing have no significant influence on the Dpp gradient and can be neglected throughout
development. However, tissue growth strongly affects the cellular Dpp concentration,
since the cells move away from the Dpp source due to growth.

Finally, we investigate the relation between the tissue growth rate and the cellular
Dpp concentration in the wing disk (see section 3.4). We show that, at a late stage of
disk development, the relative change of the cellular Dpp concentration in time becomes
independent of position and is related linearly to the growth rate. Using numerical
simulations, we study a possible rule for growth control by the relative rate of change
of the cellular Dpp concentration. With this rule, we can reproduce the measured area
growth of the wing disk at a late stage of development, but not at earlier times. We then
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analyze measured concentration profiles of P-Mad during wing disk development, which
mediates Dpp signaling inside the cells, see section 1.1. A quantitative description of how
the cellular Dpp concentration might be related to the P-Mad concentration is discussed
in chapter 4. Here, we show that the relative rate of change of the cellular P-Mad
concentration is independent of position in the wing disk and related unambiguously to
the growth rate throughout development. Thus, we can propose a rule how P-Mad could
control the growth rate during the whole wing disk development.

3.1 Dpp spreading in the Drosophila wing disk

The morphogen Dpp is produced at the anterior-posterior (AP) compartment boundary
in the Drosophila wing disk [11], see Fig. 1.2. From there Dpp molecules spread non-
directionally into the receiving tissue, are degraded while spreading and form a graded
concentration profile [36, 92]. In disks at a late stage of development when effects result-
ing from tissue growth can be neglected (see Fig. A.1 for the slowing down of growth),
Dpp spreading can be described by the following 2d diffusion equation, regardless of the
actual transport mechanism (see section 1.1)

∂tc(r, t) = ∇(D∇c(r, t)) − kc(r, t) + νΘ(−x)Θ(x+ w) . (3.1)

Here c is the Dpp concentration, D is the diffusion coefficient, k is the degradation rate,
ν is the production rate describing the number of produced Dpp molecules per time and
area, and w is the width of the Dpp source. The coordinate system is chosen such that
the AP boundary is situated at x = 0 and that the Dpp source is located in a stripe
between x = −w and x = 0, see Fig. 1.2.

In section 1.1, we have summarized how a microscopic model of morphogen spreading
via intracellular trafficking and extracellular diffusion leads to the macroscopic diffusion
equation (3.1) with concentration dependent D and k [17, 18, 19]. Here we consider D
and k to be homogeneous, which will be sufficient to describe the experimental data.

3.1.1 Concentration profile in steady state

In order to reduce Eq. (3.1) to a one dimensional problem, we consider the symmetry
of the spread of Dpp molecules in the wing disk. Since the Dpp source is a stripe of
cells parallel to the y-axis, the spread of Dpp molecules in the disk is invariant under
translations in the y-direction (see Eq. (3.1) if we neglect boundary effects. Although
not infinite, the region where the Dpp gradient forms is considerably large and shows
a homogeneous concentration in the y-direction, see Fig. 1.2. The Dpp concentration
hence obeys c(r, t) ≈ c(x, t). At a late stage of development when growth effects can be
neglected, the Dpp concentration in steady state is thus characterized by

D∂2
xc(x) − kc(x) + νΘ(−x)Θ(x+ w) = 0 . (3.2)

Since the width of the disk is much larger than the length scale on which the Dpp
gradient decays, we can consider the disk as infinitely large in x-direction. As boundary
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conditions, we impose a vanishing concentration for x→ ±∞, and at the boundaries of
the Dpp source at x = −w and x = 0 the concentration and the flux j = −D∂xc+ kxxc
are imposed to be continuous functions. Under these conditions, the Dpp concentration
in steady state is given by

c(x) =







C0 exp
(

w+x
λ

)

x ≤ −w
ν
2k

(

2 − exp
(

x
λ

)

− exp
(−w−x

λ

))

−w ≤ x ≤ 0
C0 exp

(

−x
λ

)

x ≥ 0
. (3.3)

Here λ =
√

D/k is the decay length of the Dpp gradient, and C0 = ν
2k

(

1 − exp
(

−w
λ

))

is the concentration at x = 0.

In the receiving tissue, the shape of the Dpp gradient is thus determined by λ and C0

which depend on the kinetic parameters D, k and ν, as well as on the width of the Dpp
source w. Interestingly, C0 saturates with an increasing width of the source for w ≫ λ.
This saturation results from the fact that Dpp molecules are also degraded within the
source. If the source becomes much larger than the decay length of the Dpp gradient,
there is a high probability that molecules produced at the center of the source will be
degraded before they diffuse to the boundary of the source.

3.1.2 FRAP experiments: measuring the kinetic parameters

We measured the kinetic parameters D, k and ν of the Dpp gradient in the wing disk
using FRAP experiments [55]. In these experiments, performed by P. Pantazis [77]
and A. Kicheva [56] in disks at a late stage of development when growth slows down
(disk ages between 90 h and 120 h, see Fig. A.1), Dpp molecules are labeled with the
green fluorescent protein GFP and visualized under the confocal microscope, using a
low-intensity 488 nm laser beam. During the bleaching process, the GFP-Dpp molecules
are photobleached in a stripe of dimensions h = 10µm by 200µm adjacent to the source
by irradiation with a high-intensity laser beam. In the following hour, the recovery of
the fluorescence intensity in the bleached region is recorded at two minutes intervals, see
Fig. 3.1, D to K.

The average total fluorescence intensity in the bleached stripe is quantified and cali-
brated to GFP-Dpp concentration. Fig. 3.1, A shows the calibration of the fluorescence
intensity in counts/pixel to concentration in molecules/µm2. For the intensities mea-
sured in the FRAP experiments, the fluorescence intensity is related linearly to the
GFP-Dpp concentration. We used our calibrations to estimate the Dpp concentration
C0 at the boundary of the source. The steady-state gradient (3.3) for x > 0 was fitted
to the Dpp gradients before bleaching, see Fig. 3.1, B. Indeed the gradients were well
described by a single exponential function. We found C0 = 802 ± 312 molecules/µm2

(n = 8 experiments). Moreover, the fits of the steady-state gradients before bleaching
yield the decay length λ = 20.2 ± 5.7µm [55].

In order to determine the kinetic parametersD, k and ν, we then studied the recovery
curves of the total fluorescence intensity after photobleaching normalized to the value
before bleaching, plotted in Fig. 3.1, C. We observed that the fluorescence did not
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Figure 3.1: FRAP experiments in GFP-Dpp wing disks. (A) Calibration of the fluores-
cence intensity to GFP concentration. The error bars represent standard deviations of
3 independent measurements for each concentration, which were done under the same
imaging conditions as used for the FRAP experiments. The red line represents a linear
fit to the data. (B) GFP-Dpp gradients before bleaching. The fluorescence intensity
normalized to its value at x = 0 is plotted as a function of the distance x to the source.
Different colors represent the data sets of five different GFP-Dpp disks, the black line is
an exponential fit to the black trace. (C) FRAP curves for four GFP-Dpp disks. The to-
tal fluorescence intensity normalized to its value before bleaching is plotted as a function
of time after bleaching. The solid lines represent fits of the function f(t) to the recovery
curves. (D-G) Time-lapse images of FRAP experiments in GFP-Dpp disks. The images
show the fluorescent signals recorded with the confocal microscope immediately before
bleaching (D), immediately after bleaching (E), and during the recovery phase 26 and 58
minutes after the start of the experiment (F,G). The white box in D indicates the stripe
which is bleached, the scaling bar corresponds to 10 µm. The blue boxes are magnified
in (H-K). All pictures are oriented such that the anterior region is on the left. Figure
modified from [55].
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recover completely during the experiment, i.e. there is a fraction ψ of molecules which
is immobile on the time scale of the FRAP experiment.

Now to calculate the fluorescence recovery curves, we have to solve Eq. (3.1) in one
dimension. As initial condition, we impose the steady-state gradient c(x, 0) = C0e

−x/λ

outside of the bleached region at x < d and x > d+h, and c(x, 0) = bC0e
−x/λ inside the

bleached region for d < x < d + h, where d is the distance of the bleached stripe from
the source, h is its width, and b is the bleaching depth. The analytical solution of this
problem is [55]

c(x, t) =
[

1 + b+ (b− 1)
(

−A(−x, t) + e2x/λ
(

−A(x, t) +A(h+ x, t)
)

− 1 +A(h− x, t)
)]

× (1 − ψ)C0

2
e−x/λ + cψ(x) , (3.4)

where A(x, t) = erf
(

d+2Dt/λ+x

2
√
Dt

)

with the error function erf(x) = 2/
√
π
∫ x
0 exp(−q2)dq

(see e.g. [2]), and cψ(x) represents the concentration of immobile molecules which is con-
stant in time: cψ(x) = ψC0e

−x/λ outside of the bleached region and cψ(x) = bψC0e
−x/λ

inside the bleached region. From Eq. (3.4), one can now calculate the average concen-

tration f(t) in the bleached region by f(t) = 1/h
∫ d+h
d c(x′, t)dx′ (see [55] for the explicit

expression of f(t)).
The theoretical recovery curve f(t) of the concentration in the bleached stripe is fitted

to the experimental data, see Fig. 3.1, C. The parameters C0 and λ are known from the
steady-state gradient, as well as the parameters d = 2µm and h = 10µm characterizing
the bleached stripe. The kinetic parameters D and ψ are optimized, and together with
λ and C0, the degradation rate k and the production rate ν can be calculated. The
diffusion coefficient for GFP-Dpp is D = 0.10 ± 0.05µm2/s, the degradation rate is
k = (2.52 ± 1.29) 10−4s−1, the production rate is ν = 0.64 ± 0.38 molecules/(µm2s) and
the immobile fraction is ψ = 62 ± 8% (n=8 experiments) [55].

Eq. (3.4) describes the concentration for a situation where the bleaching occurs in-
stantaneously. In reality, however, the bleaching process takes about 45 s and the first
image after bleaching can be taken another 10-25 s later. A finite bleaching time com-
plicates the problem, which can then only be solved numerically. Therefore, we assume
for our analysis that bleaching occurs instantaneously 25 s before the first image. It
has been verified that our results do not depend sensitively on the choice of this time
between 10 s and 70 s [55]. Since some fluorescence already recovers during the bleaching
process, we include the bleaching depth b as a fit parameter in our analysis.

In order to validate our fitting procedure and to compare it to the standard procedure
of fitting a solution of the diffusion equation without degradation and production to the
FRAP experiment ([8], modified in [18]), we have numerically calculated solutions of
Eq. (3.1) in 1d which take a finite bleaching time into account. In these simulations,
we generated FRAP curves with data points at 180 s intervals. We used the fitting
procedure described above and compared the optimized values of the parameters with
the input values. While the parameters obtained by our fitting procedure were at most
15% different from the input values, the parameters obtained by the standard procedure
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deviated substantially from the ones used in the numerical calculations. Thus production
and degradation are not negligible to account for the FRAP recovery curves.

3.1.3 Dpp transport dominated by intracellular trafficking

In order to determine the dominant transport mechanism of Dpp in the wing disk, i.e.
to distinguish between extracellular diffusion and intracellular trafficking (transcytosis),
we performed FRAP experiments in thermosensitive “shibire-rescue” mutant flies [55].
In these flies, endocytosis can be blocked by raising the temperature to 34°C, at which
the function of the protein Dynamin is blocked which is needed for the formation of
endocytic vesicles [26]. However, the GFP-Dpp producing cells in the source are rescued
with a Dynamin transgene and are able to perform endocytosis and GFP-Dpp expression
at a normal level. Thus endocytosis is blocked in the receiving tissue, but not in the
GFP-Dpp secreting source. At 32°C, endocytosis is blocked partially, and at 25°C, it is
released [36].

In shibire-rescue animals which were shifted to a temperature of 34°C a few minutes
prior to the experiment, no recovery of the GFP-Dpp concentration could be detected
within the bleached stripe, see Fig. 3.2, A and D to K. When the temperature was
shifted down to 25°C, fluorescence recovered into the bleached stripe, which indicates
that the endocytic block was reversible and that the lack of recovery was not due to
tissue damage.

The lack of fluorescence recovery in shibire-rescue flies at 34°C could be either a result
of a decreasing diffusion coefficient or an increasing degradation rate. The theoretically
determined recovery curve f(t) could not be fitted to this data, because no recovery oc-
curred. Thus, in order to distinguish between the two possibilities of decreased diffusion
or increased degradation, we performed FRAP experiments in shibire-rescue animals at
32°C where endocytosis is partially blocked, see Fig. 3.2, B and C. For this case, the the-
oretical curve could be fitted to the data. The explicit values for D, k, ν and ψ are given
in Table 3.1, in which the kinetic parameters of all experiments are summarized. We
found that at 32°C, the diffusion coefficient decreased by a factor of about 2 compared
to control animals at 32°C and to shibire-rescue mutants at 25°C. The degradation rate
was not increased, but decreased by a factor of about 2. Therefore, we can conclude that
Dpp movement requires endocytosis, and that Dpp transport is mainly intracellular.

Now as discussed in section 1.1, intracellular trafficking leads to a concentration
dependent diffusion coefficient D and degradation rate k. However, we considered a
position independent diffusion coefficient and degradation rate for our data analysis. In
order to test the validity of our analysis, FRAP experiments were performed in different
geometries. In these experiments, the width of the bleached stripe is increased to 20µm
or is located 20µm away, instead of adjacent to the source. Alternatively, a stripe
perpendicular to the source is bleached instead of parallel, and recovery curves are fitted
simultaneously to squares of 10µm width. And finally, a 30µm×30µm square is bleached
next to the source, and recoveries in two different regions embedded within each other are
analyzed. The theoretical recovery curves and the fits to the experimental data for these
different geometries are discussed in [55]. The values obtained for the kinetic parameters
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Figure 3.2: FRAP experiments in GFP-Dpp shibire-rescue mutant flies. (A,B) FRAP
curves for GFP-Dpp (black) and shibire-rescue disks at 32°C (A) and 34°C (B). The
fluorescence intensity normalized to its pre-bleach value is plotted as a function of time
after the bleaching process. The solid lines represent fits of the theoretical recovery
curves f(t) to the data. (C) FRAP curves for shibire-rescue disks at 25°C (black) and
32°C (red). (D-G) Time-lapse images of FRAP experiments in shibire-rescue mutant
disks at 34°C. The images show the GFP-Dpp fluorescence measured with the confo-
cal microscope immediately before bleaching (D), immediately after bleaching (E), and
during the recovery phase 26 and 58 minutes after the start of the experiment (F,G).
The white box in D indicates the stripe which is bleached, the scaling bar corresponds
to 10µm. The blue boxes are magnified in (H-K). All pictures are oriented such that
the anterior region is on the left. Figure modified from [55].

D, k, ν and ψ are shown in Table 3.1. We find that the results of these experiments are
consistent with the independence of the four kinetic parameters on position in the tissue.
In terms of the transcytosis model [17, 18, 19], it is likely that we are in a regime where
D and k only depend weakly on position, and of course a weak position dependence of
D and k might be hidden in the data.
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experiment  description D
[µm 2/s]

k
[s -1] x 10 -4 [molec ./(s cell)]

R 2 n

25°C 0.10±0.05 2.52±1.29 0.62±0.08 2.69±1.58 0.95±0.03 8

32°C 0.14±0.07 3.54±1.77 0.68±0.09 3.32±2.48 0.95±0.01 7

GFP -Dpp

34°C 0.08±0.07 1.92±1.76 0.58±0.13 1.53±1.52 0.93±0.05 8

25°C 0.12±0.09 3.05±2.32 0.60±0.17 2.58±2.04 0.91±0.05 11
GFP -Dpp in
shibire-rescue disks

32°C 0.06±0.02 1.53±0.58 0.61±0.09 1.1 1±0.44 0.94±0.03 7

20 µm wide 0.12±0.10 3.01±2.52 0.61±0.18 2.03±2.14 0.95±0.05 3

20 µm away 0.0 7±0.05 1.55±1.20 0.35±0.03 5.18±0.34 0.95±0.03 2
per pendicular
FRAP 0.04±0.03 1.40±1.40 0.61±0.26 4.24±3.18 0.97±0.02 3

GFP -Dpp
measured in 
modified geometries
at 25°C

30 µm squa re 0.1 1±0.05 2.86±1.32 0.62±0.16 6.30±1.57 0.95±0.01 2

Table 3.1: Summary of the kinetic parameters D, k, ν and ψ determined in the FRAP
experiments. The kinetic parameters are displayed for the different experimental setups
which are described in the column “experiment description”. For all values the mean
and the standard deviation are reported. The correlation coefficient R2 describes the
quality of the fits, and n is the number of realizations of the different experiments. Table
modified from [55].

In summary, our analysis of the FRAP experiments in the Drosophila wing disk at
a late stage of development has shown that Dpp transport is dominated by intracel-
lular trafficking. We measured the kinetic parameters which describe Dpp spreading,
namely the diffusion coefficient, the degradation rate, the production rate, and the im-
mobile fraction. And finally, we have shown that these parameters can be considered as
independent of position in the disk.

3.2 Dpp transport in the growing wing disk

In the preceding section 3.1, we have been concerned with the kinetics of the Dpp
gradient in the wing disk at a late stage of development when growth slows down (see
Fig. A.1). In this section, we consider the question how the transport of Dpp molecules
is modified by tissue growth.

3.2.1 Transport equation

Similar to descriptions of moving fluids (see e.g. [62]), we define the derivative dc/dt
as the rate of change of the Dpp concentration of a cell as it moves through space
with velocity v. In contrast, ∂c/∂t denotes the rate of change of the concentration at
a fixed position in space. The change dc of the concentration of a moving cell during
the time interval dt has two contributions, namely the change of the concentration at
fixed position r during dt, and the difference in the concentrations at fixed time t at two
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positions dr apart, which is the distance moved by the cell during the time interval dt.
We can thus write dc(r, t) = ∂c

∂t dt+ ∂c
∂x dx+ ∂c

∂y dy. Therefore, the rate of change of the
concentration of a moving cell is described by the convective derivative

dc

dt
=
∂c

∂t
+ (v · ∇)c . (3.5)

As the cells move through space, they carry Dpp molecules with themselves and
exchange them by diffusion. Therefore, the rate of change dc/dt of the Dpp concentration
of a moving cell is determined by diffusion, degradation and production as in the static
case. But since the tissue grows in area, the concentration c = δN/δA, where δN is the
number of Dpp molecules in a small area element δA, is moreover diluted. The rate of
change of the concentration of moving cells is hence given by

dc

dt
=

d
dt(δN)

δA
− δN

(δA)2
d

dt
(δA) . (3.6)

The first term describes Dpp transport for moving cells at time t in the area element δA,
which is given by the transport equation (3.1). The second term describes the dilution

of Dpp molecules caused by tissue growth. Using δA = δxδy, it follows that d(δA)
dt /δA =

d(δx)
dt /δx+ d(δy)

dt /δy = δvx/δx+ δvy/δy = ∇ · v, and thus δN
(δA)2

d
dt(δA) = c(∇ · v). Hence

we can finally write down the Dpp transport equation in the growing wing disk at fixed
position r in space,

∂tc(r, t) = ∇ · (D(t)∇c(r, t) − vc(r, t)) − k(t)c(r, t) + ν(t)Θ(−x)Θ(x+ w(t)) . (3.7)

Compared to the Dpp transport equation (3.1) in disks at a late stage of development,
when effects due to tissue growth are negligible, Eq. (3.7) contains the additional drift
term −∇ · (vc), which describes the dilution and stretching of the concentration profile.
Moreover, the parameters D, k, ν and w are now functions of time. In principle, D and
k can also depend on position [17], but our data indicates that at least at the end of
development this is not the case, see section 3.1.3. Therefore, for simplicity, we assume
position independence of D and k throughout development. For a transformation of
this equation into a growing coordinate system of the proliferating and moving cells see
appendix B.1.

As a result of the symmetry of Dpp spreading in the wing disk discussed in section
3.1.1, the Dpp concentration obeys c(r, t) ≈ c(x, t). Inserting Eq. (2.7) for the cell
velocity with the time dependent growth rates kx = k0 + k1 and ky = k0 − k1 in x- and
y-direction, respectively, Dpp transport in the growing disk can thus be described by
the one dimensional equation

∂tc(x, t) = D(t)∂2
xc(x, t)−kx(t)x∂xc(x, t)− (k(t)+kg(t))c(x, t)+ν(t)Θ(−x)Θ(x+w(t)) ,

(3.8)
where we used kx + ky = kg (see section 2.1.3), i.e. we neglect apoptosis which is small
during wing disk development. The term −kx(t)x∂xc(x, t) describes the stretching of the
gradient, and −kg(t)c(x, t) accounts for the dilution of the concentration due to growth.
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3.2.2 Steady-state gradient in the growing disk

We now consider the question whether Dpp spreading in the growing wing disk can cause
a stationary concentration profile. To answer this question, we have to check whether
the 1d diffusion equation (3.8) with drift terms has a steady-state solution, given that
the parameters D, k, ν, w, kx and kg are fixed. Therefore, we consider the equation

D∂2
xc(x) − kxx∂xc(x) − (k + kg)c(x) + νΘ(−x)Θ(x+ w) = 0 . (3.9)

As boundary conditions, we impose the same conditions as for the situation without
growth discussed in section 3.1.1. In appendix B.2, we show how Eq. (3.9) can be solved
analytically. Hence a steady-state gradient forms in the growing wing disk, which is
given by

c(x) =
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(3.10)
Here F (a, b, z) ≡ 1F 1(a, b, z) is the confluent hypergeometric function, see e.g. [2],

Q(a, b, z) = F (a, b, z) − z1−b Γ(1+a−b)Γ(b)
Γ(a)Γ(2−b) F (1 + a − b, 2 − b, z), and q is defined as q =

√

2kx/D Γ
(

k+kg
2kx

+ 1
2

)

/Γ
(

k+kg
2kx

)

. The explicit expressions for the constants C1, C2 and

C3, which are rather involved functions of the parameters D, k, ν, w, kx and kg, can be
found in appendix B.2.

3.2.3 Impacts of growth on the Dpp gradient

We compare the stationary Dpp gradient (3.10) in the growing wing disk with the ex-
ponentially decaying concentration profile (3.3) in which growth effects are neglected.
In Fig. 3.3, we have plotted Dpp gradients in steady state for the static and growing
situation. For the parameters D, k, ν and w, we chose typical values obtained by our
FRAP analysis given in the figure caption. For the growth rates, we chose kg = 2kx
for simplicity and kx/k = 0.01, 0.1, 1.0. For the smallest growth rate kx/k = 0.01, we
find that dilution and stretching of the concentration profile are negligible as expected.
Since Q(a, 1/2, z/a) ∝ exp(−2

√
z) and

√
zF (a, 3/2, z/a) ∝ sinh(2

√
z) for a → ∞, one

can show analytically that expression (3.10) approaches the exponential concentration
profile (3.3) for kx, kg → 0. For kx/k = 0.1, which is an upper limit for the growth rate
during wing disk development (see section 3.3.1), the difference between the gradients
in the growing and non-growing situation still is rather small. However, for the large
growth rate kx/k = 1.0, the drift terms significantly change the gradient.

In Fig. 3.3, several impacts of growth become apparent. With increasing growth
rate, the amplitude of the gradient decreases, which results from dilution. Moreover, the
asymptotic decay of the concentration slows down since the gradient is stretched. For
x→ ±∞, Q(a, b, c|x|2) ∝ |x|−2a(1+O(|x|−2)), and thus the Dpp concentration (3.10) in a
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Figure 3.3: Dpp concentration profiles in steady state for four different growth rates
kx. The concentration c in units of molecules/(µm2s) is given by Eqs. (3.3) for kx = 0
and (3.10) otherwise. For the parameters, we chose the typical values D = 0.1µm2/s,
k = 2 · 10−4s−1, ν = 0.4 molecules/(µm2s), w = 30µm, and kg = 2kx (see section
3.1). The dashed lines indicate the boundaries of the Dpp source located at x = 0 and
x = −w.

growing disk shows the power-law decay |x|−
k+kg

kx instead of the exponential decay of the
concentration (3.3) in the non-growing situation. And finally, we observe an asymmetry
of the Dpp gradient in respect to the center of the Dpp source. This asymmetry is
revealed by a coordinate transformation of the transport equation (3.8) into the system
S̃ of fixed center of the source, defined by x̃ = x + w(t)/2 and c̃(x̃, t) = c(x, t). In S̃,
Dpp transport is described by

∂tc̃ = D∂2
x̃c̃− (kxx̃− v0)∂x̃c̃− (k + kg)c̃+ νΘ

(

w(t)

2
− x̃

)

Θ

(

x̃+
w(t)

2

)

, (3.11)

where v0 = kxw(t)/2 − ẇ(t)/2. If the source grew as fast as the tissue, i.e. if ẇ(t)/2 =
kxw(t)/2, v0 would be zero and Eq. (3.11) would be symmetric. However, the Dpp
source grows much slower during development than the disk (see section 3.3.1) so that
v0 > 0. This is also the case for our calculation of the Dpp concentration (3.10) in steady
state, where we have considered fixed parameter values and thus ẇ = 0. Therefore the
stretching term −(kxx̃− v0)∂x̃c̃ becomes asymmetric. At a position a > 0, the increase
of the Dpp concentration due to the stretching of the gradient is smaller than at −a,
and thus c̃(a) < c̃(−a).

The intrinsic reason for the symmetry breaking in the Dpp concentration profile in
a growing disk is that the boundary of the Dpp source at x = 0 moves in accordance
with the cells at the AP boundary, whereas the boundary at x = −w(t) and the center
of the source at x = −w(t)/2 do not move together with the cells. At the boundary
x = −w(t), Dpp producing cells can move out of the source and stop their production
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since Dpp production is regulated by the external signal of the morphogen Hedgehog
[11], see section 1.1.

We can summarize that in growing tissues, where morphogen gradients are diluted
and stretched due to the cell movements, the concentration profiles become stationary in
space if parameters are fixed. As in the case of the cell trajectories (2.8) in the xy-plane,
growth produces a power law for the decay of the Dpp concentration profile. Since the
tissue grows faster than the width of the source and since the boundary at x = 0 of the
Dpp source moves in accordance with the cells, the symmetry of the Dpp gradient in
respect to the center of the source is broken.

3.3 The Dpp gradient during development

So far, we have considered Dpp transport for the constant parameters D, k, ν, w, kx
and kg. What happens if these parameters change during development? The relaxation
time for the steady state of the diffusion equation with degradation term is determined
by τ = k−1. For the typical value k = 2 · 10−4s−1, the time it takes for the Dpp gradient
to relax to the steady state is thus given by τ = 1.4 h. So if the parameters of the system
vary slowly compared to the relaxation time τ , the gradient will change adiabatically
during development. In this case, the Dpp concentration profile can be described as a
succession of steady-state gradients during development.

With this adiabatic approximation, we analyze in section 3.3.1 Dpp gradients which
have been measured at different stages during development, and we determine the pa-
rameters D(t), k(t), ν(t), w(t), kx(t) and kg(t) for the whole wing disk development.
In section 3.3.2 we use these parameters to numerically calculate the full dynamics of
Dpp spreading during development, including the drift of molecules due to growth and
boundary effects, and compare it to the gradients which were calculated with the adi-
abatic approximation. We show that the system indeed changes adiabatically, which
ensures the consistency of our analysis.

3.3.1 Kinetic parameters of Dpp spreading during development

In order to calculate the full dynamics of Dpp spreading during development, we need
to know the following parameters as functions of time: the diffusion coefficient, the
degradation rate, the production rate, the width of the Dpp source, the growth rate
along the x-axis, and the area growth rate.

First, the total area of GFP-Dpp disks was measured as a function of larval age,

see Fig. A.1, B. We fit the function Atot(t) = A
(0)
tot exp(aAt

qA/(τ qAA + tqA)) to the data,
using aA, τA and qA as fit parameters. The initial disk area A0 can be estimated by

A
(0)
tot = 250µm2 by analyzing pictures of wing disks at this early stage [16]. The optimized

values for the parameters aA, τA and qA are displayed in Table 3.2. For the analysis of
the following experiments, we use this fit to calibrate the total area of a disk to the age
of the larva. By that, we could simplify the experimental procedure since the disk area
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is much easier to measure than keeping track of the larval age. From now on, we want
to use the calibrated age synonymously for the larval age.

Fig. 3.4 shows measurements performed by O. Wartlick for our analysis of the GFP-
Dpp gradient during development. First of all, Fig. 3.4, A shows the width w of the
GFP-Dpp source as a function of larval age, which was measured by in situ hybridiza-
tion. In these experiments, a synthetic digoxigenin-labeled RNA probe hybridizes to the
complementary RNA of Dpp in the wing disk. The hybridized probe can be detected,
thus allowing the visualization of Dpp and GFP-Dpp RNA in the source cells.

Next, Fig. 3.4, B and C show the concentration C0 next to the source and the
decay length λ as functions of larval age, respectively. These quantities are obtained
by fitting the steady-state gradient (3.3) for x > 0 to GFP-Dpp gradients, using the
calibration of fluorescence intensity to GFP concentration shown in Fig. 3.1. In contrast
to the analysis in section 3.1.2, these fits are now done in disks of different ages. By
fitting the exponentially decaying concentration profiles (3.3) to the gradients during
development, we consider the Dpp gradients to be in steady state for the current values
of the kinetic parameters. In addition to this adiabatic approximation, we consider the
kinetic parameters D, k, ν, w, kx and kg of the gradients to be in a regime where the
growth effects of stretching and dilution are negligibly small as discussed in section 3.2.3.
These considerations will be confirmed in section 3.3.2, showing the consistency of our
data analysis. Finally, Fig. 3.4, D and E show the length l of the posterior compartment
(measured at its widest point) and its area AP, respectively, plotted logarithmically as
functions of larval age.

We fit the following functions to the five sets of data in Fig 3.4:

w(t) = wf − awe
−t/τw ,

λ(t) = λi + (λf − λi)
(t− ti)

qλ

τ qλλ + (t− ti)qλ
,

C0(t) = C
(f)
0

(t− ti)
qc

τ qcc + (t− ti)qc
,

l(t) = l0 exp
(

al(1 − e−(t−ti)/τg)
)

,

AP(t) = A
(0)
P exp

(

aP(1 − e−(t−ti)/τg)
)

.

(3.12)

Here wf , aw, and τw are the fit parameters for the width w(t) of the source, ti =
τw ln(aw/wf) is the time when the source starts to grow, i.e. w(ti) = 0, λi, λf , τλ, and qλ

are the fit parameters for the decay length λ(t), C
(f)
0 , τc, and qc are the fit parameters

for the concentration C0 at x = 0, l0, al, and τg are the fit parameters for the length l(t)

of the P compartment at its widest point, and A
(0)
P , aP, and τg are the fit parameters

for the area AP of the P compartment. The Eqs. (3.12) define the functions w(t), λ(t),
C0(t), l(t), and A(t) for the times t ≥ ti. Since Dpp production sets in at time ti, we
define w(t) = 0 for t < ti, C0(t) = 0 for t < ti, and λ(t) = λi for t < ti. Moreover, we

define l(t) = l0 for t < ti, and AP(t) = A
(0)
P for t < ti. The functions w(t), λ(t), and

C0(t) were fitted directly to the data, whereas l(t) and A(t) were fitted logarithmically
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Figure 3.4: Key quantities of GFP-Dpp spreading in the Drosophila wing disk during
development. (A) Width of the Dpp source as a function of larval age. (B) GFP-Dpp
concentration next to the source as a function of larval age. (C) Decay length of the
GFP-Dpp gradient as a function of larval age. (D) Length of the posterior compartment
of the wing disk at its widest point as a function of larval age. (E) Area of the posterior
compartment as a function of larval age. The solid lines represent fits of the Eqs. (3.12)
to the data, the best fit parameters are given in Table 3.2. Experimental procedures are
described in the text.
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quantity values of the optimized fit parameters

Atot(t) aA = 6.91 ± 0.13, τA = 46.5 ± 0.9 h, qA = 2.67 ± 0.13

w(t) wf = 38.8 ± 2.1µm, aw = 61.7 ± 8.0, τw = 61.1 ± 11.9 h =⇒ ti = 28.4 ± 10.2 h

λ(t) λi = 8.7 ± 2.2µm, λf = 32.7 ± 3.0µm, τλ = 71.2 ± 7.7 h, qλ = 2.9 ± 0.9

C0(t) C
(f)
0 = 1608 ± 137 molec./µm2, τc = 49.6 ± 4.4 h, qc = 2.8 ± 0.6

l(t) l0 = 6.8 ± 0.5µm, al = 3.74 ± 0.07, τg = 32.3 ± 0.9 h

AP(t) A
(0)
P = 162 ± 11µm2, aP = 6.30 ± 0.06

Table 3.2: Best fit parameters of the key quantities describing GFP-Dpp transport in
the wing disk. The total area Atot of GFP-Dpp disks as a function of larval age is shown
in Fig. A.1, B, the corresponding fit function is given in the text. All other quantities
are shown in Fig. 3.4, and the functions fitted to these data are given in Eqs. (3.12). For
all quantities, the best fit parameters and standard errors obtained by least square fits
to the measured data are displayed.

and simultaneously to the data since the fit parameter τg appears in both functions. The
values of the optimized fit parameters are displayed in Table 3.2. Note that the values

of the parameters l0 and A
(0)
P are consistent with the constraints a < l0 < (A

(0)
tot/π)1/2

and A
(0)
tot/4 < A

(0)
P < A

(0)
tot, respectively, where a = 2.6µm is the average cell diameter.

We have chosen the definitions (3.12) for the fit functions since they describe the
principal distribution of the data points shown in Fig. 3.4: w(t) describes a growth of
the source which slows down and finally saturates at the width w(t ≫ τw) → wf , λ(t)
specifies a smooth transition between the decay lengths λ(ti) = λi and λ(t ≫ ti) → λf ,

C0(t) yields a smooth increase from C0(ti) = 0 to C0(t ≫ ti) → C
(f)
0 , and l(t) and AP(t)

describe a slowed down growth of the initial length l0 and initial area A
(0)
P which sets in

at time t = ti and saturates at l(t ≫ ti + τg) → l0e
al and AP(t ≫ ti + τg) → A

(0)
P eaP ,

respectively. Of course, different fit functions can be chosen, but except for times t ≈ ti
the further analysis does not depend sensitively on the exact choice of these functions.
Our definitions (3.12) are motivated by the fact that Dpp is needed for growth [30],
which will be discussed in detail in section 3.4. Therefore, we chose the functions l(t)
and AP(t) such that the onset of the growth of the disk coincides with the onset of Dpp
production. Moreover, we chose the same time scale τg for l(t) and AP(t), because when
the growth of the disk slows down, it will affect both the growth in length and area.
Naturally, the concentration C0 is zero before Dpp is produced.

The fits describe the data very well, see Fig. 3.4. They can be used to determine the
kinetic parameters needed for our analysis of Dpp spreading during development which
is focused on the posterior compartment and the Dpp source. The growth rates can thus
be determined by kx(t) = l̇(t)/l(t) and kg(t) = ȦP(t)/AP(t). At times t < ti both kx
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Figure 3.5: Kinetic parameters of GFP-Dpp transport in the wing disk. (A) Growth
rates as functions of larval age. The growth rate kx = l̇/l characterizing the growth of the
length l of the posterior compartment is compared to the area growth rate kg = ȦP/AP of
the posterior compartment of the disk. The length and area of the posterior compartment
as functions of larval age are taken from the fits to the measured data shown in Fig.
3.4, D and E. (B) Degradation rate of GFP-Dpp molecules as a function of larval age.
Using the fitted decay length as a function of larval age plotted in Fig. 3.4, C, and
considering a constant diffusion coefficient, for which we use the value D = 0.1µm2/s
obtained in FRAP experiments, the degradation rate is determined by k(t) = D/λ(t)2.
(C) Production rate of GFP-Dpp molecules as a function of larval age. The production
rate is calculated by ν(t) = 2k(t)C0(t)[1 − exp(−w(t)/λ(t))]−1, where we use k(t) from
B, the fitted concentration C0(t) next to the source shown in Fig. 3.4, B, the fitted width
w(t) of the source plotted in Fig. 3.4, A, and the fitted decay length λ(t) shown in Fig.
3.4, C.

and kg vanish. With the onset of GFP-Dpp production, the growth rate is maximal and
decreases monotonously during development, see Fig. 3.5, A. We find that the growth
rate kx in x-direction is slightly bigger than kg/2 throughout development, reflecting
that growth is anisotropic as discussed in chapter 2.
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Figure 3.6: Kinetic parameters of GFP-Dpp spreading obtained in FRAP experiments at
different stages during development. The mean and standard deviation of the parameters
k, ν and D are shown for disks younger than 80 h and older than 120 h. The experiments
were done in n = 9 disks of an age between 60 h and 80h with average (66 ± 8) h, and
in n = 6 disks of an age between 120 h and 180 h with average (147 ± 18) h.

Since w(t) is measured directly, the remaining parameters which need to be deter-
mined for our analysis of Dpp transport in the growing wing disk are D(t), k(t) and ν(t).
For that, the measurements of λ =

√

D/k and C0 = ν
2k

(

1 − exp
(

−w
λ

))

are not yet suffi-
cient. Therefore, FRAP experiments were performed by A. Kicheva [56] in wing disks at
different stages during development (see section 3.1.2 for a detailed description of these
experiments and their analysis). The optimized parameters D, k and ν are displayed
in Fig. 3.6, in which the average values of D, k and ν in disks younger than 80 h are
compared to the average values in disks older than 120 h. We find that from young to old
disks the degradation rate and the production rate decrease by a factor of about five and
four, respectively, whereas the diffusion coefficient only decreases by a factor of about
two. Hence, the data indicates that k and ν change stronger during development than
D. For our further analysis, we therefore consider a scenario in which D stays constant
during development while k and ν change. For the diffusion coefficient, we use the value
D = 0.1µm2/s obtained in the FRAP experiments in intermediate disks [55], see section
3.1.2. So now, we can determine k(t) from the fits of λ(t), and finally we get ν(t) from
the fits of C0(t). The functions obtained for k(t) and ν(t) are plotted in Fig. 3.5, B and
C. Consistently with our observations in the FRAP experiments, the degradation rate
decreases with increasing age of the flies. Furthermore, the production rate for disks of
an age between 60 and 80 h is increased compared to the the production rate for disks
older than 120 h. And naturally, ν increases with the onset of Dpp production at time
ti, starting from ν(ti) = 0.

3.3.2 Evolution of the Dpp concentration profile

We now use the parameters D(t), k(t), ν(t), w(t), kx(t) and kg(t) to analyze the full
dynamics of Dpp transport in the growing wing disk, including the effects of growth and
the non-adiabaticness of the system. We calculate the evolution of the Dpp concentration
profile during development by solving the diffusion-advection equation (3.8) numerically,
considering the finite length of the disk. As boundary conditions, we impose a vanishing
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flux j = −D∂xc+ kxxc at the center of the source and at the tissue boundary.
Fig. 3.7, A to D shows the numerically calculated Dpp concentration profiles, which

take the full dynamics and boundary effects into account, at different stages during de-
velopment in comparison with the steady-state gradients (3.3) and (3.10) in the adiabatic
approximation. The concentration profiles are plotted from the center of the source at
x = −w(t)/2 to the boundary of the tissue at x = l(t). We find that the steady-state
gradients in the adiabatic approximation match the numerically calculated concentra-
tion profiles very well. Moreover, there is hardly any difference between the steady-state
gradients with and without drift terms. The effects of the finite tissue size are only
apparent for very young disks (see Fig. 3.7, A), when the decay length of the gradient
is comparable with the size of the tissue (see Fig. 3.4, C and D), but even then these
effects are small.

We can thus conclude that the drift terms of stretching and dilution (see section 3.2)
which result from tissue growth have no significant effect on the Dpp gradient throughout
wing disk development. Indeed, one can show that for the parameters determined in
section 3.3.1 −kx(t)x∂xc(x, t) ≪ D(t)∂2

xc(x, t) and kg(t) ≪ k(t) for all times during
development and for all positions within the tissue. Furthermore, the parameters D(t),
k(t), ν(t), w(t), kx(t) and kg(t) of Dpp spreading change so slowly during development
compared to the time scale on which the Dpp gradient relaxes to its steady state that
the concentration profile can be considered to be in steady state for all times. This has
also been validated for situations in which the diffusion coefficient changes in addition
to the degradation and production rate in accordance with the experimental results.

In summary, the Dpp gradient in the receiving tissue can thus be described by the
exponentially decaying concentration profile (3.3) throughout development. Thus the
Dpp gradient, which is plotted in Fig. 3.7, E for the full disk development, only depends
on the decay length λ(t), on the concentration C0(t) at the AP boundary, and on the
width w(t) of the source which are robustly measured quantities (see Fig. 3.4, A to C).
Our data analysis in section 3.3.1, in which we used the steady-state gradients (3.3) to
determine the values of the kinetic parameters during development, is thus consistent.

Moreover, the common idea that growth leads to a stretching of the Dpp gradient
and thus to an increase in the decay length (see e.g. [30]) can be excluded from our
analysis. Indeed, the decay length of the Dpp gradient increases during development,
but this increase results from a decrease of the degradation rate and is not an effect of
tissue growth.

3.3.3 Dpp concentration measured by moving cells

In the preceding section, we have shown that tissue growth does not affect the Dpp con-
centration profile in the developing wing disk. However, what we are actually interested
in is the Dpp concentration that is measured by a cell as it moves in the growing tis-
sue rather than the concentration at fixed positions in space. As the tissue grows, cells
move along the trajectories x(t) = x0 exp

( ∫ t
t0
dt′kx(t′)

)

, y(t) = y0 exp
( ∫ t

t0
dt′ky(t′)

)

with
initial position (x0, y0) at time t0 (see section 2.1.3). The increasing tissue length in x-
direction is described by l(t) = l0 exp

( ∫ t
t0
dt′kx(t′)). Hence, a cell at the initial position
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Figure 3.7: Dpp gradients during wing disk development. (A-D) Comparison of the full
dynamics of Dpp spreading to steady-state gradients in the adiabatic approximation.
The numerically calculated Dpp concentration profile, which takes the full dynamics
during tissue growth and boundary effects into account, is plotted in black at 4 different
larval ages. For comparison, the steady-state gradients with drift terms (see Eq. (3.10))
are plotted in blue, and those without drift terms (see Eq. (3.3)) are plotted in red.
(E) Evolution of the Dpp gradient. The steady-state gradients (3.3) are plotted in
the adiabatic approximation from t = 40h to t = 180h in steps of 20 hours. Each
concentration profile is plotted from the center of the Dpp source x = −w(t)/2 to the
boundary of the posterior compartment x = l(t) (except for E where the plots are cut
at x = 200µm). The AP boundary is fixed at x = 0.
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sl0 with s ∈ [0, 1] will move along the trajectory sl0 exp
( ∫ t

t0
dt′kx(t′)

)

, and thus it will
always be located at the fraction sl(t) of the tissue length. Therefore, we define the Dpp
concentration measured by a moving cell in the growing wing disk as

cmov(s, t) = c(sl(t), t) . (3.13)

Since the spreading of Dpp molecules in the developing wing disk is well described by
the adiabatically changing gradients (3.3), the cellular Dpp concentration is given by

cmov(s, t) = C0(t) exp

(−sl(t)
λ(t)

)

. (3.14)

The cellular Dpp concentration is thus determined by two opposing effects: On the
one hand, the growth of the Dpp source leads to an increase in the concentration C0

and thus to an increase of the cellular concentration. But on the other hand, cells move
away from the Dpp source as a result of tissue growth which leads to a decrease in the
cellular concentration. Hence, cmov strongly depends on the position of the cell in the
disk since it determines which of these two processes dominates.

In Fig. 3.8, cmov is plotted logarithmically as a function of disk age for the positions
s = 0, 0.1, ..., 1. Cells close to the source measure a monotonic increase of the Dpp
concentration since they only move slowly away from the source so that the increase in
C0 is dominant. However, cells closer to the tissue boundary only measure an increasing
concentration at the early disk development when the disk is small. Later on, the
concentration decreases since these cells move away from the source with a higher velocity
than cells close to the source so that the concentration decrease as a result of an increasing
distance to the source is dominant. When growth slows down, the Dpp concentration
increases again in these cells as a result of the increasing decay length of the gradient.
Note that the cellular concentration of the moving cells can be described by the diffusion
equation (B.2) which results from a coordinate transformation into a growing system that
moves in accordance with the cells, see appendix B.1.

While tissue growth has no significant effect on the Dpp concentration profile, it
strongly affects the cellular concentration and thus the signaling process. The cellular
concentration depends crucially on the position in the tissue. It is thus difficult to find
rules for possible signaling mechanisms on the basis of the cellular Dpp concentration
which are position independent, as in particular the regulation of cell division in which
Dpp is involved. This will be the topic of the next section.

3.4 Possible roles of Dpp in growth control

In the previous sections, we have considered the question how the morphogen Dpp
spreads in the growing wing disk of the fruit fly. In this section, we analyze how the
cellular Dpp concentration is related to the tissue growth rate. From experiments, it is
known that Dpp is needed for the growth of the disk which is approximately uniform, see
section 1.2. However, it remains unclear how growth is regulated by Dpp [84, 30, 66, 3].
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Figure 3.8: Cellular Dpp concentration during wing disk development. The concentra-
tion cmov(s, t) measured by cells which move away from the Dpp source due to tissue
growth is plotted logarithmically as a function of disk age. The cellular concentrations
are displayed for 11 different cell trajectories xs(t) = sl(t) with s = 0, 0.1, ..., 1. Hence
s = 0 corresponds to a cell that always sits at the AP boundary and thus measures the
concentration C0, whereas s = 1 corresponds to a cell that moves in accordance with
the boundary of the tissue.

Since the cellular Dpp concentration depends strongly on position (see Fig. 3.8),
its absolute value cannot control the growth rate. Several models have been proposed
to solve this problem. It has been suggested that the local slope of the Dpp gradient
regulates the growth rate [30, 81]. In this model, it is assumed that the steepness of
the Dpp gradient decreases as a result of tissue growth, and that growth stops when the
local slope falls below a certain threshold level. However, we have shown in section 3.3.2
that the Dpp gradient is not stretched by tissue growth, i.e. growth does not influence
the steepness of the gradient. Moreover, there is experimental evidence that ubiquitous
Dpp overexpression in the wing disk and thus a flat Dpp concentration profile leads to
an increased growth [74] in contradiction to this model.

Another approach suggests that Dpp in combination with mechanical stresses reg-
ulates growth [52]. In this model, it is proposed that growth stops when the Dpp
concentration in cells close to the boundary of the growing wing disk falls below a cer-
tain threshold value. In order to explain the position independence of the growth rate,
Hufnagel et al. propose that the stop signal propagates to the interior of the disk by
mechanical interactions between the cells [87]. However, we have shown that the con-
centration at the boundary of the disk reaches a minimal level long before growth stops
(see Fig. 3.8). The increase of the concentration at the disk boundary at late stages of
development results from the increase of the concentration C0 next to the source, the
slowing down of growth and the increase of the decay length λ of the Dpp gradient (see
section 3.3.1), which is not observed in [52] since there the gradients are only measured
for the last 45 h of development.
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In this section, we want to present possible rules by which Dpp could control growth
in agreement with our data. Since Dpp is required for the growth of the wing disk, the
growth rate kg ≈ 2kx (we do not consider anisotropies of growth in this section) must
be some function of the cellular Dpp concentration cmov (3.14). As the growth rate is
approximately homogeneous in space, our goal is to find a measure that depends on cmov

but is independent of position in the disk. In Fig. 3.9, A and B, we have plotted the
time derivative of cmov and the relative rate of change

γ(s, t) ≡ ċmov(s, t)/cmov(s, t) (3.15)

of the cellular Dpp concentration, respectively, as functions of disk age for cells that move
on the trajectories xs(t) = sl(t) with s = 0, 0.1, ..., 1. The absolute rate of change ċmov of
the cellular concentration still depends strongly on position. However, the relative rate
of change γ(s, t) of the cellular Dpp concentration only shows a position dependence in
young disks but is almost position independent for larvae which are older than 100 h. Fig.
3.9, C shows the relation between the growth rate 2kx(t) and the corresponding values
of γ(s, t) at times t throughout development at different positions in the tissue. Large
values of 2kx and γ correspond to early times, whereas 2kx → 0 at late developmental
stages. At disk ages between 100 h and 180 h, the relation between 2kx(t) and the average
γ̄(t) = 1

N

∑N
s=1 γ(s, t) is almost linear as plotted in Fig. 3.9, D. At these times, we can

describe the relation between 2kx and γ̄ by the function 2kx = αγ̄+β with the optimized
parameters α = 4.07 and β = −0.0067 h−1.

We can thus formulate a first possible rule for growth control by Dpp at a late stage of
development: From the larval age ton = 100h on, we define the growth rate at time t and
position x within the tissue by kg(x, t) ≡ 2kx(t) = αγ(x/l(t), t) + β for γ(x, t) > −β/α
and kg(x, t) = 0 otherwise, with α = 4.07 and β = −0.0067 h−1. Moreover, we propose
that growth starts with the onset of Dpp production at time ti = 28.4 h (see Table 3.2),
i.e. kg = 0 as long as the cellular Dpp concentration is zero. In appendix B.3, we discuss
numerical simulations of the feedback between Dpp spreading, which is described by
the diffusion-advection equation (3.8), and the growth rate, which is determined by the
cellular Dpp concentration according to our rule. In these simulations, we can reproduce
the measured length of the wing disk as a function of time, and we show that the growth
rate becomes more and more position dependent if we start growth regulation at times
before ton = 100h.

Hence, this rule can explain the onset and stop of growth, but it has the drawback
that it cannot explain how growth is regulated at early and medial developmental stages.
Of course, it could be possible that Dpp regulates the growth rate as suggested by our
rule at a late stage of development, whereas growth is controlled by a different mechanism
at earlier times. But certainly, this is highly speculative. We were therefore looking for
a different rule, by which the growth of the wing disk could be controlled by Dpp during
the whole development. Since we could not find such a measure by studying simple
functions of the cellular Dpp concentration, we analyzed the concentration profiles of
phosphorylated Mad (P-Mad) molecules which mediate Dpp signaling in the wing disk
(see Fig. 1.1). Experimental details are described in appendix B.4.
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Figure 3.9: Change of the cellular Dpp concentration in time and its relation to the
growth rate in the Drosophila wing disk. (A,B) The absolute rate of change ċmov (A)
and the relative rate of change γ of the cellular Dpp concentration (B) as functions
of disk age for cells that move along the trajectories xs(t) = sl(t) with s = 0, 0.1, ..., 1.
(C,D) Relation between the growth rate 2kx and the relative rate of change of the cellular
Dpp concentration. (C) The values of 2kx(t) (given in Fig. 3.5, A) that correspond to
the values of γ(s, t) at the times t between ti = 28.4 h and tf = 180h are plotted as
black lines for the positions s = 0, 0.1, ..., 1. The red line shows the relation between 2kx
and the averaged relative rate of change γ̄ of the cellular Dpp concentration. (D) The
red line shows values of 2kx(t) that correspond to the values of γ̄(t) at times t between
ton = 100h and tf = 180h. The blue line represents a fit of the function 2kx = αγ̄ + β
to the red line, using α and β as fit parameters. The best fit parameters are given in
the text.

Fig. 3.10, A shows two examples of P-Mad gradients at different stages during de-
velopment. The P-Mad concentration profiles are fitted well by the simple ansatz

p(x, t) = P0(t) exp

(

− x

λp(t)

)

, (3.16)
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Figure 3.10: P-Mad gradients during wing disk development. (A) P-Mad concentration
profiles at different stages during development. The P-Mad concentration measured in
cell nuclei in units of fluorescence intensity is plotted as a function of the distance to the
Dpp source. The red and black trace represent gradients at the larval ages t = 102h and
t = 79h, respectively, and the red and black line are exponential fits to the data. (B)
Decay length of P-Mad gradients as a function of larval age. (C) P-Mad concentration
next to the Dpp source as a function of larval age. The data points in B and C are
obtained by fitting Eq. (3.16) to individual gradients in wing disks of different ages. The
black lines represent fits of Eqs. (3.17) to λp(t) and P0(t). As best fit parameters, we

find λ
(p)
f = 34.3 ± 8.8µm, τp = 54.4 ± 7.0 h, qp = 3.3 ± 1.7, P

(f)
0 = 183 ± 228 units of

fluorescence intensity, τ0 = 79 ± 92 h, and q0 = 2.2 ± 2.3.

where p is the P-Mad concentration, P0 is the P-Mad concentration at x = 0, and
λp is the decay length of the P-Mad gradient. We have analyzed P-Mad gradients at
many different developmental stages. In Fig. 3.10, B and C, the resulting P-Mad decay
lengths and concentrations next to the Dpp source are plotted as functions of larval age,
respectively. We fit the following functions to the data in Fig. 3.10, B and C,

λp(t) = λ
(p)
f

tqp

τ
qp
p + tqp

,

P0(t) = P
(f)
0

(t− ti)
q0

τ q00 + (t− ti)q0
.

(3.17)

Here λ
(p)
f , τp and qp are the fit parameters of the decay length of the P-Mad gradients,

and P
(f)
0 , τ0 and q0 are the fit parameters of the P-Mad concentration next to the Dpp

source. The values of the optimized fit parameters are given in the caption of Fig. 3.10.

As in the case of Dpp, we can now calculate the cellular P-Mad concentration pmov

which is defined as

pmov(s, t) = p(sl(t), t) . (3.18)

Inserting the exponentially decaying concentration profile (3.16) of P-Mad into this equa-
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tion, the cellular P-Mad concentration becomes

pmov(s, t) = P0(t) exp

(−sl(t)
λp(t)

)

. (3.19)

Using the fits for λp(t) and P0(t), we can thus determine pmov at any position during
fly development. In Fig. 3.11, A the cellular P-Mad concentration is plotted as a function
of larval age for cells that move along the trajectories xs(t) = sl(t) with s = 0, 0.1, ..., 1.
As in the case of Dpp, the cellular P-Mad concentration depends strongly on position.
Fig. 3.11, B shows the time derivative ṗmov of the cellular P-Mad concentration during
development, which also shows a strong position dependence. However, the relative rate
of change of the cellular P-Mad concentration

σ(s, t) = ṗmov(s, t)/pmov(s, t) , (3.20)

which is plotted in Fig. 3.11, C for s = 0, 0.1, ..., 1 as a function of fly age, is almost posi-
tion independent throughout development. Therefore, the relation between the growth
rate 2kx and σ, which is plotted in Fig. 3.11, D, is also almost position independent, and
it is unique in contrast to the relation between 2kx and γ, see Fig. 3.9, C. Moreover, it
is very intuitive: for large values of σ, the growth rate saturates which can be explained
by a minimal cell cycle time needed for a cell to double in size and to replicate its DNA;
for small relative changes of the cellular P-Mad concentration in time, the growth rate
decreases linearly with decreasing σ, and when σ → 0, growth stops.

With the relative rate of change of the cellular P-Mad concentration, we have thus
found a quantity (i) which depends on Dpp signaling activity, (ii) which is almost position
independent throughout development, and (iii) which has a unique relation to the growth
rate throughout development. The relation between 2kx and σ can be described by the
function

2kx =
ασβ

δβ + σβ
, (3.21)

which is plotted as the red line in Fig. 3.11, D. The values of the optimized fit parameters
α, β and δ are α = 0.2577 ± 0.0005, β = 1.0559 ± 0.0025, and δ = 0.0986 ± 0.0005.

Finally, we have thus found a possible rule by which the growth of the Drosophila
wing disk can be controlled during the whole development: We propose that the growth
rate is regulated by the relative rate of change σ of the cellular P-Mad concentration via
the functional relation described by Eq. (3.21).

Of course, this hypothesis has to be tested experimentally. Experiments in which
the growth of width w(t) of the Dpp source is manipulated are in preparation. In these
experiments, one will find different dynamics of the Dpp gradient during development
and thus a different σ, and it will be interesting to see whether the growth rate changes
according to Eq. (3.21). Moreover, experiments in another imaginal disk of the fruit fly
are planned, namely the haltere disk. It is very similar to the wing disk: Dpp is also
produced there in response to Hedgehog and its signal is mediated by P-Mad. The idea
of these experiments is that the cellular machinery that causes proliferation in response
to the Dpp gradient is likely to be the same in the different disks, i.e. the explanation of
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Figure 3.11: Cellular P-Mad concentration and its rate of change during wing disk
development. (A) Cellular P-Mad concentration as a function of larval age for cells that
move along the trajectories xs(t) = sl(t) with s = 0, 0.1, ..., 1. (B) Rate of change of the
cellular P-Mad concentration as a function of larval age for the positions s = 0, 0.1, ..., 1
in the wing disk. (C) Relative rate of change of the cellular P-Mad concentration as a
function of larval age for the positions s = 0, 0.1, ..., 1. (D) Relation between the tissue
growth rate 2kx and the relative rate of change of the cellular P-Mad concentration. The
values of 2kx(t) that correspond to the values of σ(s, t) at times t throughout development
are plotted as black lines for the positions s = 0, 0.1, ..., 1. The red line represents a fit
of Eq. (3.21) to the set of black lines.

growth control is likely to be universal. If that would be the case, the next step would
be to test it also in other, closely related species.

How can cells measure and interpret the relative rate of change of the cellular concen-
tration of P-Mad so that it regulates the cell division rate? One idea behind that is that
on the one hand, P-Mad acts as a growth factor, i.e. it is needed for cell division [57],
but on the other hand, P-Mad could also regulate the production of a growth inhibitor
with some delay. By that, the relative rate of change of the cellular P-Mad concentration
might control the ratio between growth factors and growth inhibitors in a cell. We want
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Figure 3.12: Ratio of tissue length and decay length of the Dpp and P-Mad gradients as
functions of disk age. The length l(t) of the posterior compartment of the wing disk, the
decay length λ(t) of the Dpp gradient, and the decay length λp of the P-Mad gradient
are taken from the fits (3.12) and (3.17) to the experimental data.

to study these ideas in a quantitative description in future work.
Next, we want to consider the question why the relative rate of change γ of the

cellular Dpp concentration is position dependent, whereas the relative rate of change σ
of the cellular P-Mad concentration is almost independent on position in the disk. For
that, we calculate σ(s, t) explicitly using Eq. (3.19),

σ(s, t) =
Ṗ0(t)

P0(t)
− s∂t

(

l(t)

λp(t)

)

. (3.22)

Hence, the position dependence of σ vanishes if the ratio between the tissue length and
the decay length of the gradient is constant in time. In Fig. 3.12, we have plotted
this ratio for P-Mad and Dpp. We find that for P-Mad, l(t)/λp(t) shows a weak time
dependence, whereas for Dpp, l(t)/λ(t) changes strongly in time in young disks and
becomes almost constant at an age of about t = 100h, which was the time when γ
became almost position independent, see Fig. 3.9, B.

In contrast to Dpp, P-Mad does not diffuse between different cells in the wing disk.
Since P-Mad is retained in the cells, the stretching of the P-Mad gradient due to growth
might be a more important effect than in the case of Dpp. This leads us back to the
idea of Day and Lawrence [30] that the slope of a gradient might regulate growth. The
relative slope of the P-Mad gradient measured by the moving cells is given by

∂xpmov(x/l, t)

pmov(x/l, t)
= − 1

λp
, (3.23)

where we used Eqs. (3.18) and (3.19). Hence, this quantity is independent of the position
in the tissue. Moreover, it is related uniquely to the growth rate throughout develop-
ment, see Fig. 3.13. Therefore, the relative change of the cellular P-Mad concentration
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Figure 3.13: Relation between the tissue growth rate 2kx and the absolute value of the
relative change of the cellular P-Mad concentration in space. The plot shows the values
of 2kx(t) that correspond to the values of |p′mov/pmov| = 1/λp(t) at times t throughout
development.

in space could also control the growth rate. However, wing disks in which Dpp is over-
expressed ubiquitously grow to a larger final size than wildtype disks [74]. Since the
P-Mad gradients should be rather flat in these disks, these experiments suggest that
growth is not controlled by the relative slope of the P-Mad gradient. Since the pro-
duction and degradation rate of Dpp vary with time, the relative change of the cellular
P-Mad concentration in time does not vanish and could therefore control growth in these
flies.

Finally, we come to the question how the Dpp concentration is related quantitatively
to the P-Mad concentration. Here, we have described the P-Mad concentration by the
simple phenomenological ansatz (3.16). However, if we want to simulate the feedback
between growth and the P-Mad concentration profiles during development with our
growth rule (3.21) as done in appendix B.3 for Dpp, we need to know how the P-Mad
concentration is regulated by Dpp within the cells. In the next chapter, we present a
microscopic theoretical description of the signal transduction of TGF-β ligands such as
Dpp via P-Mad on the single cell level. This description is used to analyze experimental
data on Mad intracellular trafficking at the neuromuscular junction of the fruit fly, but
a similar description might be applicable to capture P-Mad signaling in the wing disk
which will be studied in future work.



Chapter 4

Kinetics of TGF-β signaling in

the cell

After the study of cell movements in growing tissues in chapter 2 and the analysis of
morphogen spreading in these rearranging cell packings in chapter 3, we now consider
morphogenetic signaling on the next scale of detail: On the single cell level, we study
the intracellular transduction machinery of TGF-β signaling during development [33].

Starting from a microscopic theoretical description that is based on a system of
coupled ordinary differential equations, we analyze the kinetics of intracellular Mad
trafficking in response to binding of TGF-β ligands such as Dpp to receptors on the cell
surface (see section 4.1). We determine the steady-state concentrations of Mad and P-
Mad in two different compartments of the cell. For the case in which one compartment
represents a protein reservoir for the second compartment, the rapid dynamics of the
system is solved analytically using a separation of time scales.

We compare our theory to intracellular FRAP experiments performed at the neu-
romuscular junction of the developing fruit fly (see section 4.2). By optimizing the
parameters of our description, we determine the nuclear import and export rates of Mad
and P-Mad proteins, as well as the relative pool sizes of the different Mad species. We
find that the rate of Mad phosphorylation increases with increasing levels of synaptic ac-
tivity, which reveals a coupling between TGF-β signaling and neuronal signaling during
development.

4.1 Theoretical description of Mad intracellular trafficking

A microscopic theoretical description of Mad intracellular trafficking is schematically
shown in Fig. 4.1. We distinguish between five different Mad species within the cell
to account for the concentrations of Mad and P-Mad molecules that are present in the
cytosol and nucleus.

The phosphorylation of cytosolic Mad by TGF-β receptor activation is captured by
the phosphorylation rate kp. P-Mad is dephosphorylated in the cytosol with the rate
kd. Mad enters and exits the nucleus through nuclear pores at the rates kin and kout,

59
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Figure 4.1: Schematic representation of intracellular Mad trafficking. Cytosolic Mad
is phosphorylated by TGF-β receptor activation. Mad and P-Mad enter and exit the
nucleus through nuclear pores with different rates. Inside the nucleus, P-Mad becomes
activated and binds to cofactors so that this molecular complex cannot cross the nuclear
pore. For a definition of the various Mad pools and rates, see text.

respectively, from which the rates k′in and k′out of P-Mad nuclear trafficking might differ.
Moreover, there is a third pool of Mad molecules in the nucleus, namely the pool of
transcriptionally active P-Mad (P-Mad*) which exchanges with inactive nuclear P-Mad
via the rates kactand kinact. The pool P-Mad* describes nuclear P-Mad molecules that
are bound to other transcription factors so that these protein complexes cannot leave
the nucleus through the nuclear pores.

Assuming that all exchange processes between the different pools are linear, their
kinetics are described by the following system of coupled rate equations:

dnM

dt
= kincM − koutnM

dnPM

dt
= k′incPM − k′outnPM + kinactn

∗
PM − kactnPM

dn∗PM

dt
= kactnPM − kinactn

∗
PM (4.1)

dcM
dt

=
Vn

Vc
(koutnM − kincM + kdcPM − kpcM)

dcPM

dt
=
Vn

Vc

(

kpcM − kdcPM + k′outnPM − k′incPM

)

.

Here nM is the nuclear Mad concentration, nPM is the nuclear P-Mad concentration,
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n∗PM is the concentration of the transcriptionally active P-Mad*, cM is the cytosolic
Mad concentration, and cPM is the cytosolic P-Mad concentration. Moreover, Vn is the
volume of the nucleus, and Vc is the volume of the cytosol. The ratio Vn/Vc appears in
Eqs. (4.1) since an exchange of a molecule between cytosol and nucleus has a different
effect on the cytosolic and nuclear concentration.

In steady state (s), the concentrations of the different Mad species can be expressed
in terms of the total cytosolic concentration ctot = cM + cPM,

ns
M =

Y

1 + Z
cstot

ns
PM =

Y ′

1 + 1/Z
cstot

n∗sPM =
XY ′

1 + 1/Z
cstot (4.2)

csM =
1

1 + Z
cstot

csPM =
1

1 + 1/Z
cstot .

Here X = kact/kinact, Y = kin/kout, Y
′ = k′in/k

′
out, and Z = kp/kd are dimensionless

ratios of the exchange rates.
The concentrations of the different Mad species inside a cell as well as the exchange

rates between the different pools can be measured in FRAP experiments. In these
experiments, fluorescently labeled Mad molecules are photobleached in a cell nucleus and
the recovery of the nuclear fluorescence is recorded and quantified. We assume that the
experiments are initiated at a moment when the system has relaxed to the steady state.
Therefore, the steady-state values of the concentrations (4.2) are chosen as an initial
condition for our theoretical description of the FRAP experiments. By bleaching the
fluorescence in the nucleus, the concentration of fluorescent nuclear Mad is reduced to the
fraction b (bleaching depth), while the cytosolic concentration of fluorescent molecules
remains unchanged. We assume here that the bleaching process occurs instantaneously.

In order to describe the recovery of the nuclear fluorescence after bleaching, we as-
sume that the exchange of n∗PM with nPM via the rates kact and kinact is slow compared to
the duration of the experiments (1000 seconds) and accounts for the fraction of molecules
which is immobile and does not recover during the experiment (immobile fraction). To
describe the fluorescence recovery, we thus neglect the exchange by the rates kact and
kinact. Since Vn ≪ Vc, changes of the cytosolic concentrations during recovery can be
ignored (see Eqs. (4.1)). With these assumptions, the FRAP kinetics is described by

dnM

dt
= kincM − koutnM

dnPM

dt
= k′incPM − k′outnPM (4.3)

dn∗PM

dt
= 0 .
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The solution to these equations is

nM(t) = nM,0

(

1 − (1 − b)e−koutt
)

nPM(t) = nPM,0

(

1 − (1 − b)e−k
′

outt
)

,
(4.4)

where the constants nM,0 and nPM,0 are equal to the steady-state values of the nuclear
Mad and P-Mad concentrations ns

M and ns
PM, respectively, as given in Eqs. (4.2). The

observed nuclear fluorescence per unit volume I(t) is proportional to the total nuclear
concentration ntot = nM + nPM + n∗PM. The normalized fluorescence recovery F (t) =
(I(t) − I(0))/I0, where I(0) is the fluorescence intensity immediately after bleaching
and I0 its pre-bleach value, is therefore equal to the normalized nuclear concentration
(ntot(t) − ntot(0))/n

s
tot. According to Eq. (4.4), F (t) behaves thus as

F (t) = A(1 − b)
(

1 − e−koutt
)

+B(1 − b)
(

1 − e−k
′

outt
)

, (4.5)

where A = ns
M/n

s
tot and B = ns

PM/n
s
tot.

In a situation, in which either one of the two mobile Mad pools dominates, Eq.
(4.5) reduces to a single exponential. This case corresponds to a simple phenomeno-
logical model which only describes effective exchanges between the total cytosolic (ctot)
and mobile Mad pool (nmob) via the rates ki and ke, whereas the immobile nuclear
pool of concentration nim is assumed to be constant during the experiment, see Fig.
4.2. Moreover, the cytosolic concentration is assumed to be constant during the time
course of the FRAP experiment in this description. Therefore, the FRAP kinetics in the
phenomenological model is described by

dnmob

dt
= kictot − kenmob

dnim

dt
= 0 (4.6)

dctot
dt

= 0 ,

The solution to the equation describing the recovery of the mobile pool is

nmob(t) = ns
mob

(

1 − (1 − b)e−ket
)

, (4.7)

and thus the recovery of the normalized nuclear fluorescence F (t) = (ntot(t)−ntot(0))/n
s
tot

where ntot = nmob + nim can be described by the single exponential equation

F (t) = m(1 − b)
(

1 − e−ket
)

, (4.8)

where m = ns
mob/n

s
tot is the nuclear mobile fraction.
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Figure 4.2: Phenomenological description for nuclear Mad trafficking. Cytosolic Mad
(ctot) enters the nucleus through nuclear pores with the effective rate ki. Inside the
nucleus, we distinguish between two different Mad populations, namely an immobile one
(nim), which is constant during the FRAP experiment, and a mobile one (nmob), which
exits the nucleus with rate ke.

4.2 Kinetic parameters of Mad intracellular trafficking

We fit Eqs. (4.5) and (4.8) to recovery curves of FRAP experiments performed in mus-
cle cells of the developing fruit fly which are connected to neurons via neuromuscular
junctions [4, 99]. In this system, the presence of the integral components of TGF-β
signaling (see Fig. 1.1), i.e. TGF-β ligands, Tkv receptors, as well as Mad and P-Mad
molecules, has been shown recently [33]. To study the influence of synaptic activity on
the nuclear import and export kinetics of Mad, the experiments were done under three
different conditions, namely in control animals without synaptic activity, in animals with
synaptic stimulation by a high potassium (K+) solution, and in mutant flies expressing
the constitutively active TkvQD receptors at which Mad is permanently phosphorylated,
see Fig. 4.3.

Expression (4.5) derived from our microscopic theoretical description is fitted to the
averaged experimental data (see Fig. 4.3, A) using A, B, kout and k′out as fit parameters.
This fit is done under the constraint that the fit parameters kout and k′out, as well as the
quantities X, Y and Y ′ are the same for all three experimental conditions (control, K+

and TkvQD), and that only Z differs (see Eqs. (4.2)). These constraints correspond to a
situation in which the different synaptic activity levels only affect the phosphorylation
rate of Mad while all other rates are constant. By that, we can effectively reduce
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Figure 4.3: Recovery curves of FRAP experiments in nuclei of Drosophila muscle cells
for the 3 different conditions control, K+, and TkvQD. In both diagrams, the average
fluorescence intensity of at least n = 5 experiments for each condition normalized to
its value before bleaching and the bleaching depth is plotted as a function of time after
bleaching. The error bars indicate the standard deviations from the mean values. (A)
Fit of the specific microscopic description to the data. (B) Fit of the phenomenological
model to the FRAP curves. For details of the fits, see text.

the number of free fit parameters to six parameters for the three recovery curves as
explained in appendix C.1. For comparison, we fit Eq. (4.8) of the phenomenological
model independently to each recovery curve of the at least n = 5 experiments for each
of the three conditions (control, K+ and TkvQD), using m and ke as fit parameters (see
Fig. 4.3, B). The effective import rate ki can then be determined by Eq. (C.3). The
values of all parameters obtained by these fits are displayed in Table 4.1.

The two fit functions (4.5) and (4.8) derived in the specific microscopic description
and the phenomenological model, respectively, describe the experimental data well (see
Fig. 4.3, A and B). As the mobile nuclear pool for the control and K+ condition consists
mainly of non-phosphorylated Mad (see Table 4.1), the double exponential Eq. (4.5) is
dominated by its first term. Conversely, in the case of TkvQD, the mobile nuclear pool
mainly contains phosphorylated Mad (see Table 4.1) so that Eq. (4.5) is dominated by
the second exponential. Thus the single exponential fit (4.8) represents a good approxi-
mation of the double exponential fit (4.5) for the three mutant conditions. Note however
that the double exponential fit allows us to determine the changes of the phosphorylation
rate kp in the different conditions and can account for the different mobile fractions.

We find that in the case of TkvQD, the phosphorylation rate kp increases by a factor
of about 200 with respect to control muscles, assuming that all other rates are fixed.
This leads to a 14 times higher level of steady-state mobile P-Mad in the nucleus. The
K+ stimulation increases the phosphorylation rate by a factor of about 5 with respect
to resting muscles, and the nuclear P-Mad concentration 4 times. Furthermore, only
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control K+ TkvQD

kin [s−1] 0.0283 ± 0.0003

kout [s−1] 0.0080 ± 0.0001

k′in [s−1] 0.0164 ± 0.0064

k′out [s−1] 0.0012 ± 0.0003

kact/kinact 1.80 ± 0.32

kp/kd 0.0064 ± 0.0021 0.029 ± 0.010 1.28 ± 0.93

ns
M/n

s
tot 0.935 ± 0.004 0.758 ± 0.008 0.068 ± 0.028

ns
PM/n

s
tot 0.023 ± 0.003 0.086 ± 0.011 0.332 ± 0.043

n∗sPM/n
s
tot 0.042 ± 0.005 0.156 ± 0.014 0.600 ± 0.051

csM/c
s
tot 0.994 ± 0.002 0.971 ± 0.009 0.439 ± 0.180

csPM/c
s
tot 0.006 ± 0.002 0.029 ± 0.009 0.561 ± 0.180

ki [s
−1] 0.028 ± 0.002 0.020 ± 0.002 0.017 ± 0.004

ke [s−1] 0.0078 ± 0.0005 0.0074 ± 0.0006 0.0023 ± 0.0003

ns
im/n

s
tot 0.052 ± 0.015 0.19 ± 0.01 0.67 ± 0.04

Table 4.1: Specific rates and pool sizes of Mad and P-Mad determined with the micro-
scopic theoretical description, as well as effective rates and immobile fraction determined
with the phenomenological model for unstimulated controls, K+ stimulated muscles, and
TkvQD expressing flies. The values are obtained by fitting Eqs. (4.5) and (4.8) to the
data, details are discussed in the text. Note that the specific import and export rates
of Mad and P-Mad as well as the ratio of the exchange rates between nuclear P-Mad
and P-Mad* (bold) are the same for the 3 conditions control, K+, and TkvQD. For each
quantity, the best fit parameter of the least squares fit and the corresponding standard
error are displayed.

about 4% of nuclear Mad is immobile in control muscles during the FRAP experiment,
suggesting low levels of Mad signaling in the resting synapse. In contrast, synaptic K+

stimulation increases the immobile pool of Mad in the nucleus by a factor of about
4, and constitutive signaling in TkvQD mutants leads to an increase by an order of
magnitude of the immobile fraction. These data suggest that Mad signaling is increased
upon stimulation of the muscle. The origin of the immobile fraction of the nuclear Mad
molecules is studied in appendix C.2.
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In control muscles, the effective nuclear import rate ki of Mad is higher than its export
rate, accounting for a 3.7 times higher concentration of Mad in the nucleus than in the
cytosol which has been measured experimentally [33]. Upon constitutive signaling in the
TkvQD mutants, the ratio of import to export rate (7.4) is higher than in the control (3.6).
This difference in the import to export ratio leads to a net accumulation of nuclear Mad
in TkvQD muscles about 3.5 times above the levels of the control [33]. Interestingly, the
effective import rate does not increase, but decreases slightly upon constitutive signaling,
while the effective export rate significantly decreases. Consistently, the specific import
rate of P-Mad is about 1.7 times smaller than for Mad, while the specific export rate is
much smaller (7-fold) compared to the non-phosphorylated protein. Thus the increase in
the net nuclear accumulation of Mad during signaling is explained by a decrease in the
export of the total Mad pool, rather than by an increase in its import into the nucleus.

4.3 Discussion

We can relate our microscopic theoretical description (see Fig. 4.1) to the phenomeno-
logical model (see Fig. 4.2). The different pools of Mad molecules of the two descriptions
are related by ctot = cM+cPM, nmob = nM+nPM and nim = n∗PM. Moreover, the effective
import and export rates can be related to the specific rates:

ki =
kinc

s
M + k′inc

s
PM

csM + csPM

ke =
koutn

s
M + k′outn

s
PM

ns
M + ns

PM

.

(4.9)

Using the fit results for the specific import and export rates, the calculated values of
these quantities are consistent with the values found by the single exponential fits, see
Table 4.1.

In summary, our microscopic theoretical description of Mad intracellular trafficking
describes the data well. We have shown that Mad and P-Mad molecules enter and exit
the nuclei of the muscle cell at different specific rates. The rate of Mad phosphoryla-
tion increases upon synaptic stimulation and leads to higher levels of transcriptionally
active P-Mad in the nucleus. Our findings are consistent with the existence of a TGF-β
signaling cascade at the developing neuromuscular junction of the fruit fly which is ini-
tiated in the synapse through exocytosis of TGF-β ligands. Binding of the ligands to
Tkv receptors on the cell surface of the muscle cell leads to activation of the receptors
and thereby to phosphorylation of Mad. P-Mad accumulates in the nuclei of the muscle
cell, where it might mediate transcriptional control of the target genes of the signaling
pathway.

It has been shown that signaling events from the muscle to the synapse exist and that
they control growth, morphology and synaptic function [1, 68, 70]. What could then be
the role of a signaling event from the synapse to the muscle? We speculate that upon
synaptic stimulation, TGF-β ligands are released together with the neurotransmitters. If
this is true, postsynaptic signaling coupled to synaptic activity could provide the muscle
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with information about the activity of the neuron and thus control the growth and de-
velopment of the neuromuscular junction. It will be interesting to study experimentally
whether the same vesicles that contain the neurotransmitter contain the TGF-β growth
factor.

In future work, our theoretical description of Mad intracellular trafficking can be
used to examine the relation between the Dpp and P-Mad gradients in the growing wing
disk. Based on our microscopic description for a single cell, one can develop a continuum
theory of Mad intracellular trafficking on the level of a tissue. In this description, the
concentration pmov in the nuclei of the moving cells corresponds to the concentration
nPM + n∗PM of the discrete description, and the rate kp of Mad phosphorylation will
be some function of the Dpp concentration and thus depend on space. Moreover, our
microscopic description might also be useful to investigate on the single cell level possible
mechanisms for the regulation of the cell division rate by Dpp and P-Mad as discussed
in section 3.4. Eventually, this would allow us to study the full feedback between cell
rearrangements in growing tissues, the formation of morphogen gradients, and the control
of the cell division rate via P-Mad signaling in response to the morphogenetic signal.
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Chapter 5

Summary and outlook

In this work, we theoretically investigated morphogenetic signaling processes that occur
during the development and growth of multicellular organisms. As our main results,
we developed a continuum description of cell rearrangements in anisotropically growing
tissues. We have shown that the flow field of cell movements which result from oriented
cell division and apoptosis enters as a drift term in the transport equation of morphogen
spreading, which we have discussed in detail. And finally, we developed a microscopic
theoretical description of the transduction machinery of morphogenetic signals within
an individual cell.

Dynamics of anisotropic tissue growth In chapter 2, we have presented a coarse-
grained physical description of cell rearrangements in growing tissues caused by oriented
cell division and apoptosis [14]. Our continuum theory which describes the tissue as an
effective viscous material predicts average cellular trajectories that exhibit anisotropic
scaling behaviors. If cell division and apoptosis balance, there is no net growth, but for
anisotropic cell division the tissue undergoes spontaneous shear deformations.

Moreover, we developed a discrete fluid-like model in which individual cells are
treated as elastic objects that interact with each other via potential forces and friction
forces. In our numerical simulations, in which cell division and apoptosis is implemented
as a stochastic process, we found flow fields and cell trajectories that are on average well
described by our continuum theory.

Based on our continuum description, we predicted shape changes of epithelia caused
by oriented cell division and apoptosis. Our theoretical results were compared to mea-
sured shapes of the Drosophila wing disk during development. We have shown that our
continuum theory describes the observed shape changes of the tissue boundary very well,
which allowed us to determine the isotropic and anisotropic parts of the growth rate in
the wing disk. We thereby revealed that the disk does grow anisotropically, and that
the strength of the anisotropy depends on the expression level of the morphogen Dpp.

Morphogen gradients in growing tissues In section 3.2, we have discussed the
effects of cell rearrangements on the spreading of morphogens at the example of Dpp in
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the growing wing disk. Based on the continuum description of morphogen transport by
Bollenbach et al. [17, 18, 19], we have shown that cell movements due to cell division
cause a drift term in the effective diffusion equation for morphogen transport. We have
calculated the steady state of the concentration profile (see Eq. (3.10)) which is given by
a sum of confluent hypergeometric functions and approaches the exponentially decaying
concentration profile (3.3) in the limit of vanishing growth rate. As for the average cell
trajectories in the tissue, growth causes a power law for the decay of the morphogen
gradient. We have discussed the growth effects of stretching and dilution on morphogen
gradients which are captured by the drift term in the transport equation. For Dpp, the
stretching of the gradient leads to a symmetry break in the concentration profile (see
Fig. 3.3), which became evident by a coordinate transformation of the diffusion-advection
equation into the system of fixed center of the Dpp source, see Eq. (3.11).

In sections 3.1 and 3.3, we applied our theory of morphogen transport in growing
tissues on recent experimental data on the spreading of Dpp in the developing wing
disk. We presented an analysis of FRAP experiments by which the kinetic parameters
of Dpp spreading have been determined at different stages of wing disk development.
Furthermore, our FRAP analysis for thermosensitive “shibire-rescue” mutant flies has
shown that endocytosis is required for Dpp movement, which is dominated by intra-
cellular transport in agreement with transcytosis and inconsistent with extracellular
diffusion [55]. We have used the measured parameters for a numerical calculation of the
evolution of the Dpp concentration profile during wing disk development, which is well
described by a succession of adiabatically changing steady-state gradients. It turned out
that the drift of Dpp molecules due to growth is negligible, so that the decay length of
the Dpp gradient is not significantly changed by growth. Nevertheless, tissue growth
plays a crucial role for morphogenetic signaling since it strongly affects the cellular Dpp
concentration as the cells change their position within the Dpp gradient, see Fig. 3.8.

In section 3.4, we finally addressed the unsolved question how the graded Dpp con-
centration profile can control the approximately homogeneous growth rate in the wing
disk. In view of our results on the Dpp gradient during wing disk development, we have
discussed several approaches that try to explain growth regulation by Dpp. We found
that the relative change of the cellular Dpp concentration in time provides a possible
rule for growth control at late developmental stages, even though it lacks an explanation
for growth regulation at early times. Eventually, we investigated concentration profiles
of P-Mad in the developing wing disk, which mediates the Dpp signal within the cells.
We have shown that the relative rate of change σ of the cellular P-Mad concentration
is position independent throughout development. Furthermore, it turned out that the
growth rate of the wing disk increases linearly with small σ and saturates at large σ.
Therefore, the relative change of the cellular P-Mad concentration in time is a possible
measure for the regulation of the cell division rate throughout wing disk development.

Kinetics of TGF-β signaling in the cell In chapter 4, we focused on the intracel-
lular transduction of the morphogenetic signal via the phosphorylation of Mad proteins.
We developed a microscopic theoretical description of the kinetics of Mad intracellular
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trafficking in response to the binding of TGF-β ligands to receptors on the cell surface
[33]. We determined the concentrations of different Mad species in the cytosol and nu-
cleus of the cell at steady state, and we solved the dynamics for the nuclear trafficking
of Mad and P-Mad in case of a cytosolic protein reservoir.

Our theoretical results were compared to FRAP experiments within muscle cells at
developing neuromuscular junctions of the fruit fly. We determined the relative pool
sizes of Mad and P-Mad in the cytosol and nucleus, as well as the nuclear import and
export rates of the different Mad species. Moreover, we determined the phosphorylation
rate of Mad in response to receptor-mediated TGF-β signaling. We found that the
phosphorylation rate increases with increasing levels of synaptic activity, which shows
that synaptic signaling via neuronal action potentials modulates developmental signaling
via TGF-β growth factors.

Discussion In our investigation of the growth of incompressible tissues (see section
2.1.3), we focused on internal force balances since we were mostly interested in average
cell rearrangements that result from cell division and apoptosis. Possible external in-
teractions as e.g. friction on a substrate can be taken into account by an external force
density as introduced in Eq. (2.2). Moreover, the parameters of our theory might de-
pend on position in the tissue as in particular the orientation p of the cell division axis
[9]. Such position dependencies, which we have neglected for simplicity, may cause the
small deviations between the measured effective growth rates in the wing disk and the
optimized function keff (ϕ) that results from our theory (see Fig. 2.9).

While we focused in our discussion of the morphogen transport equation (3.7) on
Dpp spreading in the growing wing disk, Eq. (3.7) also holds for the spreading of other
morphogens in growing epithelia with modified source terms. An example for morphogen
transport that can be described by Eq. (3.7) with a different source term is given by Hh,
which is produced in the whole posterior compartment of the wing disk and spreads into
the anterior compartment where it regulates the production of Dpp. Another example
is Wg, which is produced in a small stripe at the dorsal-ventral compartment boundary
in the wing disk. In contrast to Dpp, Wg is produced on both sides of the compartment
boundary so that the stretching of the gradient due to growth does not cause a symmetry
breaking in the Wg concentration profile.

Concerning our data analysis in sections 3.3 and 3.4, the fits to the measured decay
length λp(t) of the P-Mad gradient and the concentration P0(t) next to the Dpp source
as functions of larval age (see Fig. 3.10) are not as reliable as the fits to the data for
the corresponding quantities λ(t) and C0(t) that characterize the Dpp gradient (see Fig.
3.4). Further experiments need to be performed to validate the optimized functions of
λp(t) and P0(t). Nevertheless, the current data strongly indicates that the decay length
of the P-Mad gradients undergoes a faster increase during wing disk development than
the decay length of the Dpp gradients, which is the reason for the different position
dependencies of the relative rate of change of the cellular concentrations of the two
proteins (see Figs. 3.9, B and 3.11, C). In the possible rule for growth regulation by the
relative change of the cellular P-Mad concentration in time (see Eq. (3.21)), it seems that
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the decay length λp(t) scales with the tissue length (see Fig. 3.12) in order to generate
homogeneous tissue growth (see Eq. (3.22)).

In our microscopic theoretical description of the kinetics of Mad intracellular traffick-
ing in response to receptor-mediated TGF-β signaling, we only took linear exchange pro-
cesses between the different Mad pools into account (see Eq. (4.1)), which was sufficient
to describe the FRAP data of Mad nuclear trafficking at the Drosophila neuromuscular
junction. However, nonlinear exchange processes might be relevant in other systems as
e.g. in the wing disk. So far, we did not study the kinetics of Mad intracellular trafficking
in the wing disk, because there, the cells with an average diameter of about 2.6µm are
much smaller than the muscle cells, in which a cell nucleus has an average diameter of
about 6.7µm. Therefore, FRAP experiments within individual cells in the wing disk are
much more difficult than in muscle cells and have not yet been performed.

Outlook Our theoretical description of the dynamics of anisotropic tissue growth,
which was developed in this work and tested experimentally by measured shape changes
of the Drosophila wing disk during development, can be further tested by clone exper-
iments in the wing disk. In these experiments, some cells are marked fluorescently at
an early stage of wing disk development. At each cell division, the two daughter cells
inherit the fluorescent signal from the dividing mother cell. By that, the area, shape,
and position of cell clusters formed by the descendants of the initially marked cells can
be recorded and quantified at a later stage of development. The average area and shape
of clones depending on the position in the tissue can be determined from our continuum
theory and compared to the experimental data. Moreover, the formation of clones can
be studied in our discrete fluid model. In our growth simulations, we have found that
the fragmentation of clones, i.e. the number of cell clusters into which a single clone is
separated, depends on tissue viscosity. Therefore, the clone experiments can be used to
constrain the parameter space of our theoretical description.

Furthermore, our simulations of tissue growth can be applied to study the condi-
tions under which a straight compartment boundary between two distinguishable cell
populations forms, as e.g. the AP boundary in the wing disk, see Fig. 1.2. It has been
shown that a reduction of the attractive force f1 in our discrete fluid model (see Fig. 2.2)
for the interaction between cells of different type, while keeping the interaction between
cells of the same type unchanged, leads to the formation of a straight compartment
boundary [79].

Concerning our analysis of morphogen gradients in growing epithelia, we still lack
a theoretical description of the formation of the P-Mad gradient which intracellularly
mediates the Dpp signal in the growing wing disk. In such a description, one has to take
into account the phosphorylation of Mad in response to the Dpp signal, the dephospho-
rylation of P-Mad molecules, the stretching and dilution of the P-Mad gradient due to
tissue growth, and a possible boost of the cellular P-Mad concentration during each cell
division that has been observed in experiments [15]. Moreover, the intracellular traffick-
ing of Mad and P-Mad which has been investigated in this thesis has to be taken into
account, since the measured concentration profiles in the wing disk represent nuclear
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P-Mad inside the cells (see Fig. 3.10). An understanding of the relation between the
cellular Dpp and P-Mad concentration would allow to simulate the feedback between
the formation of the concentration profiles of these proteins and tissue growth on the
basis of our rule for growth control by the relative rate of change of the cellular P-Mad
concentration (see Eq. (3.21)).

To answer the question, how the relative rate of change of the cellular P-Mad con-
centration could regulate the division rate of a cell, a microscopic theoretical description
of growth control needs to be developed. Moreover, our rule for growth regulation has to
be tested experimentally. Experiments in which the relative rate of change of the cellular
P-Mad concentration is manipulated are in preparation. Such a manipulation can e.g.
be achieved in experiments, in which the increase of the width w(t) of the Dpp source
is stopped at different larval ages during development. Another example are cell culture
experiments, in which the relative rate of change of the Dpp and P-Mad concentration
can be controlled by hand. It will be interesting to see whether modifications of the
relative rate of change of the cellular P-Mad concentration lead to changes in the growth
rate that are consistent with our rule for growth control (see Eq. (3.21)).

Overall, this work demonstrates the strength of the interplay between quantitative
biological experiments and concepts of theoretical physics for shedding more light on
morphogenetic signaling processes in growing tissues. We look forward to future research
in this exciting field, which maybe will answer questions such as why cats are smaller
than lions, and why our left and right arm are roughly of the same length.
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Appendix A

Mechanics of tissue growth

Here we present some analytical calculations performed on the basis of our theory of
anisotropic tissue growth. First we discuss the growth of compressible tissues. In the
continuum limit, we show how the growth rate kg and the apoptosis rate ka are related
to the probability p for cell division and the cell lifetime tL of our discrete descrip-
tion. We briefly explain how the force balance Eq. (2.10) of the discrete model is solved
numerically. Moreover, we show how tissues change their shapes according to cell re-
arrangements caused by oriented cell division. And finally, we discuss how the shape
changes of the wing disk are measured.

A.1 Growth of compressible tissues

In this section, we consider a compressible tissue with bulk elastic modulus χ. For
simplicity, we focus on the case of isotropic growth in polar coordinates, i.e. µ = 0,
v(r) = v(r)er with constant rates of growth and apoptosis. The cell density and the
flow velocity obey

∂tρ = (kg − ka)ρ−
1

r
ρv − ρ∂rv − v∂rρ , (A.1)

(

∂2
r +

1

r
∂r −

1

r2

)

v =
1

η + ζ
∂rP . (A.2)

With the initial condition ρ(r ≤ R0, t = 0) = ρi of constant cell density ρi within an
area of radius R0, the dynamics of the cell density and the flow velocity are given by

ρ(r, t) =
ρs

1 − (1 − ρs
ρi

)e−krt
, (A.3)

v(r, t) =
1

2ζ

(

χ
ρ(r, t) − ρp

ρp
− Pext

)

r er . (A.4)

Here the relaxation rate is kr = kg − ka + (Pext + χ)/ζ. In the absence of cell division,
apoptosis and external pressure the tissue relaxes with the rate χ/ζ. The cell density in
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the limit of stationary growth for t > k−1
r becomes a constant ρs = ρp(χ+Pext + ζ(kg −

ka))/χ, where ρp is the reference cell density at which the pressure vanishes. During
stationary growth, the pressure is given by Ps = Pext + ζ(kg − ka), and the flow field
is v = (kg − ka)r/2. The growth of the tissue radius then obeys Ṙ = (kg − ka)R/2.
Therefore, the system grows exponentially with cell doubling time t2 = ln 2/(kg − ka).

A.2 Cell division and apoptosis in the continuum limit of

the discrete description

In this section, we calculate the growth rate kg and the apoptosis rate ka in the continuum
limit from the average lifetime t̄L of a cell after which it divides with probability p and
undergoes apoptosis with probability 1 − p. The rates of the continuum description as
well as the average cell lifetime and probability for cell division are considered to be
constants.

Given N0 cells at time 0, the number of tissue cells at time t is

N(t) = N0 + Z(t) −D(t) . (A.5)

Here Z(t) is the total number of new cells that have been born until time t where we
count one new cell for each cell division. D(t) is the total number of dead cells until
time t. In the continuum limit, the change of the total number of tissue cells is thus
given by Ṅ = Ż − Ḋ. On the other hand, the change of the total cell number of the
tissue obeys Ṅ = (kg − ka)N according to Eq. (2.1). Therefore the change of new cells
and dead cells can be described by Ż = kgN and Ḋ = kaN , respectively. From these
differential equations, we can calculate the total number of new cells Z(t) and of dead
cells D(t) as

Z(t) = N0
kg

kg − ka

(

e(kg−ka)t − 1
)

, (A.6)

D(t) = N0
ka

kg − ka

(

e(kg−ka)t − 1
)

. (A.7)

Now in order to relate the rates kg and ka to the average cell lifetime t̄L and the
probability p for cell divisions, we calculate Z(t) and D(t) in the discrete model. As
before, the tissue consists of N0 cells at time 0. After the time t̄L, there will be on
average Z(t̄L) = pN0 new cells and D(t̄L) = (1 − p)N0 cells will have died. Thus the
total number of cells at time t̄L is on average given by N(t̄L) = 2pN0. Similarly, we can
calculate the average total number of new and dead cells at time gt̄L

Z(gt̄L) = N0
p

2p − 1
((2p)g − 1) , (A.8)

D(gt̄L) = N0
1 − p

2p − 1
((2p)g − 1) . (A.9)

In the continuum limit, these equations have to be equal to the expressions (A.6) and
(A.7) for Z(t) and D(t) at time t = gt̄L. This leads to the relations kg/(kg − ka) =
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p/(2p− 1) and kg − ka = ln(2p)/t̄L, from which the Eqs. (2.11) and (2.12) as well as the
relation between the effective cell doubling time t2 = ln 2/(kg − ka) and the average cell
lifetime t̄L follow, see section 2.2.2.

A.3 Numerical simulations of tissue growth

In order to solve the dynamic Eq. (2.10) numerically, we write it as

η̄

N
∑

j=1

Λij
dxj
dt

= f i , (A.10)

where f i = −∇iU(x1,x2, ...,xN ) is the total force acting on particle i. The matrix
Λij = niδij −mij is determined by the number ni of the nearest neighbors of particle i
and the matrix elements mij which are one if particle j is neighbor of particle i and zero
otherwise.

All forces in Eq. (2.10) are internal forces, i.e.
∑

i f i = 0, and thus the matrix Λij
cannot be inverted. Therefore the motion of the center of mass x̄ = (1/N)

∑

i xi needs

to be specified. In our simulations x̄ is fixed. Inserting dx1/dt = −
∑N

j=2 dxj/dt into
Eq. (A.10), we get

η̄
N
∑

j=2

Λ̃ij
dxj
dt

= f i , (A.11)

with the invertible matrix Λ̃ij = Λij − Λi1. With this equation, we can now calculate
the velocities dxi/dt for all particles at each time step.

As parameter values, we choose for all simulations the average cell lifetime t̄L = 8h,
with standard deviation σL = 0.5 h, length ratios b/a = 1.25, d/a = 1.75, cell diameter
a = 2.6µm, |f0/f1| = 10 (see Fig. 2.2), and nearest neighbor number n = 6. The spread
∆ϕ of the division angles around the x-axis is varied in our simulations and specified in
the Figs. 2.3 to 2.6. Note that the viscosity η̄ as well as the forces f0 and f1 are not
themselves simulation parameters, because only the ratios f0/η̄ and f1/η̄ occur in the
dynamic Eq. (2.10). Together with the values given here, these ratios are specified by the
values for the dimensionless parameter ξ = η̄a/(t̄Lf0), which are given in the captions of
Figs. 2.3 to 2.6. Simulations in the absence of apoptosis (p = 1) start with a single cell
at time zero. For simulations with p < 1, we start with an initial configuration of 512
cells generated by isotropic growth.

A.4 Relation between cell movements and tissue shapes

Here we calculate how epithelium boundaries change their shapes in growing incompress-
ible tissues if cell division is oriented. The radial distance between the center of mass
of a tissue and a cell located at the tissue boundary is defined as R(ϕ(t), t). The polar
angle ϕ(t) is a function of time since it can change during development (see Fig. 2.7).
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The initial angle is defined as ϕ0 = ϕ(t0). The cell trajectory (x(t), y(t)) is characterized
by the flow velocity (2.7). It follows that x(t) = R0(ϕ0) cosϕ0exp((k0 + k1)(t − t0)),
y(t) = R0(ϕ0) sinϕ0exp((k0 − k1)(t − t0)) where R0 is the initial radial distance of the
cell. The radial position R(ϕ(t), t) of the boundary cell at time t can be written as

R(ϕ(t), t) =
y(t)

sinϕ(t)
= R0(ϕ0)e

(k0−k1)(t−t0) sinϕ0

sinϕ
. (A.12)

The polar angle describing the position of the boundary cell at time t is related to its
initial value by

tanϕ =
y(t)

x(t)
= tan(ϕ0)e

−2k1(t−t0) , (A.13)

so that the initial angle ϕ0 obeys

ϕ0 = arctan
(

tan(ϕ)e2k1(t−t0)
)

. (A.14)

Inserting this expression for ϕ0 into Eq. (A.12) and using the identity sin(arctan(α)) =
α/

√
1 + α2, Eq. (A.12) becomes

R(ϕ, t) = R0

(

arctan
(

tan(ϕ)e2k1(t−t0)
)) e(k0+k1)(t−t0)

cosϕ
√

1 + e4k1(t−t0) tan2ϕ
, (A.15)

from which Eq. (2.14) follows.

A.5 Shape changes of the developing Drosophila wing disk

In experiments performed by O. Wartlick, the shapes of wing disk boundaries have been
measured at different stages during larval development. The wing disks are dissected
from the larvae and visualized under the confocal microscope by DAPI stainings. In
these experiments, the fluorescent molecule DAPI binds to the DNA in the nuclei of
the disk cells. The molecules are excited with ultraviolet light, and their light emission
at 461 nm is measured. The pictures resulting from the fluorescent microscopy are read
with MATLAB software with which the boundary, the area and the center of mass of the
disks are determined. For each disk, the radial distances R(ϕm, t) between the boundary
and the center of mass are measured for the angles ϕm = m2π/400 (m = 0, 1, ..., 399).
The disks are oriented such that R(π/2, t) is the longest distance.

Unfortunately, the growth of an individual disk cannot be visualized in vivo, because
the disks die about one hour after dissection. Hence one has to measure the shapes
of different wing disks of varying ages. In Fig. A.1, the area A of the disks is plotted
logarithmically as a function of disk age. For our analysis, we consider only those disks
with lifetimes between t0 = 24h and tf = 66h, when the area grows exponentially as
indicated by the red fit curves.

We have quantified the effective growth rate keff (ϕm) of the wing disk along the angle
ϕm by a simple phenomenological description. Since we focus on the exponential growth
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Figure A.1: Growth of the Drosophila wing disk during development. (A,B) Area growth
of wildtype (WT) (A) and GFP-Dpp wing disks (B). The area A of 119 individual WT
and 126 GFP-Dpp disks is plotted logarithmically as a function of larval age (in hours
after hatching). The blue curves represent fits of the function A(t) = A0 exp(atq/(τ q +
tq)) to the data, using a, τ , and q as fit parameters. The initial area A0 can be estimated
by A0 = 250µm2 by analyzing pictures of the wing disk at this early stage [16]. The red
curves are exponential fits to the data points of 56 WT and 49 GFP-Dpp disks between
the ages t0 = 24h and tf = 66h. The fits show that the area of both WT and GFP-Dpp
disks grows exponentially by about two orders of magnitude during the time interval
[t0, tf ].

phase of the disk, we describe the radial position R(ϕm, t) of the disk boundary at each
angle ϕm by the ansatz

R(ϕm, t) = R0(ϕm) exp(keff(ϕm)(t− t0)) . (A.16)

Here R0(ϕm) is the initial radius at time t0 and angle ϕm. For each of the 400 angles
ϕm, we fit the logarithm of Eq. (A.16) to the logarithms of the measured radii R(ϕm, t),
using R0(ϕm) and keff (ϕm) as fit parameters. The best fit parameters for keff(ϕm) are
plotted in Fig. 2.9. The average initial disk shape is approximated by the truncated
Fourier series RF

0 (ϕ) = a0/2 +
∑20

i=1(ai cos(iϕ) + bi sin(iϕ)), which is fitted to R0(ϕm)
with the fit parameters ai and bi (i = 1, ..., 20).
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Appendix B

The Dpp gradient in the growing

wing disk

In this chapter, we present several aspects of the dynamics of Dpp spreading in the
growing wing disk. We show how Dpp transport is described from the view of a moving
and proliferating cell. Then we calculate the steady state of the diffusion-advection
equation (3.8) that describes Dpp transport in the growing disk. Furthermore, we present
simulations of the feedback between the Dpp concentration and the tissue growth rate
if growth is controlled by the relative rate of change of the cellular Dpp concentration
as discussed in section 3.4. Finally, we discuss the measurements of P-Mad gradients in
the wing disk.

B.1 Coordinate transformation of the Dpp transport equa-

tion

In section 3.2.1, we have derived the transport equation for the morphogen Dpp in the
growing Drosophila wing disk. Here we perform a coordinate transformation into a
growing system to get the transport equation from the view of the proliferating and
moving cells.

The coordinate transformation from the static system S in which cell rearrangements
are described by the flow velocity (2.7) into the growing system S̃ in which the disk seems
to be static is characterized by the position vector r̃ which is given by

(

x̃

ỹ

)

=





x exp
(

−
∫ t
ti
dt′kx(t′)

)

y exp
(

−
∫ t
ti
dt′ky(t′)

)



 , (B.1)

where ti denotes the age of the larva when the disk starts to grow. The Dpp concen-
tration in the growing system is defined as c̃(r̃, t) = c(r, t). The derivatives of c̃ in

time and space are thus given by ∂tc = ∂tc̃ − kxxe
−

R t

ti
dt′kx(t′)

∂x̃c̃ − kyye
−

R t

ti
dt′ky(t′)

∂ỹ c̃,

∂xc = e
−

R t

ti
dt′kx(t′)

∂x̃c̃, ∂yc = e
−

R t

ti
dt′ky(t′)

∂ỹ c̃, ∂
2
xc = e

−2
R t

ti
dt′kx(t′)

∂2
x̃c̃, and ∂2

yc =
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e
−2

R t

ti
dt′ky(t′)

∂2
ỹ c̃. Here the derivative ∂tc̃ denotes the time derivative of c̃ at fixed posi-

tion r̃ within the growing coordinate system. Inserting these expressions into the Dpp
transport equation (3.7) and using c(r, t) ≈ c(x, t) due to the symmetry of the problem
(see section 3.1.1), we get

∂tc̃(x̃, t) =D(t) exp

(

−2

∫ t

ti

dt′kx(t
′)

)

∂2
x̃c̃(x̃, t) − (k(t) + kg(t))c̃(x̃, t)

+ ν(t)Θ(−x̃)Θ
(

x̃+ w(t) exp

(

−
∫ t

ti

dt′kx(t
′)

))

.

(B.2)

We find that in the growing coordinate system, the Dpp transport equation does
not contain the stretching term −kxx∂xc as in the case of the static coordinate system,
see Eq. (3.8). However, the diffusion coefficient and the width of the Dpp source are
modified. How can we interpret these findings? An observer in the growing system S̃
neither observes growth nor movement of the cells. From the view of the static system
S, this observer moves with the cells that carry Dpp molecules with themselves. Hence
the observer does not see a stretching of the gradient. However, the observer in the
growing coordinate system observes a decreasing diffusion coefficient because due to
tissue growth, the time it takes for molecules to diffuse between two points x̃1 and x̃2

in the growing system S̃ increases during development as their distance increases in the
static system S. Similarly, the source shrinks from the view of this observer, because it
grows slower than the tissue within the static coordinate system (see section 3.3.1).

In section 3.3.2, we have shown that the Dpp concentration profile during develop-
ment can be well described as a succession of steady-state gradients. In this approxima-
tion, the adiabatically changing steady state of Eq. (B.2) for x > 0 is given by

c̃(x̃, t) =
ν

2k

(

1 − exp
(

−w
λ

))

exp



− x̃e
R t

ti
dt′kx(t′)

λ



 . (B.3)

Using the definition c̃(sl0, t) = cmov(s, t), this expression for the cellular Dpp concentra-
tion can be identified with Eq. (3.14).

B.2 Steady state of the diffusion equation with drift term

In this section, we calculate the steady state of the 1d Dpp transport equation (3.8) for
fixed values of the parameters D, k, ν, w, kx and kg. We thus have to solve Eq. (3.9), for
which we have imposed the following boundary conditions: (i) c(x) → 0 for x → ±∞,
(ii) c continuous at x = 0, (iii) j = −D∂xc + kxxc and thus ∂xc continuous at x = 0,
(iv) c continuous at x = −w, and finally (v) ∂xc continuous at x = −w.

First of all, we can identify the homogeneous part of Eq. (3.9) with the general
confluent equation [2]

w′′ +

(

2A

x
+
bh′

h
− h′ − h′′

h′

)

w′ +

((

bh′

h
− h′ − h′′

h′

)

A

x
+
A(A− 1)

x2
− ah′2

h

)

w = 0 ,

(B.4)
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choosing w(x) = c(x), h(x) = kx

2Dx
2 and either (1) A = 0, a =

k+kg
2kx

and b = 1/2, or (2)

A = −1, a =
k+kg
2kx

+1/2 and b = 3/2. The two linear independent solutions of Eq. (B.4)

are w(x) = x−AF (a, b, h(x)) and w(x) = x−AQ(a, b, h(x)), where F (a, b, z) ≡ 1F 1(a, b, z)

is the confluent hypergeometric function, and Q(a, b, z) = F (a, b, z)− z1−b Γ(1+a−b)Γ(b)
Γ(a)Γ(2−b) ×

F (1 + a − b, 2 − b, z). With the above choices of the function h(x) and the parameters

A, a and b, we find the two linear independent solutions c(x) = Q
(

k+kg
2kx

, 1
2 ,

kx

2Dx
2
)

and

c(x) = xF
(

k+kg
2kx

+ 1
2 ,

3
2 ,

kx

2Dx
2
)

of the homogeneous part of Eq. (3.9). For −w ≤ x ≤ 0,

a special solution of the inhomogeneous equation (3.9) is given by c(x) = ν
k+kg

. The

general solution of Eq. (3.9) can thus be written as

c(x) =



















C1Q
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k+kg
2kx

, 1
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kx

2D |x|2
)
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(
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2 ,

3
2 ,

kx

2Dx
2
)
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C2Q

(
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2kx

, 1
2 ,

kx

2Dx
2
)

+ C5xF
(

k+kg
2kx

+ 1
2 ,

3
2 ,

kx

2Dx
2
)

+ ν
k+kg

−w ≤ x ≤ 0

C3Q
(

k+kg
2kx

, 1
2 ,

kx

2Dx
2
)

+ C6xF
(

k+kg
2kx

+ 1
2 ,

3
2 ,
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2
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x ≥ 0
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(B.5)

For x ≤ −w, we chose the function Q
(

k+kg
2kx

, 1
2 ,

kx

2D |x|2
)

= Q
(

k+kg
2kx

, 1
2 ,

kx

2Dx
2
)

+ 2xq ×

F
(

k+kg
2kx

+ 1
2 ,

3
2 ,

kx

2Dx
2
)

with q =
√

2kx/D Γ
(

k+kg
2kx

+ 1
2

)

/Γ
(

k+kg
2kx

)

as one of the two

linear independent solutions of Eq. (3.9), which will be useful to satisfy the boundary
conditions.

We now have to specify the constants C1, .., C6 such that the boundary conditions (i)-
(v) are fulfilled. For condition (i), we need to study the asymptotic behavior of Eq. (B.5).
Using F (a, b, z) = Γ(b)/Γ(a) ezza−b(1+O(z−1)) and Q(a, b, z) = sin(πb)/π Γ(b)Γ(1+a−
b)z−a(1 + O(z−1)) for z → ∞ (see e.g. [2]), as well as limx→−∞Q

(

k+kg
2kx

, 1
2 ,

kx

2D |x|2
)

=

limx→∞Q
(

k+kg
2kx

, 1
2 ,

kx

2Dx
2
)

, we can conclude that

C4 = 0 and C6 = 0 . (B.6)

With the formula F (a, b, 0) = 1 ∀a, b > 0 and thus Q
(

k+kg
2kx

, 1
2 , 0
)

= 1, the boundary

condition (ii) implies that

C3 = C2 +
ν

k + kg
. (B.7)

Next we consider the first derivatives of the functions F and Q to study boundary
condition (iii). Using ∂xF (a, b, cx2) = 2cxa/bF (a + 1, b + 1, cx2) and ∂xQ(a, b, cx2) =

−2cxa/b sin(πb)/ sin(π(b+1))Q(a+1, b+1, cx2), it follows that ∂xQ
(

k+kg
2kx

, 1
2 ,

kx

2Dx
2
)

∣

∣

x=0

= −q. Condition (iii) hence implies that −C2q + C5 = −C3q, and thus

C5 = − ν

k + kg
q . (B.8)

Let us now determine the remaining constants C1 and C2 with the help of the boundary
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conditions (iv) and (v). The continuity of the Dpp concentration at x = −w (iv) yields

C1 = C2
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(B.9)
And finally, we specify C2 by using the boundary condition (v). After a rather lengthy
calculation in which we apply the identities already used above, one finds

C2 =
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(
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. (B.10)

We can summarize that the Dpp concentration in steady state for given values of the
parameters D, k, ν, w, kx and kg is described by Eq. (3.10) with the constants C1, C2

and C3 given in the Eqs. (B.7), (B.9), and (B.10).

B.3 The feedback between concentration and growth rate

In this section, we discuss numerical simulations of the feedback between the Dpp con-
centration and the growth rate in the wing disk, see section 3.4. In these simulations,
we solve the one dimensional diffusion-advection equation (3.8) which describes Dpp
transport in the growing wing disk, and we calculate the cellular Dpp concentration
via ċmov = ċ + vx∂xc. We put in the parameters D(t), k(t), ν(t), and w(t) that have
been determined experimentally, see section 3.3.1. With the onset of Dpp production
at time ti = 28.4 h, we start tissue growth. Until the disk age ton = 100h, we use the
growth rate kx(t) = l̇(t)/l(t), putting in the fit of the measured length l(t) of the poste-
rior disk compartment, and we consider kg(t) = 2kx(t) throughout development. When
the larva has reached the age ton = 100h, we determine the growth rate by our rule
kg(x, t) = αγ(x/l(t), t) + β. Thus kg will now be a function of space and time, and we
calculate the flow velocity by vx = 1

2

∫ x
0 dx

′kg(x
′, t).

So on the one hand, kg(x, t) depends on the cellular Dpp concentration cmov(x, t), and
on the other hand, cmov(x, t) depends on kg(x, t). In order to solve this feedback problem,
we use the following algorithm. Given that we know at time t the Dpp concentration
c and the growth rate kg at all positions in the tissue, and thus the cell velocity vx =
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1
2

∫ x
0 dx

′kg(x
′, t), the spacial derivatives ∂xc and ∂2

xc, as well as the Dpp flux j = −D∂xc+
vxc and its derivative delxj, we can determine the dynamics of Dpp transport and tissue
growth iteratively: (i) We calculate the time derivative of the Dpp concentration at
time t by Eq. (3.8), so that ċ is some function f1 that depends on the known values
c(x, t), ∂xj(x, t), and kg(x, t), i.e. we can write ċ(x, t) = f1(c(x, t), ∂xj(x, t), kg(x, t)).
(ii) The time derivative of the cellular Dpp concentration at time t is determined by
ċmov = ċ+ vx∂xc, and thus ċmov can be expressed as ċmov = f2(∂xc(x, t), ċ(x, t), vx(x, t)).
(iii) The Dpp concentration at time t+∆t is calculated by c(x, t+∆t) = c(x, t)+∆t ċ(x, t),
and hence c(x, t+∆t) = f3(c(x, t), ċ(x, t)). (iv) Since we do not know the time derivative
ċmov of the cellular Dpp concentration at time t+ ∆t, we need to calculate kg explicitly
as

kg = α

(

D∂2
xc

c
− (k + kg) +

ν

c
Θ(−x)Θ(x+ w)

)

+ β , (B.11)

and therefore, the growth rate at time t+∆t and position x in the wing disk is given by

kg =
1

1 + α

(

β + α

(

D∂2
xc

c
− k +

ν

c
Θ(−x)Θ(x+ w)

))

. (B.12)

Hence we can write kg as kg(x, t+∆t) = f4(c(x, t+∆t), ∂2
xc(x, t+∆t)), where ∂2

xc(x, t+
∆t) can be calculated from c(x, t + ∆t) for all positions in the tissue. (v) From kg,
we can now determine the cell velocity vx = 1

2

∫ x
0 dx

′kg(x
′, t + ∆t) at time t + ∆t,

i.e. vx(x, t + ∆t) = f5(kg(x, t + ∆t)), and finally (vi), we calculate the Dpp flux at
time t + ∆t by j(x, t + ∆t) = −D(t)∂xc(x, t + ∆t) + vx(x, t + ∆t)c(x, t + ∆t), so that
j(x, t+ ∆t) = f6(c(x, t+ ∆t), ∂xc(x, t+ ∆t), vx(x, t+ ∆t)). By that, the functions f1 to
f6 are well defined and depend only on quantities that have been calculated before.

In Fig. B.1, A the length of the simulated wing disk is plotted logarithmically as a
function of time in comparison to the experimental data and the corresponding fit curve
described in section 3.3.1. We find that after the onset of growth control by the relative
rate of change of the cellular Dpp concentration at time ton = 100h, the simulated
growth of the tissue length matches the fit to the experimental data perfectly. Fig. B.1,
B shows the comparison between the simulated growth rate kg = 2kx and 2kx = 2l̇/l
determined from the fit to the experimental data in Fig. B.1, A as functions of time.
With the onset of our growth rule, the simulated growth rate starts to depend on position
within the tissue. However, this position dependence of the growth rate is rather small
in agreement with the observed weak position dependences of the growth rate [44].

We then studied whether we could start growth control by Dpp with our rule at
earlier times. Fig. B.1, C and D shows the results of a simulation in which growth
control by the relative rate of change of the cellular Dpp concentration is initiated at
time ton = 80h. Still, there is hardly any difference between the simulated tissue length
as a function of time and the fit to the experimental data, see Fig. B.1, C. However,
the position dependence of the growth rate plotted in Fig. B.1, D increases significantly
compared to the simulation in which growth control by γ was started at time ton = 100h.
Between the larval ages t = 80h and t = 120h, the growth rate in our simulation shows
a variation of up to a factor of about 3 between different positions in the tissue.
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Figure B.1: Simulated growth of the wing disk with onset of growth control by Dpp
at larval age ton = 100h (A,B) and ton = 80h (C,D). (A,C) Length of the posterior
compartment as a function of larval age. In these logarithmic plots, the growth of the
length of the simulated tissues is compared to the measured data and the corresponding
fit curve (see Fig. 3.4, D). (B,D) Tissue growth rate as a function of larval age. The
simulated growth rate is displayed as red dots for the positions xs(t) = sl(t) in the tissue
with s = 0 (boundary of the Dpp source) and s = 1 (boundary of the disk). The gray
regions between these curves represent the simulated growth rates for all other positions
in the receiving tissue, 0 < s < 1. The growth rate 2kx(t) = 2l̇(t)/l(t) with l(t) taken
from the fit to the experimental data in A and C is plotted in black. The dashed lines
indicate the time ton at which growth control via the relative rate of change of the cellular
Dpp concentration is initiated in our simulations.

If we decrease the time ton even further, the position dependence of the growth rate
increases further, and moreover the simulated growth of the tissue length starts to vary
significantly from the fit of the measured data. The reason for the increasing position
dependence of the growth rate is that the relative rate of change γ of the cellular Dpp
concentration becomes more and more position dependent at larval ages before t = 100h,
see Fig. 3.9, B. And since the relation between 2kx and γ̄ becomes ambiguous if we take
larval ages before t = 100h into account (see Fig. 3.9, C), the experimentally measured
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growth of the tissue length cannot be reproduced by our feedback simulations for the
whole development.

B.4 Measurements of P-Mad gradients in the wing disk

In immunostaining experiments performed by A. Kicheva [56], P-Mad molecules in
the cell nuclei in the wing disk are labeled fluorescently. The fluorescence intensity
is recorded with a confocal microscope and quantified, see Fig. 3.10, A. The experiments
are done in “GFP-Dpp rescue disks”, in which only GFP-Dpp but no endogenous Dpp
is produced [20]. The growth of these disks and the Dpp dynamics during development
are in well agreement with the dynamics of GFP-Dpp disks.

Unfortunately, there is no straightforward way to calibrate the fluorescence intensity
of immunostained proteins to concentration in molecules/µm2. One such attempt has so
far been reported in the literature [46], but in the case of P-Mad this would require having
a P-Mad-GFP fusion, where the protein is fluorescent only when phosphorylated, which
does not exist. Nevertheless, we are mainly interested in the relative rate of change σ of
the cellular P-Mad concentration, and we have ensured that the fluorescence intensity
is related linearly to the P-Mad concentration. Since we can only reliably compare
fluorescence intensities in disks of the same immunostaining, we have used the biggest
data set for our analysis of P0, see Fig. 3.10, C. However, the decay length of the P-Mad
gradients is independent of the absolute fluorescence intensity, so that we can compare
the data of different stainings for λp, see Fig. 3.10, B.
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Appendix C

Kinetics of cellular signaling

C.1 Fit of the microscopic description to the FRAP curves

As explained in section 4.2, we fit the double exponential Eq. (4.5) to the FRAP curves
(see Fig. 4.3), using A, B, kout and k′out as fit parameters and the constraint that the fit
parameters kout and k′out are the same for all three experimental conditions (control, K+

and TkvQD). In principle, this leads to three different values A1, A2, A3 and B1, B2, B3 of
the fit parameters A and B, respectively, which correspond to the three different mutant
conditions. Thus, if we include kout and k′out, there are in total eight fit parameters for
the three recovery curves. Since we assume that the quantities X, Y and Y ′ have the
same values for all these mutant conditions and that only Z differs, additional constraints
for the six values Ai and Bi are imposed. According to Eqs. (4.2), they can be expressed
as

X =
1 −Ai −Bi

Bi

Y ′ =
Y Bi

Y cstot,i/n
s
tot,i −Ai

,
(C.1)

where i = 1, 2 or 3 corresponds to the three mutant conditions. The ratio cstot/n
s
tot is

measured independently in the steady state except for the K+ condition for which the
measured value is unreliable and thus used as an additional fit parameter as discussed
below. Considering these constraints, we effectively reduce the number of free fit param-
eters by replacing the six parameters Ai and Bi by the parameters X, Y and Y ′. From
the fit of the experimental data, we hence obtain the values for kout and k′out, X, Y and
Y ′. Using the constraints given in Eqs. (C.1), we can determine all six corresponding
values Ai and Bi. The values of the quantity Z = kp/kd for the three mutant conditions
are determined according to the Eqs. (4.2)

Zi =
Y cstot,i
Ains

tot,i

− 1 . (C.2)

Here, the three different values of Zi correspond to changes in the phosphorylation rate
kp for the three different conditions.
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From the fits of the single exponential Eq. (4.8), we determine the average nuclear
mobile and thus immobile fractions and the effective nuclear export rates. From Eq.
(4.6) it follows that

ki = mken
s
tot/c

s , (C.3)

where cs is the cytosolic concentration in the steady state. Using the measured ratio
ns

tot/c
s, we can thus also calculate the effective nuclear import rates.

The effective import rates in the phenomenological model and some of the parameters
(specific import rates, ratios of exchange rates, and pool sizes) in the specific microscopic
description are calculated with the ratios cstot/n

s
tot (see Eqs. (C.1), (C.2), and (C.3)). In

the case of control and TkvQD experiments, these concentrations can be determined
experimentally and correspond to the average fluorescence in the cytosol and nucleus
before the FRAP experiment. However, this is not true for the K+ stimulation experi-
ment. In this case, before stimulation, the system is in the steady state corresponding
to the control. The bleaching of the fluorescence occurs 2 minutes after initiation of
the K+ stimulation, and therefore the system did not have enough time to relax from
the control steady state to a new steady state caused by the stimulation. Thus, our
experimental estimates of the steady-state values of the total nuclear and cytosolic Mad
concentrations under this condition is unreliable. Therefore, we have used the value of
cstot/n

s
tot in the K+ condition as an additional fit parameter in the specific model that

reflects the fact that its measured value might be incorrect. With this procedure, we
find cstot/n

s
tot = 0.22 in the K+ condition, while the measured value is about 0.31. This

difference confirms that for this condition, the measured value is unreliable. Indeed,
this measured value does not lead to a reasonable fit of the fluorescence recovery to the
experimental data. Taken together, the values for the rates obtained in the K+ condition
should serve only as an indication that the signaling state during stimulation is different
than in its absence, rather than as a quantitative assessment of the levels of signaling.

C.2 The immobile nuclear Mad pool

The immobile fraction of the total nuclear Mad concentration in the FRAP experiments
(see Fig. 4.3) reveals the existence of two different kinds of kinetics: fast kinetics between
one part of the nuclear concentration (the mobile nuclear fraction) and the cytosol which
recovers within the time scale of the experiment of about 1000 seconds, and slow kinetics
of the other part of the nuclear concentration (the immobile nuclear fraction) which takes
a much longer time to recover.

In order to address whether the immobile pool consists of Mad molecules bound to a
static structure inside the nucleus like the DNA, FRAP experiments were performed in
which the fluorescence of a small region within the nucleus was bleached and its recovery
kinetics was followed for a short period of time (up to 200 seconds), see Fig. C.1. By
the analysis of the fluorescence recovery of a smaller region with respect to the whole
nucleus, we can distinguish between the flow of molecules into/out of the nucleus and
the movement of fluorescent molecules within the nucleus. The experiment shows that
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Figure C.1: FRAP experiments in a small region within the nucleus of a muscle cell. (A-
C) Time-lapse images of the FRAP experiments. The images show the fluorescent signal
of GFP-Mad in control (A) and TkvQD flies (B), and of GFP-Histone2A (C) with which
the chromatin is marked. Images are displayed before (pre) bleaching the small spot
within the nucleus (indicated by a circle), immediately after bleaching (0”), and during
the recovery phase 15 and 187 respectively 760 seconds after the start of the experiment.
The scale bar equals 10µm. (D) Averaged FRAP curves for control (n = 9 experiments),
TkvQD (n = 9) and Histone2A animals (n = 2). The solid and dashed lines represent the
average fluorescence within the bleached region and of the whole nucleus, respectively,
normalized to their values before bleaching as functions of time. (E) Averaged FRAP
curves for control (n = 9) and TkvQD flies (n = 9). The measured average fluorescence
within the bleached region normalized to changes in the total nuclear fluorescence, to
the pre-bleach value, and to zero immediately after bleaching is plotted as a function
of time after bleaching. The solid lines represent fits of the function fs(t) to the data.
Figures A-D modified from [33].
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both the control (see Fig. C.1, A) and TkvQD (see Fig. C.1, B) recover to the total
nuclear concentration, see Fig. C.1, D. The fluorescence recovery in the bleached region
could hence be explained either by the movement of the chromatin inside the nucleus
together with the bound immobile pool of Mad molecules, or by the free movement of the
immobile pool of Mad molecules inside the nucleus. In order to distinguish between these
two possibilities, we performed the same FRAP experiment with a fluorescently labeled
histone protein which associates to the chromosome, see Fig. C.1, C. In this experiment,
the fluorescence does not recover within the bleached region (see Fig. C.1, C and D)
which is consistent with the idea that the chromosomes are stationary in interphase
nuclei. Therefore, the immobile pool of Mad molecules moves freely within the nucleus.
To account for the immobile fraction of the FRAP experiments of bleaching the whole
nucleus, these molecules are confined inside the nucleus, for example by binding to other
proteins so that these complexes cannot leave the nucleus through the nuclear pores,
and exchange with the mobile nuclear pool with slow kinetics.

Moreover the FRAP experiments of bleaching only a small area within the nucleus
allowed us to determine the diffusion coefficient for the movement of Mad molecules inside
the nucleus. For this purpose, the recovery curves for the spot data are first normalized
to changes in the total nuclear fluorescence per unit volume after bleaching to exclude
the effective import of molecules from the cytosol, and second the data is normalized
to zero after bleaching and to one for the initial value of the total fluorescence per unit
volume. The shape of the nucleus and of the bleached region is approximated by a
cylinder. Moreover we assume that the bleached spot is positioned in the center of the
nucleus so that the problem is invariant in the z-direction. Hence it can be simplified to
the situation of bleaching a circle in a plane. For an infinitely large plane, the recovery
of the normalized fluorescence in the small spot is described by [89]

fs(t) = e−2τD/t
(

I0(2τD/t) + I1(2τD/t)
)

, (C.4)

where I0 and I1 are modified Bessel functions [2], τD = r2b/(4D), rb is the radius of the
bleached area, and D is the diffusion coefficient. We fit this function to the normalized
data (see Fig. C.1, E), using rb = 3.34µm as an input and D as a fit parameter. For
control flies, we determine the diffusion coefficient D = 0.20±0.01µm2/s for the nuclear
Mad, whereas we find D = 0.11 ± 0.01µm2/s in TkvQD mutant flies.

How can we explain this difference in the diffusion coefficient in control and TkvQD

flies? In the scenario proposed above, we explained the free movement of the immobile
pool inside the nucleus by P-Mad proteins binding to certain co-factors which traps them
inside the nucleus. These more complex protein structures of the immobile Mad pool
might have a smaller diffusion coefficient as compared to that of the unbound molecules
of the mobile nuclear Mad pool. As the immobile fraction of TkvQD is much larger than
that of the control (see Fig. 4.3), this would lead to a smaller diffusion for TkvQD than
for control muscles, consistent with our findings.
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[45] M. González-Gaitán. Endocytic trafficking during Drosophila development. Mech-

anisms of Development 120, 1265 (2003).

[46] T. Gregor, E. F. Wieschaus, A. P. McGregor, W. Bialek, and D. W. Tank. Stability
and nuclear dynamics of the bicoid morphogen gradient. Cell 130, 141 (2007).

[47] T. Gregor, D. W. Tank, E. F. Wieschaus, and W. Bialek. Probing the limits to
positional information. Cell 130, 153 (2007).

[48] J. B. Gurdon and P. Y. Bourillot. Morphogen gradient interpretation. Nature 413,
797 (2001).

[49] Y. Hatwalne, S. Ramaswamy, M. Rao, and R. A. Simha. Rheology of active-particle
suspensions. Physical Review Letters 92, 118101 (2004).

[50] C. H. Heldin, K. Miyazono, and P. ten Dijke. TGF-β signalling from cell membrane
to nucleus through SMAD proteins. Nature 390, 465 (1997).

[51] B. Houchmandzadeh, E. Wieschaus, and S. Leibler. Establishment of developmen-
tal precision and proportions in the early Drosophila embryo. Nature 415, 798
(2002).

[52] L. Hufnagel, A. A. Teleman, H. Rouault, S. M. Cohen, and B. I. Shraiman. On
the mechanism of wing size determination in fly development. Proceedings of the

National Academy of Sciences of the United States of America 104, 3835 (2007).

[53] R. Keller. Shaping the vertebrate body plan by polarized embryonic cell move-
ments. Science 298, 1950 (2002).

[54] M. Kerszberg and L. Wolpert. Mechanisms for positional signalling by morphogen
transport: a theoretical study. Journal of Theoretical Biology 191, 103 (1998).

[55] A. Kicheva, P. Pantazis, T. Bollenbach, Y. Kalaidzidis, T. Bittig, F. Jülicher, and
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gradient formation by dynamin-dependent endocytosis: receptor trafficking and
the diffusion model. Development 131, 4843 (2004).

[61] K. Kruse, J. F. Joanny, F. Julicher, J. Prost, and K. Sekimoto. Generic theory of
active polar gels: a paradigm for cytoskeletal dynamics. European Physical Journal

E 16, 5 (2005).

[62] L. D. Landau and E. M. Lifshitz. Course of Theoretical Physics, Volume 6: Fluid

Mechanics. Pergamon Press, Oxford (1987, 2nd edition).

[63] A. D. Lander, Q. Nie, and F. Y. M. Wan. Do morphogen gradients arise by diffu-
sion? Developmental Cell 2, 785 (2002).

[64] A. D. Lander. Morpheus Unbound: Reimagining the Morphogen Gradient. Cell

128, 245 (2007).

[65] T. Lecuit, W. J. Brook, M. Ng, M. Calleja, H. Sun, and S. M. Cohen. Two distinct
mechanisms for long-range patterning by decapentaplegic in the Drosophila wing.
Nature 381, 387 (1996).

[66] T. Lecuit and L. Le Goff. Orchestrating size and shape during morphogenesis.
Nature 450, 189 (2007).

[67] B. D. MacArthur and C. P. Please. Residual stress generation and necrosis for-
mation in multi-cell tumour spheroids. Journal of Mathematical Biology 49, 537
(2004).

[68] G. Marqués, H. Bao, T. E. Haerry, M. J. Shimell, P. Duchek, B. Zhang, and
M. B. O’Connor. The Drosophila BMP type II receptor wishful thinking regulates
neuromuscular synapse morphology and function. Neuron 33, 529 (2002).
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