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Abstract

The purpose of the senses of animals (and humans) is to translate information available
in the external environment into internal information that can be processed by the brain.
In the case of the olfactory sense – the sense of smell – this is information about the type
and concentration of odourants. In the last 15 years major progress has been made in the
experimental understanding of the first two stages of the olfactory sense: the signal trans-
duction inside the cilia of the olfactory receptor neurons and the first ’relay station’ in the
brain, the olfactory bulb, as well as the connection between these two. Theoretical studies
that classify the experimentally achieved knowledge or help in testing different biological
hypotheses are only starting to be developed. The present work aims to contribute to the
theoretical understanding of the first two stages of the olfactory sense.

The first processing of the olfactory information, the olfactory signal transduction, is
accomplished by a complex chemical network in the sensory cells with the task of coding
the available information reliably over a wide range of stimulus strength. In the present
work, methods from nonlinear dynamics combined with network theory (namely stoichio-
metric network analysis) are used to identify a specific negative feedback mechanism that
accounts for a number of recently measured experimental results, e.g. oscillations in cal-
cium concentration or the adaptation of the cell towards strong stimuli. This feedback is
an experimentally well-established inhibition of cationic channels by the calcium-loaded
form of the protein calmodulin. The results of the set of coupled nonlinear deterministic
differential equations describing these dynamics agree quantitatively with experimental
data. A bifurcation analysis of the system considered shows the robustness of the oscil-
latory solution against changes in parameters used. It also gives predictions that could
serve as an experimental test of the proposed mechanism.

Further abstraction and simplification of this specific signal transduction unit leads to a
stochastic two-level system with negative feedback, that can not only be found in signalling
systems but also in other branches of cell biology, e.g. regulated enzyme activity or in
transcription dynamics. Whereas the description outlined above is fully deterministic, here
the model system is intrinsically noisy. The influence of the feedback on the intrinsic noise
as well as on the signalling properties of the module are analysed in detail by computing
mean values, correlation and response functions of the two dynamical system variables
using different analytical approaches. Common to all of them is that the intrinsic noise of
the system is calculated from its dynamics rather than being introduced by hand. A master
equation is used to get generally valid expressions for the mean values. Correlation and
response functions for weak feedback are calculated within a path-integral description, and
an easier self-consistent method with restricted validity is developed for future extensions of
the module such as, e.g., the inclusion of diffusion. The results of the analytical methods
are compared to each other and to the results of extended numerical simulations. The
considered quantities allow for statements regarding the quality of the signal transduction
properties of this module and the positive and negative effects of feedback on it.

Going one step up in the information processing in the olfactory sense, another sys-
tem is found that shows interesting dynamics during development and is influenced by
stochastic effects: the formation of the neural map on the surface of the olfactory bulb –
stage two in the olfactory system. The dynamics of this very complex biological pattern
formation process is studied mostly numerically focusing on three different aspects of ax-
onal growth. Possible chemical guidance cues and the reaction of axonal growth cones to
them are described using different levels of detail. There is strong experimental evidence
for interactions among growing axons which is implemented in different ways into models.
Finally, axon turnover is considered and used in the most promising simulation approach,
where many axons grow as interacting directed random walkers. For each of these aspects,
qualitative features of respective experiments are reproduced.
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Zusammenfassung

Die Sinne der Tiere (und Menschen) dienen dazu, Informationen über die Außenwelt in
neuronale, ’interne’ Information zu ’übersetzen’. Im Falle des Geruchssinns sind dies In-
formationen über die Art und Konzentration von Geruchsstoffen. In den letzten 15 Jahren
wurden große Fortschritte im experimentellen Verständnis der ersten beiden Stufen des
Geruchssinns gemacht, sowohl was die Signaltransduktion in den Zilien der Geruchszellen
betrifft, als auch bezüglich der ersten ’Schaltstelle’ im Gehirn, dem olfaktorischen Bulbus
(sowie in der Verbindung dieser beiden Stufen). Die Entwicklung theoretischer Studien, die
die experimentell gewonnenen Daten klassifizieren können, befindet sich dagegen erst am
Anfang. Ziel der vorliegenden Arbeit ist es, zum theoretischen Verständnis dieser ersten
beiden Stufen beizutragen.

Die erste Verarbeitung der olfaktorischen Information, die olfaktorische Signaltrans-
duktion, wird durch ein komplexes chemisches Netzwerk in den Sinneszellen bewerkstelligt.
In dieser Dissertation werden Methoden der nichtlinearen Dynamik, kombiniert mit Netz-
werktheorie (stöchiometrische Netzwerkanalyse) benutzt, um einen negativen Rückkopp-
lungsmechanismus zu identifizieren, der einige in neuerer Zeit gewonnene experimentelle
Ergebnisse erklären kann, u.a. Oszillationen der Kalziumkonzentration oder die Anpassung
der Zelle an starke Reize. Bei dieser Rückkopplung handelt es sich um eine experimentell
gut bestätigte Hemmung eines Kationenkanals durch den Kalziumkomplex des Proteins
Calmodulin. Das Ergebnis der vier gekoppelten nichtlinearen deterministischen Differenzi-
algleichungen, die das dynamische Verhalten des Systems beschreiben, stimmt quantitativ
mit experimentellen Daten überein. Eine Bifurkationsanalyse zeigt die Robustheit der os-
zillierenden Lösung gegenüber Veränderungen der verwendeten Parameter und macht Vor-
hersagen möglich, die als experimentelle Tests des vorgeschlagenen Mechanismus dienen
können.

Eine weitere Abstrahierung der oben beschriebenen Signaltransduktionseinheit führt
zu einem stochastischen Zweiniveausystem mit negativer Rückkopplung, das nicht nur in
Signalsystemen gefunden werden kann, sondern auch in anderen Bereichen der Zellbiolo-
gie. Im Gegensatz zu der oben beschriebenen, komplett deterministischen Beschreibung
zeigt das hier betrachtete Modellsystem intrinsisches Rauschen. Der Einfluss der Rück-
kopplung auf das Rauschen sowie auf die Signalübertragungseigenschaften des Moduls
werden detailliert analysiert, indem mit Hilfe verschiedener analytischer Methoden Mit-
telwerte, Korrelations- und Antwortfunktionen des Systems ausgerechnet werden. Diese
Methoden habe alle gemein, dass das intrinsische Rauschen des Systems aus der Dy-
namik selbst berechnet wird und nicht ’von Hand’ eingefügt wird. Um allgemeingültige
Ausdrücke für die Mittelwerte zu bekommen, wird eine Mastergleichung aufgestellt und
gelöst. Die Korrelations- und Antwortfunktionen werden für schwache Rückkopplung mit
Hilfe einer Pfadintegralmethode ausgerechnet, und eine einfachere, selbstkonsistente Me-
thode begrenzter Gültigkeit wird für mögliche Erweiterungen des Systems, z.B. die Be-
rücksichtigung von Diffusion, entwickelt. Die Ergebnisse der verschiedenen analytischen
Methoden werden miteinander und mit den Ergebnissen ausführlicher numerischer Si-
mulationen verglichen. Die betrachteten Größen ermöglichen Aussagen über die Qualität
der Signaltransduktion dieses Moduls sowie über die positiven und negativen Effekte der
Rückkopplung auf diese.

Ein weiteres Beispiel für interessante und von stochastischen Effekten beeinflusste Dy-
namik findet man einen Schritt weiter in der olfaktorischen Signalverarbeitung: Die wäh-
rend der Entwicklung stattfindende Ausbildung der neuronalen Karte auf der Oberfläche
des olfaktorischen Bulbus, der zweiten Stufe des olfaktorischen Systems. Die Dynamik
dieser sehr komplexen biologischen Musterbildung wird mittels numerischer Simulationen
untersucht, wobei der Schwerpunkt auf drei verschiedene Aspekte axonalen Wachstums
gesetzt wird. Die Reaktion axonaler Wachstumskegel auf mögliche chemische Signalstof-
fe wird verschieden detailliert beschrieben. Es gibt deutliche experimentelle Hinweise auf
Wechselwirkung zwischen Axonen, was in den Modellen auf verschiedene Arten implemen-
tiert wird. Schließlich wird die Erneuerung der Axone betrachtet und im vielversprechends-
ten Modell, in dem viele Axone als wechselwirkende gerichtete random walkers simuliert
werden, berücksichtigt und analysiert. Für jeden dieser drei Aspekte können entsprechende
experimentelle Ergebnisse qualitativ reproduziert werden.
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Chapter 1

Introduction

1.1 Motivation

Physics as the most fundamental of the natural sciences not only investigates the very
elementary constituents and dynamics of matter but also provides experimental techniques
as well as theoretical models and concepts for other branches of science. Regarding biology,
this interaction has a long tradition [135] but in recent times, cooperation has increased
intensely and theoretical concepts borrowed from statistical physics of complex systems
gain more and more influence in the science of the living matter. This interaction, however,
is not unilateral. Theoretical physics has also profited a lot from the consideration of living
systems, even if it is only the realisation of the fact that often, simple, linear descriptions
do not suffice.

It is the conviction of many scientists [15, 17, 87] that the description of complex
biological systems in terms of quantitative theoretical models rather than purely qualitative
arguments can contribute a lot to the understanding of both the functioning and the
purpose of these systems. A more structured and possibly more abstract framework might
lead to more effective research and provide a way to classify the vast amount of results
from experimental biological studies (e.g. [34, 104]). This way of dealing with complex
systems (e.g. by introducing a new language of description) has proven before to be very
fruitful in other fields, e.g. in electronics or traffic science. As a step in this direction,
the present dissertation deals with the theoretical description of complex processes at the
interface between living matter and the outer, inanimate world, which is the working area
of the senses.

A vital task organisms have to fulfil and that is naturally connected to physics, is
the perception of the outer, ’physical’ world and the transduction of the information
available into information that the organism can process internally. A specific example
where this task is accomplished in animals are the senses. For the visual sense, physics
has contributed a lot to the understanding of both the signal transduction in the sensory
cells in the eyes (e.g. [37]) as well as the neural processing and the way information is
encoded in the different stages of vision (e.g. [8]). Physics seems appropriate, since light,
the subject of visual perception, is well described in physical terms. The same holds for
the auditory sense, although it is not as well understood as vision, yet. For the chemical
senses, particularly the olfactory sense – the sense of smell, a deeper understanding of
the underlying biology emerged only in the last 10–15 years. Quantitative modelling and
analysis have not yet contributed much to the understanding of this sense, partly, certainly,
because of the nature of the stimulus which is chemical and not as easy classifiable as in
vision and hearing. Whereas, e.g. the information encoded in the frequency and amplitude
of an electromagnetic or air pressure wave is easily quantifiable, this is a tougher task
for the stimulus of the olfactory sense – type and concentration of a huge number of

1



2 Chapter 1. Introduction

odourants. However, physics is still ubiquitous in all stages of olfactory transduction:
There are chemical networks showing complex nonlinear dynamics, there is information
being transfered from one form to another, there are complicated patterns formed during
the development and at the end there are electrical signals, that propagate and are used
for inter-cell communication within complicated neural networks.

The work presented in this dissertation is meant as a contribution to the rapidly evolv-
ing field of olfactory research from the perspective of theoretical physics. Its purpose
is twofold: On the one hand, tools and models mainly from statistical physics are used
for a deeper understanding of experimental data that is available only since a few years.
Models quite close to the actual biological system are set up and analysed in order to
provide explanations, check hypotheses or propose specific mechanisms and experiments
that might contribute to a more quantitative understanding of the biological system. On
the other hand, parts of the olfactory system are seen and described from a more abstract
viewpoint and their properties are analysed using methods again mainly from statistical
physics. Results are obtained that are not restricted to the olfactory system but might be
applied to signalling systems in general, as well as to other systems within cell biology.

The following brief introduction into the biology of the olfactory system also serves as
an overview over the contents of this thesis.

1.2 The olfactory system

The olfactory sense – the sense of smell – is, according to the classical [3] definition,
one of the five senses and forms together with the gustatory sense the group of chemical
senses. It transduces the information about the type and concentration of a wide variety
of different volatile chemicals that are inhaled during respiration into the recognition of
different smells that can be named (e.g. [50]), classified and remembered. The olfactory
sense in vertebrates consists roughly of three stages:

I) Transduction of chemical signals into electrical signals.

II) Convergence, amplification and correlation of electrical signals.

III) Recognition and other higher brain functions; connection to memory.

Stage I) takes place completely in the receptor cell of the olfactory sense, the olfactory
receptor neuron (ORN). Stage II) happens in a part of the brain, the olfactory bulb
(OB), which then sends signals to several brain regions (piriform cortex and amygdala,
among others (stage III)). This thesis mainly deals with stage I) as well as the connection
between stages I) and II). The biology of both of these stages will be briefly introduced
in the following subsections, more detailed descriptions follow in the introductions of the
relevant chapters. Fig. 1.1 shows the areas in the heads of a rat and a human where the
three different stages are situated.

1.2.1 The olfactory receptor neuron (ORN)

Situated in the roof of the nasal cavity (Fig. 1.1) lies the olfactory epithelium, sensory tissue
that contains the olfactory receptor neurons (ORNs). They are embedded into a layer of
other cell types (supporting cells, basal cells and microvillar cells) and are distributed
over the surface of the epithelium [110]. Fig. 1.2 shows a schematic section through the
olfactory epithelium as well as a microscopic picture of an ORN from a frog.

As can be seen in Fig. 1.2, the ORNs extend long cylindrical shaped structures, the cilia,
from the so-called dendritic knob at the end of the dendrite into a liquid layer on top of the
cell surface, the mucus. These cilia are the sites where the receptor proteins of the sense
of smell, the olfactory receptors (ORs), are situated and where the main part of the signal
transduction takes place. Odourants are inhaled with the respiratory air into the nose,
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Fig. 1.1: Left: Section through the head of a rat (modified from [42], see also [150]). Right:
Schematic section through a human head (modified from [72]). Indicated with roman numbers
are the three stages of the olfactory system as described in the text (OE: olfactory epithelium;
OB: olfactory bulb).

diffuse into the mucus layer (probably bound to odourant-binding proteins) and might
finally bind to a receptor on the membrane of the cilium of an ORN. This starts the signal
transduction cascade, a series of chemical reactions between a variety of different molecules
and ions, whose main effect is an increase in the calcium concentration inside the cilia and
a reduction of the transmembrane potential of the cell. The introduction of chapter 2
describes this process in greater detail and later in that chapter, a theoretical description
for the dynamics of the signal transduction in the ORNs is presented. Chapter 3 seizes
this description and by further reducing the complexity of the model system, presents
analytical results that are generally applicable to signalling systems.

In the olfactory epithelium of mice there are a few million ORNs [107]. It is known
from the study of the genome of mouse that there are about 1000 [113] different functional
genes for different olfactory receptors (ORs) (in human ∼400 [113]). Through a number of
different experiments it was possible to conclude, that most likely in each ORN there is only
one (of the approximately 1000) type of OR expressed1 [108]. Each OR responds differently
to different odourants and most of the receptors have a broad reception range, meaning
that they respond to quite a few different odourants with different response strengths.
However, there seem to be a few highly specified receptors (cf. also Subsec. 1.2.4). Fig. 1.3
shows a schematic representation of this fact for a small set of ORs.

ORNs are neurons and therefore able to fire action potentials through their axon.
These action potentials are generated in a region of the soma – the axon hillock – af-
ter a sufficiently strong stimulus in the cilia reduced the transmembrane potential below
some threshold. How the information about the types and concentrations of odourants is
encoded in the series of action potentials (the spike train), is largely unknown (see Sub-
sec. 2.1.2). ORNs react differently depending on the OR they express and on the stimulus
type and strength (Fig. 1.4).

The action potential (or the whole spike train) then travels along the axon towards the
brain, more specifically, to the olfactory bulb described in the next subsection.

1A possible exception of this one receptor-one neuron hypothesis has been reported in drosophila [59].
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Fig. 1.2: Left: Schematic section through the olfactory epithelium in a mammal (modified
from [48]); Right: Microscopic picture of an ORN from a frog with the axon cut (from [78]). c:
cilia, d: dendrite, s: soma, a: axon; scale bar: 10µm.

1.2.2 The olfactory bulb (OB)

The olfactory bulb (OB) gathers all the information from the ORNs and pre-processes it.
It is a part of the brain situated near the nose (Fig. 1.1) and the axons of all ORNs end
on it, connecting to secondary neurons through synapses. Fig. 1.5 shows pictures of the
OB from both mouse and human.

The olfactory bulb as seen under the microscope has a structure that resembles a
raspberry (left panel of Fig. 1.5): its surface is covered with a high number of small, ball-
like structures, the so-called glomeruli, consisting of axons, dendrites and synapses between
them. Through genetic labelling techniques [107], it was possible to show that the axons
reaching one specific glomerulus all extend from ORNs that express a specific type of OR.
The dendrites in the glomeruli stem from secondary neurons (mitral and tufted cells) that
the axons of the ORNs synapse to. The axons of all ORNs of a specific type are mostly
found to converge into one or two glomeruli, resulting in ∼ 1800 glomeruli in the OB of
mouse [107]. Since each secondary neuron connects to a large number of axons from the
ORNs, the glomeruli therefore collect information available from one specific type of OR,
which can be seen as an amplification step.

The main purpose of the OB is the convergence and discrimination of information from
ORNs of different types. This is achieved both through spatial organisation on the surface
of the OB as well as inter-neural connections on the secondary level. The establishment of
this spatial organisation during the ontogenetic development of an animal is the subject
of chapter 4. In the introduction to this chapter, the detailed structure and purpose of
the OB will be explained in greater detail.

Since almost all ORNs that express a specific OR (and therefore respond similarly to
a specific odourant) project their axons on one specific glomerulus, the response pattern
of the ORNs (Fig. 1.3) translates into a spatial activity pattern on the surface of the OB.
Fig. 1.6 shows examples of such patterns for three different odourants.

1.2.3 The olfactory system in insects

In insects (non-vertebrates), the general structure of the olfactory system is quite similar
to the one described so far, although the number of genes coding for olfactory receptors is
much lower (∼50–100). Olfactory receptor neurons of insects usually appear in groups of
one to four in so-called sensillia, small hair-like structures situated on sensory bristles on
the animal’s head. In drosophila, e.g., sensory bristles are located on special antennae as
well as on a separate structure called the maxillary palp [45]. The ORNs in insects have
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Fig. 1.3: Schematic picture of response strengths of different olfactory receptors (ORs – top row)
to different odourants (left column) (from [97]). Big filled circles indicate strong response, smaller
circles weaker response. Activity was measured as fluorescence of ORNs that were loaded with
a Ca2+ sensitive dye (for details, see [97]). Most of the receptors respond to several odourants,
whereas, e.g. the ORs S50 and S86 are highly specified within this specific set of odourants.

a single dendrite instead of a number of cilia, which is bathed in a fluid, the sensillium
liquor, containing odourant binding proteins and most probably serving similar tasks as
the mucus in vertebrate olfaction. The signal transduction mechanism taking place in the
sensillia of insect ORNs is similar to the one in the cilia of vertebrate ORNs [60], which
will be described in Sec. 2.1. Very much like in the case of vertebrates, the axons of the
ORNs in insects connect to a part of the brain, the antennal lobe (e.g. [68, 80]), which
is the equivalent of the olfactory bulb. Structures in insects are much smaller and less
complex and often also more specified than in vertebrates or mammals [45].

1.2.4 The vomeronasal organ – pheromone detection

In insects and many vertebrates, there is a second and spatially separate organ dedicated
to the detection of smell, called (in vertebrates) the vomeronasal organ. Also situated
in the nasal cavity [48], it has many similarities to the olfactory system and some of the
results to be presented in the later chapters might be applicable. The detailed mechanism
of signal transduction in the receptor cells of the vomeronasal organ is not yet completely
discovered [45]. It is known, however, that those receptor neurons are much more sensitive
as well as more specific than the receptor neurons in the ORNs. The apparent main
purpose of the vomeronasal organ is the detection of species-specific messenger chemicals,
i.e. pheromones, that influence, e.g. sexual behaviour, nursing or aggressiveness [141]. The
receptor neurons of the vomeronasal organ project their axons to the accessory olfactory
bulb, showing convergence and sorting very similar to the axons of the ORNs [20]. A
difference persists in the further connections to higher brain regions, where the neurons
from the vomeronasal pathway do not send information to the cortex but only to brain
regions that are connected to unconscious response like the amygdala. In humans, the
remains of a vomeronasal organ are most probably not functional [161].
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Fig. 1.4: Typical spike trains produced by ORNs after stimulation with different odourants (the
amino acids Met, Ala, Arg and Glu; ORNs from catfish; from [133]). Note, that the contact with
odourants can both increase and decrease the spontaneous spiking rate.

Fig. 1.5: Olfactory bulb in mouse (left (from [109]); the diameter of the OB in adult mice is
2–3mm [115]) and human (right (human brain seen from below, OB marked in red); modified
from [148]). Note on the left picture the long thin fibers terminating in small, ball-like structures.
These are the genetically labelled axons of the ORNs and the regions where they build synapses
to secondary neurons, the glomeruli.

1.3 Performance of the olfactory sense and interesting
questions

Although the sense of smell is certainly not the most important sense for human survival,
it still accomplishes an incredible task that so far no ’electronic nose’ [114] is able to
imitate or substitute in a comparable manner as cameras, microphones or hearing aids do
with respect to the visual or the auditory sense. Most of the approximately 1000 different
olfactory receptor (OR) proteins have a huge reception range of many hundred molecules
that they respond to. Since reception ranges of different ORs often overlap and coding (and
perception) of olfactory information depends further on concentration, a practically infinite
number of different olfactory impressions can be perceived, the limiting entity not being
the olfactory sense itself but rather the brain that just cannot remember (and certainly not
name) such a huge amount of qualitatively different impressions. Concerning quantitative
sensitivity, the covered reception range is comparably large as in the other senses. Like
photoreceptor cells that are able to detect single photons [45], specific olfactory receptor
neurons (ORNs) are also known to operate at the physical limit, i.e. they can detect single
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(a) octanal (b) camphor (c) menthol

Fig. 1.6: Activity patterns of a rat OB after stimulation with the respective odourant (from [57]).
Activity is measured in terms of uptake of a special radioactively labelled form of glucose. Red
represents high, blue low neural activity and a special projection technique is used to display the
surface of the whole OB. For each odourant such a map can be measured and catalogued [57].

odourant molecules2. On the other hand, adaptation to higher concentrations of odourants
works almost perfectly in all concentration ranges, a property of the olfactory sense that
one appreciates when spending a few minutes in an unpleasantly smelling surrounding [10].

There are several question raised from a more general perspective when considering
this technically so far unrivalled performance of the olfactory sense (or the senses in gen-
eral). First of all, there is the question of how information is encoded, transmitted and
processed using molecules and ions. Which types of molecules are used at which state and
are there certain universal design principles being applied and maybe also being found
in other instances of cellular information processing? Since the reaction enthalpies of
biochemical reactions involved in cellular processes usually are in the range of thermal
energies, fluctuations of molecule numbers and ’false alarms’ in the detection units will be
important and quite common. Further, the often very low numbers of molecules of a given
species within the small compartments where detection and transduction of signals takes
place, contributes to the ubiquitousness of chemical noise. How does the cell suppress (or
use [63]?) noise in order to reliably detect very weak stimuli and transmit this information
in such a random environment? Another intriguing question is that of how receptor cells
achieve their often almost perfect adaptation over large ranges of stimuli strengths. On
which level do the necessary feedback loops operate and how do they cooperate?

Going a step further in the sensory systems, information is coded in more easily quan-
tifiable electrical impulses. Questions arising on this higher level of perception include
that of the purpose of a (spatial) neural map or how information from different channels
is correlated and co-processed. How the brain makes sense of this information in terms of
cognition and remembrance is a question that is clearly out of scope, yet. The same holds
(at least for the present work) for the very interesting question of how sensory systems
evolved and why certain reappearing structures and design principles prevailed against
others.

The aim of the present work is to shed some light on answers to a few of the aforemen-
tioned questions taking the perspective from theoretical physics. Throughout this thesis,
the system of interest is the olfactory sense, however, some concepts and ideas (espe-
cially from chapter 3) are abstract enough to be applicable to other (sensory) systems, as
well. Additionally, this thesis provides an example of how (three) substantially different
theoretical approaches can be utilised to tackle the complexity of living systems.

2Olfactory receptor neurons in the antennae of moths were shown experimentally to be able to sense
single pheromone molecules [71, 134].
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Chapter 2

Signal Transduction in the
Olfactory Receptor Neuron

2.1 Experimental background

The signal transduction in the olfactory system – as in all other senses – makes informa-
tion about the outside world accessible to the brain. In the case of the sense of smell,
this information is about the type and concentrations of different volatile (and therefore
usually small) molecules that pass by the olfactory epithelium in the nasal cavity during
respiration. The ’language’ of the brain, on the other hand, is the language of spike trains
– series of action potentials that are communicated between the neurons through axons,
dendrites and synapses. The ’translation’ between these two different forms of information
encodings is accomplished by the signal transduction mechanism of the olfactory receptor
neuron (ORN). The main part of this transduction – and also the part covered in this
thesis – happens in the cilia of the ORNs, long and thin tubes of membrane that extend
into the mucus layer from the dendritic knob of the ORN. Fig. 2.1 shows a closeup view
on the cilia of an ORN embedded in the olfactory epithelium.

Fig. 2.1: A scanning electron micrograph of the dendritic knob and the cilia of a human ORN
with surrounding epithelium (from [110]). The dendritic knob has typically a diameter of 1–2 µm,
cilia vary in length from 1 µm to over 30 µm [110] (species-dependent up to 250µm [133]) and
have a diameter of about 0.1–0.3µm (cf. also Fig. 1.2).

Two main signal transduction pathways have been discovered in ORNs [133, 136]:

1. A cyclic adenosine monophosphate (cAMP) mediated pathway through cyclic-
nucleotide-gated (CNG) channels.

9
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2. A pathway mediated through inositol triphosphate (IP3) that gates until now [48]
unidentified cationic channels.

In vertebrates, the cAMP mediated pathway seems to be the predominant one. The
role of the second pathway is not clear [42], not even if it is a separat pathway on its own
(e.g. in specific cells) or if it coexists with the first one in the same cells and both are
coupled through some link.

Since the cAMP-mediated pathway in vertebrates is much better understood and since
there is much more experimental data available for it, this work deals only with the first
of the two pathways. The involved chemical species and the transduction through it will
be described in more detail in the following subsection.

2.1.1 The cAMP-mediated signal transduction pathway

Fig. 2.2 shows a schematic section through a cilium of an ORN with the main chemicals
involved in the cAMP-mediated olfactory signal transduction pathway1.

Fig. 2.2: Schematic drawing of a part of the cAMP-mediated signal transduction in a cilium of
an ORN focusing on the negative feedback calcium-loaded calmodulin (CaM4) exerts on the ion
channels. Black arrows indicate chemical reactions or transitions, green arrows enhancement and
red arrows inhibition of enzymatic activity. The main forward-path is: Binding of an odourant
molecule to a receptor which activates the enzyme adenylate cyclase (AC). This leads to an
increase in cAMP which gates specific cationic channels. Calcium flows in and depolarises the
cell. See text for a more detailed description.

The starting event of the signal transduction pathway is the binding of an odourant
molecule (possibly attached to an odourant binding protein) to an olfactory receptor (OR),
of which there are many different types. Common to all of them is their tertiary structure:
They are all 7-transmembrane G-protein coupled receptor molecules, that means, they are
proteins located in the cell membrane with parts extending outside the cell (the odourant-
binding regions) and parts reaching inside the cell (the coupling region for the G-protein).
Upon binding of a ligand (odourant) to the outer part of the OR, the protein changes
conformation and by that sets off a smaller protein inside the cell, the Gα-subunit of
the G-protein, that diffuses in the cytosol of the cilium. If by chance such a G-protein
hits a specific enzyme anchored in the membrane of the cilia, the adenylate cyclase (AC),
it can bind, change the conformation of the AC and by that ’activate’ it (enhance its
catalytic power). The reaction catalysed by the AC is a cyclisation reaction of the ’energy
carrier’ of the cells, adenosine triphosphate (ATP), that is abundant in cells, into a small

1A closely related pathway is operating in cone photo-receptors in the retina.
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molecule called cyclic adenosine monophosphate (cAMP) (Fig. 2.3). cAMP is called the
second messenger molecule of the signal transduction cascade (the first being the odourant
itself) and due to its small size diffuses rapidly through the cytosol (diffusion constant

D ≈ 300µm2

s [24]).
In ORNs, a special kind of chemically gated ion

Fig. 2.3: Chemical structure of
cAMP (from [159]).

channels has been found, the cyclic-nucleotide-gated
(CNG) channels. The ligand for these channels is
cAMP (or cyclic guanosine monophosphate (cGMP))
and two to four2 of these second messenger molecules
are needed to gate one CNG channel. These channels
are specific for positively charged ions, mainly sodium
(Na+) and calcium (Ca2+) that passively flow through
the channels into the cell – the direction determined by
the transmembrane voltage and their respective Nernst
potentials. This provides a first electrical signal: the
transmembrane potential is raised. The main change
in the potential results from the current of chloride
ions that flow, also passively according to their Nernst
potential, out of the cilium through specific chloride
channels gated by calcium ions [121]. The change in
transmembrane potential spreads very quickly (in the
range of 107 µm

s [70]) and when a specific threshold
value is reached in the soma (Fig. 1.2), an action po-

tential is generated in a region called axon hillock and subsequently travels along the axon
towards the olfactory bulb.

Independent of the stimulus (odourants binding to the receptors), active elements in the
membrane of the cilia maintain the concentration differences needed for the transduction
of a stimulus as described above. There is evidence for sodium-calcium exchangers [122]
that, by letting in three Na+ ions, pump out one Ca2+ ion per cycle [92]. Active, i.e.
energy-consuming ionic pumps might be present, evidence exists, e.g. for an active chloride
pump [73].

As in all signalling systems, mechanisms are needed, that regulate the dynamics of the
transduction, e.g. adapt the system to different input strengths and provide a way to shut
down the input and reinitialise the system to make it ready for new inputs. Commonly,
those mechanisms are negative feedback loops, of which there are several working inside
the cilia of the ORN on the level of chemistry (for an overview, see [170]). Fig. 2.2
schematically shows three of them that go through a calcium-binding protein abundant in
ORNs (and other cells), calmodulin (CaM). CaM has four binding sites for calcium ions
and the fully calcium-loaded complex (abbreviated CaM4) is able to regulate different
stages of the signal transduction pathway:

1. CaM4 enhances the activity of the enzyme phosphodiestrate (PDE) that catalyses
the degradation of cAMP to AMP [12, 165].

2. CaM4 enhances the activity of the enzyme calcium kinase II (CaMKII) that down-
regulates the activity of AC and therefore reduces the production of the second
messenger cAMP [89].

3. By binding to the CNG channels, CaM4 can directly decrease the current through
these channels [13, 81].

The last mechanism will be identified later in this chapter to be of high importance for
the dynamics of the signalling on intermediate time scales of a few seconds.

There might be several other feedback mechanisms operating in the described signal
transduction pathway, that are not mediated by calmodulin [170], e.g. a cAMP-activated

2Reported Hill coefficients for the activation of CNG channels by cAMP lie between 1.5 and 3.5 [25, 74].
The tetrameric structure of the CNG channel suggests a maximum number of four cAMP binding sites.
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protein kinase A that deactivates the receptor.
All the chemical species present in the cilium (the reaction compartment) interact with

different kinetics and therefore together represent a chemical network whose main purpose
can be seen as a transducer from an input signal (the odourant type and concentration)
to an output signal (the number, timing and correlations between the action potentials
sent out on the axon). The nodes of this network are the chemical species, the links the
possible reactions3. Different subnetworks can – as approximations – be separated and
analysed independently with newly defined inputs and outputs.

In the following, some experimental findings of single cell measurements are presented
and Sec. 2.2 provides a theoretical treatment of a specific chemical subnetwork, the results
of which are later compared to some of these experimental data.

2.1.2 Experimental findings from whole cell measurements

For the analysis of the signal transduction pathway and its dynamics, ORNs are usually
dissociated from the olfactory epithelium of animals (mice, rats, frogs, salamanders, newts,
trouts, ...), so single cells and their response to different kinds of stimuli can be looked at.
Cells can be kept alive (show unchanging response behaviour) for several hours [95] in an
ionic solution with physiological condition (usually Ringer solution [5]). When removing
the ORNs from the surrounding tissue, their comparably long axons have to be cut (cf.
right panel of Fig. 1.2). Apparently, the effect of this ’opening’ of the cell membrane on
the physiological properties of the cell can be neglected (the cell is still able to perform its
tasks after this cut, e.g. maintains concentration gradients across its membrane).

As described earlier in this section, the ’output’ of the system, i.e. the response of the
ORN to a stimulus is a spike pattern that is conducted towards the brain. Different to
the visual system [9], not much is known about the way information is encoded in spike
trains produced by an ORN. Whether it is the spike rate, the onset time of a group of
spikes or temporal correlations between spikes that carries the information transduced in
the signal transduction in the cilia is not clear4. E.g., an ORN can react to a stimulus with
an increase or a decrease in the spiking rate, depending on the type and concentration
of odourant presented (Fig. 1.4). In terms of more general and conserved features of the
signal transduction in ORNs, it is best to go one step upwards the signalling pathway
and treat the transmembrane potential or the transmembrane current as the output of
the signalling process. This not only shows much more reproducible properties, it also
simplifies the possible dynamics by leaving out the complex generation of action potentials
in the soma of the cell [112].

Measurements – techniques

Several techniques are available for measuring the electrical properties of a cell. The electri-
cal potential inside a cell is measured by sticking a microelectrode (usually a micropipette
filled with a conducting ionic solution) into the cell. The most interesting technique for
measuring the transmembrane current is the suction pipette technique [95, 126]. Here,
the whole ORN is sucked into a pipette such that only the dendrite and the cilia stick
out of it and are surrounded by the physiological solution and therefore are exposed to
the odourants (Fig. 2.4). Assuming a tight attachment of the cell membrane to the glass
walls of the pipette (and therefore a negligible leak current), the current measured to flow
between the inside of the pipette and the outside must be the transmembrane current
through the ion channels, pores and active elements in the membrane of the cell.

Measuring concentrations of intermediate products of the signalling pathway is quite
difficult, partly due to the extremely small volume of the cilia. The only involved chem-

3Biochemical measurements of the kinetics of the reactions are often hard to obtain and difficult to
relate to the mechanisms in the cell. For some examples, see [11, 16, 69] and references in Tab. 2.1.

4Only recently, attempts of a classification have been made [129].
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Fig. 2.4: The suction pipette technique for measuring the transmembrane current (modified
from [126]). The ORN (bordered by the red line – in this case from salamander) is sucked into a
micropipette and held in a constant stream of physiological solution to which odourants can be
added. The current between the inside of the pipette and the outside is recorded (’suction pipette
current’). The black circle in the microscopic figure (diameter ∼ 10µm) is the laser spot of the
fluorescence measurement (see text).

ical where this is possible quantitatively at least to some extent, is calcium. There are
a number of organic molecules that strongly increase fluorescence in the presence of cal-
cium, so-called calcium-sensitive dyes (e.g. Fluo-3). The cell can be loaded from outside
with these molecules and by using a laser, the fluorescence intensity of the dye can be
measured and related to the calcium concentration (e.g. [126]). This can even be done
spatially resolved (fractions of micrometres) to reveal spatial inhomogeneities in the cal-
cium concentration [90]. The typical time scale of the reaction between dye and calcium
is a few milliseconds [21] and therefore well below the timescales typically studied in the
experiments described below.

ORNs can be stimulated in various ways. Direct stimulation with an odourant activates
the full signal transduction pathway. For that, the cells are usually kept in a steady flow of
a physiological solution. With a micropipette, various water-soluble odourants in different
concentrations can be added to the steady flow and pass by the cilia of the ORN. Instead
of an odourant, a chemical called IBMX (3-isobutyl-1-methylxanthine) can be applied
to the cilia. IBMX inhibits PDE (see Subsec. 2.1.1) and therefore increases the cAMP
concentration (e.g. [90]). Another technique to excite the signalling pathway of the ORN
is the photolysis of so-called caged cAMP [74, 145]. The second messenger cAMP can
be chemically coupled to different organic molecules such that the bond between these
two parts can be broken (and therefore cAMP released into the cytosol) when the probe
is illuminated with UV light. By this, only the signal transduction pathway downwards
from cAMP is excited, i.e. the dynamics of the receptors, G-proteins and the cyclases do
not contribute to the overall dynamics.

Using different time patterns of stimuli (odourant or IBMX concentration, length and
intensity of UV light), different response properties of the system can be tested. The
simplest time pattern is just a single short pulse. Short time adaptation can be tested by
applying two short consecutive pulses with varying waiting time between those. Applying
a single, long (compared to the timescales in the system) pulse is practically the same as
applying a step pulse. Another way of testing the adaptation behaviour is a step pulse
on top of a baseline concentration (’step-step’). Table 2.1 lists some of the experiments
available in the literature.
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pattern stimulus duration animal ref.

short pulse cineole 1 s salamander [126]
cineole 0.025 s frog [6]
cineole 1 s mouse [124]
cineole 1 s salamander [88]
menthone 90 ms rat [96]
amino acid mixture 25 ms/1 s trout [144]
odourant mixture 20 ms salamander [95]
IBMX/K+ 1 s salamander [90]
cineole/caged cAMP 0.1–3 s newt [146]
caged cAMP 0.2–0.5 s newt [145]

long pulse cineole 30 s salamander [126]
cineole 30 s mouse [124]
cineole 40 s salamander [103]
cineole 30/60 s frog [125]
amino acid mixture 3/5 s trout [144]
menthone/2-isob.-3methoxypyr. 13/30/∞/22 s rat [96]
menthone/IBMX/caged cAMP 4/8/15 s rat [96]

step IBMX salamander [90]
caged cAMP newt [145]

double pulse cineole 2×0.1 s salamander [88]
cineole 2×1 s mouse [124]
cineole 2×8 s/4×0.1 s salamander [170]
amyl acetate 2×0.2 s newt [84]

step-step cineole 4/1 s frog [123]

Tab. 2.1: Experiments conducted with whole cell ORNs found in the literature.
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Fig. 2.5: Transmembrane current (upper row) and calcium-sensitive fluorescence intensity (lower
row) as response to a one second stimulation (black horizontal bars) with different concentrations
of the odourant cineole (experimental setup as in Fig. 2.4). Two different ORNs from salamander
were used: one with low (A) and one with high (B) sensitivity to cineole. Each curve is an average
over two measurements (modified from [126]).

Measurements – results

Fig. 2.5 shows the response (transmembrane current and fluorescence of a calcium-sensitive
dye) of two ORNs to a stimulation with a one second pulse of the odourant cineole. After a
short latency time (including effects that strongly depend on the experimental setup), both
the current signal and the fluorescence show pulses with a quick rising phase and a slower
falling phase (the sign of the curves depend on the current definition and the polarity
of the photomultiplier of the fluorescence measuring device, respectively). Looking only
at the current and the calcium, the cell needs about 2–5 s to recover from the stimulus,
depending on the odourant concentration and the sensitivity of the cell. The ORN with
high sensitivity (B in Fig. 2.5), especially for the current response, shows a shoulder in the
curves for high stimuli (also seen, e.g. in [88]).

If the duration of stimulus presentation is prolonged (several seconds), different be-
haviours are reported in the literature. Fig. 2.6 shows an example of a measurement with
oscillatory response, both in transmembrane current and in calcium concentration. Similar
behaviour was observed in [124, 125, 144]. Other sources report different response shapes,
namely one similar to the case of a short stimulus pulse [96, 103], partly with strong fluc-
tuations but no pronounced oscillatory pattern. In most experiments, oscillatory response
was found only for intermediate concentrations of odourant, the response to low or high
concentrations looks similar in shape to the measurements of a short pulse.

An important functional ingredient of signalling systems is adaptation. A distinction
has to be made between short time adaptation and adaptation on longer timescales (min-
utes). Fig. 2.7 shows a typical result of a double pulse experiment to investigate short
time adaptation. Here, two short but strong pulses are presented to the system and the
magnitude of the response to the second pulse is measured and related to the waiting time
between the two pulses. For short waiting times (.10 s), the cell has not completely re-
covered its signalling apparatus from the first pulse, which leads to a diminished response
to the second pulse.
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Fig. 2.6: Transmembrane current (upper row) and calcium sensitive fluorescence intensity (lower
row) of a salamander ORN as response to a prolonged stimulation (30 s) with an intermediate
concentration of the odourant cineloe (black horizontal bar) (modified from [126]).

Fig. 2.7: Transmembrane current (voltage clamped to −60 mV) of a salamander ORN as response
to two consecutive short and strong odourant pulses (300µM cineole for two times 0.1 s – upper
row). Six different experiments with inter-pulse intervals of 2 s, 4 s, 6 s, 8 s, 10 s and 12 s are
superimposed in this figure (from [88]). Waiting time for full recovery of the cell between two
double-pulse experiments was 40 s.
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2.2 Oscillations and short time adaptation from nega-
tive feedback

The aim of this part of the present thesis is to analyse the chemical kinetics in the signal
transduction of the olfactory receptor neurons and to find a minimal model that qualita-
tively (and to some extent also quantitatively) captures some of the experimental findings
described in the last section, most importantly the oscillations and the short time adap-
tation behaviour. In the first subsection below, this minimal model is introduced and
explained. The model is analysed using a powerful analytical method, the stoichiometric
network analysis (SNA), briefly described in the second subsection. The model as de-
scribed in the following has to be seen as the outcome of the analysis of many possible
chemical networks, using SNA. After it was proven by SNA that the system can show
the desired dynamics, the four coupled differential equations describing it are analysed
numerically and the results are compared to the experimental findings described in the
preceeding section. An explicit bifurcation analysis using relevant experimental parame-
ters of the model is added, both serving as a test of the robustness of the presented model
as well as giving predictions for possible future experiments.

2.2.1 Chemical reactions and kinetics

The interesting dynamics of the experiments presented in the preceeding section happens
on time scales of tens of milliseconds to seconds. Since the dimensions of a single cilium
are so small, diffusion within a cilium happens on timescales of millisecond (the diffusion

constant, e.g. of cAMP is around 3·10−10 m2

s [24]). It is assumed that the involved chemical
species are homogeneously distributed along a cilium5 and that odourant concentrations
are high enough for a spatially homogeneous excitation. Therefore, in the following, the
system is treated as a well-mixed compartment with uniform spatial distribution of the
relevant chemicals and no diffusion terms will be considered.

Analysing many of the possible reaction networks built from the reactions mentioned
in Subsec. 2.1.1 using SNA (see next subsection), the following four reactions proved to
be the ones that can reproduce the experimental findings described in Subsec. 2.1.2:

1. The switch between the open (’o’) and the closed (’c’) form of the cyclic-nucleotide-
gated channel (CNG) is described as a chemical reaction with the opening rate k+

act

used as a stimulus to the system and the closing rate k−CNGo :

CNGc
k+
act

⇋

k−CNGo

CNGo. (2.1)

2. In the cytoplasm of the cilium, the protein calmodulin (CaM) binds four calcium
ions. No intermediate calcified forms of CaM are considered, only the fully loaded
CaM4:

CaM + 4Ca2+
k+
CaM4

⇋

k−CaM4

CaM4. (2.2)

3. The fully calcium-loaded calmodulin binds irreversibly to the open channel and turns
it into an ’inhibited’ (’i’) channel that prevents the entry of ions into the cilium:

CNGo + CaM4

k+
CNGi

2

→ CNGi. (2.3)

5For the CNG channel, the distribution along a cilium has been studied experimentally but led to
contradictory results [49, 121].
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4. The channel-calmodulin complex can reversibly dissociate, leaving the channel in
the closed form:

CNGc + CaM4

k+
CNGi

1

⇋

k−
CNGi

CNGi. (2.4)

Two conservation constraints for the concentrations of the channel and calmodulin
reduce the number of independent species in this reaction scheme to four. Volume con-
centrations are denoted by the according species put into rectangular brackets, for surface
species, a subscript s is appended to the bracket. The factor σ converts between both
concentration measures (σ is the volume/surface ratio of the cilium):

[CNGtot]s = [CNGc]s + [CNGo]s + [CNGi]s, (2.5)

[CaMtot] = [CaM] + [CaM4] +
1

σ
[CNGi]s. (2.6)

The four independent quantities chosen for the further analysis are the surface con-
centration of the open form of the channel [CNGo]s, the intraciliar calcium concentration
[Ca2+], the concentration of the fully calcium-loaded calmodulin [CaM4], and the surface
concentration of the channel-calmodulin complex (the ’inhibited’ channel) [CNGi]s. The
according dynamic equations for these four species are again partly a result of the stoichio-
metric network analysis presented later in this section. Most of the terms in the following
kinetic equations are results of the law of mass action. The cases where another kinetics
is used are detailed below.

1. An external stimulus enhances the rate k+
act and leads to an opening of the channels.

k+
act(t) captures the whole dynamics of the signal transduction starting with the

binding of an odourant to the receptor to the point when cAMP binds to the CNG
channel. Open channels can spontaneously close or turn into the inhibited form
through reaction with CaM4:

d

dt
[CNGo]s =k+

act

(

[CNGtot]s − [CNGo]s − [CNGi]s
)

− k−CNGo [CNGo]s − k+
CNGi

2
[CNGo]s[CaM4]. (2.7)

2. Calcium ions flow through the open channels into the cilium with a constant current
iCa, which is the most simple way of modelling ionic currents6. For the active extru-
sion of calcium ions from the cytoplasm of the cilium, a first order approximation
is used, a Hill-type equation [156] with the ’dissociation’ constant KCa. Further,
free intraciliar calcium disappears when bound to CaM and reappears, when CaM4
dissociates:

d

dt
[Ca2+] =

1

σ
iCa[CNGo]s −

1

σ
kCa

[Ca2+]

[Ca2+] +KCa

− 4k+
CaM4[Ca2+]2

(

[CaMtot] − [CaM4] − 1

σ
[CNGi]s

)

+ 4k−CaM4[CaM4]. (2.8)

6This simplification neglects the dependence of the ionic current on both transmembrane voltage (Vm)
and concentrations inside (cin) and outside (cout) the cell. A more involved study would include the voltage
as a dynamical variable and use the Goldman-Hodgkin-Katz current equation [158] for the transmembrane

current of the ion species n: in = z2
nFPnβVm

„

cout
n −cinn eznβVm

1−eznβVm

«

, where z is the valence of the ion, F the

Faraday constant, P the permeability and β = 1
kBT

with the Boltzmann constant kB and the temperature

T .
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3. The fully calcium-loaded form of calmodulin is produced from its calcium-free form
in a reaction which is of second order in the calcium concentration7. CaM4 sponta-
neously dissociates and it also takes part in the dynamics of the ’inhibited’ form of
the channel:

d

dt
[CaM4] =k+

CaM4[Ca2+]2
(

[CaMtot] − [CaM4] − 1

σ
[CNGi]s

)

− k−CaM4[CaM4]

− 1

σ
k+
CNGi

1
[CaM4]

(

[CNGtot]s − [CNGo]s − [CNGi]s
)

+
1

σ
k−
CNGi [CNGi]s −

1

σ
k+
CNGi

2
[CaM4][CNGo]s. (2.9)

4. The calmodulin-channel complex is formed with the fully calcium-loaded form of
calmodulin from both open and closed channels. It spontaneously dissociates:

d

dt
[CNGi]s =k+

CNGi
1
[CaM4]

(

[CNGtot]s − [CNGo]s − [CNGi]s
)

− k−
CNGi [CNGi]s + k+

CNGi
2
[CaM4][CNGo]s. (2.10)

Eqs. (2.7)–(2.10) provide a set of four coupled nonlinear ordinary differential equations.
For most of the parameters of this reaction network (the reaction rates and constants as
well as the total concentrations of CNG and CaM), only rough estimates are available
from experiments. Therefore, not only a detailed numerical analysis of the network (Sub-
sec. 2.2.3) is desirable but also an analysis of the robustness of the numerically obtained
results (Subsec. 2.2.4) as well as a general, parameter-independent analysis of the capa-
bilities of this network (Subsec. 2.2.2).

2.2.2 Stoichiometric network analysis

Stoichiometric network analysis (SNA) [27] is a tool that helps judging qualitatively,
whether a given set of chemical reactions (the stoichiometric network) is able to show
specific dynamical behaviour, merely from its topology, i.e. the way in which the different
components of the network are connected. It is an analysis of the capability of a given net-
work to produce, e.g. oscillations or show instabilities, and as this it works independent of
a specific choice of the kinetic parameters ~k of the chemical reactions. SNA can therefore
be used to ’design’ a minimal reaction network from a larger pool of (chemically) possible
reactions that – just from its topology – might show a desired dynamical behaviour. By us-
ing SNA, specific conditions (e.g. relations between the fluxes through different reactions)
can be derived that must be met in order to find, e.g. an oscillating state. However, for
actually checking, if this oscillating state occurs within experimentally reasonable kinetic
parameters, direct numerical simulations (Subsec. 2.2.3) or an explicit bifurcation anal-
ysis considering the relevant kinetic constants (Subsec. 2.2.4) must be performed. The
reactions described in the preceeding subsection have to be seen as the outcome of an
SNA of a number of different (chemically) possible networks with other species involved
or with different kinetics. The criterion for this choice was the ability of the network to
produce oscillating solutions and therefore being able to reproduce at least qualitatively
the experimental measurements shown in Fig. 2.6. In the following, SNA8 will be applied
to the network detailed in Subsec. 2.2.1 and conditions for an oscillatory solution of it will
be derived.

7The relevance as well as the experimental validity of the order of this reaction will be discussed later
in Subsec. 2.2.2 and Appendix A.1.

8The formalism of SNA is derived in [27], more accessible introductions can be found in [29, 40, 43, 130]
and applications of SNA to real chemical networks in [30, 31, 41, 142]. A related mechanism is presented
in [157].
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CNGc

CaM

CNG

CaM4

i CNGo

pumpCa2+ ε

Fig. 2.8: Network diagram oft the reactions from Eqs. (2.1)–(2.4) including the influx and the
removal of calcium ions. The (positive) stoichiometric coefficients of the products are encoded as
the number of barbs on the respective reaction arrows, the (negative) ones of the reactants by
the number of feathers. The kinetic exponent of a reactant is symbolised by the number of left
feathers (e.g. the formation of CaM4 requires four calcium ions and the kinetics is assumed to be
of second order, so two out of four feathers are put on the left). By convention, no feathers are
drawn, if both stoichiometric and kinetic coefficient are one. Non-integer kinetic coefficients are
written as a number next to the arrow (ε in case of the pump – see text).

One advantage of SNA is, that to a great extent it can be done using diagrams. The
stoichiometry as well as the kinetics of reaction networks is encoded in these network
diagrams which is explained for the reactions from Eqs. (2.1)–(2.4) in Fig. 2.8.

A simplified version of the network in Fig. 2.8, can be drawn based on the following
assumptions:

1. CaM4 dissociates quickly from the inhibited channel, i.e. CNGi can be eliminated
from the network.

2. Considering only the weak stimulus regime, most channels will be in the closed state
and changes in [CNGc] will be negligible, i.e. CNGc is also eliminated.

3. The same holds for the concentration of calcium-free calmodulin which is assumed
to be constant and therefore not considered as a dynamical variable.

Denoting the open channels as X, calcium as Y and CaM4 as Z (with the respective concen-
trations x, y, z), the simplified network diagram is given in Fig. 2.9(a). The corresponding
kinetic equations are

d

dt
x = k1 − k5xz, (2.11)

d

dt
y = k2x− 4k3y

2 + 4k4z − k6y
ε, (2.12)

d

dt
z = k3y

2 − k4z. (2.13)

Here, instead of the Hill-type equation for the removal of calcium in Eq. (2.8), a power-law
dynamics with exponent ε is assumed, which will be related to the modelling in Eq. (2.8)
later. Eqs. (2.11)–(2.13) can be written with the concentration-vector ~x = (x, y, z)T in
matrix notation as

d

dt
~x = ν~v, (2.14)

with the stoichiometric matrix

ν =





1 0 0 0 −1 0
0 1 −4 4 0 −1
0 0 1 −1 0 0



 (2.15)
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Fig. 2.9: (a) The simplified reaction network considered. X denotes the open channels, Y CaM4
and Z calcium. (b) The three extreme currents into which the simplified reaction network can
be decomposed.

and the velocity-vector ~v = (k1, k2x, k3y
2, k4z, k5xz, k6y

ε)T. Since mass action kinetics is
assumed, the elements of ~v can be written as vj = kj

∏

i x
κij

i with the matrix of the kinetic
exponents

κ = (κij) =





0 1 0 0 1 0
0 0 2 0 0 ε
0 0 0 1 1 0



 . (2.16)

Due to specific properties of stoichiometric matrices, the complete set of steady states
~vss (ν~vss = 0) can be written down in closed form in SNA as linear combinations of a

certain number of undecomposable subnetworks ~Ei, the extreme currents [28]:

~vss =
∑

i

ji ~Ei ≡ E~j, ji ≥ 0. (2.17)

E is the matrix containing the vectors ~Ei as columns. Each of these undecomposable
subnetworks must fulfil the stationary state condition, i.e. the number of (incoming)
barbs must be the same as the number of (outgoing) feathers for all species (cf. caption
of Fig. 2.8). For the six reactions among three species (Fig. 2.9(a)) there are three [40]
extreme currents that can be found by successively taking out reactions from the network
as long as the stationarity condition is still fulfilled9. Fig. 2.9(b) shows the three extreme
currents for the simplified network. Numbering the reactions as in Fig. 2.9(a), the extreme
currents can be written as

~E1 =

















0
1
0
0
0
1

















, ~E2 =

















0
0
1
1
0
0

















, ~E3 =

















1
0
0
0
1
0

















. (2.18)

A transformation can now be found from the set of kinetic constants ~k to the set of
fluxes through all extreme currents ~j and with that the Jacobian of the dynamical system
(Eq. (2.14)) can be written as

J = νdiag

(

∑

k

jk ~Ek

)

κTdiag(~x0)
−1, (2.19)

where diag(~u) is defined as the matrix that has the components of ~u as its diagonal
elements and ~x0 is the vector of steady state concentrations. Often – as in the case pre-
sented here – it is sufficient to analyse the stability properties of the reduced Jacobian [27]

9The extreme currents can also be found using specifically designed algorithms [22, 77].
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J̃ = −νdiag
(

∑

k jk
~Ek

)

κT, which reduces the number of independent parameters for the

bifurcation analysis from six kinetic constants ki to three flux constants jk. Since the
stability of the system does not depend on the actual numbers of the jk but only on their
ratios, one of them can be set to unity. Here, j2 = 1 is chosen which leads to

J̃ =





j3 0 j3
−j1 8 + εj1 −4
0 −2 1



 . (2.20)

To check, whether a Hopf bifurcation can occur, one can now either calculate the eigen-
values of J̃ and check, if two of them can become complex conjugate with positive real
parts or one can use a necessary and sufficient condition given in [41]. It is based on a
modified Routh scheme [29] and arranges the coefficients ai of the characteristic polyno-
mial pJ̃(λ) = λ3 +a1λ

2 +a2λ+a3 of J̃ in a specific manner (see, e.g. [120]). The criterion
for the occurrence of a Hopf bifurcation turns out to be a change of sign in the expression
a1a2 − a3.

For the reduced Jacobian as given in Eq. (2.20), the coefficients of the characteristic
polynomial are

a1 = 9 + j3 + j1ε, a2 = 9j3 + j1ε+ j1j3ε, a3 = 2j1j3 + j1j3ε. (2.21)

With those, the condition for a Hopf bifurcation becomes a1a2 − a3 = 81j3 + 9j23 +
ε(j1j

2
3 + 9j1 + 18j1j3) − 2j1j3 < 0. For this condition to be fulfilled, j1 ≫ j3 ≫ ε, i.e.

the flux going through the subnetwork E1 must be much larger than the flux through the
other two subnetworks and the kinetic exponent of the pump must be small. The latter
point is a quite severe condition. Oscillations can only be expected, if the pumps (or
exchangers) work near saturation (constant pumping, i.e. kinetic exponent zero). From
this, a statement for the phenomenological constant KCa in the Hill-type term in Eq. (2.8)
can be made. It should be much smaller than the typical peak calcium concentration
during oscillations.

By applying SNA to slightly modified networks, it could further be found out, that
the kinetic exponent of the reaction between calcium and calmodulin does not influence
the occurrence of a Hopf bifurcation when varied between the experimentally reasonable
values one and four (see Appendix A.1 for a numerical investigation of this point).

2.2.3 Numerical solution, comparison to experiments

After analytical considerations such as the SNA described above proved that the system
of four coupled nonlinear ordinary differential equations (2.7)–(2.10) is capable of show-
ing oscillatory solutions and narrowed the ranges for some of the parameters, this set of
equations is integrated numerically using the stiff solver ode15s from matlab [149]10. The
results are presented as time traces of concentrations of the different species for a variety
of stimulus presentation patterns. The initial values for the four species were usually zero
and before varying the stimulus, the system was evolved into a stationary state. Through-
out this subsection the same model parameters were used as presented in Tab. 2.2. For
most of the concentrations and kinetic constants, rough quantitative measurements ex-
ists, for some only qualitative statements have been found in the literature. The only
’true’ phenomenological parameters kCa, KCa and k+

act were chosen in such a way that the
resulting steady state concentrations (of Ca2+, . . . ) are within reasonable ranges. The
choice of the kinetic parameters for the binding of calcium to calmodulin is detailed in
Appendix A.1. A quadratic relation is assumed between the stimulus parameter k+

act and
the odourant concentration, based on an assumed Hill coefficient of two for the gating of
the CNG channels by cAMP (see footnote on page 11).

10A simple self-written but much slower Euler forward algorithm in C++ was used for some of the runs
to verify the validity of the results regarding parameters of the solver ode15s.
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parameter unit value literature

σ dm 5·10−7 (2.5...6.3)·10−7 [133]a

[CNGtot]s
mol
dm2 1.3·10−13 1.3·10−13 [121] (rat); 1.2·10−12 [86] (frog)

[CaMtot] mol
dm3 2·10−5 10−5 [2]

k−

CNGo
1
s

10−2 very slow [13]b

k−

CaM4
1
s

2.5 10...40 [32]c; slow [111]d

k+
CaM4

1
s

dm6

mol2
1.1·109 ”too fast to be measured” [32]e

k+

CNGi
1

1
s

dm3

mol
2.1·106 1.7·107 [13]f; 1.5·106 [111]g

k+

CNGi
2

1
s

dm3

mol
2.1·106 = k+

CNGi
1

[13]

k−

CNGi
1
s

3.4·10−1 > 2.2·10−1 [111]h

iCa
1
s

2·104 7.8·104 [121]

kCa
1
s

mol
dm2 10−10 see text

KCa
mol
dm3 1.2·10−7 see text

k+
act

1
s

rest. state: 1.6·10−5 see text
“

corresponds to [Ca2+] = 5·10−9 mol
dm3

”

5·10−8 [133]

avolume-area ratio for an infinitely long cylinder of diameter 0.1...0.25µm
bFig. 1A inset, assuming PDE destroys remaining cAMP fast
cslowest rate in the cooperative binding of the four Ca2+

dFig. 3B
ethe value is an order of magnitude estimate based on the dissociation constants for the four binding

sites given in [32, 36] and the value for k−

CaM4; see also Appendix A.1
fFig. 3D, assuming CNGA2A4B1b is equivalent to native CNG
gestimated from τ1 in Fig. 3D
hestimated from τ for +/+ in Fig. 3E assuming fast opening of CNGc

Tab. 2.2: Parameters used in the deterministic model together with the available literature

values. Appendix A.1 discusses the reaction of calmodulin and calcium (k−

CaM4 and k+
CaM4) in

greater detail and gives alternative parameters.
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Fig. 2.10: Calcium concentration in the model as response to an increase of k+
act between t = 0s

and t = 1s. Three different pulse strengths were used.

Single, short pulse

Fig. 2.10 shows the calcium concentration as a response to a 1s long increase in k+
act to

three different values. Baseline k+
act was 1.6·10−5 1

s and ’excitation’ k+
act 5.5·10−2/0.61/5.5 1

s ,
which correspond, using the quadratic relation, to a ratio of odourant concentrations of
roughly 1:3.3:10. k+

act was increased for 0 s < t ≤ 1 s.

The values reached for the calcium concentration (10–150µM) are reasonable consid-
ering the extracellular concentration of 3–7 mM [102] or the results of a model for the
steady state concentrations of a fully activated cilium [92]. Looking at the amplitude ra-
tios of the response and comparing it to Fig. 2.5, this system comes closer to the cell with
low sensitivity (A in Fig. 2.5). Since, in the simulations, the stimulus directly opens the
CNG channels, for strong stimuli, the response follows immediately. In the experiment,
however, time consuming steps before the opening of the channel (diffusion and reaction
steps) lead to a latency of about 1s for the onset of the calcium signal. Taking this into
account, the simulations show, as in the experiment, an increased latency for lower stim-
uli, although much more pronounced. Due to the noise in the experimentally observed
curves, it is difficult to compare the shapes of the time traces, but as a common feature of
both experiment and simulation, the response curves grow less steep with weaker stimuli.
Quantitative comparison of the experimental data and the results from the model is dif-
ficult, because in the experiment the calcium concentration is not measured directly but
through the fluorescence of a dye, whose reaction dynamics with the calcium ions might
alter the response curves to some extent.

Single, long pulse

Stimulating the system for a longer time produces qualitatively different behaviours de-
pending on the stimulus strength. For an intermediate stimulus strength k+

act = 0.055 1
s ,

spiky oscillations are observed (Fig. 2.11) for the duration of the stimulus (30 s). The
frequency is about 0.4 1

s , which agrees with the experimentally observed oscillations in
Fig. 2.6. In the simulations, the shape of the oscillations is much more spiky than in
the experiment, which again might to some extent be an effect of the dynamics of the
calcium-dye reaction.

When the system is simulated with a stronger stimulus, an increased oscillation fre-
quency is observed with smaller amplitude, which is in qualitative agreement with experi-
ment [124]. Increasing the stimulus above some threshold, the stable oscillations turn into
damped oscillations (Fig. 2.11 top right). For decreasing stimuli, oscillation frequency
decreases and again, passing through a specific threshold stimulus, the system produces
damped oscillations as a response (Fig. 2.11 bottom right). In Subsec. 2.2.4, the occur-
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Fig. 2.11: Result of the simulation for a single, long (30s) stimulus-pulse. Left: Oscillating

calcium concentration as a response to an intermediate stimulus strength k+
act. Right: Damped

oscillations occur in the case of high or low stimulus strength.

rence of oscillations will be investigated more thoroughly. There is yet no experimental
data available from fluorescence measurements that would relate to this result of the sim-
ulations, only current measurements are presented in [124]. Here, the shape of the non-
oscillating case for strong stimulus looks similar to the result of the simulations, whereas
this is not the case for the weak stimulus. An approximative quantitative agreement con-
sists between the stimulus range, in which oscillations are observed. In the experiment,
this range covers roughly 1–2 decades in odourant concentration, which corresponds to
roughly 2–4 decades of stimulus strength (k+

act) in the simulations (see the beginning of
this subsection). In [126], the frequency of the oscillations is found to decrease roughly by
a factor of two when the cell is bathed in a sodium free solution. Since the main extrusion
mechanism for calcium appears to a be Na+/Ca2+-exchange, the reduction of extracellular
sodium can be captured in the simulation by decreasing the calcium pump rate kCa. This
indeed leads to a decrease in oscillation frequency, although by far not as pronounced (a
decrease of kCa by a factor of seven leads to a decrease of oscillation frequency of only
about ten percent).

A close-up view of Fig. 2.11 of approximately two periods is shown in Fig. 2.12. All
four dynamical variables are shown to oscillate and the temporal order of peaks is the
same as the order in the signal transduction cascade: An increase in the open channel
fraction above the value kCa

iCa[CNGtot] ≈ 0.038 (horizontal dashed line in Fig. 2.12) leads to

very fast accumulation of calcium. Calcium binds to calmodulin which then leads after a
certain time lag to the maximum of the inhibited channel fraction, which corresponds to
the minimum of the open channel fraction. Calcium is then pumped out of the system
rapidly.

Two short pulses

The double pulse experiments investigating short time adaptation are usually done with
high odourant concentrations. Fig. 2.13 shows the results of simulations of such double
pulse experiments. As in the experiment (Fig. 2.7), the first short 100ms-pulse increase
in the stimulus was followed by a second, identical pulse after a certain waiting time of
2,4,6,8,10 or 12 s, respectively. k+

act was increased to a value of 5.5 1
s , which is one hundred

times the value used for the single long pulse in which oscillations were observed, i.e.
odourant concentration is now assumed to be higher by a factor of ten.

For the double pulse experiments, no experimental data for the calcium concentration
has been measured yet, so comparison can only be made to current measurements as the
ones in Fig. 2.7. The amplitude ratios of the second pulses for the different waiting times
agree roughly between simulations and experiment.

Fig. 2.14 shows a close-up view of the run with 4s waiting time including all dynamical
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Fig. 2.12: Time courses of all dynamical variables in the simulation presenting a prolonged
stimulus. Except for [Ca2+], fractions of the total concentrations are plotted as indicated in the
legend. The values for [CNGi]/[CNGtot] are divided by a factor of 10 for convenience of plotting.
The dashed horizontal line indicates the open fraction kCa
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Fig. 2.13: Superimposed time traces for the simulation of the double pulse experiment. The

upper row shows the stimulus (pulse increase in k+
act to 5.5 1

s
for 0.1s), the lower one calcium

concentration. The first pulse is the same for all six time traces, the second pulse is given after
2,4,6,8,10 or 12 s, respectively.

variables. As can be seen, it is only the species [CNGi] that has not returned close to its
stationary state level after this waiting time. After 4s, still approximately 50% of all CNG
channels have CaM4 bound and can therefore not respond to a new stimulus by opening
and letting Ca2+ in.

As a variant of the double pulse experiment modelled above, the second pulse can
be applied after a fixed time but for a different duration. In Fig. 2.15 such a protocol
was applied to the model and the outcome can be compared to experiments (e.g. [84]).
Qualitatively, the model shows the correct behaviour, namely an increase in the intensity
of the response to the second pulse with stimulus duration. However, the ratio between
the three response amplitudes does not agree with the experimental result.

Step-step

The experimental results obtained in [123] after a step-step adaptation protocol (a 4 s weak
stimulus followed directly by a 1 s stimulus of varying strength) can not be reproduced
consistently with the model and the parameter set as presented above (data not shown).
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Fig. 2.14: Time courses of all dynamical variables in the simulation of the double-pulse exper-
iment. Except for [Ca2+], fractions of the total concentrations are plotted as indicated in the
legend.
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Fig. 2.15: Modified double-pulse experiment, where the first pulse was applied for 0.2 s and the
second after a fixed time of 2.5 s for a varying duration (0.1 s (red), 0.2 s (green) and 0.4 s (blue)
– see upper row). Pulse strength was for both pulses k+

act = 5.5 1
s
.

Most probably, either a missing long time adaptation for small concentrations is the reason
for this drawback or an odourant concentration-stimulus relation (e.g. only for small
concentrations) that is different from the quadratic one used so far.

2.2.4 Explicit bifurcation analysis

When a complex system is numerically modelled and a desired dynamical behaviour (e.g.
oscillations) is obtained using a set of experimentally maybe not very well-known pa-
rameters, an important and interesting question is always how robust this behaviour is
produced when using a different parameter set that still might be within experimentally
justifiable limits. A good way to deal with this question is a bifurcation analysis, that
in addition leads to predictions and suggestions for the experimentalists to check the va-
lidity of the model proposed. Distinct from the stoichiometric network analysis (SNA)
presented in Subsec. 2.2.2, the bifurcation analysis is now done with the full system and
for the untransformed set of parameters, the kinetic constants. Whereas SNA was used
to find the correct reactions that generally can produce oscillating solutions, here, the
exact conditions under which the full system can oscillate will be derived for each of the
parameters.
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For a simplified version (using k+
CNGi

1
= k+

CNGi
2

as experiments suggest (see Tab. 2.2))

of the four coupled ordinary differential equations (2.7)–(2.10), the Jacobian is easily
calculated to be

J ≡ ∂f

∂(u, v, w, x)
=









J11 J12 0 J14

0 J22 J23 J24

J31 J32 J33 J34

0 J42 0 J44









, (2.22)

with u ≡ [CNGo]s, v ≡ [CaM4], w ≡ [Ca2+], x ≡ [CNGi]s and

J11 = −k+
act − k−CNG − k+

CNGiv, J12 = −k+
CNGiu, J14 = −k+

act,

J22 = −k+
CaM4w

2 − k−CaM4 − σk+
CNGi([CNGtot]s − x),

J23 = 2k+
CaM4w([CaMtot] − v − σx), J24 = σ(k−

CNGi + k+
CNGiv − k+

CaM4w
2),

J31 = iCaσ, J32 = 4k+
CaM4w

2 + 4k−CaM4, (2.23)

J33 = −8k+
CaM4w([CaMtot] − v − σx) − kCaKCa

(w +KCa)2
, J34 = 4k+

CaM4σw
2,

J42 = k+
CNGi([CNGtot]s − x), J44 = −k−

CNGi − k+
CNGiv.

By setting the time derivatives in Eqs. (2.7)–(2.10) to zero the following set of equations
for the stationary states can be obtained:

vss(xss) =
k−
CNGi

k+
CNGi

xss

[CNGtot]s − xss
, (2.24)

wss(xss) =

√

k−CaM4k
−
CNGixss

k+
CaM4

(

k+
CNGi([CNGtot]s − xss)([CaMtot] − σxss) − k−

CNGixss

) , (2.25)

uss(xss) =
k+
act([CNGtot]s − xss)

2

(k+
act + k−CNG)([CNGtot]s − xss) + k−

CNGixss

, (2.26)

0 = iCaσuss −
σkCawss

wss +KCa
− 4k+

CaM4w
2
ss([CaMtot] − vss − σxss) + 4k−CaM4vss.

(2.27)

Putting Eqs. (2.24)–(2.26) into Eq. (2.27) gives an algebraic equation for the station-
ary values of x, for which an analytical solution does not exist. Numerically (using the
FindRoot function of Mathematica [163]), approximative solutions of Eq. (2.27) can be
obtained and checked if they are physically meaningful (real and larger than zero). The
stability of this stationary state is determined by the eigenvalues of the Jacobian (2.22)
after substituting u, v, w, x by the numerically obtained uss, vss, wss, xss. The following
Figs. 2.16(a)–2.16(k) show results of this bifurcation analysis represented as 2D-sections
through the statespace of the system as functions of k+

act and another parameter of the
model (i.e. all parameters are kept constant except k+

act and one other). White regions
represent stable fixed points (i.e. all four eigenvalues of the Jacobian have negative real
parts), black indicates oscillatory solutions (i.e. two eigenvalues have negative real parts
and the other two eigenvalues are complex conjugate numbers with positive real part)
and in grey areas the system has no physically reasonable stationary state (e.g. unlimited
increase of [Ca2+]). A cross marks the parameter set as of Tab. 2.2 together with the
intermediate k+

act for which the system was found to oscillate (Fig. 2.11).
The region of stable oscillations in Figs. 2.16 spans approximately 2–3 decades in the

stimulus parameter k+
act. Using the quadratic relation between stimulus strength and

odourant concentration, this transforms into 1–2 decades of concentration range, where
oscillations should be observed, which is consistent with the experimental findings cited
and described in Subsec. 2.1.2 (cf. also Fig. 2.11).
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Fig. 2.16: Sections through the statespace of the model (Eqs. (2.7)–(2.10)) with k+

CNGi
1

=

k+

CNGi
2

≡ k+
CNGi using the parameters from Tab. 2.2. The parameter on all x-axes is k+

act in

1
s
. White regions indicate stable fixed points, black oscillatory solutions and in grey regions,

no stationary state could be found. The white crosses indicate the parameters used (Tab. 2.2)
together with k+

act = 5.5·10−2 1
s
.
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The occurrence of oscillatory behaviour is, according to Figs. 2.16, robust in a sense
that all parameters can be varied individually within a region of at least 1.5 decades and
oscillations would still be observed. The most sensible parameters in this respect appear
to be the calcium extrusion rate kCa and the rate for the generation of the calmodulin-
channel complex k+

CNGi . Other parameters like KCa, k
−
CNGo and k−

CNGi can be varied over
more than four decades and would not destroy the oscillatory dynamics of the model. The
occurrence of oscillations therefore is robust against the variation of one or two parameters
from the set in Tab. 2.2, however, their frequency, shape and amplitude (e.g. peak calcium
concentration) might be not in accordance with experiment.

A few of the parameters of the model might be experimentally accessible, which gives
this bifurcation analysis predictive power. The volume-surface ratio σ, e.g., is naturally
varied in the cells. Fig. 2.16(b) suggests that oscillations of calcium concentration can
only be observed for σ . 1µm. Approximating a cilium by a cylinder of constant diame-
ter d, this condition is well fulfilled for experimentally measured d ≈ 0.1µm (see Tab. 2.2),
whereas in the cell body, this condition is not met (taking the soma as a sphere with radius
5µm (Fig. 1.2)). This corresponds to experimental observations11. In principle, experi-
mentally variable are parameters connected to an expression level of genes coding for a
specific protein, such as [CaMtot], [CNGtot]s or kCa (through a change in the concentration
of calcium pumps or the Na+/Ca2+-exchanger). Genetic techniques exist (e.g. [60]) that
can lead to an over- or underexpression of the respective gene and therefore might change
the respective protein concentration. Accordingly, experiments could be conducted with
genetically altered animals and it could be checked, whether oscillations still occur or not.
However, this would be a quite involved experiment, and results would never be able to
completely verify or falsify the model, since other, non-controllable facts like the type of
receptor expressed or suchlike might bias the results. A parameter easier to be varied is the
calcium current iCa through the CNG channels, which could be, e.g. decreased by lowering
extracellular calcium concentration. A variation that was already done experimentally, is
the lowering of the calcium extrusion (through a decrease of sodium concentration outside
the cell), which is (most probably in a quite complex way) connected to the parameter
kCa.

The grey areas in Figs. 2.16 indicate parameter ranges, where the model does not have
a stable fixed point, i.e. the solution ’explodes’, meaning that there is an unlimited increase
in calcium. This can, e.g., be simply due to iCa being much too large to be compensated
by an outflux kCa that is always constant for high calcium concentrations. The occurrence
of these grey regions is clearly a result from the model being too simple. Increasing
the complexity of the model, e.g. by using a more sophisticated term for the calcium
extrusion or making the calcium current through the channels concentration-dependent,
would decrease the grey areas in the state space plots.

2.2.5 Synchronisation between the cilia of an ORN

Although the signal transduction as described so far takes place entirely in the 5–40 [133]
cilia of the ORN, stable oscillations in the transmembrane current of the whole cell are
observed. The fluorescence signal related to the calcium concentration from Fig. 2.6 was
measured as the average fluorescence of a number (probably ∼5) of cilia that happen to lie
within the laser spot (black circle in Fig. 2.4). Since, certainly, parameters like concentra-
tions of the involved chemicals, reaction constants or activation of the signal transduction
cascade vary slightly from cilium to cilium, for stable, phase-constant oscillations to be
observed as a sum of the signals from the single cilia, some phase-synchronising mechanism
has to be at work. Slightly different parameter sets lead to slightly different oscillation
frequencies, which lead – by adding e.g. 5 of these time traces – to an output signal beats
that quickly turn into damped oscillations for larger number of single, independent oscil-

11Additionally, the surface density of CNG channels in the soma is much lower than in the clilia [75].
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lators. A synchronising mechanism could be the voltage, since that spreads most rapidly
through the whole cell, faster than, e.g. diffusion of calcium ions from one cilium into the
dendritic knob and into a neighbouring cilium. Ion currents through channels are generally
voltage-dependent, which would provide a mechanism to synchronise the single oscillators
and produce stable oscillations of just one frequency as a common output. The possibil-
ity of the voltage being such a phase-synchronising variable that provides the coupling
between different cilia, is currently investigated.

It has been suggested that there exist other coupling mechanisms between different
cilia, namely interciliary diffusion of nitric oxide (NO) [136].

2.3 Summary and comparison to other theoretical ap-
proaches

The detailed dynamical properties of the signal transduction taking place in the cilia of the
olfactory receptor neurons were analysed in this chapter. A brief review of experimental
techniques as well as relevant measurements on the cells were given, which served as a
starting point for the theoretical modelling. Instead of modelling ’all at once’, i.e. setting
up differential equations for all involved chemical species and their reactions with a large
number of mostly unknown parameters (kinetic constants, concentrations), the goal was
to find a minimal system, that is able to reproduce the experimentally observed behaviour
of the cells, namely oscillations in calcium concentration and short time adaptation to
repeated strong stimulus pulses. For that, stoichiometric network analysis was used, an
analysis that checks whether a given chemical reaction network is capable of showing a
desired dynamical behaviour merely from its topology. With that, an experimentally well
established negative feedback from calcium on the calcium-conducting channels could be
identified as the ingredient that can produce both oscillations and short time adaptation.
Instead of putting in complicated kinetic terms that try to capture a broad range of stim-
ulus strength, very simple, partly phenomenological assumptions were made, e.g. for the
calcium current or the extrusion of calcium from the cilium. The four coupled nonlinear
differential equations obtained with the help of stoichiometric network analysis were nu-
merically integrated and tested with different stimulus patterns. Good and partly even
quantitative agreement was found between the results of the model and experimental data
from the literature when using reasonable choices for the parameters. A further explicit
bifurcation analysis served both as a test of the robustness of the model against single
parameter variations and as a predictive tool for further experiments. This might be of
interest in the future, since other modelling approaches were published recently that iden-
tify another negative feedback acting in the cilia as the most important ingredient for the
generation of, e.g. the oscillations.

Since the number of published theoretical approaches towards a better understanding
of olfactory signal transduction is still quite small, most of them will be discussed briefly
in the following. One of the conclusions drawn in [39, 144] is, that – different to the
model presented in this chapter – the main reason for the occurrence of oscillations is the
feedback of calcium on the adenylate cyclase (see Fig. 2.2) which leads to coupled cAMP-
Ca2+ oscillations. A proof of principle for this mechanism was given in [33]. In [125],
experimental evidence is given for this suggestion, but the results in [84] show that at least
the adaptation works fully without involving the adenylate cyclase. This point appears
to be undecided and further experiments might provide enough data to compare the two
different claims made by the different modelling approaches.

In both papers [39, 144], the idea of the approach is quite different to the one presented
in the present work. In [39], simulation results are presented for single pulses, oscillations
and adaptation that fit very nicely to experimentally obtained data. Their model includes
almost all chemicals involved in the signal transduction starting from the dynamics of the
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receptor and ending in a change in transmembrane voltage. This concept leads to a much
more complicated set of coupled differential equations with many more constants and pa-
rameters for which in most cases only rough estimates are available from experiment. They
fit their model to experimentally observed time traces and use different sets of parameters
(with single parameters varying by a factor of up to ten) for different experiments. A clear
advantage of the results presented in the present work is, that the qualitative features of
the different experiments were obtained using just one set of parameters. However, the
agreement between theoretical and experimentally measured curves is better in [39].

In [144], a similar but even more extended ’brute-force’ modelling approach is made
(12 coupled nonlinear differential equations with 44 parameters), making it difficult to
really draw conclusions or compare to other models. They find damped oscillations after
short stimuli of only 25ms but fail to produce sustained oscillations for longer pulses of
>5s. Through changing single parameters of their model, they also come to the conclusion
that the feedback loop generating the (damped) oscillations is the one from calcium on
the adenyly cyclase.

Another model containing essentially the same feedback loops is presented in [137]. It
is based on some neural simulator toolkit (for which no further rate constants or equations
are given) and produces bursts of spikes.

In [92], spatially dependent profiles of the different ion concentrations are calculated
based on complicated equations for the currents. No dynamical features are considered
there but when setting up the model of the present work, suggestions and parameter
estimates were taken from [92].

There exist quite a few very phenomenological mathematical models for taste and smell
reception, e.g. [100] and references cited therein.

A mathematical proof of the existence of periodic solutions in specific systems with
negative feedback is given in [65]. In subsequent models, a common ingredient that comes
with the negative feedback is often a time delay [151] or a large Hill coefficient. Another
work [82] comes to the conclusion that for oscillations to occur, a saturated degradation
is necessary, similar to the result from the stoichiometric network analysis in Subsec. 2.2.2
regarding the effective power ε.

As an open question remains the purpose of the oscillatory behaviour of the receptor
neurons within specific stimulus regimes. Until now, it can only be speculated about the
purpose, e.g. that oscillations might enhance the sensitivity of the system towards an
oscillating stimulus pattern [83, 119]. Actually, the stimulus of the olfactory sense does
oscillate with the frequency of respiration, which for mouse, e.g., lies roughly in the same
range as the internal oscillations observed in separated receptor cells as well as in the
model presented here.

As a possible extension of the model, the inclusion of the transmembrane voltage
as a further dynamical variable was discussed in the context of synchronised oscillations
between different cilia of the same cell. As further extensions, other feedback loops could be
included, e.g. to produce adaptation on time scales much longer than the ones considered
so far. Since experimentalists constantly improve the measurements of the kinetic relations
and the concentrations found in vivo, the model parameters can be easily updated, and
it can be checked if the model solely based on the negative feedback on the calcium-
conducting channels still is able to reproduce the observed dynamics.

Most of the work presented in this chapter has been published before [120].



Chapter 3

Ion Channel Dynamics in
Olfactory Signal Transduction:
A Stochastic Signalling Module

3.1 From a deterministic to a stochastic description

In the preceeding chapter, the signal transduction in the cilia of the olfactory receptor
neurons (ORNs) was described completely deterministically, i.e. no stochastic (random)
effects were considered. Such a description is valid only under specific circumstances:

• The mean numbers of molecules per species taking part in the signal transduction
is much larger than the fluctuations of these numbers.

• The time scales considered in the deterministic description are much larger than the
timescales of the molecular events and of the diffusion (on the length scale of the
small compartments like the cilia and cells).

These circumstances are most likely met, if medium or strong stimuli (i.e. intermediate
or high odourant concentrations) are presented to the system and one is interested in the
whole cell output dynamics on relatively long time scales (milliseconds and longer) rather
than the dynamics of a single chemical species in a single compartment as, e.g. one cilium.
To get a feeling for the number of molecules involved in the signal transduction, one
can assume a homogeneous distribution (cf. footnote p. 17) of the cyclic-nucleotide-gated
(CNG) channels along the cilium and compartmentalise the cilium in parts, where roughly
1–10 CNG channels can be found1. With the values from Tab. 2.2, such a compartment
would be around 1µm long and within this compartment, roughly 200 calmodulin (CaM)
molecules could be found as well as ∼2000 calcium ions when the system is strongly excited
(cf. Fig. 2.10). However, in the resting state (no odourant, i.e. no stimulus), the calcium
concentration is very low and in such a 1µm-section of the cilium, only approximately one
calcium ion and four second messenger molecules cAMP2 [118] would be found. Therefore,
the conditions for a deterministic description stated above do no longer hold in the case
of no or very weak stimulus. The interesting questions in this context are:

1. What is the detection threshold, i.e. how many odourant molecules are needed to
produce a reliable signalling event (cf. footnote on p. 7)?

1No experimental data for the surface concentrations of the receptors or the adenylate cyclase was
found in the literature (cf. Subsec. 2.1.1).

2Cyclic adenosin monophosphate
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2. How does the cell make a distinction between real odourant-binding events and the
ever-present noise?

3. What mechanisms does the cell use to achieve a low threshold and reliable signalling?
Are, e.g. the signalling elements clustered in the membrane?

For approaching questions like these, as well as if one is interested in shorter time scales
and intermediate steps of the signal transduction, the influence of (thermal) noise on the
system has to be considered. Possible stochastic effects in this signal transduction system
are

• the thermal (spontaneous) opening and closing of ion channels,

• the thermal (spontaneous) activation and deactivation of the involved enzymes (in-
cluding the receptor),

• fluctuations in the number of molecules of involved species due to

– thermal effects in the reactions,

– reactions not considered in this scheme,

– spatial effects,

• temporal and spatial fluctuations of the stimulus (odourant concentration).

Thermal effects in chemical reactions – and the opening and closing of an ion channel
can be seen as such – are illustrated in in the left panel of Fig. 3.1. Ion channels are large
transmembrane proteins, whose conformational state (the tertiary structure) determines, if
the channel is permeable to specific ions. Typical energy differences ∆U between different
conformational states are usually quite small and comparable to typical thermal energies3

kBT with the Boltzmann constant kB and body temperature of the animal T ≈ 300 K.
In thermodynamic equilibrium, the channel therefore has a non-vanishing probability of

e
− ∆U

kBT to be found in the energetically higher state. The rates of switching between the
two states additionally depend on a potential energy barrier in between those. Activation,
deactivation or inhibition of the channel can be seen as changes in the conformational
energies or the energy barrier between them, e.g. due to a second messenger molecule
binding to the channel protein.

The right panel of Fig. 3.1 shows a current measurement from a single ion channel as it
is found in the cilia of ORNs. The discrete nature of the channel conformations is clearly
seen (’o’/’c’). With higher stimulus concentration, the open conformation of the channel
becomes more probable but not in such a way that the typical dwelling time in the open
state is increased but rather the channel switches more often from ’c’ to ’o’ (increased
R+).

In the present chapter, the effect of a stochastic switching of the channel on the sig-
nalling properties of a simplified signalling module will be considered. In this module, the
feedback on the channel introduced and dwelled on in the last chapter is implemented in
a simple way and its influence on the signalling properties of the module are investigated.
First, the view of the cilium consisting of many compartments (described above) will be
taken, and the signalling properties of such a single compartment with a single channel
will be looked at. Later (in Sec. 3.6), as an extension, the description of coupled compart-
ments (towards a full cilium) within this framework will be outlined. The results obtained
in this chapter are not restricted to olfactory signal transduction. They rather have to be
seen as the signalling properties of an abstract building block (i.e. module) found in many
instances in biology. Sec. 3.7 describes the general applicability by giving examples from
other systems as well as discusses the idea behind this modular approach towards complex
biological networks.

3The free enthalpy of a hydrogen bond lies in the range of 5–10 kBT at T = 300 K [56].
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R−

R+E

reaction coordinate

A*

A
∆U

Fig. 3.1: Left: A very simple energy diagram of the conformational states A (closed) and
A* (open) of an ion channel. The protein changes conformation spontaneously due to thermal
activation with the rates R+ and R−, respectively. Right: Current recordings from a single
olfactory cyclic-nucleotide-gated channel in a membrane patch exposed to different concentrations
of cyclic adenosine monophosphate (cAMP). ’c’/’o’ indicates the closed/open state (modified
from [52]).

3.2 A two-state signalling module with negative feed-
back

As a start, the thermal effect on the opening and closing of a single ion channel will be
considered. The ion channel in this very much simplified picture is described as a two
state system that can be either opened or closed. The channel variable S captures these
two states by taking the values 1 if the channel is open and 0 if it is closed. Thermal
effects lead to a switching between these two states with the rates R+ and R−:

S(t̄) : 0
R+

⇄
R−

1. (3.1)

The stimulation of the system, i.e. the external signal, is built in as a temporal variation
of the opening rate R+(t̄) (cf. right panel of Fig. 3.1 and preceeding text).

Only through the open state of the channel, ions (Ca2+ in the case of the olfactory
signal transduction) can flow into the small compartment of volume V . In the simplest ap-
proximation this happens with a constant current J (independent of voltage difference and
concentration difference). The number of calcium ions is supposed to be high enough and
their dynamics fast enough to consider only the calcium concentration instead of discrete
ions. For the removal of calcium from the volume V considered, a first order approximation
is appropriate, making this term proportional to the concentration in the volume (pumping
rate λ̄). The differential equation for the calcium concentration c̄ therefore becomes

dc̄

dt̄
=
J

V
S(t̄) − λ̄c̄(t̄). (3.2)

Fig. 3.2 illustrates the two different states of the system considered.
The negative feedback that calcium exerts onto the channel via the protein calmodulin

and the binding of CaM4 to the channel (see Sec. 2.1) is built into this model by up-
regulating the closing rate R− = R−(c̄) with increasing concentration c̄. As the simplest
dependence, a linear relation (with the feedback parameter ᾱ) is considered here4:

R−(t) = R0
− + ᾱc̄(t̄). (3.3)

4This linear relation can also be seen as an expansion of a monotonically increasing function R− =
R−(c̄) around c = 0.
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Fig. 3.2: The system considered. Left: closed state (S = 0), right: open state (S = 1).

r+

1 + αc
A*A

C

λ

λ
+©

Fig. 3.3: The system considered in dimensionless units: The element A switches stochastically
between an inactive and active state with the rates r+ and r− = 1 + αc. In the active state, the
component C is produced with a rate λ. It is removed with the same rate and exerts negative
feedback on the switching of element A.

Eqs. (3.1)–(3.3) fully define the problem that will be worked with in this chapter. In
order to minimise the number of parameters, the equations are made dimensionless by
expressing time in units of 1

R0
−

and concentration in units of J
λ̄V

such that in the new units

the maximally achievable calcium concentration is cmax = 1. Using the following relations
between the original parameters and the dimensionless ones:

r0− = 1, t = R0
−t̄, c =

λ̄V

J
c̄, r+ =

1

R0
−
R+,

λ =
1

R0
−
λ̄, α =

J

V λ̄R0
−
ᾱ,

∂

∂t
=

1

R0
−

∂

∂t̄
,

Eqs. (3.1)–(3.3) can be rewritten with only three parameters (the opening rate r+, the
pump rate λ and the feedback parameter α):

S(t) : 0
r+
⇄
r−

1, (3.4)

dc

dt
= λ (S(t) − c(t)) , (3.5)

r−(t) = 1 + αc(t). (3.6)

Fig. 3.3 depicts this setup of the system as a chemical reaction diagram.
Eq. (3.5) can immediately be solved [19]:

c(t) = λ

∫ t

−∞
e−λ(t−t′)S(t′)dt′, (3.7)

i.e. the dynamics of the calcium concentration is fully determined by the opening and
closing dynamics of the channel. The difficulty of the computation of statistical quantities



3.2. A two-state signalling module with negative feedback 37

of S lies within the dependence of the closing rate on the calcium dynamics, which makes
the effective dynamics of S(t) non-Markovian. Fig. 3.4 shows two typical time traces with
α = 0 obtained from a numerical simulation. For α 6= 0, the time evolution of S would
depend on c(t) and therefore would be different for different λ.

 0

 0.5

 1

 0  5  10  15  20  25

 0

 0.5

 1

 0  5  10  15  20  25

 0

 0.5

 1

 0  5  10  15  20  25

c(
t)

c(
t)

S
(t

)

t

Fig. 3.4: Examples of a single time trace with no feedback. Middle row: λ = 5, Lower row:
λ = 0.5. Since α = 0, S(t) is not affected by c(t) and therefore the same for both λ-values.

3.2.1 Definition of the relevant quantities

The dynamics of the system introduced above can be characterised by the set of n-point
functions of the channel variable S (n ≥ 1):

〈S(t0)S(t1) · · ·S(tn−1)〉. (3.8)

The angular brackets 〈· · · 〉 represent ensemble averages over all possible time evolutions
of the system. The corresponding n-point functions for c are then determined by Eq. (3.7)
and can be computed with

〈c(t0)c(t1) · · · c(tn−1)〉 = λne−λ(t0+t1+...+tn−1)·

·
∫ t0

−∞
dτ0

∫ t1

−∞
dτ1 · · ·

∫ tn−1

−∞
dτn−1e

λ(τ0+τ1+...+τn−1)〈S(τ0)S(τ1) · · ·S(τn−1)〉.

(3.9)

In the following sections, both the mean values (n = 1) and the correlation functions
(n = 2) in the steady state and for time-independent external signal r+ will be calculated
using three different methods. For the mean value of 〈c〉 in the steady state, one sees
immediately from Eq. (3.7):

〈c〉 = 〈S〉. (3.10)

The auto-correlation functions in the steady state are defined with the 2-point functions
from Eq. (3.8):

CS(t) = lim
t0→∞

〈S(t0)S(t0 + t)〉 − 〈S〉2, (3.11)

Cc(t) = lim
t0→∞

〈c(t0)c(t0 + t)〉 − 〈c〉2. (3.12)

Similarly, the two cross-correlation functions are defined as

CSc(t) = lim
t0→∞

〈S(t0)c(t0 + t)〉 − 〈S〉〈c〉, (3.13)

CcS(t) = lim
t0→∞

〈c(t0)S(t0 + t)〉 − 〈c〉〈S〉. (3.14)
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Equivalent to the auto-correlation functions in steady state is the description of the
system in terms of the power spectra – the Fourier transform of the auto-correlation
functions [19]. Here, the real cosine-Fourier transform is chosen:

PS(ω) = 2

∫ ∞

0

CS(t) cos(ωt)dt, Pc(ω) = 2

∫ ∞

0

Cc(t) cos(ωt)dt =
λ2

λ2 + ω2
PS(ω).

(3.15)
The latter equality can be obtained from Eq. (3.7).

As described in the preceeding subsection, an external signal is implemented as a
temporal variation of r+. Naturally in a stochastic system, this temporal variation happens
on top of a constant (thermal) r0+:

r+(t) = r0+ + φ(t). (3.16)

The response of the system towards this stimulus in both the channel variable S and the
concentration c can then be defined as

RS(t) = 〈S(t)〉φ − 〈S〉, Rc(t) = 〈c(t)〉φ − 〈c〉. (3.17)

The superscript φ indicates that the ensemble averages have to be evaluated in the presence
of the time-dependent perturbation φ(t). If this perturbation is small (φ(t) ≪ r0+), the
response of the system can be defined through the linear response functions χ(t):

RS(t) ≈
∫ t

−∞
χS(t− t′)φ(t′)dt′, Rc(t) ≈

∫ t

−∞
χc(t− t′)φ(t′)dt′, (3.18)

where the two χ’s are related through Eq. (3.7):

χc(t) = λ

∫ t

0

χS(t′)e−λ(t−t′)dt′. (3.19)

One way of calculating the linear response functions is to analyse the response to a
step-stimulus r+(t) = r0+ +φ0Θ(t) with the Heaviside function Θ(t) [19] and take the limit
of infinitesimal small φ0:

χS(t) = lim
φ0→0

1

φ0

dRS(t)

dt
=

∂

∂t

∂〈S(t)〉φ0

∂φ0

∣

∣

∣

∣

φ0=0

. (3.20)

Different methods can be used to obtain insight into the problem defined by Eqs. (3.4)–
(3.6) and calculating the aforementioned quantities. In Sec. 3.3, a fully (for all α) valid
expression for the mean value of S will be computed using a master equation. In the
subsequent section, a path-integral method is introduced with which approximative ex-
pressions for the auto-correlation functions and the response functions are obtained. Both
are valid in the limit of weak feedback (small α). For later extensions of the signalling
module, a computationally easier self-consistent method is explained and mean values and
auto-correlation functions are computed that are only valid in specific parameter regimes.

After the analytical part, the results of all three methods are compared to numerical
simulations of the system in Sec. 3.5. Simulations also provide results in parameter ranges
where no analytical solutions could be found.

3.3 Channel open probability in the steady state

In the following subsection an expression for the mean open probability of the channel in
the steady state, 〈S〉, (and therefore the mean calcium concentration 〈c〉 – Eq. (3.10)) of
the system described by the Eqs. (3.4)–(3.6) will be derived for the whole parameter range
using a master equation.
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3.3.1 Solution using a master equation

If pi(c, t) is the probability density to find the system at time t in state S(t) = i with
concentration c, the following two equations can be set up for the fluxes between these
two probability densities:

∂

∂t
p1(c, t) = −λ ∂

∂c
((1 − c)p1(c, t)) − (1 + αc)p1(c, t) + r+p0(c, t),

∂

∂t
p0(c, t) = λ

∂

∂c
(cp0(c, t)) − r+p0(c, t) + (1 + αc)p1(c, t). (3.21)

The last two terms in Eqs. (3.21) describe the jumps between the different states of S,
whereas the respective first terms on the right hand side are the drift terms in c due to an
in- and outflux of ions.

For the two probability distributions, the following norm must hold:

∫ 1

0

(p1(c, t) + p0(c, t)) dc = 1. (3.22)

Since no probability is allowed to flow into or out of the system, the following boundary
conditions must be met (they correspond to the boundaries of c: 0 ≤ c ≤ 1):

(1 − c)p1(c, t)|c=0 = p1(0, t) = 0,

cp0(c, t)|c=1 = p0(1, t) = 0. (3.23)

Setting the time derivatives in Eqs. (3.21) to zero, one obtains two equations for the
stationary state:

0 = −λ d

dc
((1 − c)p1,ss) − (1 + αc)p1,ss + r+p0,ss, (3.24)

0 = λ
d

dc
(cp0,ss) − r+p0,ss + (1 + αc)p1,ss. (3.25)

Combining (adding) Eqs. (3.24) and (3.25) gives d
dc ((1 − c)p1,ss − cp0,ss) = 0, which

leads to
p1,ss =

c

1 − c
p0,ss. (3.26)

A possible integration constant must be zero because of Eqs. (3.23).
Putting Eq. (3.26) into Eq. (3.25) gives

λc
dp0,ss

dc
=

(

r+ − λ− (1 + αc)c

1 − c

)

p0,ss, (3.27)

which can be transformed through separation of variables to

dp0,ss

p0,ss
=

(

r+ − λ

λc
− 1

λ(1 − c)
− α

λ

c

1 − c

)

dc. (3.28)

Integration of Eq. (3.28) leads to

ln p0,ss =
(r+
λ

− 1
)

ln c+
1

λ
ln(1 − c) +

α

λ
c+

α

λ
ln(1 − c) + const., (3.29)

which gives, exponentiated,

p0,ss = N0c
r+
λ −1(1 − c)

1
λ (1+α)e

α
λ c, (3.30)

and with Eq. (3.26)

p1,ss = N0c
r+
λ (1 − c)

1
λ (1+α−λ)e

α
λ c. (3.31)
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Despite the possible poles at c = 0 and c = 1, the integral in Eq. (3.22) can still be
calculated and from that one obtains the normalisation constant N0 as

N0 =
Γ
(

1
λ (1 + α+ r+)

)

Γ
( r+
λ

)

Γ
(

1+α
λ

)

1

F
( r+
λ ; 1

λ (1 + α+ r+); αλ
) . (3.32)

F (a; c;x) is the confluent hypergeometric function (or Kummer’s function) [18] and Γ(x)
the Gamma function.

Fig. 3.5 shows plots of the probability distribution functions p0,ss(c) and p1,ss(c).
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Fig. 3.5: Probability distribution functions p0,ss(c) and p1,ss(c) as obtained from the master
equation approach for the two different λ = 0.5 (left) and λ = 2.5 (right); r+ = 1, α = 1.
Mathematica [163] was used to to evaluate the functions F and Γ.

Integrating p1,ss over all possible values of c gives the mean steady state open proba-
bility of the system:

〈S〉ss =

∫ 1

0

p1,ssdc =
r+

1 + r+ + α

F
( r+
λ + 1; 1

λ (1 + r+ + α) + 1; αλ
)

F
( r+
λ ; 1

λ (1 + r+ + α); αλ
) . (3.33)

Using the series representation of the confluent hypergeometric function [18], one can
Taylor-expand 〈S〉ss around α = 0, which gives

〈S〉ss =
r+

1 + r+
− r+(r+ + λ)

(1 + r+)2(1 + r+ + λ)
α+ O(α2). (3.34)

The same result will be found later using a path-integral technique (Subsec. 3.4.1).
In Fig. 3.6, the full expression from Eq. (3.33) is plotted against the opening rate

r+. The right panel of Fig. 3.6 shows 〈S〉 for different values of λ. 〈S〉 only becomes
λ-dependent for α 6= 0 (for small α, see Eq. (3.34)), which is why only the results for
high values of feedback are shown. If one defines r+ as the input and 〈c〉 = 〈S〉 as the
output signal of the system, one can define a reception range as the interval of input signal
r+ that is transduced into a specific interval of output signal 〈c〉, say, e.g. from 0.1 to
0.9. A reduced slope of the 〈c(r+)〉 curves on this logarithmic scale therefore increases the
reception range which can be seen to happen for increasing feedback strength (left panel
of Fig. 3.6). From the right panel of Fig. 3.6 one sees that for strong feedback, decreasing
λ further broadens the reception range. Another observation is the shift of the reception
range towards higher stimuli (r+) with increasing feedback, which is simply due to the
enhanced value of the back-flipping rate r−.

Fig. 3.17 in the later Subsec. 3.5.2 plots the mean open fraction 〈S〉 of the channel
against the feedback parameter α. There, it serves as a test for the quality of numerical
results presented later.

The results from this subsection are contained in a previous study by others [101]
focusing on the steady state properties of a more general module.
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Fig. 3.6: Mean open fraction of the channel in the steady state (from Eq. (3.33)). Left: λ = 5;
Right: curves for α = 10 and 100 and λ = 5 and 0.1.

Since the channel variable S can only take the values 0 and 1, the variance of it can
be directly calculated from the mean value through

(δS)2 = 〈S2〉 − 〈S〉2 = 〈S〉(1 − 〈S〉) ( = CS(0) ) . (3.35)

Its maximum is always 1
4 and appears at 〈S〉 = 1

2 , independent of feedback. For the
concentration c, this relation does not hold and the two-point function has to be calculated
in order to get the variance. The plots of the variance (and also the normalised standard
deviation) will be shown later in Subsec. 3.5.2 presenting the numerical results together
with an interpretation.

3.4 Correlation and response functions

In the last section, only steady state properties of the system as described by Eqs. (3.4)–
(3.6) were calculated. In order to characterise also the dynamical properties, in this section,
the correlation and response functions (as defined in Eqs. (3.11), (3.12) and (3.20)) will
be calculated perturbatively for small values of the feedback parameter α. First, a pow-
erful but computationally involved path-integral method will be described in detail and
the relevant quantities calculated. From the auto-correlation functions, further quantities
describing the statistics of the system are derived. Since both auto-correlation and re-
sponse functions are calculated, the validity of the fluctuation dissipation theorem valid
in thermal equilibrium can be shown to be broken by the present system. Due to the
extensive algebra connected to the path-integral method, it is not the ideal starting point
for extensions and modifications of the signalling module as introduced in Sec. 3.2. For
this purpose, a less complicated but only approximative self-consistent method to calcu-
late the auto-correlation functions is introduced in Subsec. 3.4.2, the results of which are
valid only in specific parameter regimes and again only for weak feedback. In order to test
the validity of the results, in both approaches also perturbative expressions for the mean
values are calculated that are compared to the results from the master equation method
in the preceeding section together with numerically obtained results in Subsec. 3.5.1. Per-
turbative expressions for the auto-correlation functions that agree with the results from
the path-integral method can also be obtained from a modified master equation similar to
Subsec. 3.3.1 (not shown).

3.4.1 Path-integral formalism

More common in quantum theory, path integrals are not very often employed as mathe-
matical tools in statistical physics, although this technique was developed for the inves-
tigation of Brownian motion (see, e.g. [23]). In the following, path integrals are used to
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obtain insight into the dynamics of a stochastic system and actually compute its statistical
properties. Together with other work [62] this subsection provides a further example of the
potential of this method. First, the propagator of the system described by Eqs. (3.4)–(3.6)
will be defined. Using path integrals, a reduced propagator (the ’Green’s function’) will
actually be calculated perturbatively to linear order in the feedback parameter α. From
that, expressions for the different quantities as defined in Subsec. 3.2.1 are obtained.

Propagator

The general propagator Πij(t0, c0; t, c) with i, j = {0, 1} gives the probability density to
find the system in state S(t) = j and c(t) = c given that it was in state S(t0) = i and
c(t0) = c0 at some earlier time t0 ≤ t. With that, all the relevant quantities introduced in
the preceeding subsection can be calculated:

〈S〉 =

∫ 1

0

Πi1(−∞, c0; 0, c)dc, (3.36)

〈S(0)S(t)〉 =

∫ 1

0

dc

∫ 1

0

dc1Πi1(−∞, c0; 0, c1)Π11(0, c1; t, c), (3.37)

〈S(0)c(t)〉 =
∑

j

∫ 1

0

dc

∫ 1

0

dc1Πi1(−∞, c0; 0, c1)Π1j(0, c1; t, c)c, (3.38)

〈c(0)S(t)〉 =
∑

j

∫ 1

0

dc

∫ 1

0

dc1Πij(−∞, c0; 0, c)cΠj1(0, c; t, c1), (3.39)

χS(t) =
∂

∂t

∂

∂φ0

∑

j

∫ 1

0

dc

∫ 1

0

dc1Πij(−∞, c0; 0, c1)Π
φ0

j1 (0, c1; t, c). (3.40)

Since for the first propagators in the integral expressions above, −∞ was used as a starting
time, all of those quantities are steady state expressions.

Path integral

There are infinitely many ways (’paths’) the system can evolve from one state at time
t0 (characterised by S0 and c0) to another state at time t1 (with S1 and c1). Three of
these are shown for S0 = 0 and S1 = 1 in Fig. 3.7. Since c(t) is completely determined
by S(t) (Eq. (3.7)), already only S(t) as shown in Fig. 3.7 fully characterises one possible
trajectory (’path’) of the system.
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Fig. 3.7: Three different of the infinitely many ways (’paths’) the system can evolve from state
S0 = 0, c0 at time t0 = 0 to S1 = 1 at time t′. N gives the number of channel state changes and
τi are the flip times.
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S(t) is most conveniently described in a given time interval by the set of flip
times {τi} at which the channel changes its state. With that, a probability density
Pij [t0, t; {τk}Nk=1; c0;N ] can be defined that describes one specific trajectory of the sys-
tem evolving from S(t0) = i and c(t0) = c0 to S(t) = j making N channel state changes in
between at the flip times {τk}. If i = j, N is even, for i 6= j N is odd. The concentration c
at time t is determined by S(t′) with t0 ≤ t′ < t and c0 through Eq. (3.7) and is therefore
not a parameter for Pij . The propagator as introduced above can now be calculated as a
path integral over all possible paths S(t) that lead from a given state S(t0) = i, c(t0) = c0
to the state S(t) = j, c(t) = c. Since c(t) is not contained in the probability density Pij ,
the correct paths have to be singled out in the path integral with a delta function:

Πij(t0, c0; t, c) =
∑

N

∫

DτPij [t0, t; {τk}Nk=1; c0;N ]δ(c(t) − c). (3.41)

Dτ is an abbreviation for the differential of the path integral. The first state flip of S can
happen between t0 and t (t0 < τ1 < t), the second between τ1 and t (τ1 < τ2 < t) and so

on. Therefore, the full differential reads
∫

Dτ ≡
∫ t

t0
dτ1

∫ t

τ1
dτ2...

∫ t

τN−1
dτN .

It is much easier to evaluate this path integral, when the additional delta functional
is removed. The quantity obtained can be called a reduced propagator or the Green’s
function of the system:

Gij(t0, c0; t) =
∑

N

∫

DτPij [t0, t; {τk}Nk=1; c0;N ]. (3.42)

Gij(t0, c0; t) gives the probability to find the system in state S = j at time t, given that it
started in S = i with c = c0 at time t0. It is connected to the full propagator by

Gij(t0, c0; t) ≡
∫ 1

0

Πij(t0, c0; t, c)dc. (3.43)

Since the system must be either in state S = 0 or S = 1 at time t, the following
relations must hold for all times:

G00 +G01 = 1 = G10 +G11. (3.44)

Probability density

For calculating the functional Pij [t0, t; {τk}Nk=1; c0;N ] it is easiest to start with the case
α = 0 and look at the specific case with i = j = 0. It is then straightforward to calculate
the remaining expressions for {i, j} = {0, 1}, {1, 0}, {1, 1}. Starting in the closed state
S(0) = 0 at time t0 = 0, the probability that the channel remains in this state until
the first flip at time τ1 is P0(0, τ1) = e−r+τ1 . Similarly, the probability that the channel
remains in the open state S = 1 in the time interval [τ1, τ2] is P1(τ1, τ2) = e−(τ2−τ1)

(the closing rate in the dimensionless version of the system is r− = 1). One obtains the
differential probability for the whole trajectory by simply putting all N of these intervals
in a row and since they are mutually independent, the according probabilities have to be
multiplied. Additionally, the rates r+ for the N

2 flips from S = 0 to S = 1 have to be
considered (the respective backflipping rates are r− = 1 and therefore do not appear):

P(0)
00 [0, t; {τi}Ni=1;N ]dτ1dτ2...dτN = r

N
2

+

N
∏

i=1

dτiP0(0, τ1)P1(τ1, τ2)P0(τ2, τ3)...P0(τN , t).

(3.45)
It is convenient to make a transformation of the time variables from the set of flip times

{τi}Ni=1 to the two sets of time-intervals {Tj}N/2j=1 and {T ′
j}
N/2
j=1 during which the channel
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stays in the closed or the open state, respectively. This transformation is illustrated in
Fig. 3.8 and mathematically expressed as

τ1 = T1,

τi =

i/2
∑

l=1

Tl +

i/2
∑

l=1

T ′
l even i ≥ 2,

τj =

(j+1)/2
∑

l=1

Tl +

(j−1)/2
∑

l=1

T ′
l odd j > 1

⇔ Tk = τ2k−1 − τ2k−2 T ′
k = τ2k − τ2k−1. (3.46)

τ1 τ2 τ3 τ4 τ2m−1 τ2m

T ′
1 T ′

2 T ′
m

T1 T2 Tm

S

t0
0

1

Fig. 3.8: The relation between the two different ways of describing the temporal dynamics of

S(t): the flip times {τi}
N
i=1 vs. the time-intervals {Tj}

N/2
j=1 and {T ′

j}
N/2
j=1 .

The Jacobian of this transformation is J = 1 so that the differentials dτ directly
transform into dT . Using this transformation, the probability functional (Eq. (3.45))
becomes (2m = N)

P(0)
00 [0, t; {Ti}, {T ′

i}; 2m] = rm+

m
∏

i=1

e−r+Tie−T
′

i e−r+Tm+1 , (3.47)

with Tm+1 = t− τN . This can be rewritten using
∑m
i=1(Ti + T ′

i ) + Tm+1 = t as

P(0)
00 [0, t; {Ti}, {T ′

i}; 2m] = rm+ e−F00(0,t;{T ′

i}), (3.48)

with the weight factor

F00(0, t; {T ′
i}) = r+t+ (1 − r+)

m
∑

i=1

T ′
i . (3.49)

In the presence of feedback (α 6= 0), the flipping rate from the open to the closed state
of the channel becomes calcium-dependent (r−(t) = 1 + αc(t)), i.e. the probability for
staying in the open state has to be modified (odd i):

P1(τi, τi+1) = e−
R τi+1

τi
(1+αc(τ ′))dτ ′

= e−(τi+1−τi)e−α
R τi+1

τi
c(τ ′)dτ ′

. (3.50)

With that, the functional in Eq. (3.48) becomes

P00[0, t; {Ti}, {T ′
i}; c0; 2m] = rm+

(

2m
∏

E
i=2

(1 + αc(τi))

)

e−F00e
−α
∑

O

2m−1

j=1

R τj+1
τj

c(τ ′)dτ ′

,

(3.51)
where the symbols E and O on the product- or the sum-signs indicate multiplica-
tion/summation over all even, respectively odd indices.

The concentration c(t) in Eq. (3.51) can (through Eq. (3.7)) be expressed in terms
of the time intervals {Ti}, {T ′

i}, which would lead to an expression containing a difficult
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double-exponential. To circumvent this, in the following, the limit of weak feedback, i.e.
small α, is considered. Expanding both the product as well as the exponential of Eq. (3.51)
in powers of α yields

P00[0, t; {Ti},{T ′
i}; c0; 2m] =

rm+ e−F00



1 + α





2m
∑

E
i=2

c(τi) −
2m−1
∑

O
j=1

∫ τj+1

τj

c(τ ′)dτ ′







+ O(α2). (3.52)

This expansion is valid as long as the contribution of feedback to the dynamics is weak,
i.e. αc≪ 1. Since cmax = 1, this condition reduces to α≪ 1.

Computation of Green’s function

Since two of the four Gij are connected by the two Eqs. (3.44), only two remain indepen-
dent. In the following, G00 will be calculated to first order in the feedback parameter α
using the path-integral approach. After that, instead of doing a similar extensive calcu-
lation for G11, a nontrivial relation between G00 and G11 will be derived, that is valid to
first order in α.

First, a special Green’s function is calculated for the system starting with S(t = 0) = 0
and c(t = 0) = 0. Putting Eq. (3.52) into Eq. (3.42) with t0 = 0 and c0 = 0 gives

G00(0, 0; t) =

∞
∑

m=0

[

∫

Dτrm+ e−F00 + α

(

∫

Dτrm+ e−F00

2m
∑

E
i=2

c(τi)

−
∫

Dτrm+ e−F00

2m−1
∑

O
j=1

∫ τj+1

τj

c(τ ′)dτ ′







+ O(α2). (3.53)

Putting in the expression for F00 (Eq. (3.49)), this can be written as

G00(0, 0; t) = e−r+t
(

1 +

∞
∑

m=1

rm+ [I0(t;m) + α(I1(t;m) − I2(t;m))]

)

+ O(α2), (3.54)

with the three time-ordered integrals

I0(t;m) =

∫

DT e−(1−r+)
Pm

i=1 T
′

i , (3.55)

I1(t;m) =

∫

DT e−(1−r+)
Pm

i=1 T
′

i

2m
∑

E
i=2

c(τi), (3.56)

I2(t;m) =

∫

DT e−(1−r+)
Pm

i=1 T
′

i

2m−1
∑

O
j=1

∫ τj+1

τj

c(τ ′)dτ ′. (3.57)

The first term in the parentheses in Eq. (3.54) (the ’1’), gives the probability to stay in
the closed state without switching (m = 0).

The time-ordered integrals of Eqs. (3.55)–(3.57) are series of convolutions in time. In
Laplace space, convolutions turn into simple products of the Laplace transforms and in
Appendix B.1.1, a general convolution theorem will be proven that makes the calculation
of these integrals possible. Using the standard definition for the Laplace transform [19]

f̂(s) =
∫∞
0
f(t)e−stdt, Eq. (3.54) becomes

Ĝ00(c0 = 0; s) =
1

s+ r+
+

∞
∑

m=1

rm+

[

Î0(s+ r+;m)

+ α
(

Î1(s+ r+;m) − Î2(s+ r+;m)
)]

+ O(α2). (3.58)
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The quite involved calculation of the three integrals Î0, Î1 and Î2 is done in Ap-
pendix B.1. Putting the results into Eq. (3.58) gives

Ĝ00(0; s) =
1

s+ r+
+

∞
∑

m=1

rm+
(s+ r+)m+1(s+ 1)m

+ α

[

r+λs

(s+ r+)2(s+ 1)2(s+ 1 + λ)
+

∞
∑

m=2

rm+
(s+ r+)m+1(s+ 1)m

·

· s

2s+ 1 + r+ + λ

(

m(s+ r+ + λ)

s+ 1
+
y′m − 1

1 − y′
s+ r+
s+ 1 + λ

)

]

+ O(α2),

(3.59)

with

y′ =
(s+ r+)(s+ 1)

(s+ r+ + λ)(s+ 1 + λ)
. (3.60)

The sums over m can be evaluated and the inverse Laplace transform of the result is

G00(0, c0 = 0; t) =
1

1 + r+

(

1 + r+e−(1+r+)t
)

+ α
r+

(1 + r+)2

[

r+ + λ

1 + r+ + λ

−e−λt
r+(1 + r+)

(1 + r+ − λ)2
− e−(1+r++λ)t 1 + r+

λ(1 + r+ + λ)

+e−(1+r+)t

(

(1 + r+)(λ− 1)t

1 + r+ − λ
+
r2+ − (λ− 1)3 + r+(2 − 3λ+ 2λ2)

λ(1 + r+ − λ)2

)]

+ O(α2). (3.61)

This is the Green’s function G00 for the special initial condition c0(0) = 0. Through
Eq. (3.44), it is related to the time evolution of the open probability 〈S(t)〉 when starting
in this initial condition by 〈S(t)〉 = 1 − G00. The corresponding equation for the time
evolution of the mean value of c can be obtained through Eq. (3.7) and is given as Eq. (B.66)
in Appendix B.5. Both of these quantities will be compared to numerically obtained results
in Subsec. 3.5.1.

In order to get the general Green’s function G00(0, c0; t) for arbitrary initial concen-
tration c0, one puts the expression of Eq. (3.52) (with t0 = 0 and the general solution

c(t) = λ
∫ t

0
S(t′)e−λ(t−t′)dt′+c0e−λt from Eq. (3.7)) into Eq. (3.42). From that it becomes

obvious that the full Green’s function depends only linearly on the initial concentration
c0:

G00(0, c0; t) = G00(0, c0 = 0; t) + αc0f(t) + O(α2) (3.62)

with G00(0, c0 = 0; t) from Eq. (3.61). f(t) can be either calculated as part of the path
integral or using the rate equation

∂

∂t
G00 = r− − (r− + r+)G00 (3.63)

with the time dependent rate r−(t) = 1+αc0e
−λt and the initial condition G00(0, c0; 0) = 1

(i.e. the system evolves with an initial concentration c0 but no influx (J ≡ 0)). In
Appendix B.2 the rate equation is solved and gives:

f(t) =
r+
λ

( −1

1 + r+ − λ
e−(1+r+)t +

1

1 + r+
e−(1+r++λ)t +

λ

(1 + r+)(1 + r+ − λ)
e−λt

)

.

(3.64)
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Relation between G11 and G00

In principle, the second (so far) independent Green’s function G11 or G10 can be calculated
using path integrals the same way as described for G00. There is, however, a faster way
of finding this relation valid up to linear order in α. It uses expressions of the Green’s
functions G01(t

′, c′; t) and G11(t
′, c′; t) similar to Eq. (3.62):

G01(t
′, c′; t) = G01(t

′, c′ = 0; t) + αc′f1(t− t′) + O(α2),

G11(t
′, c′; t) = G11(t

′, c′ = 0; t) + αc′f2(t− t′) + O(α2). (3.65)

Again, the two functions c′f1(t) and c′f2(t) are the O(α) terms in G01(0, c
′; t) and

G11(0, c
′; t), respectively, when the channel is closed and there is no influx of ions (J ≡ 0).

f1(t) can be obtained from Eq. (3.44) and is just

f1(t) = −f(t), (3.66)

with f(t) from Eq. (3.64). f2(t) is the O(α) solution of the rate equation for G11 with the
time dependent rate r−(t) = 1 + αc′e−λt. In appendix B.2 it is computed to be

f2(t) =
1

λ

(

λ− 1

1 + r+ − λ
e−(1+r+)t +

1

1 + r+
e−(1+r++λ)t − λr+

(1 + r+)(1 + r+ − λ)
e−λt

)

.

(3.67)
With that, in appendix B.3 the relation between G11 and G00 is shown to be

G11(t
′ = 0, c′ = 0; t) ≈ 1 −G00(0, 0; t) +

∂G00(0,0;t)
∂t

∂G00(0,0;t)
∂t

∣

∣

∣

t=0

. (3.68)

The explicit expression for G11(0, 0; t) is given as Eq. (B.55) in appendix B.3.

Mean values

Since the steady state properties of the system do not depend on the initial conditions,
the mean open probability of the channels can be found, e.g. by applying the limit

〈S〉 = lim
t→∞

(1 −G00(0, c0 = 0; t)) =
r+

1 + r+

(

1 − α
r+ + λ

(1 + r+)(1 + r+ + λ)

)

+ O(α2).

(3.69)
Due to the special choice of dimensions, the steady state limits of S and c are the same
(see Eq. (3.7)):

〈c〉 = lim
t→∞

〈c(t)〉 = 〈S〉. (3.70)

Eq. (3.69) is the same as the Taylor expansion around α = 0 of the full result obtained
with the master equation (Eq. (3.34)).

Auto-correlation functions and power spectra

Putting the definition of the Green’s function from Eq. (3.43) into Eq. (3.37), one obtains
for the auto-correlation function of S

〈S(0)S(t)〉 =

∫ 1

0

dc1Πi1(−∞, c0; 0, c1)G11(0, c1; t). (3.71)

Using Eq. (3.65) and Eq. (3.36), this can be written as

〈S(0)S(t)〉 = 〈S〉G11(0, 0; t) + α〈c〉1f2(t) + O(α2), (3.72)

where 〈c〉1 is the mean steady state value of the concentration, when the channel is in the
open state. It is defined in Eq. (B.52) and calculated in Appendix B.4.
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Using Eqs. (3.69), (B.55), (B.65) and (3.67), as well as the definition of Eq. (3.11), one
gets for the auto-correlation function of the channel variable S

CS(t) =
r+

(1 + r+)2
e−(1+r+)t + α

[

B1e
−(1+r+)t + C1e

−λt +D1e
−(1+r++λ)t

+ E1te
−(1+r+)t

]

+ O(α2). (3.73)

The coefficients B1, C1,D1, E1 are functions of the two parameters r+ and λ and are given
in Appendix B.6.

Using Eq. (3.9) with n = 2 and the definition of Eq. (3.12) one can directly calculate
the auto-correlation function for the variable c:

Cc(t) =
r+λ

(1 + r+)2((1 + r+)2 − λ2)

[

e−λt(1 + r+) − λe−(1+r+)t

]

+ α

[

B2e
−(1+r+)t + C2e

−λt +D2e
−(1+r++λ)t + E2te

−(1+r+)t + F2te
−λt

]

+ O(α2).

(3.74)

Again, the coefficients B2, C2,D2, E2, F2 are given in Appendix B.6.
The power spectrum for S is easily obtained from Eq. (3.15):

PS(ω) =2
r+

(1 + r+)3 + (1 + r+)ω2
+ 2α

(

1 + r+
(1 + r+)2 + ω2

B1 +
λ

λ2 + ω2
C1

+
1 + r+ + λ

(1 + r+ + λ)2 + ω2
D1 +

(1 + r+)2 − ω2

((1 + r+)2 + ω2)2
E1

)

+ O(α2). (3.75)

It is important to note, that also the term of PS(ω) linear in α decays as ω−2 for large ω.
This can be seen after some rearrangements when putting the coefficients of Eq. (B.69)
into the expression above.

Accordingly, the power spectrum for the concentration can be obtained. It is given in
Appendix B.5 as Eq. (B.67).

Fluctuation measures

According to Eq. (3.35), the mean squared fluctuation (or variance) of the channel variable
S can be obtained both through the correlation function or the mean. For the root mean
squared fluctuations (the standard deviation), one gets

δS =

√
r+

1 + r+

(

1 − α

2

(1 − r+)(r+ + λ)

(1 + r+)(1 + r+ + λ)

)

+ O(α2). (3.76)

For c, one has to calculate the two-point function:

(δc)2 = 〈c2〉 − 〈c〉2 = Cc(0), (3.77)

which gives the root mean squared fluctuations (using Eq. (3.74) with the coefficients from
Eqs. (B.70))

δc =

√

r+λ

(1 + r+)2(1 + r+ + λ)

(

1 +
α

2
·

·r
3
+ + r2+(3λ− 2) + r+(2λ2 − 4λ− 3) − λ(2λ+ 3)

(1 + r+)(1 + r+ + λ)(1 + r+ + 2λ)

)

+ O(α2). (3.78)
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As a measure of the precision of the system, one can calculate the relative fluctuations
(normalised standard deviation, noise-to-signal ratio or coefficient of variation). Using
Eqs. (3.76), (3.69) and Eqs. (3.78), (3.70), respectively, one gets

δS

〈S〉 =

√

1

〈S〉 − 1 =
1

√
r+

(

1 + α
λ+ r+

2(1 + r+ + λ)

)

+ O(α2), (3.79)

δc

〈c〉 =

√

λ

r+(1 + r+ + λ)

(

1 + α
(r+ + λ)(−1 + r+ + 2λ)

2(1 + r+ + 2λ)(1 + r+ + λ)

)

+ O(α2). (3.80)

Cross-correlation functions

The two cross-correlation functions are defined in Eqs. (3.13), (3.14) and the respective
2-point functions using the propagator in Eqs. (3.38), (3.39).

Doing the integral over c and the sum over j in Eq. (3.38) gives the time evolution of
the mean concentration with special initial conditions (cf. Eq. (B.52)):

〈S(0)c(t)〉 =

∫ 1

0

dc1Πi1(−∞, c0; 0, c1)〈c(t)〉S(0)=1,c(0)=c1

= 〈S〉〈c(t)〉S(0)=1,c(0)=0 + 〈c〉1e−λt. (3.81)

For the last equality, Eq. (3.5) was solved with the initial concentration c(0) = c1. Further,
Eq. (3.36) and the steady state limit of Eq. (B.52) were used. 〈c(t)〉S(0)=1,c(0)=0 can be
obtained by using Eq. (3.7):

〈c(t)〉S(0)=1,c(0)=0 = λ

∫ t

0

e−λ(t−t′)〈S(t′)〉S(0)=1,c(0)=0dt
′ = λ

∫ t

0

e−λ(t−t′)G11(0, 0; t′)dt′.

(3.82)
For 〈S(0)c(t)〉 to be valid to O(α), 〈c(t)〉S(0)=1,c(0)=0 is needed to O(α) which can be easily
obtained using Eq. (B.55). The mean value of the concentration when the channel is open,
〈c〉1, is also needed to O(α) which can be straightforwardly done following appendix B.4.
In the present work, however, 〈c〉1 is only calculated to O(α0) and no analytical expression
is computed for CSc(t). Numerical results, however, are presented in Subsec. 3.5.2.

The integration over c1 in Eq. (3.39) gives (using Eqs. (3.43) and (3.65)),

〈c(0)S(t)〉 =
∑

j

∫ 1

0

dcΠij(−∞, c0; 0, c)c (Gj1(0, 0; t) + αcfj+1(t)) . (3.83)

With the steady state version of Eqs. (B.52) and the similar relations for the second
moments, one gets

〈c(0)S(t)〉 =
∑

j

(

Gj1(0, 0; t)〈c〉j + αfj+1(t)〈c2〉j
)

. (3.84)

Again, 〈c〉j is needed to O(α) and 〈c2〉j to O(α0) for 〈c(0)S(t)〉 being valid to first order
in α. Both can in principle be calculated similarly to appendix B.4 but this is not done
here. Rather, also the second cross-correlation function will be investigated numerically
in Subsec. 3.5.2.

Linear response functions

The linear response function for S is calculated using a step stimulus r+(t) = r+ +φ0Θ(t)
(see Eq. (3.20)). At t = 0, when the input of the system changes, the channel can be
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either in the closed or in the open state, dependent on that it will evolve differently and
both cases have to be treated and ’weighted’ by the factor 〈S〉 or 1 − 〈S〉, respectively:

〈S(t)〉φ0 = Gφ0

11 (0, c0; t)〈S〉 +Gφ0

01 (0, c0; t)(1 − 〈S〉). (3.85)

The superscript φ0 indicated that the functions have to be evaluated with the substitution
r+ → r+ + φ0. With Eqs. (3.65), this leads to (cf. also Eq. (3.40))

〈S(t)〉φ0 = Gφ0

11 (0, 0; t)〈S〉 +Gφ0

01 (0, 0; t)(1 − 〈S〉) + α
(

〈c〉0fφ0

1 (t) + 〈c〉1fφ0

2 (t)
)

+ O(α2).

(3.86)
The functions f1(t) and f2(t) are given in Eqs. (3.66) and (3.67), the conditional c averages
to O(α0) in appendix B.4 and the Green’s functions in Eqs. (3.44) (with Eq. (3.61))
and (B.55). Putting all that together with Eq. (3.69) into Eq. (3.20) gives:

χS(t > 0) =
1

1 + r+
e−(1+r+)t

+ α
(

B3e
−(1+r+)t + C3e

−λt +D3e
−(1+r++λ)t + E3te

−(1+r+)t
)

+ O(α2).

(3.87)

The coefficients B3, C3,D3, E3 are functions of r+ and λ and are given in Appendix B.6.
The response function of c can be obtained using Eq. (3.19) and Eq. (3.87):

χc(t > 0) =
λ

(1 + r+)(1 + r+ − λ)

[

e−λt − e−(1+r+)t
]

+ α
(

B4e
−(1+r+)t + C4e

−λt +D4e
−(1+r++λ)t + E4te

−(1+r+)t + F4te
−λt
)

+ O(α2). (3.88)

Again, the coefficients B4, C4,D4, E4, F4 are given in Appendix B.6.
As an application of the linear response functions, in appendix B.7, the linear response

to a sinusoidal stimulus r+(t) = r0+ + a sinωt is calculated.

Fluctuation dissipation theorem

Since perturbative expressions for both the auto-correlation functions CS/c(t) and the
linear response functions χS/c(t) have been calculated, one can now check the validity of
the fluctuation dissipation theorem (FDT) for this system. The FDT in frequency space
reads (with the Boltzmann constant kB) and the ˜ indicating the Fourier transform [85]

C̃(ω) =
2kBT

ω
Im(χ̃(ω)). (3.89)

This relation is only fulfilled for systems in thermal equilibrium with temperature T . To
quantify the violation of this FDT for systems out of equilibrium, one can introduce an
effective temperature Teff in the following way [98]:

Teff(ω)

T
=

ωC̃(ω)

2kBT Im(χ̃(ω))
. (3.90)

If the system characterised by the two functions C and χ is in thermal equilibrium, the
ratio on the left side of Eq. (3.90) is one. A frequency-dependent ratio or a ratio different
to one is found for systems out of thermal equilibrium.

In the system described here, both the correlation functions and the response functions
are dimensionless (as well as their Fourier transforms). In order to apply Eq. (3.89), one
needs to transform the dimensionless response functions (e.g. χS(t)) to response functions
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with the dimension of an inverse energy. For that, one has to find a relation between the
stimulus φ (a change in the opening rate) with which χS(t) has been calculated, and an
energy h. Assuming an energy difference between the open and the closed conformation
of the channel of ∆U (cf. left panel of Fig. 3.1) as well as thermal equilibrium, the ratio
of the transition rates follow a Boltzmann statistics:

R+

R0
−

≡ r+ = e
− ∆U

kBT . (3.91)

A stimulus to the system means a change h in the energy difference: ∆U → ∆U + h

which leads to new rates r′+ = r+e
− h

kBT . If h ≪ kBT , this can be expanded to give

r′+ ≈ r+(1 − h
kBT

). In order to produce a change φ in r+ (on which the computation of

χ is based) one therefore needs an energy change of h = −kBT
r+

φ. The according response

functions with dimensions of an inverse energy are connected to the dimensionless ones in
Eqs. (3.87) and (3.88) by multiplication with r+

kBT
and Eq. (3.89) turns (for the channel

variable S) into

C̃S(ω) = −2
r+
ω

Imχ̃S(ω). (3.92)

Equally transformed, one can derive two expressions for the two effective temperatures for
the S and the c variable:

Teff,S(ω)

T
= − ωC̃S(ω)

2r+Imχ̃S(ω)
,

Teff,c(ω)

T
= − ωC̃c(ω)

2r+Imχ̃c(ω)
. (3.93)

For the computation of the exponential Fourier transforms, one has to consider that
the response functions are zero for t < 0. For the channel variable (Eq. (3.87)) one gets

χ̃S(ω) =

∫ ∞

−∞
e−iωtχS(t)dt =

1

(1 + r+)2 + ω2

(

1 − i
ω

1 + r+

)

+ α

[

1 + r+
(1 + r+)2 + ω2

B3 +
λ

λ2 + ω2
C3 +

1 + r+ + λ

(1 + r+ + λ)2 + ω2
D3

+
(1 + r+)2 − ω2

((1 + r+)2 + ω2)2
E3 − iω

(

1

(1 + r+)2 + ω2
B3 +

1

λ2 + ω2
C3

+
1

(1 + r+ + λ)2 + ω2
D3 + 2

1 + r+
((1 + r+)2 + ω2)2

E3

)]

. (3.94)

The corresponding expression for c can be found as Eq. (B.68) in Appendix B.5.
Since the auto-correlation functions are even functions, the exponential Fourier trans-

forms are the same as the power spectra as defined in Eqs. (3.15). The respective expres-
sions for C̃S(ω) = PS(ω) and C̃S(ω) = Pc(ω) are given in Eqs. (3.75) and (B.67).

Putting χ̃S/c(ω) and C̃S/c(ω) into Eqs. (3.93) one finds the following:

α = 0: Teff,S = T , Teff,c 6= T , i.e. even for no feedback, the whole system can not be
described by an equilibrium system. Both effective temperatures are constant (not
ω-dependent) but they are different. The partial system S is in equilibrium.

α 6= 0: Both effective temperatures become frequency-dependent. Fig. 3.9 shows plots of
the effective temperatures. For high frequencies, the partial system S becomes
equilibrated, whereas the partial system c never is in equilibrium with the same
temperature as S.

The violation of the fluctuation dissipation theorem underscores that the system con-
sidered is an active system that never reaches an equilibrium state. The ’microscopic’
reason for that is the pump-term in the dynamic equation for c that works independent
of an outside concentration.
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Fig. 3.9: Effective temperatures for S (left) and c (right) as defined in Eq. (3.93). Curves are
plotted for two different values of λ. r+ = 6 in all figures. Teff,S/T = 1 independent of λ or r+

for α = 0.

3.4.2 Self-consistent feedback model

In the preceeding subsection, the mean values and the correlation functions of the two
variables S and c of the system described by Eqs. (3.4)–(3.6) were calculated to linear
order in the feedback parameter α using a computationally quite involved path-integral
method. The expressions obtained are valid in the complete parameter range of r+ and
λ. In this subsection, now, a less involved approximative method will be introduced and
expressions with limited validity in the parameter range will be obtained, again for the
mean values and the correlation functions. The results of both approaches are compared in
Subsec. 3.5.1. The method introduced in the following goes one step beyond a mean-field
approximation.

The difficulty of the path-integral approach presented in Subsec. 3.4.1 arises, when the
full S(t)-dependent history of c(t) is put into Eq. (3.51). In the self-consistent approach
in this subsection, a new variable ψ(t) is introduced, that is independent of S(t) but is
assumed to have the same statistics as c(t). This statistics (the n-point functions of the
distribution of ψ(t)) can, as will be shown in the following, be calculated using successive
orders in an expansion around α = 0. In the end, ψ(t) will be replaced by c(t) self-
consistently.

The starting idea is to ’prescribe’ a specific time evolution of ψ(t) to the system and
calculate the probability P01(t0, t; {ψ}) to find the system in the state S(t) = 1 after it
has started in S(t0) = 0 given an S-independent evolution of ψ(t). From that, ensemble
quantities can later be calculated by averaging the P01(t0, t; {ψ}) over all possible reali-
sations of ψ(t). Since S and ψ are assumed to be independent (e.g. 〈cψ〉 = 0), Eq. (3.5)
is not used anymore and a simple master equation can be set up for the probability P01

from Eqs. (3.4) and (3.6):

d

dt
P01 = r+(1 − P01) − (1 + αψ(t))P01

= r+ − (1 + r+)P01 − αψ(t)P01. (3.95)

This ordinary differential equation has the solution [19] (using the initial condition
P01(t0, t0; {ψ}) = 0)

P01(t0, t; {ψ}) = r+

∫ t

t0

e−(1+r+)(t−T )−α
R t

T
ψ(t′)dt′dT. (3.96)

For the complementary functional P11(t0, t; {ψ}) (the probability to find S(t) = 1 given
S(t0 < t) = 1 and ’prescribing’ a certain ψ(t)), the same differential equation (Eq. (3.95))
holds but with the initial condition P11(t0, t0; {ψ}) = 1. The result, then, is

P11(t0, t; {ψ}) = e
−(1+r+)(t−t0)−α

R t
t0
ψ(t′)dt′

+ P01(t0, t; {ψ}). (3.97)
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Mean value to first order in α

The mean open probability of the channel in the steady state is the open probability under
the condition of a specific history ψ(t) averaged over all possible realisations of ψ(t):

〈S〉 = 〈P01(−∞, 0; {ψ})〉ψ. (3.98)

The brackets represent the average 〈. . .〉ψ ≡
∫

Dψ...P[ψ(t)] with the (unknown) probability
distribution P[ψ(t)].

Putting Eq. (3.96) into Eq. (3.98) gives

〈S〉 = r+

∫ 0

−∞
dT e(1+r+)T 〈e−α

R 0
T
ψ(t′)dt′〉ψ. (3.99)

Expanding the exponential leads to

〈S〉 = r+

∫ 0

−∞
dT e(1+r+)T

(

1 − α

∫ 0

T

〈ψ〉dt′
)

+ O(α2)

=
r+

1 + r+
− α

r+
(1 + r+)2

〈ψ〉 + O(α2). (3.100)

A self-consistent equation for 〈S〉 can now be obtained by replacing the average value
of ψ by the average value of c (both quantities were assumed to have the same statistics)
and using Eq. (3.10). In order to have Eq. (3.100) valid up to first order in α, for 〈ψ〉 the
zeroth order (〈c〉 = 〈S〉 = r+

1+r+
+ O(α)) has to be put in. This yields

〈S〉 =
r+

1 + r+
− α

r2+
(1 + r+)3

+ O(α2). (3.101)

Up to this point, the calculation is basically a mean-field approach and the result from
Eq. (3.101) can also be obtained simply by setting r− = 1+α〈c〉, i.e. assume the variables
S and c to be uncorrelated. In the following, the self-consistent approach goes beyond a
mean-field calculation.

Auto-correlation functions to first order in α

Using the definition of the two probability functionals P01 and P11, the auto-correlation
function of S can be written in the steady state as

CS(t) = 〈S(0)S(t)〉 − 〈S(0)〉〈S(t)〉
= 〈P01(−∞, 0; {ψ})P11(0, t; {ψ})〉ψ − 〈P01(−∞, 0; {ψ})〉ψ〈P01(−∞, t; {ψ})〉ψ.

(3.102)

Putting in the results from Eqs. (3.96) and (3.97) and expanding the exponentials around
α = 0 to first order leads to

CS(t) ≈
〈

r+

∫ 0

−∞
e(1+r+)T

(

1 − α

∫ 0

T

ψ(t′)dt′
)

dT

[

e−(1+r+)t

(

1 − α

∫ t

0

ψ(t′)dt′
)

+r+

∫ t

0

e−(1+r+)(t−T ′)

(

1 − α

∫ t

T ′

ψ(t′)dt′
)

dT ′
]〉

ψ

− 〈S〉2. (3.103)
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Keeping only the terms of first order in α and replacing 〈ψ〉 by 〈c〉 = 〈S〉 gives

CS(t) ≈ r+
1 + r+

[

e−(1+r+)t +
r+

1 + r+

(

1 − e−(1+r+)t
)

]

+ α〈S〉
{

r+

∫ 0

−∞
e(1+r+)TTdT

[

e−(1+r+)t +
r+

1 + r+

(

1 − e−(1+r+)t
)

]

+
r+

1 + r+

[

−e−(1+r+)tt− r+

∫ t

0

e−(1+r+)(t−T ′)(t− T ′)dT ′
]}

− r2+
(1 + r+)2

+ α
2r3+

(1 + r+)4
. (3.104)

Since 〈S〉 on the right hand side of Eq. (3.104) is already multiplied by α, only the zeroth
order of Eq. (3.101) has to be put in to keep Eq. (3.104) valid up to O(α). Doing this and
solving the integrals gives for the correlation function of S in the steady state

CS(t) =
r+

(1 + r+)2
e−(1+r+)t + α

r2+
(1 + r+)3

e−(1+r+)t

(

r+ − 1

1 + r+
− t

)

+ O(α2). (3.105)

The correlation function for c is obtained using Eq. (3.9) with n = 2:

Cc(t) = lim
t0→∞

〈c(t0)c(t0 + t)〉 − 〈c〉2

= lim
t0→∞

λ2e−λ(2t0+t)

∫ t0

−∞
eλτ1dτ1

∫ t0+t

−∞
dτ2e

λτ2(CS(τ2 − τ1) + 〈S〉2) − 〈c〉2. (3.106)

Since the correlation function as given in Eq. (3.105) was derived only for t > 0, the last
integral in Eq. (3.106) has to be split. The integrals over the constant 〈S〉2 gives 〈c〉2,
which therefore cancels and one gets

Cc(t) = lim
t0→∞

λ2e−λ(2t0+t)

∫ t0

−∞
eλτ1dτ1

(∫ τ1

−∞
dτ2e

λτ2CS(τ1 − τ2)

+

∫ t0+t

τ1

dτ2e
λτ2CS(τ2 − τ1)

)

. (3.107)

Putting in Eq. (3.105) and applying the limit for t0 one ends up with

Cc(t) =
λr+

(1 + r+)2((1 + r+)2 − λ2)

(

(1 + r+)e−λt − λe−(1+r+)t
)

+ α
λr2+

(1 + r+)4((1 + r+)2 − λ2)2
[(

(1 + r+)3(r+ − 2) − (1 + r+)r+λ
2
)

e−λt

−λ
(

r+((1 + r+)2 − λ2) − (3r2+ − λ2) − (1 + r+)((1 + r+)2 − λ2)t
)]

. (3.108)

The same expression is found if one uses cosine Fourier transform and the relation

Pc(ω) = λ2

λ2+ω2PS(ω) (Eq. (3.15)).
The fluctuations are easily obtained as the auto-correlation functions at time zero:

(δS)2 =CS(0) =
r+

(1 + r+)2
+ α

r2+(r+ − 1)

(1 + r+)4
+ O(α2), (3.109)

(δc)2 =Cc(0) =
λr+

(1 + r+)2(1 + r+ + λ)
+ α

λr2+
(1 + r+)4(1 + r+ + λ)2

·

· [(1 + r+)(r+ − 2) + λ(r+ − 1)] . (3.110)

Again, due to S taking only the values 0 and 1, (δS)2 can also be calculated using only
the mean value 〈S〉 (Eq. (3.35)).
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Mean value to second order in α

To go one step further in the perturbative calculation of 〈S〉, one has to expand the
exponential in Eq. (3.99) to second order in α. Using the definition of the brackets 〈. . .〉ψ
(see above), one gets

〈e−α
R t

T
dt′ψ(t′)〉ψ = 1 − α

∫ t

T

dt′〈ψ(t′)〉ψ +
α2

2

∫

Dψ
∫ t

T

dt′
∫ t

T

dt′′ψ(t′)ψ(t′′)P[ψ(t′′′)].

(3.111)
The last term can be written as

∫ t

T

dt′
∫ t′

T

dt′′〈ψ(t′)ψ(t′′)〉ψ;t′′<t′ +

∫ t

T

dt′
∫ t

t′
dt′′〈ψ(t′)ψ(t′′)〉ψ;t′′≥t′

=

∫ t

T

dt′
∫ t′

T

dt′′〈ψ(t′)ψ(t′′)〉ψ;t′′<t′ +

∫ t

T

dt′′
∫ t′′

T

dt′〈ψ(t′)ψ(t′′)〉ψ;t′′≥t′

=2

∫ t

T

dt′
∫ t′

T

dt′′〈ψ(t′′)ψ(t′)〉ψ;t′≥t′′ , (3.112)

where the last step uses the fact that the correlation function is an even function with
respect to the exchange of the two times. With Eq. (3.112) in Eq. (3.111), the expansion
of the open probability of the channel to second order in α can be written as

〈S〉 = r+

∫ 0

−∞
dT e(1+r+)T

(

1 − α

∫ 0

T

dt′〈ψ〉 + α2

∫ 0

T

dt′
∫ t′

T

dt′′〈ψ(t′′)ψ(t′)〉
)

+ O(α3).

(3.113)
For this equation to be valid up to second order in α, 〈ψ〉 has to be replaced by the first
order expression for 〈c〉 = 〈S〉 and 〈ψ(t′′)ψ(t′)〉 by the zeroth order term of 〈c(t′′)c(t′)〉
(ψ and c are assumed to have the same statistics). Using Eq. (3.101) and 〈c(t′′)c(t′)〉 =
Cc(t′ − t′′) + 〈c〉2 together with the O(α0) term from Eq. (3.108), one gets

〈S〉 =
r+

1 + r+
−α r2+

(1 + r+)3
+α2 r2+

2(1 + r+)5

(

1 + 4r+ − (1 + r+)2

(1 + r+ + λ)2

)

+O(α3). (3.114)

From Eq. (3.113), the structure of this self-consistent method becomes clear. With
each further step in the perturbation calculation in α, a higher n-point function of ψ(t)
(i.e. c(t)) comes in. As the next step, the second order expression of CS(t) could be
calculated, from which Cc(t) can easily be obtained to O(α2). For a third order term in
〈S〉, the three-point function 〈c(0)c(t′)c(t)〉 would have to be calculated to zeroth order in
α, and so on.

Validity of the results

The self-consistent method presented in this subsection is an extension of a mean-field
calculation. This implies that the range of validity of the results obtained with the self-
consistent method is (at most) the same as for the mean-field approach. For the O(α)-
results, that means that the fluctuations of c have to be negligible compared to its mean:
δc
〈c〉 ≪ 1. Using Eqs. (3.101) and (3.110), this leads to

δc

〈c〉 =

√

λ

r+(1 + r+ + λ)
+ O(α). (3.115)

For small α, the condition δc
〈c〉 ≪ 1 therefore is fulfilled for the two cases

λ≪ 1 + r+ or r+ ≫ 1. (3.116)

In Subsec. 3.5.1, the results of the self-consistent approach will be compared to the
results from the path-integral as well as the master equation approach. The criterions
stated above will be verified, there.
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3.5 Numerical results

To check the validity of the analytical results as well as to analyse the system in parameter
ranges, where no analytical results were obtained, the system as described by Eqs. (3.4)–
(3.6) is simulated numerically using a discrete time step ∆t. To minimise errors induced
by this discretisation, ∆t has to be chosen much smaller than all timescales present in the
system: ∆t≪ min{ 1

r+
, 1

1+α ,
1
λ}5.

At the beginning of each time step, the momentary flipping rates r+ if S(t) = 0 or
r− if S(t) = 1 are calculated and a pseudo-random number from the interval (0,1) is
drawn (random number generator ran2 from [117]). The random number multiplied by
the time step ∆t gives the probability for a state flip of the channel. The dynamics of the
concentration c(t) is computed using a simple Euler forward algorithm. Ensemble averages
are calculated by running the simulation many6 times with equal initial conditions but
different sets of independent pseudo-random numbers. Before steady state quantities are
calculated, the system is first evolved until its mean values (averaged over many runs) show
no significant trend (in time) anymore. For the mean values and fluctuation measures, the
respective quantities are additionally averaged over many7 consecutive time points.

The history dependence of the system is the reason, why an exact Gillespie-type al-
gorithm [55] most probably does not significantly decrease computation time. Simple
algorithms where the duration until the next state flip is calculated, are not appropriate,
since the flipping probability changes through c(t) in time (cf. [101])8.

In the following, the results of the numerical simulations will be presented in two parts:
First, results for weak feedback (small α) will be shown and compared to the analytical
results from the path-integral approach (referred to as ’PI’ in the following; Subsec. 3.4.1)
and the self-consistent method (’SC’; Subsec. 3.4.2). In the second part, the numerical
results for intermediate and large α will be shown and with that the range of strong
feedback explored. Where appropriate, also comparison to the results from the master
equation approach (’ME’; Subsec. 3.3.1) is made.

Throughout this section, the dimensionless version of the system is considered, so no
units are given on the axes of the plots. The only source of errors in the numerically
obtained data is the random switching of the channel. In the simulations, single runs
were repeated (see footnote) until the errors of the curves were smaller or of the order of
the point sizes or the line widths in the following plots. The only quantities that have
significant errors are the linear response functions and the response. Also in these cases,
error bars are not shown for reasons of clearness and because this error could be reduced
simply by letting computers run longer.

5Depending on the parameters, ∆t was chosen to be 10−2, 10−3, 10−4 or 10−5.
6For the plots over time, frequency and α, 105, 106 or 107 independent runs were simulated, for the

response functions and the plot of f1(t), 5·108 or 109 and for the plots over r+, 104, 5·104, 105 or 5·105.
7Between 5·103 and 2·105.
8If the channel is closed and r+ a constant, a Gillespie algorithm could be used instead of a constant

time step method. The probability for the system to stay in the closed state for time t is P0(t) = e−r+t. So,
a random number could be drawn from an exponential distribution and used for the time t = τj+1 − τj

until the next flip occurs at time τj+1. The concentration at time τj+1 would than be calculated by

c(τj+1) = c(τj)e
−λ(τj+1−τj). In the open state, however, the probability to remain in S = 1 for a

time t becomes more complicated. The concentration evolves according to c(t) = (c(τj) − 1)e−λt + 1 for
τj ≤ t ≤ τj+1. This gives for the concentration- and therefore time-dependent rate r−(t) = 1 + αc(t) =
1 + α

ˆ

1 + (c(τj) − 1)e−λt
˜

. Solving the differential equation for the probability to stay in the open state,
dP1(t)

dt
= −r−(t)P1(t) (with P1(0) = 1), using this r−(t), gives

P1(t) = e−
α(c(τj)−1)

λ e−(1+α)te
α(c(τj)−1)

λ
e−λt

. (3.117)

The inverse of this equation (which is needed to produce an accordingly distributed random number
distribution [117, 131]) can not be expressed in elementary functions. Since P1(t) is continuous, in principle
a Gillespie-type algorithm is possible [101]. It is, however, not clear if such an algorithm would save
computer time compared to a constant time step algorithm, since the inverse would have to be computed
numerically in each step with a new parameter c(τi).
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3.5.1 Weak feedback

Fig. 3.10 shows the ensemble averages of S(t) and c(t) for the specific initial condition
S(t = 0) = 0, c(t = 0) = 0 for no feedback (α = 0) and the three weak feedback strengths
α = 0.1, 0.2 and 0.5. For α = 0 the system decouples and fully valid expressions for all
relevant quantities can be calculated analytically. The more interesting results from the
analytical derivations in the last section are therefore the changes in the quantities due to
feedback. To extract only those from the plots, in the remainder of this subsection, only
the differences between the cases with α 6= 0 and α = 0 will be shown and compared to the
terms linear (or to second order) in α from the path-integral (’PI’) and the self-consistent
(’SC’) approach. The insets in Fig. 3.10 show these differences and the linear order terms
of the analytical expressions from the path-integral results (Eqs. (3.61) (with Eq. (3.44))
and (B.66)).
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Fig. 3.10: The ensemble averages 〈S(t)〉 (left) and 〈c(t)〉 (right) for the initial condition S(0) =
0, c(0) = 0 for different feedback strengths (r+ = 1, λ = 5). Insets: The differences between
the results for α 6= 0 and α = 0. The black curves are the results from the path-integral (PI)
approach (Eqs. (3.61) (with Eq. (3.44)) and (B.66)).

From both Figs. 3.10, it can be seen that the PI approach gives good results for α up
to approximately 0.2. For α = 0.5, the deviation is already quite big and higher order
terms in α would have to be used to describe the system well. Fig. 3.11 underscores
this statement. Here, the mean open probability of the channel in the steady state is
plotted against different values of α for two different sets of {λ, r+} and compared to
the results from the three analytical approaches. Whereas the result from the master
equation approach agrees very well with the numerical result for all α, the approximative
path-integral method works fine up to α ≈ 0.1. Depending on the parameters, the self-
consistent method to first order in α is very close to the PI-result (r+ ≫ λ) or quite off
(see also later in this subsection). The second order term in the SC-result improves the
agreement with numerics to higher α of approximately 0.5 in the right panel of Fig. 3.11.

The agreement of the PI-result with the numerics for α . 0.1 is consistent with the
setup of the dimensionless model: For the contribution of feedback to be small, α≪ 1

c and
since c is bounded from above by 1, the linear expansion in α should work for α ≪ 1. In
the following, for the comparison between simulations and analytical results, α will always
be 0.1.

Fig. 3.12 shows the steady state mean open probability of the channel depending on r+
(which is the same as the mean calcium concentration 〈c〉 – Eq. (3.70)) for two different
values of λ. Here, both results of the PI (Eq. (3.69)) and the SC (Eq. (3.101) approach
are plotted against numerics. Since the feedback only acts on the closing rate r−, the
contribution of it to the mean open fraction of the channel is always negative. For both
parameter sets, the PI-result comes quite close to the numerical result, whereas the SC-
approach gives only correct results for either high r+ or small λ (right panel of Fig. 3.12).
This is in accordance with the two constraints derived in Subsec. 3.4.2.
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Fig. 3.11: The mean open probability of the channel plotted against the feedback parameter
α together with the results from all three analytical approaches: The path-integral method (PI)
(Eq. (3.69)), the self-consistent method to first (SC1) (Eq. (3.101)) and second (SC2) (Eq. (3.114))
order in α and the master equation result (ME) (Eq. (3.33)). Left: r+ = 1, λ = 5, Right: r+ = 6,
λ = 1.
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Fig. 3.13: The influence of an initial calcium concentration c(t = 0) = c0 on the Green’s function
G01(0, c0; t). Plotted is the difference between 〈S(t)〉 for a simulation with c0 6= 0 and c0 = 0
for α = 0.1 (r+ = 6, λ = 5). The analytical result (black curves) is f1(t) from the path-integral
approach (Eq. (3.66)).

The basic quantity of the path-integral approach – the Green’s function – has already
been plotted and compared to the numerical results in Fig. 3.10. Another basic result that
was needed for the derivation of further quantities and should be checked against numerics
is the contribution of an initial calcium concentration c0 to the Green’s function, f(t) as
given in Eq. (3.64). Fig. 3.13 shows the difference between the time traces with c0 6= 0 and
the one for c0 = 0 for α = 0.1. The agreement between the result from the path-integral
approach (f1(t) from Eq. (3.66)) and the numerical result is very good.

In Fig. 3.14, the contribution of weak feedback to the correlation function CS(t) of
the channel variable is plotted for four different sets of r+ and λ. The results from the
PI-approach (Eq. (3.73)) and the SC-approach (Eq. (3.105)) are compared to numerics.
Again, the PI-approach provides a fairly good description, whereas the SC-result fails for
the left figures (small r+ and/or large λ). Feedback is found to either decrease or increase
correlations, depending on parameters.

Also for the correlation function Cc of the calcium concentration, the effect of feedback
can be either decreasing or increasing, as Fig. 3.15 shows (the same parameters are used
as in Fig. 3.14). The PI-result (Eq. (3.74)) fits well, but the SC-result (Eq. (3.108)) does
not give as nice results, even for the parameters that gave the correct correlation function
of S.

In order to numerically obtain the response function of the system, it was evolved
with a ’base-line’ r+ until it reached a steady state. At some time point t0, r+ was
increased to r+ + φ0 (step-function stimulus) with φ0 = 0.1 and the resulting S(t) and
c(t) were averaged over a large number of runs (109). For noise-reduction, the data was
then averaged over a certain number of time points (10–100) and the temporal derivative
was calculated numerically (cf. Eq. (3.20)). The left panel of Fig. 3.16 shows the result
of that as the contribution of weak feedback to the response function of S for a given
parameter set r+ and λ. The data still shows fluctuations but the result from the PI-
approach (Eq. (3.87)) agrees well with the simulations. Feedback in this case increases the
response function for short times and decreases it for longer times. The linear response
function of the concentration c (right panel of Fig. 3.16) looks similar, except that it goes
goes to zero for small t. Again, the PI-result (Eq. (3.88)) agrees well with numerics.

Since for the mean values, correlation and response functions the PI-result was shown to
describe the numerical results correctly, the agreement to relevant quantities derived from
these basic ones (as, e.g. the power spectrum, the variance or the coefficient of variation)
will be equally good and therefore no plots will be shown for that. These quantities will
be discussed in the next subsection on strong feedback.
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Fig. 3.14: Contribution of feedback to the auto-correlation function CS(t) of S in the steady
state. In the right figures, the curves from the two different analytical approaches lie on top of
each other.
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Fig. 3.15: The same figures as in Fig. 3.14 but for the contribution of feedback to the correlation
function Cc(t) of c.
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Fig. 3.16: Contribution of feedback to the linear response function χS (left) and χc (right) in
the steady state (r+ = 0.5, λ = 5). The time step for the simulation was ∆t = 10−3 and the
calculation of the temporal derivative included an averaging over 100∆t for χS and 50∆t for χc.
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3.5.2 Strong feedback

For intermediate (0.1 . α . 1) and strong (α > 1) feedback, analytical results were only
derived for the mean values in the master equation (’ME’) approach. In the following, the
numerical results will be shown for different parameter values and different α > 1.

Mean values

Fig. 3.17 shows the equivalent of Fig. 3.11 for larger values of α. The result from the
ME approach for the mean open fraction 〈S〉 in the steady state agrees perfectly with the
numerical results.
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Fig. 3.17: The mean open probability of the channel plotted against the feedback parameter α
(r+ = 1, λ = 5) together with the result from the master-equation approach (ME) Eq. (3.33) on
a logarithmic (main figure) and a linear scale (inset).

Fig. 3.18 shows the time evolution of the mean values of the channel variable S and the
concentration c for a specific set of parameters and a special initial condition. 〈S(t)〉 in
this case is the Green’s function G01(0, 0; t). For larger feedback (α = 10), the propagator
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Fig. 3.18: The time evolution of the mean values 〈S(t)〉 (left) and 〈c(t)〉 (right) for r+ = 6,
λ = 5 and the initial condition S(0) = c(0) = 0.

shows an overshoot before it reaches its steady state. This specific behaviour will reappear
in quantities considered in the remainder of this subsection. An overshoot is never seen
for the time evolution of 〈c(t)〉.

The steady state mean open probability of the channel 〈S〉 = 〈c〉 depending on r+ was
already shown as a result from the master equation approach in Subsec. 3.3.1. Agreement
with numerical results was checked and found to be equally good as in Fig. 3.17.

Auto-correlation functions and power spectra

In Fig. 3.19, the auto-correlation function CS (as defined in Eq. (3.11)) for the channel
variable S is plotted for different feedback strengths for intermediate r+ and λ. Here,
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Fig. 3.19: Correlation function CS(t) (left) and power spectrum PS(ω) (right) of S in the steady
state for r+ = 6 and λ = 5. In order to get data also for high frequencies, the simulations for the
power spectrum were run with a small time step ∆t = 10−5.
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Fig. 3.20: Correlation function CS(t) of S in the steady state for r+ = 0.5 and λ = 5 (left) and
r+ = 6 and λ = 50 (right).

feedback up to α . 10 enhances correlations at short times. For strong feedback (α & 10),
the correlations become negative for an intermediate time interval. This drop in the
correlation function is also seen as a peak in the power spectrum, which is plotted for the
same parameters on the right panel of Fig. 3.19 (defined in Eq. (3.15)). Independent of
feedback, the power spectrum of S decays as ω−2. For weak feedback, this property can
also be seen from the analytical expression in Eq. (3.75).

The negative correlations in S mostly disappear for r+ too small or λ too big, as
Fig. 3.20 shows. Also, the feedback-dependent increase in correlations in S at short times
is not a conserved property of the system as the left panel of Fig. 3.20 shows, where
feedback decreases correlations for all times.

The same analysis can be conducted for the auto-correlation function of the concentra-
tion c. Fig. 3.21 shows Cc and the corresponding power spectrum. Different to the channel
variable S, negative correlations are never observed for the concentration c. Consequently,
the power spectrum shows no peak. It decays as ω−4, which, again, is also the case for the
analytical expression (Eq. (B.67)). Cc(t) behaves non-monotonically for short times with
growing feedback.

For small r+, the correlation function of c decreases with growing feedback for all
times (Fig. 3.22, left panel), but for large λ, the non-monotonous behaviour reappears for
intermediate times (Fig. 3.22, right panel). Feedback generally leads to a faster decay of
the auto-correlation functions.

Cross-correlation functions

In Fig. 3.23, the two cross-correlation functions CSc and CcS are shown for different
strengths of feedback. The function CSc(t) shows independent of feedback a peak at an
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(right) for r+ = 6 and λ = 5 in the steady state. As for the right panel of Fig. 3.19, a time step
∆t = 10−5 was used for the computation of the power spectrum.
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r+ = 6 and λ = 50 (right).

 0

 0.02

 0.04

 0.06

 0.08

 0  0.2  0.4  0.6  0.8  1  1.2

α=0
α=1

α=10
α=100

C S
c

t

 0

 0.02

 0.04

 0.06

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

α=0
α=1

α=10
α=100

C c
S

t

Fig. 3.23: Cross-correlation functions: CSc(t) (left) and CcS(t) (right) for r+ = 6 and λ = 5.



3.5. Numerical results 65

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.01  0.1  1  10  100  1000  10000

α=0
α=1

α=10
α=100

r+

(δ
S

)2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.001  0.01  0.1  1  10  100  1000  10000

λ=5;α=10
λ=0.1;α=10
λ=5;α=100

λ=0.1;α=100

r+

(δ
S

)2

Fig. 3.24: Variance of S in the steady state. Left: λ = 5; right: curves for α = 10 and 100 for
λ = 5 and λ = 0.1.
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Fig. 3.25: Variance of c in the steady state. Left: λ = 5; right: λ = 0.1;

early time. This is due to the fact that the channel has a finite residence time that it stays,
e.g. in the open state. During that time, calcium flows in until the channel flips states
again,which produces the peak. For strong feedback, the other cross-correlation function
CcS(t) becomes negative for short times which is a result of high calcium concentrations
lowering the chance of finding the channel in the open state.

Fluctuation measures

Fig. 3.24 plots the variance of the channel variable S in the steady state, which is the
correlation function at time zero: (δS)2 = CS(0). Because S is a discrete variable with
only the two values 0 and 1, the variance can also be obtained solely by the mean value
(Eq. (3.35)). As in the case of 〈S〉 (Fig. 3.6), λ only has an effect on the variance for
α 6= 0, which is why in the right panel of Fig. 3.24 only two values of feedback strength
are shown. As already explained in Subsec. 3.3.1, the maximum of (δS)2 is always 1

4 and
appears at 〈S〉 = 1

2 independent of feedback, i.e. a shift in reception range due to feedback
also shifts the maximum of the fluctuations to higher r+ (cf. Fig. 3.6). Smaller λ increases
the range, in which fluctuations might be relevant (right panel of Fig. 3.24).

The variance of the concentration c can not be obtained from the mean value as in the
case of S. Fig. 3.25 plots (δc)2 over r+ for two different values of λ. A large value of λ (left
panel of Fig. 3.25) is shown to shift the maximum of the fluctuations of c to higher r+ for
increasing feedback strength, which is not the case for a small λ (right panel). Looking
at a line of constant r+ in the left panel of Fig. 3.25, one again sees the non-monotonous
behaviour of the correlation function Cc(0) as in Fig. 3.21. The decrease in fluctuations
in c with increasing α suggests a positive effect of feedback on the signalling properties of
the system which turns out to be a wrong conclusion in most cases when looking at the
next quantity, the coefficient of variation.
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A quantity that describes the decreased reliability of a mean value due to fluctuations
is the coefficient of variation, i.e. the standard deviation of the quantity divided by its
mean (also called the relative standard deviation or the noise-to-signal ration). Fig. 3.26
shows this quantity for the channel variable S. According to Eq. (3.35), the coefficient

of variation for S is δS
〈S〉 =

√

1
〈S〉 − 1 and since 〈S〉 decreases monotonically with α, the

coefficient of variation increases monotonically, i.e. if S is treated as the output of the
system, transmission of signals gets more noisy for stronger feedback. λ strongly increases
the coefficient of variation for small r+ and large α (right panel of Fig. 3.26).

For the concentration c, the coefficient of variation is found to increase in most cases
(left panel of Fig. 3.27), but there are parameter regimes, where it decreases (right panel
of Fig. 3.27), although not dramatically. A decrease of the coefficient of variation with
increasing α is a positive effect of feedback on the faithful transduction of signals in this
system. For small values of r+, the coefficient of variation becomes quite large (1 to 10),
which means that fluctuations dominate the dynamics.

Linear response functions

Fig. 3.28 shows the linear response function of the channel variable S for different feedback
strengths α. It was calculated numerically the same way as described in the preceeding
subsection on weak feedback results. According to the left panel of Fig. 3.28, increasing
feedback makes the linear response function ’sharper’, i.e. the decay time becomes shorter.
The linear response function is – by definition – the response of the system to a δ-pulse
in the stimulus. Increasing feedback therefore makes the shape of the output more closely
related to the input, i.e. it gives a more reliable transmission of the input shape. This will
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Fig. 3.29: The linear response function χc(t) for the concentration c in the steady state (cf.
Fig. 3.28). Left: λ = 5; right: λ = 0.1. The lines connect the data points and are guides to the
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be confirmed by looking at the response towards a sinusoidal stimulus further down. The
parameter λ shows only an effect on χS(t) for α 6= 0, which is why in the right panel of
Fig. 3.28 only the curves for strong feedback are shown. It is shown that an increasing λ
has a similar effect on χS(t) as an increase in α.

In Fig. 3.29 the linear response function of the concentration c is plotted. With in-
creasing feedback, the maximum of χc(t) clearly shifts towards shorter times. The effect
of a decreasing λ is mainly a shift of the maximum towards longer times (right panel of
Fig. 3.29).

As an example of a time-varying stimulus, a periodic input to the system is considered:
r+(t) = r0+ + a sinωt. The system was evolved with r0+ = 1 until it reached a steady state
and then the sinusoidal part with a = 0.1 was added to r+ and the responses in S and
c recorded: RS/c(t) (cf. Eq. (3.17)). After some initial decay time, the response itself
becomes sinusoidal with amplitude A and phase lag θ to the stimulus signal: RS/c(t) =
AS/c sin(ωt+ θS/c). Fig. 3.30 shows both these quantities9 for the response in the channel
state S plotted over the stimulus frequency ω. The insets of the figures show the difference
between the numerical results for α = 0.1 and α = 0 compared to the analytical result
(cf. Subsec. 3.5.1) from the path-integral result computed in Appendix B.7 (Eqs. (B.74)
and (B.75)).

Noticeable is a decrease of the amplitude of the response with increasing frequency

9The system was evolved numerically for some relaxation time after the sinusoidal stimulus was switched
on. A sinusoidal curve was fitted to the response using the nonlinear fitting procedure of [58]. The
amplitude and the phase lag were obtained as the two fitting parameters.
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Fig. 3.30: Response of the channel variable S to a sinusoidal stimulus r+(t) (λ = 5). Left:
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of the stimulus (low-pass filter). Also, the amplitude at small frequencies decreases with
increasing feedback. The horizontal plateau for strong feedback (α = 10) that exists for
small frequencies corresponds to the more δ-function like shape of the linear response
function χS(t) for strong feedback (Fig. 3.28): As mentioned before, this leads to a more
reliable transmission of the signal which in this case means a transmission of the property
’constant amplitude’ over a wider range of frequencies. At high frequencies, feedback
increases the amplitude of the transmitted signal, i.e. the frequency range detectable by
the system is increased by feedback. The phase of the response signal decreases with
frequency. Feedback leads to a more gradual decrease.

3.6 Extensions and outlook

3.6.1 Coupling of channels in a cilium

A single ion channel in a small compartment as it was described in the preceeding sections
is a very strong simplification and abstraction of nature. A system, where this simple model
might serve as a constituent part is, e.g. a number of channels connected to the same –
larger – compartment. An example of that are the cilia of the olfactory receptor neurons
(ORNs), that, due to their geometry, can be approximately treated as one-dimensional
objects. Not much is known about the distribution (or even the concentrations) of the
relevant proteins (receptor, AC, CNG channels, pumps and exchangers) on the membrane
of the cilium (cf. Subsec. 2.2.1 and the footnote on p. 17). Assuming a homogeneous
distribution, the values in Tab. 2.2 suggest 2–30 CNG channels per 1µm segment of a thin
(diameter ∼ 0.1µm) cilium. These small numbers justify the consideration of a (nearly)
separated compartment with a single channel, if the stimulus is very weak and single
signalling events are of interest (cf. Sec. 3.1) [6]. However, if the stimulus is increased
and many neighbouring channels have increased opening rates, coupling of these single
compartments through different mechanisms becomes relevant.

There are several mechanisms that can couple the dynamics of the channels and the
local calcium concentration in such an array of neighbouring compartments:

1. The diffusion of Ca2+ inside the cilium leads to different local Nernst potentials and
therefore changes the ion flux J ′ through the channels.

2. Ca2+ entering through one channel can – through diffusion – alter the closing rate
of a neighbouring channel (nonlocal feedback).
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3. Local inhomogeneities in the stimulus (cAMP); spatial correlations of cAMP con-
centrations might lead to temporal correlations of the channel dynamics of different
channels.

4. Since the transmembrane voltage spreads very quickly inside the cilium and since
the currents through the channels depend on the voltage (cf. footnote on p. 18), the
dynamics of the single-channel compartments are globally coupled (cf. Subsec. 2.2.5).

As a start and as a continuation of the analysis of the single channel compartment in
the preceeding sections, in the present work only the case of the nonlocal feedback (case
2 from above) will be looked at. Assumed is a one-dimensional system, in which calcium
can diffuse freely. At the positions x̄i of the channels, calcium flows into the system with a
rate J ′ if the respective channel is in the open state (Si = 1). The extrusion of calcium is
assumed to happen spatially continuous everywhere in the compartment with a constant
rate λ̄. The channel opening rates are assumed to be all the same, namely R+

10. The
closing rates Ri− of the channels are modified by the local feedback through the calcium
concentration at the positions of the channels. The feedback parameter ᾱ is assumed to
be the same for all channels.

The modified Eqs. (3.1)–(3.3) together with a diffusion term in Eq. (3.2) read

Si(t̄) : 0
R+

⇄
Ri−

1, (3.118)

∂c̄

∂t̄
= D̄

∂2

∂x̄2
c̄(x̄, t̄) + J ′

∑

i

Si(t̄)δ(x̄− x̄i) − λ̄c̄(x̄, t̄), (3.119)

Ri− = R0
− + ᾱc̄(x̄i, t̄). (3.120)

Fig. 3.31 shows four equally spaced channels together with the c̄-profile that builds up
after a while (for a specific history of channel state flips).

c̄

x̄

Fig. 3.31: Four equally spaced channels connected to the same one-dimensional compartment
together with a snapshot of the c̄-profile after some time and for a specific state of the system.

As before, it is convenient to work with a dimensionless version of these equations.
The timescale remains the same as in the single channel case (t ≡ t̄R0

−) and the length
scale d is chosen to be based on the diffusion constant D̄:

x ≡ x̄

d
with d ≡

√

D̄

R0
−
. (3.121)

The concentration scale c0 is therefore altered to

c ≡ c̄

c0
with c0 ≡ J ′

R0
−d

=
J ′

√

D̄R0
−

. (3.122)

10Later, a spatially heterogeneous stimulus could be introduced that leads to different opening rates for
different channels.
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The following scaling rules:

r0− = 1, r+ =
R+

R0
−
, λ =

λ̄

R0
−
,

D = 1, J ′ = 1, α =
ᾱJ̄ ′

√

D̄R0
−R

0
−

, (3.123)

∂

∂t
=

1

R0
−

∂

∂t̄
,

∂2

∂x2
=

D̄

R0
−

∂2

∂x̄2
, δ(x− xi) =

√

D̄

R0
−
δ(x̄− x̄i),

then lead to the rescaled equations:

Si(t) : 0
r+
⇄

ri−

1, (3.124)

∂

∂t
c(x, t) =

∂2

∂x2
c(x, t) +

∑

i

Si(t)δ(x− xi) − λc(x, t), (3.125)

ri− = 1 + αc(xi, t). (3.126)

As a special case, a one-dimensional lattice of N channels with equal distance a can
be considered (N odd). Eq. (3.125) then turns into

∂

∂t
c(x, t) =

∂2

∂x2
c(x, t) +

1
2 (N−1)
∑

n=− 1
2 (N+1)

Sn(t)δ(x− an) − λc(x, t). (3.127)

In the limit of N → ∞ (or using periodic boundary conditions), the solution for c in
the steady state will be periodic:

c(x) = c(x+ a). (3.128)

Eq. (3.127) then has to be solved only in the range 0 ≤ x ≤ a, with the right boundary
conditions. The solution of this is

〈c(x)〉 =
〈S〉
2
√
λ

(

− 1

1 − e
√
λa

e
√
λx +

1

1 − e−
√
λa

e−
√
λx

)

, (3.129)

with the mean open probability 〈S〉 of the channels (all channels are equivalent).
Since Eqs. (3.124)–(3.126) are more complex than the ’zero-dimensional’ problem of

Sec. 3.2, the spatially extended system is only considered using the self-consistent method
described in Subsec. 3.4.2.

Eq. (3.125) can be solved generally (similar to Eq. (3.7) in the zero-dimensional case):

c(x, t) =
∑

i

∫ t

−∞
G(x− xi, t− t′)Si(t

′)dt′, (3.130)

with the Green’s function for the one-dimensional diffusion process with degradation:

G(x, t) =
1√
4πt

e−
x2

4t −λt. (3.131)

The further procedure is equivalent to Subsec. 3.4.2. c(x, t) is replaced by a variable
ψ(x, t) that is independent of S and has the same statistics as c(x, t). Again, a specific
realisation of ψ(x, t) is ’prescribed’ to the system and the probability to find the channel
at xi to be open at time t conditioned that is was closed at time t0 and that c(x, t) evolved
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like ψ(x, t) is defined as P i01(t0, t; {ψ}). The master equation for this probability looks
very similar to Eq. (3.95):

d

dt
P i01 = r+ − (1 + r+)P i01 − αψi(t)P

i
01, (3.132)

where ψi(t) is ψ(x, t) at the position of the channel i: ψi(t) ≡ ψ(xi, t). This master
equation can be solved equivalently to Eq. (3.96). For the evolution of the mean open
probability of the channel i, one gets after an expansion around α = 0

〈Si(t)〉 = r+

∫ t

t0

dt′e−(1+r+)(t−t′)
(

1 − α

∫ t

t′
dt′′〈ψi(t′′)〉

)

+ O(α2) (3.133)

(cf. Eq. (3.100)).
A self-consistent equation for 〈Si(t)〉 now results when all the n-point functions of

ψ(x, t) are replaced by the n-point functions of c(x, t) and Eq. (3.130) is used to express
those in terms of the n-point functions of Si(t) (cf. Subsec. 3.4.2). The calculation of the
mean values and correlation functions within this approach is the subject of future work.

3.6.2 Further extensions and modifications

Besides the spatial extension of the system as described in Subsec. 3.6.1, one can think of
further modifications.

One could, e.g. instead of up-regulating the deactivation rate R−, down-regulate the
activation rate R+ as a realisation of negative feedback. Depending on the definition of
the stimulus, this would certainly alter the dynamical properties of the module. Within
the picture developed in this chapter, a down-regulation of R+ corresponds to a direct
switch-off of the stimulus or a densensitation of A (cf. Fig. 3.3) towards the stimulus.
Certainly, such modules can be found in cellular mechanisms.

Switching to purely positive feedback, i.e. a down-regulation of R− with c or an up-
regulation of R+ with c would lead to a self-amplification of the stimulus and make the
system instable. A stable positive feedback system could be produced by introducing
nonlinearities into the model that compensate a linear dependence of the flipping rates
on c. A natural way to do this is to make the current through the channel one step
’more realistic’, i.e. make J ′ also c-dependent (cf. footnote on p. 18). The extrusion (or
degradation) term of C can also be made more realistic by exchanging the linear term,
e.g. by a Hill-type equation. Including nonlinearities into the model will certainly lead to
richer dynamical properties, as, e.g. oscillatory solutions.

A central idea of the module-approach towards complex systems is the coupling of
several modules such that the output of one module serves as the input of another one.
In biology, signal transduction cascades can be viewed as realizations of such a coupling,
which will be described in more detail in the following section.

3.7 The module aspect and other systems where this
analysis may apply

The system considered in this chapter (and depicted again in the left panel of Fig. 3.32)
can be viewed on a more abstract level than the example of an ion channel whose closing
rate depends on the concentration of ions that it conducts. The left panel of Fig. 3.32 is an
example of a signalling module, an abstract building block of signalling systems found in
many more places than just the olfactory cilia. One approach towards the understanding
of complex biological systems is to view them as consisting of many connected and in
different instances reaccuring modules [64, 104, 162, 166]. A module in that sense is, e.g. a
network of chemical species, interacting with each other and performing a specific task, e.g.
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Fig. 3.32: Left: The stochastic signalling module with negative feedback (as already shown in
Fig. 3.3). Right: A schematic representation of the modularity of signal transduction in olfactory
receptor neurons. For a detailed description of the signal transduction as well as the abbreviations,
see Subsec. 2.1.1. The lower of the two modules framed with a dashed line is the one treated
as an example throughout this chapter. The upper one depicts a negative feedback loop of the
second messenger cAMP through a kinase on the receptor. Instead of ion channel opening and
closing, the stochastic element in this network is the receptor switching from an inactive into an
active conformation.

transducing information from one type into another or providing adaptation mechanisms.
What distinguishes a module from a general network is the fact, that a module to some
extent can perform its tasks independently of the network that it is embedded in, i.e. the
connections to the rest of the network are relatively simple. Ideally, modules are defined
to be small enough, such that one has a chance to describe its properties and dynamics in
terms of simple dynamical equations or statistical measures. In a larger biological network
(as, e.g. a signal transduction pathway, a metabolic network or even a predator-prey
network) a module is embedded into other modules and the output of one can be the
input of the following. By that, one tries to get an understanding of the dynamics of the
whole complex network ’bit by bit’, i.e. by understanding each module’s dynamics and
then connect those. A catalogue of modules (i.e. building blocks) can be established [104],
which might lead to a more intuitive understanding of some complex networks.

The modular approach lies somewhat in between strict bottom-up and top-down ap-
proaches. An analogy can to some extent be seen in electronics [64] (or engineering [34]):
For the understanding of the important properties and the usual operating ranges of an
integrated circuit (IC), one basically needs to know the input/output properties of the
logical gates, the IC is built from. Depending on desired detailedness of the description
of the dynamics of an IC, one might go one step deeper and look at the properties of
the transistors, resistors and capacitors of which the logical gates consist. But one would
hardly go into describing single electron dynamics or the detailed properties of the metals
and semiconductors used in order to understand the whole system IC.

Looking at the module treated in this chapter (left panel of Fig. 3.32) from that per-
spective, further biological systems are obvious candidates where a description in terms of
such a module might be successful:

1. Enzyme dynamics: ’A’ is an enzyme (a large protein) that stochastically switches
between an inactive and an activated form. Usually, this transition involves a con-
formational change of the protein very much the same way as a transmembrane ion
channel changes conformation when switching between the open and the closed state.
In the activated state A*, the enzyme catalyses a specific reactions which leads to
the production of the chemical C. A very common [1] motif found in biochemical
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regulation is that of feedback inhibition, where the accumulation of chemical C (or
a subsequent molecule in the reaction cascade) leads to deactivation of the enzyme
A. This deactivation can be seen as an up-regulation of the rate R−.

An example from the olfactory signal transduction pathway discussed in the present
work is the enzyme adenylate cyclase (AC) whose catalytic activity is down-regulated
by an increase in calcium (through calmodulin and a kinase – see Subsec. 2.1.1 and
Fig. 2.2)11.

2. Transcription: ’A’ could also be a gene that is stochastically ’switched on’ by certain
promoters. In the active state, the gene is transcribed and its mRNA produced.
After translation, the protein C (or some molecule whose production is catalysed
by C) for which the gene A coded, can act as a repressor on the transcription.
An example is the operon in E.coli that codes for enzymes synthesising the amino
acid tryptophan. If tryptophan is abundant in the cell, it binds to a protein, the
tryptophan repressor, which shuts down the transcription of the operon [1].

Using the module depicted in the left panel of Fig. 3.32 for this kind of transcription
would be a very coarse description since many steps in between are omitted. For
the same reason, this would come closest to biology for prokaryotes, since there, the
number of intermediate steps is smaller and the time scale between transcribing a
gene and producing the respective protein is generally faster12.

If one assumes the dynamics of the conformational change of the receptor to be similar
to the dynamics of enzymes, one can identify another feedback module in the olfactory
signal transduction (already described in Subsec. 2.1.1). The right panel of Fig. 3.32 shows
this module as well as the one described in detail in this chapter. This is also an example
of how modules can be connected with each other and how a larger reaction network can
be decomposed into modules.

3.8 Summary

Motivated by a specific negative feedback loop identified in chapter 2 to be of great im-
portance for the dynamics of the olfactory signal transduction, in this chapter, an abstract
stochastic two-state signalling system with negative feedback was analysed in more general
terms. In the olfactory transduction it is, e.g. realised by an ion channel that switches
randomly between an open and a closed state. Negative feedback is provided by a closing
rate of the channel that increases with the concentration of the conducted ion. The aim of
the analysis was the characterisation of this system in terms of statistical quantities such
as the mean values, correlation functions and the response functions and by that investi-
gate the influence of both the intrinsic noise and the feedback on the signalling properties
of the module.

Three different analytical approaches were applied to accomplish this task. A powerful
but computationally involved path-integral method provided results for all the relevant
quantities in the limit of weak feedback. Since both auto-correlation functions and response
functions were obtained, it was possible to show that this specific system violates the
fluctuation dissipation theorem. Setting up a master equation for the system, results for
the mean values were obtained that hold for the whole parameter range, including strong
feedback where the perturbative path-integral technique is difficult to use. The results
from both these techniques agree in the limit of weak feedback. As a third method, a
self-consistent calculation was presented, that can be seen as an extension of a mean field

11Another example is the regulation of the enzyme ATCase by a product of the reaction cascade whose
initial reaction it catalyses [156].

12In eukaryotes, the mRNA first has to be transferred from the nucleus to the ribosomes in the cytosol,
whereas in prokaryotes both transcription and translation take place close to each other within the cytosol.
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method. Due to this fact, the self-consistent method is only valid in specific parameter
ranges, however the computational effort in the self-consistent approach is much smaller
compared to the path-integral method. Also, the calculation of higher order terms in the
expansion in feedback strength proves to be much less involved. This is the reason, why
the self-consistent method is the most promising one for possible extensions of the system
such as introducing a spatial dimension and diffusion or the coupling of a number of these
modules to form a signal transduction cascade. Different to common methods of treating
stochastic systems where noise is put in as an esemble property ’by hand’ (e.g. Langevin
equations [154]), in all of the analytical approaches described here, the intrinsic noise and
its effects were derived from the dynamics of the system itself.

In order to compare the results from the three different method to each other and to
check their validity within parameter space, careful and extended numerical simulations
were conducted in the regime of weak feedback. For stronger influence of the feedback
on the dynamics of the system, the simulations provide so far the only way to fully char-
acterise the system. The feedback was found to have both positive and negative effects
on the signalling properties of this specific module, depending on stimulus strength and
parameters of the system. Parameter regimes were found in which strong feedback de-
creases the coefficient of variation. Generally, feedback increases the reception range of
the module and it was found (by analysing the linear response function) that a module
with strong feedback transfers the shape of a stimulus pulse more reliably. The correlation
functions qualitatively change when feedback is included but an oscillatory behaviour (as,
e.g. in chapter 2) has not been observed.

In the end, the stochastic two-state signalling module investigated in this chapter
was put into a broader perspective and described in a more general context. Examples
from other systems of cell biology were listed, where (variants of) this specific module
are at work or might be found. The idea behind a modular (rather than a molecular)
viewpoint on complex biological networks was explained. It constitutes one of the three
theoretical approaches to complex biological systems used in the present dissertation. In
the conclusions in chapter 5, the modular approach will be compared to the other two.

The path-integral method as well as some of the numerical data can also be found
in [61].



Chapter 4

Axon Guidance in the
Development of the Olfactory
System

4.1 The olfactory map – a remarkable example of pat-
tern formation

As already mentioned in Sec. 1.2, the axons of the few millions (in mice) olfactory receptor
neurons (ORNs) connect to the glomeruli of the olfactory bulb (OB) in such a way that
in each glomerulus only axons of one specific type of ORN (expressing a specific olfactory
receptor (OR)) terminate. In Fig. 4.1, all the ORNs (including their axons) expressing
a specific type of OR are labelled with a dye. The convergence is nicely seen for three
different types of ORNs. In principle, figures like the three shown in Fig. 4.1 can be

Fig. 4.1: Convergence of axons of the ORNs on their way from the olfactory epithelium (OE)
towards the olfactory bulb (OB). The three figures show the olfactory turbinates and the OB in
mice heads (cf. left panel of Fig. 1.1), where ORNs (including their axons) expressing a specific
type of receptor were labelled with a dye (ORs M71, P4 and P2; modified from [47]). The scale
bar in the right figure is 0.5mm.

obtained for each of the ∼1000 different types of ORNs. An overlay of these figures would
give a full coverage of the surface of the OB, producing the mosaic-like pictures as in the
left panel of Fig. 1.5 where the axons of all ORNs were labelled at the same time.

Through genetic labelling techniques it has been found out that the discrete spatial
map generated on the surface of the OB is approximately the same in all animals of a
given species. If a specific ORN is genetically labelled with a dye, and figures as the ones
in Fig. 4.1 are analysed in different, e.g. mice, the respective glomerulus gathering all
the axons of this type of ORN is always found within a region of roughly 30 glomeruli.
When staining more than one type of ORN simultaneously with different dyes, it is found
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that neither absolute nor relative positions of glomeruli seem to be conserved on the scale
of a few diameters of glomeruli. Fig. 4.2 is a schematic drawing of the outcome of these
experiments. On a coarse scale, the activity patterns as shown in Fig. 1.6 (and depicting

Fig. 4.2: Schematic drawing of the positions of three glomeruli (for three different ORs A,B,C)
on a small part of the surface of the OBs of four different mice (from [143]). Absolute and relative
positions of the glomeruli vary within a region of ∼30 glomeruli [107].

the spatial map) are therefore the same for all animals of a given species. These patterns
can be obtained and catalogued for many different odourants and in principle, one can
tell what the animal smells by merely looking at the spatiotemporal activity pattern of
its OB (or antennal lobe in insects [51]) and matching it with an entry of the catalogue
(e.g [57]). The patterns are roughly the same on the two (left and right, cf. right panel of
Fig. 1.5) OBs of an animal. Each OB possesses a symmetry plane itself, which divides it
into two symmetrical half-bulbs (roughly lateral and medial). Most ORN types connect
to one glomerulus in each half-bulb but there are some, for which connections to only one
glomerulus per bulb are found [143]. The total number of glomeruli in one bulb (∼ 1800
in mouse) is therefore a little less than twice the number of functioning OR genes (∼1000
in mouse).

In mouse and rat, the ORNs that express a specific type of OR appear to be randomly
distributed (spatially) on one of four different zones in the olfactory epithelium (OE)
within the nasal cavity [127]1. The same zones can be identified on the surface of the
OB, meaning that if one looks only at the ORNs of one zone in the OE, one finds a
closely packed region of corresponding glomeruli on the OB. These zones on the OB (each
containing approximately 200 glomeruli) are much bigger than the scale of inter-animal
variation of position of glomeruli (regions of ∼30 glomeruli).

Not much is known about the mechanisms governing this remarkable pattern formation
process during the development of the olfactory system, neither experimentally nor from
a theoretical viewpoint. The two main questions that have to be answered in order to get
a deeper understanding of this process are:

1. How do axons of the same type find each other, form bundles and accomplish the
sorting within initially heterogeneous bundles?

2. How is the spatial map formed on the surface of the OB and which mechanisms lead
to the specific properties of this map?

From the variety of different experiments conducted mostly within the last ten years,
the picture emerges that these two questions are strongly connected and possible answers
go beyond more simple neural pattern formation mechanisms found in other regions of
the brain. In the following section, more experimental findings will be explained within
the scope of possible mechanisms, partly known to contribute to similar ordering tasks

1Recent studies [105] suggest a graded pattern rather than discrete zones.
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in other neural systems. After that, theoretical concepts will be introduced, trying to
capture the important features of these mechanisms. They are implemented in a number
of numerical studies, focusing on the effects of guidance cues, axon-axon interactions and
neural turnover.

4.2 The biology of the formation of the olfactory map

4.2.1 How axons grow

During axonal growth, at the further most end – the tip –, the axon extends and forms
a structure called the growth cone (Fig. 4.3). This is the region, where the axon grows
(is elongated) and determines the direction of growth due to the steady polymerisation of
actin and microtubules [99]. At the same time, the growth cone is a sensing unit for its
surrounding. Its membrane contains specific receptors that are able to sense concentration
differences of external chemicals across the size of the growth cone as well as possible
structures (e.g. other axons) in its vicinity, if it hits it.

Fig. 4.3: Growth cones from sensory neurons on surfaces. Left: Scanning electron microscopic
image (from [128]); scale bar: 5µm. Right: Composite micrograph of a chick sensory neuron
(from [99]). Branching is not observed in the axons of ORNs.

The axonal growth cone is very dynamic. It not only grows in one direction but it also
changes shape constantly. Membrane protrusions are constantly formed, grow out of the
growth cone, sense the environment, and either retreat back into the growth cone or steer
the whole axon in its direction2.

4.2.2 Chemical guidance cues

Axonal growth in many instances is known to be directed by concentration gradients
of specific chemicals that act as ligands for receptors on the cell membrane of axonal
growth cones. The reaction of the growth cone to these chemical guidance cues can be
either attractive (it grows up the concentration gradient) or repulsive (it grows down the
concentration gradient). The molecules acting as ligands can be both freely diffusing or
fixed to a substrate or membrane [147]. Other forms of cues are also known, e.g. permissive
cues [72] that tell the axon to grow or to stop, depending on concentration.

A prominent example for chemical guidance cues at work is the Eph/ephrine system
operating during the formation of the retinotectal projection [94] (the neural map of the
visual sense). Here, axons coming from nerve cells in the retina have to find their correct
position in the target site (of the brain, the tectum opticum). Using (among other tech-
niques) in vitro stripe-assays from different regions of the tectum opticum and letting the
axons grow on these substrates, a family of membrane-bound receptor/ligand pairs could

2A movie showing this behaviour can be found at [66].
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be found, that are expressed on the axons (with a concentration dependent on where they
stem from) as well as the target tissue (in a spatially graded manner). This family of re-
ceptor tyrosine kinases (’Ephs’) and their ligands (’ephrines’), appears also in other regions
of the nervous system and stages of development. The exact mechanism of patterning in
the retinotectal system is not yet completely understood, but one plausible hypotheses
motivated by the law of mass action is, that axons with a given expression level [R] of
receptor find the target sites with a ligand concentration [L] such that the product of both
reaches some threshold value S that is the same in all axons: [R][L] = S.

Whereas in the visual system the formation of the neural map seems to be explainable
in terms of simple chemical guidance cues, this process appears to be more complicated
in the olfactory system. There is evidence for guidance cues in the olfactory bulb [80]
but no conclusive experiment so far could show a similar simple rule as in the retinotectal
projection. Instead of ’classical’ cues (as, e.g. the Eph/ephrine’s), olfactory receptors
(rather than Eph receptors) play a vital role in establishing the olfactory map [109]. ORs
are not only expressed on the cilia of the ORNs but also on their growth cones [4]. This
finding immediately suggests that each axon ’smells’ its way towards the correct position
on the OB, however, such a simple picture seems unlikely, since a large number of guidance
cues would be needed to operate as ligands for the ORs. Until now, there is no experimental
evidence for this. Also, it is not clear in which way ORs influence the formation of the map,
since genetically altered mice deficient of the most common signal transduction channel
connected to the OR (as described in chapter 2) still develop an almost perfect neural
map [91, 168]3. In insects, ORs do not influence the axon targeting [80].

A possibility to resolve the problem of the large number of graded guidance cues is
the type-specific reaction towards a smaller number of graded cues. A cue can be either
specific for one specific type of axon or there can be one cue that is differently interpreted
by different types of axons. Assuming an attractive cue such that the axons always grow
up the concentration gradient, all axons that react to this cue would always end up at one
point, the point of highest concentration of the cue chemical, probably near the source
of the cue. By that, no spatial map can be generated (neglecting spatial exclusion and
possible different arrival times of the axons at the point of highest concentration). For
that – using these simple rules – ∼ 2000 different cue chemicals would be needed on the
two-dimensional surface of the olfactory bulb in order to correctly guide the ∼ 1000 dif-
ferent types of axons. A more probable mechanism of guidance would be a type-specific
’interpretation’ of concentration gradients of a small number of cue chemicals [54]. One
possible way of how to guide axons towards a specific position with only two guidance
cues in two dimension is the incorporation of the internal processing of these two cues.
The interaction between the cue and the axons has to be mediated through some kind of
receptor-ligand internal signal transduction mechanism. Experiments (see above) suggest,
that this can not be the cAMP-mediated transduction as described in chapter 2. Since
nothing further is known, a very simple description of a typical signal transduction mech-
anism is adopted: a second order inhibitory kinetics [54]. The two graded cues would in
that case be transduced into a ’cell-internal cue’ p(x, y), where the parameters α and β
are specific for a given receptor (axon type):

p(x, y) =
αf(x)

1 + (αf(x))2
+

βg(y)

1 + (βg(y))2
. (4.1)

Fig. 4.4 illustrates the effect of this internal processing for different parameters α, β, i.e.
axon species.

If now the axon uses its ’internal cue’ p(x, y) to adjust its direction of growth (towards
increasing ’internal concentration’) and each axon type uses a specific set {α, β}, the
formation of a map is possible.

3The receptor could still transduce its information through other signal transduction channels (e.g.
through the one involving IP3 (see Sec. 2.1)).



4.2. The biology of the formation of the olfactory map 79

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  20  40  60  80  100  120
 0

 20

 40

 60

 80

 100

 120

P
S
frag

x

y

(a) f(x) = 0.1 + 0.13x

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  20  40  60  80  100  120
 0

 20

 40

 60

 80

 100

 120

x

y

(b) g(y) = 0.1 + 0.13y

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0  20  40  60  80  100  120
 0

 20

 40

 60

 80

 100

 120

x

y

(c) α = 0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 0  20  40  60  80  100  120
 0

 20

 40

 60

 80

 100

 120

x

y

(d) α = 0.4

Fig. 4.4: A two-dimensional cue consisting of f(x) (a) and g(y) (b) and what two axons with
different internal processing of this cue (β = 0.1, α = 0.1 (c) and α = 0.4 (d)) make out of it in
terms of a ’cell-internal cue’ p(x, y) (Eq. (4.1); arbitrary units).

There are different sources of noise in this scheme of chemical guidance through internal
processing. The guiding molecule numbers might be very low, such that temporal and
spatial fluctuations across the length of a growth cone become too large to reliably measure
a gradient on a sufficiently short time scale [7]. Other sources certainly lie within the
internal processing of the external cue. The preceeding chapter 3 showed that noise can
play an important role in signal transduction.

In Sec. 4.3, possible realisations of axon-cue interaction are introduced and numerically
investigated. The typical response of a growing axon to a cue is bending or turning. In
the left panel of Fig. 4.5 single axons are shown near to a glomerulus. The goal of a more
detailed analysis in Subsec. 4.3.2 is to reproduce such single trajectories and to check,
wether an internal processing as described above is feasible.

4.2.3 Axon-axon interactions

When inspecting figures like Fig. 4.1 more closely and with a higher magnification, axons
are often found to grow in bundles or fascicles of many axons (see also left panel of
Fig. 4.5). Electronic micrographs of sections through the olfactory nerve show that within
these bundles, axons are usually densly packed and the membranes of the axons attach
to each other (right panel of Fig. 4.5). By staining axons of different types of ORNs
with different colours, homotypic (consisting of a single type of axons) and heterotypic
(consisting of more than one type) bundles were found.

It is a quite common property of axons (also in other systems) to grow along or together
with other axons. For the olfactory system, experimental studies [47, 79] are available that
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Fig. 4.5: Left: Stained axons of a specific type of ORNs near the respective glomerulus in
the OB of an adult mouse. Single axons can be seen winding through the glomerular layer
(open arrowheads) and olfactory nerve layer (ONL). Most axons, however, are fasciculated (white
arrowheads). Scale bar is 50µm (modified from [153]). Right: Section through the inner olfactory
nerve layer (which can be seen as a part of the OB). Axons of a specific type of ORNs are labelled
(white asterisks) but others can be identified, too (black asterisks). Scale bar is 0.5µm (from [153]).

show the importance of axon-axon interactions for the correct formation of the neural map.
These interactions are found to act between axons of the same type (homotypic) but also
specific interactions between axons of different types can be concluded4.

Similar to the reaction of an axonal growth cone towards a chemical guidance cue, there
is a quite straightforward picture of the microscopic mechanism leading to axons growing
in bundles. In the membrane of axons, including their shafts, proteins are embedded that
can serve as ligands for receptors in the membrane of growth cones of other axons. If now
one of the filopodia of an axonal growth cone (Fig. 4.3) by chance hits the growth cone
or the shaft of another axon, receptors on the one membrane might interact with ligands
on the other, leading to a signalling event that can influence the direction of growth and
steer the axon towards and along the other axon. Since the axonal growth cone is very
dynamic, there is also a chance of detaching again from the other axon, e.g. if at some
time point all filopodia of the growth cone extend in the direction away from the other
axon.

An important concept connected to axon-axon interactions is that of the pioneering
or pathfinding axons. If one axon starts growing (e.g. up a chemical guidance cue)
earlier or faster than others, other axons might grow along this pioneering one rather than
interpreting the chemical guidance cue by themselves. This can lead to more efficient
targeting but it clearly increases the danger of all axons being mistargeted if just the first
one made mistakes in the interpretation of the guidance cue.

In Sec. 4.3, axon-axon interactions will be implemented into numerical studies in dif-
ferent ways. Simple attachment/detachment rules will be set up as well as axon-axon
interactions implemented by effective inter-axon forces or interaction energies between
axons.

4In the experiments [47, 79], genetical modification of one type of ORN altered the targeting of a few
other types of ORNs.
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4.2.4 Axon turnover

The formation of the olfactory map already starts before birth. In mouse, the axons need a
few days [139] to grow all the way from the nasal epithelium towards the OB. A remarkable
property of the ORNs is, that there is a constant turnover of neurons during the whole life
time of the animal. The average life time of an ORN (in mouse) lies in the range of 30–60
days [72] (in humans 2–6 months [67]). After that, the neuron dies but the total number
of ORNs is roughly constant, since new ORNs are constantly generated by the basal cells
in the olfactory epithelium.

In a recent study [169], the ’purity’ of the glomeruli on the surface of the OB was
studied during development of the animal. It has been found out, that the first map
to be formed (roughly 10 days after birth) still contains some miswirings, meaning that
ORNs that express a specific OR project not only to one (’their’) glomerulus but a number
of ORNs of this type also terminate in other glomeruli. During further development and
after the first 1–2 generations of ORNs have died and have been renewed, this connectivity
pattern gets sharpened and miswirings become less frequent. In Fig. 4.6, one of the results
of this study [169] is plotted, namely the average number of glomeruli to which a specific
type of ORN projects.

Fig. 4.6: Left: Percentage of animals in which two specific types of ORNs (expressing either
the receptor M71 or M72) connect to more than one glomerulus in a half-bulb each (cf. Sec. 4.1).
Right: Number of glomeruli per half-bulb to which the axons of the respective ORNs connect
over time. ’PD’ means postnatal day and is the age of the animal in days after birth (both figures
modified from [169]).

In connection to axon-axon interactions as described in the preceeding subsection, one
can think of the axon turnover as a mechanism to refine the olfactory map. Assuming,
e.g. a noisy guidance cue to which the first generation of axons reacts and forms a first,
partly miswired neural map, the axons of later generations find already established paths
along which they can grow. If the first map to be established already is quite good
in terms of correct targeting (say, 90% of the axons connect to the correct glomerulus
and the other 10% connect to glomeruli of different types), newborn ORNs have a much
higher probability to grow their axons along the correctly connected axons of the mature
ORNs (assuming random distribution of newborn ORNs in the epithelium). Due to axon
turnover, the miswired ORNs will slowly die out and therefore it is just a question of time,
that a refined neural map emerges. This effect can certainly be greatly enhanced, e.g.
by a correct targeting increasing the life time of an ORN and miswiring letting them die
earlier.

Axon turnover is implemented in one of the numerical investigations described in the
following section. Its effect on the targeting and interplay with the axon-axon interaction
will be examined.
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4.2.5 Other possible mechanisms

The role neural activity plays in forming or sharpening the olfactory map remains un-
clear. There is evidence that at least correlated neural activity is not needed for a coarse
formation of the map [91] but is needed for the ’fine-tuning’ [169]. Other experiments
suggest that spontaneous activity of the neurons is needed [167]. A theoretical model ex-
ists [152] that is solely based on neural activity but its applicability for the explanation of
the formation of the olfactory map might be limited due to the stated experimental facts.

An important question to be asked is, whether the olfactory map is really established
by the advancing axons of the ORNs or if it is formed ’from the other side’, i.e. by the
secondary neurons present in the olfactory bulb. In insects, e.g., the dentrites of the
secondary neurons are located in the correct position even before the axons of the ORNs
have reached the antennal lobe. Assuming an early structure on the OB, a guidance
(possibly without graded cues) appears more likely since parts of the glomeruli would be
already present, telling the respective axons where to grow. As in most of the effects
described in this section, experiments in vertebrates are not fully conclusive. Axon sorting
and convergence seems to be independent of the tissue [140] through which axons grow,
i.e. axons of the same type find each other even if the OB was removed. However, spatial
organisation on the level of mitral cells might be important also in mice [80].

4.3 Theoretical approaches to axon sorting and guid-
ance

The preceeding two sections describing the biology of the formation of the neural map
in the olfactory system underscored the complexity of this biological pattern formation
process. Experimental results suggest that the interplay of a few different mechanisms
is needed for the correct formation of the map during the development of the animal.
Theoretical considerations might help testing hypotheses of the biologists, gain deeper
understanding of the processes and answering the two main questions as stated at the end
of Sec. 4.1.

In this section, different aspects of the pattern formation process are investigated using
numerical simulations (’in silico’ experiments). Three main models are presented that focus
on the different mechanisms as described in Sec. 4.2.

In the preliminary study presented in Subsec. 4.3.1, emphasis is put on the sorting
of axons due to axon-axon interactions. Since the sorting of different types of axons can
be seen in an abstract way as a phase separation problem, a well-studied system from
statistical physics is used for the implementation, the Potts model. The effects of a simple
realisation of a guidance cue are studied, as well. Due to the adopted geometry, the
obtained results of this simple model are difficult to relate to the full pattern formation
process of the biological system, nevertheless they might be relevant for specific aspects
of it.

Subsec. 4.3.2 stays closer to biology by modelling the movement of single axons in a
more realistic way. The focus in this subsection is put on chemical guidance of axons with
axon-axon interactions put in in a very simple way as a modification. The main results
here are axon trajectories that can be compared to pictures from single axon paths as
seen in experiment. Only small numbers of axons are considered in this approach and due
to two spatial dimensions being treated as a continuum, an upscaling to high numbers of
axons becomes computationally ineffective.

In the last Subsec. 4.3.3, the same geometry as in the preceeding model is used with the
spatial variables discretised. This model comes closest to a simulation of the whole biolog-
ical pattern formation and studies with high numbers of axons can be conducted. Single
axons are simulated as interacting directed random walks with a specific life time. The
focus lies on the axon-axon interactions as well as axon turnover leading to a refinement
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of the neural map. The results can be related to experimental findings and the relatively
easy structure of this model makes it possible to start analytical considerations regarding
sorting and bundling.

4.3.1 Axon sorting through interacting growth cones – a gener-
alised Potts model

The sorting of axons during growth, i.e. the transition from a random, mixed configuration
of axons to a configuration where axons of the same type attach to each other and separate
from different types, can be accomplished by different means. An external cue can guide
axons individually to type-specific fixed position or homotypic axon-axon interactions can
provide the sorting. In the simplest versions of the latter case, no conserved map will be
formed, rather, after bundles of axon types have sorted out, their positions will still vary in
time. Both mechanisms will be investigated in this subsection, using a well-studied system
from statistical physics, the Potts model [164]. By that, axon sorting becomes related to
the general problem of phase separation (e.g. [14, 35]). A similar but spatially continuous
model based on the same geometry introduced below, is described in Appendix C.1.

Geometry

For a first study of axon sorting, in this subsection, a severe simplification regarding the
geometry of the setup is made. All axons start at the same time and grow with the same
speed. Their growth cones are all situated in one two-dimensional layer and form one
advancing front in which they are able to move, interact with other growth cones and
sense a possible guidance cue. They can only react to it by a change of growth direction
in the x-z-plane (Fig. 4.7). Due to all axons advancing together in the y-direction, axon
turnover cannot be considered within this framework. Fig. 4.7 illustrates the respective
geometry.

bulb

epithelium

y + 2∆y
y + ∆y

y = 0

y = yG

y

yx
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t

Fig. 4.7: Illustration of the geometry of the system where all axonal growth cones grow in one
advancing two-dimensional plane.

N =
∑M
i=1 ni axons ofM different types start randomly distributed on a sheet at y = 0.

In each time step of the simulation the whole front moves one step ∆y in the y-direction
towards the future position of the glomeruli at y = yG. Within such a time step, each
axon can interact with other axons and/or can respond to a guidance cue established by
a gradient towards the according position of the future glomerulus.

Axon-axon interactions and guidance cues

Adopting the picture described in Subsec. 4.2.3, an axon interacts with other axons in
its neighbourhood through the filopodia of its growth cone. Especially if there are many
other axons around, the filopodia will hit more than one neighbouring axon and instead
of attaching to a single (probably the nearest) one, in the model used in this subsection, it
will grow along an intermediate path in between, the path of highest attraction according
to the neighbouring axons. This type of interaction can be implemented, e.g. by assigning
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an effective interaction energy to each neighbouring axon. The axon then tries to grow
along a path of minimal energy.

If space in x and z is discretised, i.e. the axons move on a lattice, their dynamics can
be described in terms of a Potts model [164], a generalisation of the Ising model. Simply
speaking, the Potts model is an Ising model for spins that can exist in N > 2 different
states. The different species of axons are represented by the different spin states and
since the number of different axons should be conserved, the number of spins in each state
(the ’magnetisation’) should be constant. One can define an interaction energy between
different states (species) and a ’temperature’ that represents the random movement of
the growth cones. A guidance cue can be implemented by introducing a (y-dependent)
potential, to which the axons react, e.g. as described in Subsec. 4.2.2. One time step
corresponds to an advancement of the front by one step ∆y in the y-direction5. Axons
should not disappear, so the elementary dynamical step is a spin exchange (Kawasaki
kinetics) rather than a (Glauber) spin flip [26].

An effective interaction energy is assigned to neighbouring pairs of axons. If neigh-
bouring axons are of the same type i, the homotypic interaction energy is Eihom, if they are

from different types i and j, the interaction contributes a heterotypic energy Eijhet. In what
is commonly referred to as the Potts model, all Ehet = 0. In the simulations presented
further down, only one value for each the homo- and the heterotypic interaction energy is
used:

Eihom ≡ Ehom; Eijhet ≡ Ehet ∀ i, j. (4.2)

In this special case, the interaction Hamiltonian of the system can be written as

H = −
∑

〈ij〉

(

Ehet + (Ehom − Ehet)δSiSj

)

, (4.3)

where 〈ij〉 means that lattice points i and j are nearest neighbours and δSiSj
is the

Kronecker-delta that is only nonzero if the type Si of the axon at position i is equal to
the type Sj of the axon at the position j.

A Metropolis algorithm is used in the numerical simulation: A neighbouring pair of
axons is chosen randomly and its effective interaction energy Ebefore

int within the neighbours
of both axons is calculated. Then, the two axons are exchanged with each other and the
interaction energy is calculated again (which gives Eafter

int ). If the system energy after
the axon exchange is lower or equal than before (∆E = Eafter

int − Ebefore
int ≤ 0), the latter

configuration is kept. If it is higher (∆E > 0), the new configuration is kept with the
probability p = exp

(

−∆E
T

)

, where T is a parameter of the simulation that in the case of
spins can be referred to as the effective temperature. A pseudo-random number (random
number generator ran2 from [117]) is drawn in the latter case, upon which the decision
for keeping the new configuration is made.

N2 of these elementary steps (attempts) give one Monte Carlo time step (corresponding
to an advancement of ∆y), where N is the number of lattice points of the square lattice.
Periodic boundary conditions are used.

Guidance cues can be put into the model by introducing spatially dependent potentials,
such that the overall effective energies for calculating the energy differences upon axon
exchange are altered:

Ebefore/after = E
before/after
int + E

before/after
pot . (4.4)

Epot can either be one out of many type-specific potentials (as realised later in this subsec-
tion) or it can be the result of a type-specific interpretation of a two-dimensional potential
as introduced in Subsec. 4.2.2.

5A maximal bending angle of the axons could be introduced by allowing the axons to make only a
limited number of steps in the x-z-plane during one step in the y-direction (one Monte-Carlo time step).
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The model as described above is commonly called Potts model, if no spatial potential
is used and the Hamiltonian of the system reads

HPotts = −Ehom

∑

〈ij〉
δSiSj

. (4.5)

In the following, results will be presented using this ’common’ Potts model (analysed also
in [35]). After that, it will be generalised by introducing spatial potentials to which the
axons react as well as heterotypic interactions using the Hamiltonian from Eq. (4.3).

Results

Fig. 4.8 shows the time evolution of a lattice of 64 × 64 sites with periodic boundaries,
occupied fully by each 1024 axons of four different species. Parameters used are Ehet =
0; Ehom = 1; T = 0.77 and there are no guidance potentials (’common’ Potts model).
The initial configuration was generated randomly. If the parameter T (the ’temperature’)

(a) t = 0 (b) t = 1000 (c) t = 10000

(d) t = 100000 (e) t = 500000 (f) t = 999000

Fig. 4.8: The Potts model for 4 species on a fully occupied 64 × 64 grid at different times (x-z-
plane (cf. Fig. 4.7) for T = 0.77 and Ehom = 1). Different colours depict different axon species.
Very good sorting is observed at late times (note the periodic boundaries in both x and z).

is chosen within the right range (as it is done here), sorting (’bundling’) is seen and after a
sufficient number of time steps, one can observe what would be called almost perfect wiring
in the context of the olfactory system. If one chooses T to be too high, the fluctuations
of the system are too high to speak of ’good wiring’, if T is too small, the time for the
system to find its energetically lowest state increases and the system might get stuck in
some local energy minimum that it is very unlikely to escape.

Fig. 4.9 tries to convey this effect of the ’temperature’ T . The same system (same size,
parameters and initial distribution) as in Fig. 4.8 was simulated using three different values
for T . Shown are the configuration after 999000 time steps, a time, where the two systems
with T = 0.5 and 0.77 are in a relatively stable steady state. The critical temperature for
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the Potts model with q states is (kB = 1) Tc = Ehom

ln(1+
√
q) [35], i.e. for the case presented in

Fig. 4.9, Tc ≈ 0.91.

(a) T = 0.2 (b) T = 0.5 (c) T = 1.5

Fig. 4.9: The same system as in Fig. 4.8 after 999000 time steps simulated with the three
different values for the temperature T = 0.2; 0.5; 1.5. The critical temperature for this system is
Tc ≈ 0.91.

Sorting of axons is observed in this model within specific parameter ranges (see Fig. C.5
in appendix C.2.1 for simulations with varying initial configurations), but for the genera-
tion of a spatial map with the same axon species appearing at the same position (indepen-
dent of fluctuations and initial configurations), spatial symmetry has to be broken by some
ingredient. This is easiest done by generalising the Potts model through the introduction of
potentials that are specific for axon species (see further up in this subsection). In the sim-
ulations for Fig. 4.10, four potentials were included, and each axon felt its potential with

the same space-dependent strength Epot(r) = −E0
pot

r with r =
√

(xA − xiG)2 + (zA − ziG)2

((xA, zA) is the position of the axon, and (xiG, z
i
G) the minimum of the respective potential

– the future position of the glomerulus; periodic boundaries such that 0 ≤ (xA− xiG) ≤ L
2

and 0 ≤ (zA − ziG) ≤ L
2 with L being the linear size of the system). Now, the axons of a

given type form a bundle at a conserved position independent of the initial configuration
(not shown).

The Potts model can also be used for not fully occupied lattices, simply by treating
vacancies as another spin state with effective interaction energy zero. Fig. 4.11 shows
configurations at the late time t = 999000 for simulations with an axon occupancy of
50%, i.e. four species with each 512 axons on a 64 × 64 grid. Fig. 4.11(a) is the outcome
of a diluted Potts model with Ehom = 1, in Fig. 4.11(b), the interaction energy between
different types of axons is set to Ehet = 0.3, which can be called a generalised Potts model.
The heterotypic interaction leads to the attachment of bundles of different types.

There are a few analytical results available [164] for the thermal equilibrium state, but
the more species are considered (and for a full simulation of the olfactory system this would
be in the range of a few hundreds with each ∼1000 axons), the less likely the system gets
close to thermal equilibrium within reasonable simulation time. With more species it will
be more likely trapped in local energy minima. To prevent this in numerical simulations
and to reach equilibrium states in reasonable times, often specific techniques (as, e.g. the
Monte Carlo renormalisation group [35]) are used. In the biological system, however, it
is unlikely that the final connectivity pattern is close to a thermal equilibrium state and
that the system could reach that solely by random fluctuations.

Due to the specific geometry (Fig. 4.7) used within this subsection (and in ap-
pendix C.1), the model lacks an important ingredient from the biological system, namely
the fact that axonal growth cones are not restricted to one front in which they move. In
reality, axons start growing at different times and are able to interact not only with the
growth cones of other axons but with the full axons (including the shafts). In the model
setup of this subsection, important concepts as, e.g. pioneering axons cannot be realised.
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(a) t = 0 (b) t = 1000 (c) t = 10000

(d) t = 100000 (e) t = 500000 (f) t = 999000

Fig. 4.10: The Potts model extended by four axon-type-specific potentials (E0
pot = 1.5) at

different instants of time. The initial distribution is the same as in Fig. 4.8. The minima of the
potentials are (x1

G, z1
G) = (16, 16); (x2

G, z2
G) = (16, 48); (x3

G, z3
G) = (48, 16); (x4

G, z4
G) = (48, 48)

(grid size 64 × 64).

Also, axon turnover, i.e. removing of axons and putting in new ones cannot be naturally
implemented. These facts make it difficult to interpret the obtained results in terms of
the pattern formation process of the biological system. However, restricted applicability
might be given in specific regions or stages of the development of the map, e.g. during
the first stages, when a number of axons grow approximately at the same time into not
occupied area.

In the following two subsections, another, more realistic geometry of the system will
be used for the simulations. This will allow for both interactions between growth cones
and shafts as well as the implementation of axon turnover.

4.3.2 Detailed model of the turning of axons in response to guid-
ance cues

Whereas single axon paths produced by the preceeding model lack some features of ex-
perimentally observed ones (e.g. loops as in the left panel of Fig. 4.5), the aim of this
subsection is the simulation of more realistic single axon trajectories. For that, an ide-
alised growth cone is introduced. Being a little bit more detailed than in [53] (for another
model see [132]), here, the turning radius R of the axon depends on the concentration
difference across the size of the growth cone6. For simplicity, axonal growth takes place
on a two-dimensional sheet (x-y-plane – the flattened surface of the olfactory bulb (cf.

6The microscopic picture of this is a signalling apparatus on the membrane of the growth cone that
transduces external concentrations into internal gradients of specific signalling molecules. These gradients
then influence the polymerisation and depolymerisation of actin filaments and microtubules which steers
the axonal growth.



88 Chapter 4. Axon Guidance in the Development of the Olfactory System

(a) Ehet = 0 (b) Ehet = 0.3

Fig. 4.11: The diluted Potts model (left) and the generalised Potts model (right) for an occu-
pancy level of 50%. Configurations at t = 999000 with Ehom = 1 and periodic boundaries.

Fig. 4.7)) with a constant step size ∆L =
√

∆x2 + ∆y2 each time step ∆t. At the tip of
the growing axon (the growth cone), two ’sensing units’ are extended in a distance Lc per-
pendicular to the momentary direction of growth7 (Fig. 4.12), where the concentration of
the cue is measured. The positions of the points of guidance cue evaluation are (Fig. 4.12)

∆x

∆y

(xn,yn)

(xn−1,yn−1)

(xC1,yC1)

(xC2,yC2)

Lc

Lc

∆L
ϑ

ϑ

Fig. 4.12: The positions of the sensing points C1 and C2 with respect to the momentary (n)
and former (n − 1) growth cone positions (idealised growth cone).

xC1 = xn + Lc sinϑ, yC1 = yn − Lc cosϑ,

xC2 = xn − Lc sinϑ, yC2 = yn + Lc cosϑ, (4.6)

with

tanϑ =
∆y

∆x
, (4.7)

where ∆x and ∆y represent the advancement of the growth cone during the previous time
step.

At the sensing points C1 and C2, the guidance cue is measured (evaluated) to be
cC1 and cC2, respectively. To account for fluctuations in the distribution of guidance
molecules and stochastic effects in the transduction of the cue, a random term is added to
the concentrations cC1 and cC2:

c′C1 = cC1 + f
√
cC1a , c′C2 = cC2 + f

√
cC2a. (4.8)

a is drawn from a set of equally distributed pseudo-random numbers between −0.5 and 0.5
everytime, a concentration is measured (random number generator ran1 from [117]). The

7Since the step size ∆L of the axon is kept fixed, concentration differences in the direction of growth
do not have to be considered.
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difference between these two ’noisy’ concentrations determines the radius R of turning.
Since not much is known experimentally about this dependence, the following very simple
relation is used:

R =
R0

c′C1 − c′C2

. (4.9)

If the concentration difference is zero, the turning radius for the next step is infinity,
i.e. the axon follows a straight path. A minimal turning radius can be accomplished by
limiting the steepness of the gradient of the guidance cue in such a way that the possible
concentration differences across the distance 2Lc is bounded from above.

The new position of the growth cone using the constant growth rate ∆L and the radius
R from Eq. (4.9) is then calculated by (see Fig. 4.13)

xn+1 =xn + ∆L cos

(

ϑ− π

2
+ arccos

(

∆L

2R

))

,

yn+1 =yn + ∆L sin

(

ϑ− π

2
+ arccos

(

∆L

2R

))

. (4.10)

∆xn−1

∆yn−1

(xn,yn)

(xn−1,yn−1)

(xn+1,yn+1)

ϑ

β

γ

R

R
∆L

∆L

∆xn

∆yn

Fig. 4.13: New position (xn+1, yn+1) of the growth cone, if the axon turns with the radius R.

Eqs. (4.10) are obtained using γ = ϑ − π
2

+ β and cos β = ∆L
2R

.

As a proof of principle, Fig. 4.14 shows typical axon trajectories generated with the
rules stated above. The axons all start at the same time, vertically aligned at y = 0 and
during growth are allowed to cross each other.

A noticeable difference in the growth patterns of the red and blue axons in Fig. 4.14 is
due to the different ’internal cues’ that the two different types use for guidance. For the
red axons (α = 0.1, Fig. 4.4(c)), the internal cue is approximately symmetrical around
its maximum in the region considered, which leads to relatively straight paths (except
the loop in the right panel of Fig. 4.14). The internal cue of the blue axons (α = 0.4,
Fig. 4.4(d)), however, is very steep for small values of x and shallower for high values of
x. This leads to the big bend the blue axons take when starting at high values of x. Since
all axons start at the same time and have the same speed of growth, usually, the axons
growing along straight paths reach the final position earlier than the ones that develop
curved trajectories.

The results of this detailed modelling could be quantified in terms of

1. typical turning radii,

2. typical shapes of axon paths,

3. typical fluctuations in the direction of growth.
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Fig. 4.14: Typical axon trajectories for the two two-dimensional cues depicted in Fig. 4.4.
Lc = 0.2, R0 = 0.005, ∆L = 0.1, f = 0.008. The axons stop growing, if they come into a distance
smaller or equal 5 to their respective glomerulus. The two figures are results for different sets of
pseudo-random numbers (a similar figure can be found in [54]).

A comparison to experimentally obtained figures (e.g. left panel of Fig. 4.5) could then
give reasonable ranges for the parameter values used in this model. By that, it could be
tested if the assumptions made within this approach (the way the cue is interpreted, the
relation between cue and turning radius, the way fluctuations are included) are sufficient
to capture the relevant properties of a growing axon. Of particular interest for such a
comparison are the big bends of the blue axons or the loop, one of the red axons forms
in the right panel of Fig. 4.14 after it missed the glomerulus in the first attempt. Such
loops are often observed in experimental figures with single axon resolution (left panel of
Fig. 4.5 or figures in [46, 47, 116, 153, 155]).

Axon-axon interactions

Axon-axon interactions can easily be implemented in this model. In the simplest version,
axonal growth cones have a certain circular area (radius Lc) that they explore. If the
growth cone of an axon of type i finds another axon (growth cone or shaft) within this
area, it will stick to it (it gets ’pinned’ to the other axon) and from then on will grow
along this axon. If the second axon is of the same type i, this ’pinning’ is assumed to
be irreversible. If the second axon is of different type j, in each time step, there is a
probability pstay that they stay together, otherwise the axon will detach and make a step
according to the gradient that it senses8. Fig. C.6 in appendix C.2.2 shows a simplified
version of the flowchart of the algorithm.

In Fig. 4.15, two examples of realizations of this algorithm are shown, where the same
2D-gradient of the guidance cue was used as in the example without axon-axon interaction
above (Fig. 4.14). The probability pstay = 0.8 (time step ∆t = 1) to stay with an axon
of a different type leads to short intervals of heterotypic bundling. Due to the homotypic
interaction, the blue axon starting at the smallest x-value serves as a pathfinding axon
for three other blue axons. This is the one that reaches the glomerulus first and grows
almost in a straight line. The other axons attach to it and simply grow along. For the red
axons, this is seen only for high y-values and it becomes clear that irreversible bundling
can have positive and negative effects on the directness of the connections, depending only
on the first trajectory formed by the pioneering axon. Assuming that axons generally
stop growing whenever they hit a glomerulus, no matter if it is the correct one or the one
belonging to another type, this implementation can certainly lead to miswiring, i.e. axons

8In order to escape the ’pinning’, i.e. move out of the sensing region of the other axon, this gradient
guided step is chosen to be four times the normal step size.



4.3. Theoretical approaches to axon sorting and guidance 91

 0

 20

 40

 60

 80

 0  20  40  60  80  100

x

y

 0

 20

 40

 60

 80

 0  20  40  60  80  100

x

y

Fig. 4.15: Two examples for a system with axon-axon interactions and a two dimensional cue
as shown in Fig. 4.4. Starting positions and parameters are the same as in Fig. 4.14, except
R0 = 0.001 and less fluctuations in the reading of the cue (f = 0.005). pstay = 0.8. The two
figures are results for different sets of pseudo-random numbers. The blue lines are plotted on top
of the red ones, covering them within bundles. The algorithm prevents attachment of an axon to
itself or to a bundle containing itself.

connecting to glomeruli of a different type. The biggest influence on the extent of miswiring
has the parameter pstay (in combination with ∆t) but, e.g. the steepness of the guidance
cue and the configurations of axons play a role, too. Heterotypic bundling can, however,
contribute to a reliable map formation. Axons of one type might, e.g. meet each other in a
bundle consisting mainly of axons of another type and from then on grow together. Since
typically, less axons have to navigate very close to the glomerulus if bundling is allowed,
the probability of ’unusual’ excursions of axons (e.g. loops as in Fig. 4.14) becomes smaller
compared to the case without bundling.

A big disadvantage of this algorithm is the search of the vicinity of each free axonal
growth cone in each time step. Since no grid is used and since axonal growth cones can
attach to all parts of all axons (including the shaft), for each search, the distances between
the growth cone and all positions of all axons have to calculated and compared to Lc (in the
simplest possible algorithm). This needs a lot of computer time. The system introduced
in the following subsection uses the same geometry but works much more efficiently by
letting the axons grow on a grid.

4.3.3 Advancing axons as interacting directed random walks

In this last model of the development of the olfactory map, the influence of axon turnover is
investigated. As in the preceeding subsection, axons grow on a two-dimensional x-y-plane
and are able to interact with each other. Different to the last model, here, axons grow on
a lattice, which has big advantages concerning computing time. Axons are simulated as
interacting directed random walks with turnover, i.e. each random walker has a given life
time after which it dies and is replaced by a new one. Assuming the impossibility of synap-
tic rearrangements in the olfactory bulb, axon turnover is the only possible explanation of
the experimental data presented in Fig. 4.6. A chemical guidance cue (as, e.g. described in
Subsec. 4.2.2) is not implemented here yet for reasons of simplicity. The model described
in the following is the one coming closest to a simulation of the whole pattern formation
process in the olfactory system. It produces results that are qualitatively comparable to
experimental observations while the assumptions being used are abstract enough to start
analytical considerations.
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Model

The axons grow on a tilted grid (Fig. 4.16), where in each time step, each axon grows one
step in the y-direction and one step in the x-direction. The geometry used is the same

x

y

Fig. 4.16: A tilted quadratic grid with two axons growing in y-direction.

as in Subsec. 4.3.2 but since the axons can move only in the positive y-direction, axon
paths will certainly look different as in the detailed model of Subsec. 4.3.2 (e.g. loops as
in the right panel of Fig. 4.14 are not possible, here). The decision, if the tip of the axon
moves one step to the left or to the right is made based on probabilities depending on the
occupation on its future lattice position and its neighbourhood. Fig. 4.17 shows different
possibilities of defining these neighbourhoods. If an axon of the same type is found on any

yn

yn+1

(a) (b) (c) (d) (e)

Fig. 4.17: Different ways of defining the neighbourhoods of a growth cone at yn on the tilted
grid. The two squares give the possible future positions at yn+1 (magenta – left, blue – right).
The circles with the respective colour are the sites that the axon can interact with when growing
to the left (magenta) or right (blue). (a) only the occupation of the possible future positions
is considered; (b) nearest neighbours in two dimensions; (c) nearest neighbours at yn+1; (d)
nearest neighbours and possible future position at yn+1; (e) nearest and next nearest neighbours
at yn+1 only in one direction. (a) and (b) fail to follow a zig-zagging axon.

of the neighbouring positions (as defined in Fig. 4.17), an effective energy El/r = Ehom is
assigned to the left (l) or right (r) future position. If only an axon of a different type is
found, the respective energy is El/r = Ehet. Based on these energies, the probability for
the axon to grow to the left/right is calculated as (cf. to the Potts model in Subsec. 4.3.1)

pl/r =
e−El/r

e−El + e−Er
. (4.11)

A pseudo-random number (random number generator ran2 from [117]) then decides if the
axon grows to the left or the right and before proceeding with the next axon, this one is
moved to its new position (xn+1 = xn±1, yn+1 = yn+1). If El = Er, e.g. for a pioneering
axon without neighbours or for an axon that moves in a thick bundle, pl/r = 0.5, i.e. the
axon randomly ’diffuses’ in x. Other ways of calculating the effective energies El and
Er might be designed, e.g. by making them proportional to the number of axons in the
left/right neighbourhood.

The choice of the sites that are considered neighbours (i.e. that the axon interacts with
– Fig. 4.17) strongly influences the shape of axon paths and the bundling properties of the
model. An axon should certainly be able to follow another axon, independent of the shape
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of the path of the pioneering one. The choices of interacting sites as given in Figs. 4.17(a)
and 4.17(b) are only able to follow axons that grow straight (e.g. xn+1 = xn + 1 ∀n)
but loose the pioneering axon if it changes direction of growth (the extreme case is a zig-
zagging pioneering axon that changes from left to right in every time step). Since lattice
occupations greater than one are allowed (axons can cross each other and grow on top
of each other), a too narrow definition of interacting sites can lead to very thin (in the
y-direction, but ’high’) bundles, which is difficult to relate to the biological system. Also,
since the total area that is covered with axons decreases rapidly through this process,
single axons that are still present at these high y values need an unrealistic long time to
hit a bundle. Here, an effective ’penalty energy’ Epen is introduced, that is added to El/r,
whenever an axon grows on an already occupied site9. Axons then prefer to stay on the
margins of a bundle and therefore contribute to its extension in x.

In principle, also in this model, a guidance cue could be easily implemented. For reasons
of simplicity, however, it is not done here. Therefore, only statements about sorting and
bundling can be made, but none about positions of bundles.

Axons are inserted into the lattice at y = 0 (random x) with a certain rate. The first
axon to grow therefore makes an one-dimensional random walk (in x), since there are no
other axons yet to interact. Each axon has a specific life time, after which it dies and is
completely removed from the system. The life time can be the same for all axons or it
can be drawn from a Gaussian distribution of life times with mean 〈Tlife〉 and standard
deviation σTlife

10. After the removal of the complete path of the axon, a new one of random
type is put at a random x-position at y = 0 and starts growing, following the same rules
of growth and interaction as described above.

The average life time of an axon is chosen following the biological system (cf. Sub-
sec. 4.2.4). Since axons need a few days to grow all the way from the epithelium towards
the bulb and since the average life time of the neurons is around 30–60 days, in the model,
the average (or half-) life time is chosen to be ten times longer than the time, the axons
need to travel the whole y-distance. After having reached the end position in y, the axons
stay there until they die.

Results

Fig. 4.18 shows typical axon configurations for 100 axons from a single species (periodic
boundaries in x) after 7.2·106 time steps for three different effective interaction energies
Ehom. The relation between the extensions Lx and Ly of the system are chosen in such
a way that a free and unbiased (in x) random walker typically explores a region of Lx

2

during its growth from y = 0 to y = Ly (Ly =
(

Lx

2

)2
). Axons are inserted at y = 0

with the constant rate of one axon each 4000 time steps and after a life time (assigned to
each axon with its birth; 〈Tlife〉 = 4·105 and σTlife

= 4·104) are removed again. For this
simulation, as well as for all the following, axons interact with the nearest neighbours on
the same yn+1 of their future position as well as the future position itself (Fig. 4.17(d)).
Fig. C.7 in appendix C.2.3 shows the time evolution of the configuration in Fig. 4.18(b)
with Ehom = −4.5.

Depending on the absolute value of Ehom, different degrees of bundling are observed.
The small absolute value of Ehom = −2 apparently is not enough to reliably form bundles.
From Eq. (4.11), one can estimate the average number of ’false decisions’ (i.e. moving
away) an axon makes when growing along another axon or along the margin of a bundle
(e.g. El = Ehom and Er = 0) during the 40000 time steps it needs to grow the whole
distance. For Ehom = −10, this number is approximately 1.8. Almost no stray axons are
therefore observed in Fig. 4.18(c). ∼ 440 false decisions in the case with Ehom = −4.5

9Other solutions would be a space-narrowing towards high values of y, or the implementation of a
general guidance cue attracting all axons towards a point at some high y-value.

10Any other distribution for the life times is also possible, e.g. an exponential one with half-life T 1
2
.
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(a) Ehom = −2 (b) Ehom = −4.5 (c) Ehom = −10

Fig. 4.18: Axon configurations obtained by simulating axonal growth as interacting directed
random walks with three different effective interaction energies Ehom. x is plotted horizontally,
y vertically and periodic boundaries are used in x. A single species with 100 axons is simulated
and the figures represent snapshots of the dynamics at the late time t = 7.2·106. The life times
of the axons are Gaussian distributed with 〈Tlife〉 = 4·105 and σTlife = 4·104, and there was no
’penalty’ energy Epen in these cases. Fig. C.7 shows the time evolution of (b).

lead to quite a few bundle splittings and single axons wandering around and ∼ 4800
(Ehom = −2), i.e. a ’debundling’ every ∼9 time steps, clearly is to much to form bundles.

In order to analyse the results more quantitatively, measures have to be found that
capture the important features of the configurations and at the same time can be related
to experiments on the biological system. One of these measures is the number of bundles
at a given time t and position y. The definition of a bundle is to some extent subjective11.
Here, the configurations are coarse grained (over an x-window of 15 and y-window of 100)
and the density of axons is calculated. Using a threshold value (larger than one axon per
site), the number of bundles can than be counted. Fig. 4.19 shows these for the three
coupling strengths used in Fig. 4.18.

For the weak interaction with Ehom = −2, there are strong fluctuations and already
visual inspection of Fig. 4.18(a) suggests that it is difficult to define and count bundles
here. With the definition used above, an increase in the number of bundles is observed

11One has to decide, e.g. about a minimal distance between two bundles to be counted as two and not
one.
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Fig. 4.19: The number of bundles (see text for details) plotted over y for different effective
interaction energies Ehom and three different times each. 〈Tlife〉 = 4·105, σTlife = 4·104. The curves
are averages over 1000 runs with independent sets of pseudo-random numbers. The subjectivity
related to the definition of a bundle brings in that at very small y, no bundles are found (single
axons are not counted as a bundle).

with growing y and during time evolution, no change is observed (Fig. 4.19(a)). When
the effective interaction energy grows in absolute value, a decrease of number of bundles
is observed both in y and in time (Fig. 4.19(b)). Both effects are also seen in experiments
(for the temporal decrease, see, e.g. Fig. 4.6) so this looks like a reasonable parameter
region. However, by numerical investigation, no set of parameters was found that would
show a reduction of number of bundles in time and at the same time end in just a single
bundle at high y and late t (cf. Fig. 4.6). Within these simulations, temporal decrease of
the number of bundles always ended in 3–4 bundles at high y, even for very long runs. A
further increase in interaction strength destroys the effect of temporal decrease in bundle
numbers (Fig. 4.19(c)). Simulations usually end up in just a single bundle at high y (cf.
Fig. 4.18(c)) but over time, the number of bundles stays constant or even increases slightly.
One reason for the increase of number of bundles in time is the splitting of bundles due
to the removal of axons that were growing roughly at the same time (and therefore die
roughly at the same time, leaving back two separate bundles). Fig. 4.20 illustrates this
effect with an example.

To study the effect of heterotypic interactions (between different types of axons), sim-
ulations were conducted using the same parameters as before but now with each 50 axons
from two different types. Fig. 4.21(a) shows the decrease of the number of bundles of
one type with both y and time if there is no heterotypic interaction (cf. to Fig. 4.19(b)).
Putting in an effective interaction energy of Ehet = −2 between the two types of axons
increases the effect of reduction of bundle numbers over time (Fig. 4.21(b)). This, again,
resembles qualitatively the experimental results from Fig. 4.6, however, since only bundles
of one of the two types of axons were counted, a ’purifying’ of bundles over time can not be
observed and most probably does not happen. The nonzero heterotypic interaction energy
probably just leads to bundles of different types growing together in larger heterogeneous
bundles, however, there probably again is some optimal value of heterotypic interaction
that enhances bundling and sorting.

As an illustration of the applicability of this model for higher numbers of different types
of axons, Fig. 4.22 shows the time evolution of four different types with 25 axons each. The
interaction strengths Ehom and Ehet were chosen such that nice pictures with observable
bundling are obtained. In order to get thicker bundles and weaken the tendency of bundles
growing on top of each other, the ’penalty’ energy was set to Epen = 0.5. Fig. 4.22 shows
a few qualitative features that are commonly observed in simulations with more than one
type of axons. During time evolution, thick bundles tend to straighten especially for high
y-values (see, e.g. the thick red bundle at x ≈ 350). Another observation is, that bundles
of different types that grew intermingled at early times, de-mix over time (e.g. the thick
green and magenta bundles between y ≈ 2.1 ·104 and 3.5 ·104). It is obvious that it
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(a) t = 8·105 (b) t = 2.4·106 (c) t = 4·106

Fig. 4.20: The advancement (in y) of a splitting slit in a bundle due to the death and removal
of several axons that grew roughly at the same time. Shown is the time evolution of a section
of the simulation leading to the configuration in Fig. 4.18(c). The end of the slit moves upwards
from y ≈ 1.4·104 to y ≈ 1.48·104. As another effect, this figures show the branching of a bundle
due to a stray axon.

becomes increasingly difficult to describe the results quantitatively the more axon types
and possible interaction between them are introduced.

Based on relatively simple rules and being quite close to the biological problem in terms
of, e.g. geometry, the description of growing axons as interacting directed random walks
on a grid is able to at least qualitatively capture some of the biological features of the
pattern formation process during the development of the olfactory neural map. However,
an analysis of the many differing set-ups of the model as well as a full characterisation
based solely on numerical investigations seems ineffective. The goal, therefore, should be an
analytical description of maybe even more simplified models, whose result then again serve
as starting points of more detailed numerical work12. Starting with a description (in terms
of a zero-range process [44]) of a further simplified model, preliminary analytical results
are obtained regarding the distribution of bundle sizes and its temporal change [106].
Investigations in this direction are in progress.

12Qualitatively similar results of path coalescence are obtained in studies, where independent particles
are subjected to a common spatially and temporally random force field [38]. In these models, a phase
transition is observed and analysed analytically [160].
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Fig. 4.21: The number of bundles (counted only for axons of one type) plotted over y for two
different values of the heterotypic interaction energy Ehet (Ehom = −4.5). Parameters are the
same as in Fig. 4.19 except that two different types of axons were simulated with 50 axons each.

4.4 Summary and discussion

The formation of the neural map on the olfactory bulb during development of a mammal
is a complex pattern formation process for which a consistent picture based on single axon
dynamics does not exist yet. Most probable, not a single mechanism provides the observed
sorting and placement of axons, but rather a complex interplay of a few different micro-
scopic mechanisms. Only little experimental data is available describing the movement
of single axons, most experiments focus on the patterning process of many thousands of
axons as a whole, which renders a bottom-up approach to the problem more difficult.
One important conclusion from these experiments is that the map formation can only be
understood as a collective effect rather than single axons finding their way to the correct
position independently and individually.

In this chapter, different mechanisms generally known to provide similar tasks in other
biological systems, were implemented in in silico experiments and their effect on map
formation and sorting was investigated. By using different geometries for the modelling
as well as different levels of details in the descriptions, focus was put on respective effects
that can be related to experimental observations. The results obtained are interesting
from two perspectives. On the one hand, the detailed studies of the pattern formation
process during the development of the olfactory system allow for statements regarding the
applicability and importance of the different microscopic mechanisms considered. On the
other hand, implementation of the models leads to extensions of well-known models from
statistical physics that are interesting also in more general terms.

From a biological perspective, the main results from this chapter are the (mostly qual-
itative) reproductions of measurements and figures by in silico experiments. Simulating
a front of advancing axonal growth cones as spins in a Potts model leads to the observa-
tions of axon sorting and placement (when a cue was implemented). In another model,
growth of single axons was simulated with an idealised growth cone finding its way by
interpreting a specifically designed chemical guidance cue. The axon trajectories obtained
with these simple assumptions resemble pictures from single axons in the real system near
the respective glomerulus. As an important concept, axon-axon interactions (both homo-
and heterotypic) were included and their effect on the sorting of the axons investigated.
When further implementing axon turnover, recently published experimental data of map
refinement could be qualitatively reproduced. Especially this last model resembles the
biological pattern formation process most and will be extended and enlarged in the future
in order to use it as a tool for testing different hypotheses about map formation. Through
extensions of this model, e.g. by considering the geometry of the olfactory bulb in greater
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(a) t = 8·105 (b) t = 4·106 (c) t = 7.2·106

Fig. 4.22: Axon configurations at different times for 4 different types of each 25 axons. Ehom =
−10, Ehet = −1 and Epen = 0.5. All remaining parameters are as in Fig. 4.19. The different
types are plotted on top of each other in the order red - green - blue - magenta, so if a lattice site
is occupied by more than one type, only the respective higher colour is shown.

detail or by giving axons of different types more distinguished properties, one can specu-
late that a reliable map formation might be possible with just a small number of ’general’
guidance cues to which all axons react.

From a perspective focusing more on statistical physics, two well-known concepts were
investigated and extended. In the last-mentioned model, advancing axons were simulated
by interacting directed random walks. The concept of a random walk was extended by
letting a large number of them interact and implementing turnover, i.e. each random
walker has a specific life time after which it dies, its complete trajectory is removed from the
system, and a new one is injected. The further analysis of this set-up – both numerically
and analytically – promises interesting results in terms of path coalescence and phase
separation. In a different model, axon interaction and sorting was mapped on the standard
Potts model, a model commonly used for the study of phase separation. Extensions
considered in this chapter include a specific choice of the Hamiltonian as well as the
introduction of spatially dependent potentials to which the elements of the Potts model
(the axons) react. Due to the adopted geometry, results obtained from the generalised
Potts model might not be of great value for interpreting biological data, nevertheless the
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described extensions introduce interesting dynamics that will be investigated further in
the future.

In conclusion, the numerical models presented in this chapter provide a way to answer
some aspects of the two main questions as stated in the introduction (Sec. 4.1). The
quickly and continuously increasing knowledge about the biology of the pattern formation
from experiments can be used to improve the presented theoretical approaches and make
their results more reliable. To what extent general biological questions in this context can
be answered using solely in silico experiments remains unclear. A bottom-up approach as
it was aimed for in this chapter is most promising if there is a good knowledge of the mi-
croscopic properties. It appears that this is not the case for the problem of olfactory map
formation, yet. However, enough data is available to go beyond pure phenomenological
models. Precisely this gap between a pure microscopic description and a in some aspect
always arbitrary phenomenological model makes this pattern formation process so inter-
esting in terms of a theoretical analysis and challenges the development of new concepts
and models.
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Chapter 5

Conclusions and Perspective

Detailed experimental knowledge about how information is transmitted and processed in
the olfactory sense has only emerged in the last 10–15 years. So far, this has happened
to a great extent without the help of theoretical models that have proved to be beneficial
in many other instances of cellular biology and other senses. The present work has to be
seen as an early step in the direction of studying the complex biological task of sensing
odourants by means of theoretical considerations. Various concepts and tools from theoret-
ical physics were applied with the goal of a better understanding of some specific aspects
of the olfactory system. A detailed model of parts of the olfactory signal transduction
pathway was introduced and analysed as well as a more abstract general signalling mod-
ule, whose statistical properties were evaluated. Further, different models were presented
for a complex pattern formation process taking part during the development of the neural
connections towards the brain. In each of these problems, different theoretical approaches
to the complex biological processes and systems were used and each chapter provides a
good example of how theoretical descriptions can contribute to a field of biology that is
to a large extent still in the stage of descriptive, qualitative experiments.

The detailed quantitative description of the biochemistry of the olfactory signal trans-
duction in chapter 2 is an example of the modelling part of what is commonly referred
to as systems biology [76]. The aim of this (under this name) relatively new field is to
understand dynamical processes in biology with the help of mathematics together with
detailed biochemical measurements in a bottom-up approach. Here – as most commonly
done in systems biology – this was achieved by describing the system of interest by a set
of coupled non-linear differential equations. Usually, this very quickly leads to large num-
bers of parameters (kinetic constants, concentrations, . . . ), whose precise choice, due to
the nature of coupled nonlinear systems, can often affect the qualitative behaviour of the
model quite severely. To reduce the number of parameters and to circumvent problems of
this kind as much as possible, in chapter 2, extended analytical work was done, explor-
ing the dynamical features of the underlying equations independently of the parameters.
After it was analytically proven that the chosen network can in principle show oscillatory
behaviour, it was numerically solved using experimental parameters from the literature.
By that, specific whole-cell measurements on olfactory receptor neurons could be repro-
duced quantitatively. Due to the good agreement between the theory and experimental
measurements, this model qualifies for making predictions regarding future experiments.
The results from a detailed bifurcation analysis provide these predictions and show the
robustness of the obtained results against the variation of single parameters.

In chapter 3, a part of the signalling pathway dealt with in chapter 2 is investigated
in a more abstract way. The idea adopted in this chapter is that of a modular, rather
than a molecular description of complex systems. One way of dealing with the complexity
found in biological (e.g. signalling) systems is that of decomposing the system into smaller
subsystems, the modules, whose dynamical properties can be calculated and are still to
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some extent intuitive. In signalling systems, a module has specific input/output properties
and the output of one module can be – within a larger system – the input of the subsequent
one. The treatment of a small subnetwork as a module with just a few in- and output
channels constitutes a kind of coarse graining, in the sense that not all possible dynamics
are considered but only those relevant as an input for a subsequent module within the
whole network. In chapter 3, a two-state signalling module with negative feedback was
analysed that includes features of the pathway discussed in chapter 2. Different to the
deterministic description in the latter, here, the magnitude and effects of intrinsic noise are
considered and derived from stochastic differential equations. By using – among others – a
path-integral technique described in detail, the relevant statistical quantities characterising
the signalling properties (mean values, correlation and response functions) of the module
were calculated and found to be in good agreement with the results of numerical studies.

Another – often preliminary – way of gaining understanding of biological systems is
that of mostly phenomenological modelling, for which chapter 4 presented some examples
in terms of numerical simulations. Often, in newly established fields or when consider-
ing macroscopic processes, mostly descriptive literature exists and the system as a whole
proves to be too complicated for systematic quantitative experiments, using the current
tools. Under these circumstances, hypotheses flourish but are usually on the same phe-
nomenological level of description as the measurements themselves. Theory can contribute
in such cases by setting up and conducting in silico experiments that serve mainly as a test
of the general capabilities of different hypotheses. Microscopic mechanisms are modelled
in simple ways, using effective parameters. The advantage compared to mere speculations
is that quantitative models (no matter if analytical or numerical) have predictive power,
can be adapted to new experimental findings and provide in general a more structured
way of dealing with complex systems. The power and the diversity of this branch of mod-
elling was shown in chapter 4 with three different simulation approaches that reproduce
specific features of the convergence and targeting during the development of the neural
connection between the olfactory receptor neurons and the brain. Focusing on different
time- and length-scales of the system, different models were set up, analysed numerically
and compared to experimental pictures and – where available – data. The level of detail
that is adopted in this kind of approach is always a compromise between the variety of
achievable results, the simplicity of the model and computation time.

All of these different approaches towards a better understanding of complex biological
systems and processes work well and are important especially in ’softer’ sciences as biol-
ogy. The systems biology approach certainly is the one that grows fastest right now and
due to extensive experimental efforts for obtaining better quantitative results in terms of
in vitro biochemistry, will contribute considerably to the understanding of intracellular
processes as well as biological design. How far the modular approach will get in terms of
simple descriptions of the system, remains an open question. It certainly has the poten-
tial to severely simplify complex systems and classify them in terms of their dynamical
properties. However, there is one condition for the applicability of the modular approach:
The system as a whole has to be decomposable into subsystems that can be treated as
modules, i.e. the degree of complexity of inter-module connections should be much lower
than that of intra-module connections. This condition might be fulfilled in signalling or
metabolic pathways but not necessarily in other biological systems. Purely phenomeno-
logical, numerical analyses remain a very important tool, too, mainly as a starting point
for further studies on complex systems or for testing and comparing different hypotheses
about these systems.

Regarding the more general questions raised in Sec. 1.3, some preliminary answers
could be found. However, much more work has to be done until the system can be called
’understood’ from the perspective of a physicist. It is the conviction of the author that
only the development of new concepts and a new language, rather than just more detailed
conventional modelling, will lead to a satisfying understanding of complex processes like
olfaction.



Appendix

A.1 The reaction of calcium and calmodulin

In this appendix, the simple kinetic relation for the reaction of calcium and calmodulin
that is used in Eq. (2.9) is compared to more complicated models with different parameters
from different literature sources.

In [32] and [36], four dissociation constants are given for the four different binding sites
of calmodulin. Writing the complex of calmodulin with i calcium ions as Ci (0 ≤ i ≤ 4),
the four reaction steps towards the fully calcium-loaded calmodulin read (0 ≤ i ≤ 3)

Ci + Ca2+
k+
i

⇋

k−i

Ci+1. (A.1)

Assuming mass action kinetics for each of the four steps, one gets for the kinetic constants

k
−/+
i different values from different literature sources. Some of them are given in Tab. A.1.

data set A B C D E
reference [32] [36] [138] Subsec. 2.2.3 see text

k−0
[

1
s

]

600 6.7
72
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3

[
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mol·s

]

5.0 10 46.5

Tab. A.1: Kinetic constants from different sources for the reactions between calcium and calmod-
ulin (another set of binding constants can be found in [93]).

In [138], the steps for i = 0 and i = 1 are combined to a second order reaction.
Table A.1 also shows the kinetic constants from [138]. In Sec. 2.2 of the present work, one
reaction of second order is assumed. The kinetic constants are given in Tab. 2.2 or as data
set D in Tab. A.1.

Assuming mass action kinetics for the single steps of the full reaction, a constant
calcium concentration, and the conservation constraint

4
∑

i=0

[Ci] = [CaMtot], (A.2)
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Fig. A.1: The concentration of the fully loaded calcium-calmodulin complex CaM4 in the steady
state from the different models (Tab. A.1) according to Eqs. (A.3), (A.4) and (A.5).

one can easily calculate the steady state concentration of the fully loaded complex C4.

For the four-step reaction scheme as of [32, 36], this turns out to be (KD
i =

k−i
k+

i

is the

dissociation constant)
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(A.3)
For the three-step reaction scheme of [138] one gets

[CC
4 ]ss =
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1 [Ca2+]4[CaMtot]
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(A.4)
Those relations can be compared to the result for the simplified version used in the

present model (from Eq. (2.9) if the terms related to channel-binding are dropped):

[CD,E
4 ]ss = [CaMtot]

k+
CaM4[Ca2+]2

k+
CaM4[Ca2+]2 + k−CaM4

. (A.5)

Fig. A.1 shows these different results plotted over constant calcium concentration.
To compare the kinetics of the different reaction schemes, the kinetic equations of each

are simulated with a simple Euler forward step algorithm. A step increase in calcium
concentration serves as the stimulus, where the magnitude of the step corresponds ap-
proximately to the two different time courses described in Subsec. 2.2.3 (long, single pulse:
[Ca2+] grows from 1 to 25µM; double pulse: [Ca2+] grows from 1 to 150µM). The results
(the time evolution of the concentration of the fully calcium-loaded form of calmodulin)
are presented in Fig. A.2.

As the figures show, experimental data from different sources for the reaction between
calcium and calmodulin does not agree and allows for a broad range from which modelling
parameters can be chosen. The simple, second order kinetics used in the modelling in
the present work shows no big qualitative difference to the results from the more detailed
and complicated reaction schemes. Concerning quantitative results, the model used here
comes closest to the data of [138]. By increasing the effective association constant k+

CaM4

by a factor of 200 (data set E in Tab. A.1), the result of the second order kinetics comes
closer to the data from [32] and [36] (see Figs. A.1 and A.2). However, in order to get
similar results for the calcium dynamics as presented in Subsec. 2.2.3 (based on the same
set of equations), other parameters of the model have to be adjusted in a way that lead
them further away from experimentally obtained values (see [120] for the full alternative
parameter set).
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Fig. A.2: The time course of the concentration of the fully loaded calcium-calmodulin complex
CaM4 after a step-increase in [Ca2+] (at t = 0s) roughly corresponding to the simulations depicted
in the left panel of Fig. 2.11 (left) and in Fig. 2.13 (right). For the different data sets, see Tab. A.1.
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B.1 Calculation of the integrals Î0, Î1, Î2

B.1.1 Generalised convolution theorem

The following general result will be used in the calculations further down. If a function
g(t) has the form

g(t;n) =

∫ t

0

f1(t1)

∫ t−t1

0

f2(t2)

∫ t−t1−t2

0

f3(t3) · · ·
∫ t−Pn−1

i=1 ti

0

fn(tn)dtn · · · dt3dt2dt1,
(B.6)

its Laplace transform can be shown to be

ĝ(s;n) =
1

s

n
∏

i=1

f̂i(s). (B.7)

To proof this, Eq. (B.6) is written as

g(t;n) =

∫ t

0

f1(t1)g2(t− t1)dt1 (B.8)

with gi(τ) recursively defined as

gi(τ) =

∫ τ

0

fi(ti)gi+1(τ − ti)dti, 2 ≤ i ≤ n, gn+1(τ) = 1. (B.9)

Eq. (B.8) is a convolution of the functions f1(τ) and g2(τ), whose Laplace transform
is

ĝ(s) = f̂1(s)ĝ2(s). (B.10)

Using this standard convolution theorem consecutively on the gi’s together with ĝn(s) =
1
s f̂n(s), one arrives at Eq. (B.7).

B.1.2 Calculation of Î0

Writing out the integrals in Eq. (3.55) gives

I0(t;m) =

∫ t

0

∫ t−T1

0

e−(1−r+)T ′

1

∫ t−T1−T ′

1

0

· · ·
∫ t−···−Tm

0

e−(1−r+)T ′

mdT ′
m · · · dT2dT

′
1dT1.

(B.11)
Using the generalised convolution theorem from Subsec. B.1.1, one has m + 1 functions
f(t) = 1 and m times f ′(t) = e−(1−r+)t. The Laplace transform of I0(t;m) therefore is

Î0(s;m) = s−(m+1)(s+ 1 − r+)−m. (B.12)

B.1.3 Calculation of Î1

In order to calculate the integrals Î1 and Î2, one needs to express c(t) in terms of the
time interval variables Ti and T ′

i . The solution of the differential equation Eq. (3.5) with
S(t = 0) = c(t = 0) = 0 is (j ≥ 0; τ0 = 0)

c(t) =

{

Aje
−λt τj ≤ t ≤ τj+1 j even

Aje
−λt + 1 τj ≤ t ≤ τj+1 j odd

, (B.13)

where the coefficients Aj assure the continuity of c(t) at the switching times τj . The initial
condition c(t = 0) = 0 gives A0=0 and for the other Aj the following is found:

Aj =

j
∑

i=1

(−1)ieλτi . (B.14)
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For I1, the concentrations at the times when the channel switches from open to closed
has to be known. This is (i ≥ 2 and even)

c(τi) =

i
∑

j=1

(−1)jeλτj e−λτi . (B.15)

The transformation to time interval variables (using Eq. (3.46)) requires a distinction
between even and odd j. The case j = i in Eq. (B.15) is treated separately and gives the
’1’:

c(τi) =1 +

i−2
∑

E
j=2;i≥4

eλ
Pj/2

k=1(Tk+T ′

k)−λPi/2
l=1(Tl+T

′

l ) −
i−1
∑

O
j=1;i≥2

e
λ

 

P

j+1
2

k=1 Tk+
P

j−1
2

k=1 T ′

k

!

−λPi/2
l=1(Tl+T

′

l )

=1 +

i−2
∑

E
j=2;i≥4

e
−λPi/2

k=
j
2
+1

(Tk+T ′

k)

−
i−1
∑

O
j=1;i≥2

e
−λPi/2

k=
j+3
2

Tk

e
−λPi/2

k=
j+1
2

T ′

k

. (B.16)

Putting this into the expression for I1 (Eq. (3.56)), one gets

I1(t;m) =mI0(t;m) +
2m
∑

E
i=4

i−2
∑

E
j=2

∫

DT e−(1−r+)
Pm

i=1 T
′

i e
−λ
Pi/2

k=
j+2
2

Tk

e
−λ
Pi/2

l=
j+2
2

T ′

l

−
2m
∑

E
i=2

i−1
∑

O
j=1

∫

DT e−(1−r+)
Pm

i=1 T
′

i e
−λPi/2

k=
j+3
2

Tk

e
−λPi/2

l=
j+1
2

T ′

l

. (B.17)

The path integrals can now be solved using the generalised convolution theorem from
Subsec. B.1.1. E.g. contains the first path integral (even j) i−j+2

2 + 1 times the functions

e−λTk and e−(1−r++λ)T ′

k and m − i−j+2
2 + 1 times the functions e−(1−r+)T ′

k and 1. The
Laplace transform therefore is

Î1(s;m) =mÎ0(s;m) +

2m
∑

E
i=4

i−2
∑

E
j=2

s−1[(s+ λ)(s+ 1 − r+ + λ)]−
i−j
2 [s(s+ 1 − r+)]−m+ i−j

2

−
2m
∑

E
i=2

i−1
∑

O
j=1

s−1[(s+ λ)(s+ 1 − r+ + λ)]−
i−j−1

2 [s(s+ 1 − r+)]−m+ i−j−1
2 ·

· s+ 1 − r+
s+ 1 − r+ + λ

= mÎ0(s;m) + s−(m+1)(s+ 1 − r+)−m·

·





2m
∑

E
i=4

i−2
∑

E
j=2

y
i−j
2 − s+ 1 − r+

s+ 1 − r+ + λ

2m
∑

E
i=2

i−1
∑

O
j=1

y
i−j−1

2



 , (B.18)

using the abbreviation

y =
s(s+ 1 − r+)

(s+ λ)(s+ 1 − r+ + λ)
. (B.19)

The two double geometric sums can easily be calculated (y < 1) and after some rearrange-
ments one ends up with

Î1(s;m) = s−(m+1)(s+ 1 − r+)−m
λ

s+ 1 − r+ + λ

1

1 − y

(

m+
y

1 − y
(ym − 1)

)

. (B.20)



108 Appendix

B.1.4 Calculation of Î2

For I2, the integrals over c(t) over the open periods (S = 1: τj ≤ t ≤ τj+1 with odd j)
are needed. Using the expression for odd j from Eq. (B.13) together with Eq. (B.14), one
gets

∫ τj+1

τj

c(t)dt = τj+1 − τj +
1

λ

(

e−λτj − e−λτj+1
)

j
∑

i=1

(−1)ieλτi . (B.21)

Putting this into the expression for I2 (Eq. (3.57)) (τj+1 − τi = T ′
j+1
2

; splitting the sum

over i into even and odd i and treating the case i = j separately), one gets

I2(t;m) =

∫

DT e−(1−r+)
Pm

k=1 T
′

k

(

2m−1
∑

O
j=1

T ′
j+1
2

+
1

λ

[

−
2m−1
∑

O
j=1

1

−
2m−1
∑

O
j=3

j−2
∑

O
i=1

eλ(τi−τj) +

2m−1
∑

O
j=3

j−1
∑

E
i=2

eλ(τi−τj)

+

2m−1
∑

O
j=1

j
∑

O
i=1

eλ(τi−τj+1) −
2m−1
∑

O
j=3

j−1
∑

E
i=2

eλ(τi−τj+1)

])

. (B.22)

Exchanging the flip time variables τi by the time interval variables Ti, T
′
i , I2 can be written

as

I2(t;m) = −m
λ
I0(t;m) + I2,1 +

1

λ
(−I2,2 + I2,3 + I2,4 − I2,5) , (B.23)

with

I2,1 =

2m−1
∑

O
j=1

∫

DT e−(1−r+)
Pm

k=1 T
′

kT ′
j+1
2

, (B.24)

I2,2 =

2m−1
∑

O
j=3

j−2
∑

O
i=1

∫

DT e−(1−r+)
Pm

k=1 T
′

ke
−λP

j+1
2

l=
i+3
2

Tl

e
−λP

j−1
2

l=
i+1
2

T ′

l

, (B.25)

I2,3 =
2m−1
∑

O
j=3

j−1
∑

E
i=2

∫

DT e−(1−r+)
Pm

k=1 T
′

ke
−λP

j+1
2

l=
i+2
2

Tl

e
−λP

j−1
2

l=
i+2
2

T ′

l

, (B.26)

I2,4 =

2m−1
∑

O
j=1

j
∑

O
i=1

∫

DT e−(1−r+)
Pm

k=1 T
′

ke
−λ
P

j+1
2

l=
i+3
2

Tl

e
−λ
P

j+1
2

l=
i+1
2

T ′

l

, (B.27)

I2,5 =
2m−1
∑

O
j=3

j−1
∑

E
i=2

∫

DT e−(1−r+)
Pm

k=1 T
′

ke
−λP

j+1
2

l=
i+2
2

Tl

e
−λP

j+1
2

l=
i+2
2

T ′

l

. (B.28)

(B.29)

These path integrals are solved as described in the previous subsection (using the theorem
from Subsec. B.1.1 and the abbreviation from Eq. (B.19)). Only I0, I2,1 and I2,4 contribute
to the case m = 1 and give for the Laplace transform

Î2(s; 1) = s−2(s+ 1 − r+)−1

(

1

s+ 1 − r+
− 1

s+ 1 − r+ + λ

)

. (B.30)
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Calculating the (double) geometric sums, one gets for m ≥ 2:

Î2,1(s;m) =s−(1+m)(s+ 1 − r+)−m
m

s+ 1 − r+
, (B.31)

Î2,2(s;m) =s−(1+m)(s+ 1 − r+)−m
y

1 − y

(

m+
ym − 1

1 − y

)

, (B.32)

Î2,3(s;m) =s−(1+m)(s+ 1 − r+)−m
y

1 − y

(

m+
ym − 1

1 − y

)

s+ 1 − r+ + λ

s+ 1 − r+
, (B.33)

Î2,4(s;m) =s−(1+m)(s+ 1 − r+)−m
y

1 − y

(

m

y
+
ym − 1

1 − y

)

s+ 1 − r+
s+ 1 − r+ + λ

, (B.34)

Î2,5(s;m) =s−(1+m)(s+ 1 − r+)−m
y

1 − y

(

m+
ym − 1

1 − y

)

. (B.35)

Using the Laplace transform of Eq. (B.23) and some rearrangements, this gives

Î2(s;m) =s−(1+m)(s+ 1 − r+)−m
(

m(s+ λ)

(s+ 1 − r+)(2s+ 1 − r+ + λ)

+
ym − 1

1 − y

s

(s+ 1 − r+ + λ)(2s+ 1 − r+ + λ)

)

. (B.36)

B.2 Solution of the rate equation: f(t), f2(t)

The rate equation
dG00(t)

dt
= r−(t) − (r−(t) + r+)G00(t) (B.37)

is an ordinary linear differential equation and has the solution [19]

G00(t) = e−
R

r−(t)+r+dt

[∫

r−(t)e
R

r−(t)+r+dtdt+ C

]

. (B.38)

With r−(t) = 1 + αc0e
−λt this turns into

G00(t) = e−(1+r+)te
αc0

λ e−λt

[∫

e(1+r+)te−
αc0

λ e−λt

dt

+αc0

∫

e−λte(1+r+)te−
αc0

λ e−λt

dt+ C

]

. (B.39)

Taylor expansion around αc0 = 0 gives

G00(t) ≈ G
(0)
00 (t) + αc0f(t) ≈ e−(1+r+)t

(

1 +
αc0
λ

e−λt
)

[∫

e(1+r+)t
(

1 − αc0
λ

e−λt
)

dt

+αc0

∫

e(1+r+−λ)tdt+ C1 + C2αc0

]

, (B.40)

which must be valid both for terms of O(α0) and O(α1). Using the initial condition
G00(t = 0) = 1, the constants C1 and C2 can be calculated and after computing the
integrals one finds

G
(0)
00 (t) =

1

1 + r+

(

1 + r+e−(1+r+)t
)

, (B.41)

f(t) =
r+
λ

( −1

1 + r+ − λ
e−(1+r+)t +

1

1 + r+
e−(1+r++λ)t +

λ

(1 + r+)(1 + r+ − λ)
e−λt

)

.

(B.42)
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The rate equation
dG11(t)

dt
= r+ − (r−(t) + r+)G11(t) (B.43)

is solved up to O(α) in the same way. Taylor expansion around αc′ = 0 of the solution
gives

G11(t) ≈ G
(0)
11 (t) + αc′f2(t) ≈ e−(1+r+)t

(

1 +
αc′

λ
e−λt

)[

r+

∫

e(1+r+)t

(

1 − αc′

λ
e−λt

)

dt

+ C1 + C2αc
′
]

. (B.44)

Again, separating between the terms of O(α0) and O(α1) and using the initial condition
G11(t = 0) = 1, one can determine the constants C1 and C2 and finds

G
(0)
11 (t) =

1

1 + r+

(

r+ + e−(1+r+)t
)

, (B.45)

f2(t) =
1

λ

(

λ− 1

1 + r+ − λ
e−(1+r+)t +

1

1 + r+
e−(1+r++λ)t − λr+

(1 + r+)(1 + r+ − λ)

)

.

(B.46)

B.3 Relation between G11 and G00

For α = 0 (when the Gij ’s are independent of c), the theorem on the total probability [18]
connects the Green’s functions (0 ≤ t′ ≤ t):

G
(0)
01 (0, t) = G

(0)
00 (0, t′)G(0)

01 (t′, t) +G
(0)
01 (0, t′)G(0)

11 (t′, t). (B.47)

Using the Taylor expansions for small t′ in the stationary state

G
(0)
00 (0, t′) ≈ 1 +

∂G
(0)
00 (0, t)

∂t

∣

∣

∣

∣

∣

t=0

t′,

G
(0)
01 (t′, t) =G

(0)
01 (t− t′) ≈ G

(0)
01 (0, t) − ∂G

(0)
01 (0, t)

∂t
t′,

G
(0)
11 (t′, t) =G

(0)
11 (t− t′) ≈ G

(0)
11 (0, t) − ∂G

(0)
11 (0, t)

∂t
t′, (B.48)

and G01 = 1 − G00, and putting that into Eq. (B.47), one ends up with the following
relation between the different Green’s functions:

G
(0)
11 (0, t) = (1 −G

(0)
00 (0, t)) +

∂G
(0)
00 (0,t)
∂t

∂G
(0)
00 (0,t)
∂t

∣

∣

∣

∣

t=0

. (B.49)

For the Gij instead of the G
(0)
ij , i.e. for α 6= 0, Eq. (B.47) does not hold anymore.

However, a corresponding expression can be written using the propagators Πij :

G01(0, 0; t) =
∑

j

∫ 1

0

dc′
∫ 1

0

dcΠ0j(0, 0; t′, c′)Πj1(t
′, c′; t, c)

=

∫ 1

0

dc′Π00(0, 0; t′, c′)G01(t
′, c′; t) +

∫ 1

0

dc′Π01(0, 0; t′, c′)G11(t
′, c′; t).

(B.50)
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Putting the expressions from Eqs. (3.65) (Subsec. 3.4.1) in Eq. (B.50) together with
the definition from Eq. (3.43), one gets

G01(0, 0; t) =G00(0, 0; t′)G01(t
′, 0; t) +G01(0, 0; t′)G11(t

′, 0; t)

+ αf1(t− t′)

∫ 1

0

dc′c′Π00(0, 0; t′, c′) + αf2(t− t′)

∫ 1

0

dc′c′Π01(0, 0; t′c′).

(B.51)

The remaining integrals are the mean calcium concentrations, when the channel is in the
closed or open state, and when the system started in the initial state S(0) = 0 and c(0) = 0:

〈c(t′)〉0 ≡
∫ 1

0

dc′c′Π00(0, 0; t′, c′), 〈c(t′)〉1 ≡
∫ 1

0

dc′c′Π01(0, 0; t′, c′). (B.52)

With that, Eq. (B.51) can be written as

G11(t
′, c0 = 0; t) =

1

G01(0, 0; t′)
(G01(0, 0; t) −G01(t

′, 0; t)G00(0, 0; t′)

−α〈c′(t′)〉0f1(t− t′) − α〈c′(t′)〉1f2(t− t′)) + O(α2).
(B.53)

Using Taylor expansions around t′ = 0 equivalently to Eq. (B.48) as well as the fact that
〈c′(t′ = 0)〉0/1 = 0 and Eq. (3.44), one can write the limit t′ → 0 of Eq. (B.53) as

G11(0, 0; t) ≈ 1 −G00(0, 0; t)+
1

∂G00(0,0;t)
∂t

∣

∣

∣

t=0

(

∂G00(0, 0; t)

∂t

−αf1(t)
∂〈c′(t′)〉0

∂t′

∣

∣

∣

∣

t′=0

− αf2(t)
∂〈c′(t′)〉1

∂t′

∣

∣

∣

∣

t′=0

)

. (B.54)

From Eq. (B.66) it can be seen that d
dt 〈c(t)〉|t=0 = 0 (for these initial conditions) and

since none of the derivatives of 〈c′(t′)〉0/1 can be negative at time t = 0 (0 ≤ c ≤ 1), they
both have to be zero. With that – equivalent to the case without feedback (Eq. (B.49)) –
one ends up with Eq. (3.68) as the relation between the two Green’s functions valid up to
O(α).

Using Eq. (3.61), G11 is obtained from Eq. (3.68) and the result is

G11(0, 0; t) =
1

1 + r+

(

r+ + e−(1+r+)t
)

+ α
r+

(1 + r+)2

[

− r+ + λ

1 + r+ + λ

+
(1 + r+)(r+ − λ)

(1 + r+ − λ)2
e−λt − (1 + r+)(1 + λ)

λr+(1 + r+ + λ)
e−(1+r++λ)t

+

(

λ3r+ + λ2(1 − r+ − r2+) + λ(r2+ − r+ − 2) + (1 + r+)2

r+λ(1 + r+ − λ)2

+
(1 + r+)(λ− 1)

r+(1 + r+ − λ)
t

)

e−(1+r+)t

]

+ O(α2). (B.55)

B.4 Calculation of 〈c(t)〉0 and 〈c(t)〉1

As mentioned in Subsec. 3.4.1 and defined in Sec. B.3, the quantities 〈c(t)〉0 and 〈c(t)〉1
are the mean calcium concentrations when the channel is in the closed or the open state,
respectively. Since in this work they appear only in terms that are of O(α) already, they
need to be computed only up to O(α0). Putting Eq. (3.41) into the definition of 〈c(t)〉0
(Eq. (B.52)), one finds

〈c(t)〉0 =

∞
∑

m=0

∫

DTP00[0, t; {Ti}, {T ′
i}; 0; 2m]c(t). (B.56)
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c(t) in the closed state S = 0 (after an even number of flips) can be found from Eqs. (B.13)
and (B.14) to be (not to be confused with the constant c0 ≡ c(t0))

c0(t) = e−λt
2m−1
∑

O
j=1

(

eλτj+1 − eλτj
)

. (B.57)

Putting that into Eq. (B.56) together with the no-feedback version of P00 from Eq. (3.48),
one gets (the case m = 0 does not contribute, since c(t = 0) = 0 and m = 0 means no
switch and therefore no opening of the channel)

〈c(t)〉0 = e−(r++λ)t
∞
∑

m=1

rm+ I3(t;m), (B.58)

with

I3(t;m) =
2m−1
∑

O
j=1

∫

DT e−(1−r+)
Pm

i=1 T
′

i
(

eλτj+1 − eλτj
)

. (B.59)

Using the transformation rules from Eqs. (3.46), this turns into

I3(t;m) =

2m−1
∑

O
j=1

∫

DT e−(1−r+)
Pm

i=1 T
′

i eλ
P

j+1
2

l=1 (Tl+T
′

l ) −
∫

DT e−(1−r+)
Pm

i=1 T
′

i eλT1

−
2m−1
∑

O
j=3

∫

DT e−(1−r+)
Pm

i=1 T
′

i eλ
P

j+1
2

l=1 Tl+λ
P

j−1
2

l=1 T ′

l . (B.60)

Laplace transformation of Eq. (B.58) gives

〈ĉ(s)〉0 =

∞
∑

m=1

rm+ Î3(s+ r+ + λ;m). (B.61)

The Laplace transform of I3 is now calculated in the same way as the expressions in
Subsecs. B.1.2–B.1.4. The result is

Î3(s;m) =
2m−1
∑

O
j=1

(s+ 1 − r+ − λ)−
j+1
2 (s+ 1 − r+)−m+ j+1

2 (s− λ)−
j+1
2 s−m+ j+1

2 −1

− (s+ 1 − r+)−m(s− λ)−1s−m

−
2m−1
∑

O
j=3

(s+ 1 − r+ − λ)−
j−1
2 (s+ 1 − r+)−m+ j−1

2 (s− λ)−
j+1
2 s−m+ j+1

2 −1

=
1

λ+ r+ − 1 − 2s

[

(s(s+ 1 − r+))
−m − ((s+ 1 − r+ − λ)(s− λ))

−m
]

.

(B.62)

Putting that into Eq. (B.58) and computing the geometric sum, one finds after some
rearrangements

〈ĉ(s)〉0 =
r+λ

s(s+ λ)(s+ 1 + r+)(s+ 1 + r+ + λ)
, (B.63)

which, after applying an inverse Laplace transform, gives

〈c(t)〉0 =
r+

1 + r+

(

1

1 + r+ + λ
+

e−(1+r+)t

1 + r+ − λ
− e−λt

1 + r+ − λ
− e−(1+r++λ)t

1 + r+ + λ

)

. (B.64)

From that one finds the two conditional steady state averages (with Eq. (3.70)):

〈c〉0 =
r+

1 + r+

1

1 + r+ + λ
, 〈c〉1 = 〈c〉 − 〈c〉0 =

r+
1 + r+

r+ + λ

1 + r+ + λ
. (B.65)
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B.5 Additional expressions

1. The time evolution of the mean value of the concentration c when starting in the
initial state S(0) = c(0) = 0:

〈c(t)〉 =
r+

1 + r+

(

1 +
λ

1 + r+ − λ
e−(1+r+)t − 1 + r+

1 + r+ − λ
e−λt

)

− α
r+λ

(1 + r+)2

[

r+ + λ

λ(1 + r+ + λ)
+

1

λ(1 + r+ + λ)
e−(1+r++λ)t

− (1 + r+)2 − 4(1 + r+)λ+ (4 + 3r+)λ2 − λ3

λ(1 + r+ − λ)3
e−(1+r+)t

+
(1 + r+)(1 + r+ − (2 + r+)λ+ λ2)

(1 + r+ − λ)3
te−(1+r+)t

−r+(1 + r+)2 + (1 + r+)(1 − 3r+)λ− λ2

λ(1 + r+ − λ)3
e−λt

− r+(1 + r+)

(1 + r+ − λ)2
te−λt

]

+ O(α2). (B.66)

2. The power spectrum for c:

Pc(ω) =2
r+λ

2

(λ2 + ω2)[(1 + r+)3 + (1 + r+)ω2]

+ 2α

(

1 + r+
(1 + r+)2 + ω2

B2 +
λ

λ2 + ω2
C2 +

1 + r+ + λ

(1 + r+ + λ)2 + ω2
D2

+
(1 + r+)2 − ω2

[(1 + r+)2 + ω2]2
E2 +

λ2 − ω2

(λ2 + ω2)2
F2

)

+ O(α2). (B.67)

Both the α-independent term and the term linear in α of Pc(ω) decay as ω−4 for
large ω, which becomes clear after putting in the coefficients from Eq. (B.70) and
some rearrangments.

3. The Fourier transform of the response function of c:

χ̃c(ω) =
λ

(1 + r+)((1 + r+)2 + ω2)(λ2 + ω2)

[

λ(1 + r+) − ω2 − iω(1 + r+ + λ)
]

+ α

[

1 + r+
(1 + r+)2 + ω2

B4 +
λ

λ2 + ω2
C4 +

1 + r+ + λ

(1 + r+ + λ)2 + ω2
D4

+
(1 + r+)2 − ω2

((1 + r+)2 + ω2)2
E4 +

λ2 − ω2

(λ2 + ω2)2
F4 − iω

(

1

(1 + r+)2 + ω2
B4

+
1

λ2 + ω2
C4 +

1

(1 + r+ + λ)2 + ω2
D4

+2
1 + r+

((1 + r+)2 + ω2)2
E4 + 2

λ

(λ2 + ω2)2
F4

)]

+ O(α2). (B.68)

B.6 Coefficients of the correlation and response func-
tions

In the following, the coefficients of the correlation and response functions are listed.
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1. For the auto-correlation function of S, CS from Eq. (3.73):

B1 = − r+
(1 + r+)3(1 + r+ − λ)2λ(1 + r+ + λ)

·

·
[

−(λ− 1)r4+ − (λ− 1)(2 − λ)r3+ + λ(λ2 − 2λ− 1)r2+

+(−λ4 + λ3 − 3λ2 + 3λ− 2)r+ + (λ− 1)2(λ+ 1)(λ− 1)
]

,

C1 = − 2r2+λ

(1 + r+)2(1 + r+ − λ)2(1 + r+ + λ)
, (B.69)

D1 =
r+(r2+ − 1)

(1 + r+)3λ(1 + r+ + λ)
, E1 =

r+(λ− 1)

(1 + r+)2(1 + r+ − λ)
.

2. For the auto-correlation function of c, Cc from Eq. (3.74):

B2 = − r+λ

(1 + r+)3(1 + r+ − λ)3(1 + r+ + λ)2
·

·
[

(λ− 1)r4+ + (λ− 1)(2 − λ)r3+ − λ(λ2 − 4λ+ 1)r2+

+(λ4 − λ3 + 7λ2 − 7λ+ 2)r+ − (λ− 1)(λ3 − λ2 − 3λ+ 1)
]

,

C2 =
r+λ

(1 + r+)3(1 + r+ − λ)3(1 + r+ + λ)2(1 + r+ + 2λ)
·

·
[

r6+ + (1 + λ)r5+ − (3λ2 − 5λ+ 6)r4+ + (−λ3 + 4λ2 + 6λ− 14)r3+

+(2λ4 + λ3 + 18λ2 − 2λ− 11)r2+ + (λ4 + 3λ3 + 12λ2 − 7λ− 3)r+

+λ(λ3 + λ2 + λ− 3)
]

, (B.70)

D2 = − r+λ(r+ − 1)

(1 + r+)3(1 + r+ + λ)(1 + r+ + 2λ)
,

E2 = − r+λ
2(λ− 1)

(1 + r+)3(1 + r+ − λ)3(1 + r+ + λ)2
(

r3+ + 3r2+ + (3 − λ2)r+ − (λ2 − 1)
)

,

F2 = − r2+λ
2

(1 + r+)2(1 + r+ − λ)2(1 + r+ + λ)
.

3. For the linear response function of S, χS from Eq. (3.87):

B3 = − 1

λ(1 + r+)2(1 + r+ − λ)2
[

−(λ− 1)r3+ + (2λ2 − 4λ+ 1)r2+

+(−λ3 + 2λ2 − λ− 1)r+ − (λ− 1)2
]

,

C3 = − r+λ

(1 + r+)2(1 + r+ − λ)2
, D3 =

r2+ − λ− 1

(1 + r+)2λ(1 + r+ + λ)
, (B.71)

E3 =
λ− 1

(1 + r+)(1 + r+ − λ)
.
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4. For the linear response function of c, χc from Eq. (3.88):

B4 = − 1

(1 + r+)2(1 + r+ − λ)3
[

r3+(λ− 1) − r2+(1 + 2λ(λ− 2))

+r+(1 + λ2(λ− 1)) + λ(2λ− 3) + 1
]

,

C4 =
λ

(1 + r+)3(1 + r+ − λ)3(1 + r+ + λ)

[

r5+ + r4+(−λ+ 2) + r3+(−λ2 + 3λ)

+r2+(λ3 − 2λ2 + 8λ− 2) + r+(λ3 − λ2 + 3λ− 1) + λ3 − λ
]

, (B.72)

D4 = − r2+ − λ− 1

(1 + r+)3(1 + r+ + λ)
, E4 = − λ(λ− 1)

(1 + r+)(1 + r+ − λ)2
,

F4 = − r+λ
2

(1 + r+)2(1 + r+ − λ)2
.

B.7 Computation of the linear response to a sinusoidal
stimulus

Using r+(t) = r0+ + a sinωt as a stimulus to the system, one can write the linear response
(Eq. (3.17)) in both the channel variable S and the concentration c in the limit of large t
as

RS/c = AS/c sin(ωt+ θS/c). (B.73)

Putting φ(t) = a sinωt and χS(t) from Eq. (3.87) together with the coefficients from
Appendix B.6 into Eq. (3.18), one gets (after some rearrangements) for the channel variable
S:

AS =
a

1 + r0+

1
√

(1 + r0+)2 + ω2

+ α
a

(1 + r0+)2
(

(1 + r0+)2 + ω2
)

3
2 (λ2 + ω2)

(

(1 + r0+ + λ)3 + ω2(1 + r0+ + λ)
)

·

·
[

(1 + r0+)2λ2(1 + r0+ + λ)
(

(−2 + r0+)r0+(1 + r0+) + (−1 + r0+)(1 + 2r0+)λ

+(−1 + r0+)λ2
)

+ ω2
(

(−1 + r0+)r0+(1 + r0+)4 + (1 + r0+)3(−1 + r0+ + 3(r0+)2)λ

+(1 + r0+)3(−2 + 5r0+)λ2 + r0+(1 + r0+)(4 + 5r0+)λ3 +
(

1 + 3r0+(1 + r0+)
)

λ4 + r0+λ
5
)

+ω4
(

2(r0+)4 + λ+ λ2 + 2(r0+)2λ(3 + 2λ) + (r0+)3(3 + 4λ)

+r0+ (−1 + λ (3 + λ(3 + 2λ)))
)

+ ω6r0+(r0+ + λ)
]

+ O(α2), (B.74)

θs = − π

2
+ arctan

(

1 + r0+
ω

)

+ α
ω

(1 + r0+ + λ)
(

(1 + r0+)2 + ω2
)

(λ2 + ω2)
(

(1 + r0+ + λ)2 + ω2
) ·

·
[

(r0+)4λ+ (r0+)3(3λ+ 5λ2 + ω2) + (r0+)2
(

6λ3 + 10λ2 + λ(3 + ω2) + 2ω2
)

+r0+
(

4λ4 + 8λ3 + λ2(5 + 3ω3) + λ(1 + 3ω2) + ω2(1 + ω2)
)

+λ(2 + 3λ+ λ2)(λ2 + ω2)
]

+ O(α2). (B.75)

Doing the same for the concentration c (χc(t) from Eq. (3.88)) yields

Ac =
λ√

λ2 + ω2
AS , (B.76)

θc = arctan

(

λ(1 + r+) − ω2

ω(1 + r+ + λ)

)

+ term linear in α from θS + O(α2). (B.77)
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C.1 Axon sorting and guidance through interacting
growth cones – a continuum model

As a preliminary study to the generalised Potts model presented in Subsec. 4.3.1, axons
are simulated using the same geometry (Fig. 4.7) but they are not restricted to the sites
of a lattice, rather their coordinates in the x-z plane are continuous (y remains discrete).

Axons have a circular shape with radius rA and the random initial distribution of
axons is produced such that axons do not overlap. If an axon (at position (xA1

, zA1
))

finds another axon within a certain circular ’sampling’ range of radius Lc, they interact
and an effective ’interaction force’ FAA is assigned to this pair of axons. In the simplest
model, this force is defined as the inverse distance (DAA) of the centre points of the axons
multiplied by a factor f ijAA that can be different for different types i and j of interacting
axons:

FAA =
f ijAA
DAA

with DAA =
√

(xA1
− xA2

)2 + (zA1
− zA2

)2. (C.78)

The axon also feels a very simple guidance cue towards the future position of its glomerulus,
exerting an ’attraction force’ FAG on it. For reasons of simplicity, for each axon type there
exists one cue and the ’attraction force’ is defined in a similar manner as the attraction
between different axons:

FAG =
f iAG
DAG

with DAG =
√

(xA1
− xiG)2 + (yA1

− yiG)2 + (zA1
− ziG)2, (C.79)

where (xiG, y
i
G, z

i
G) is the future position of the glomerulus of type i. Different to the

potentials in the generalised Potts model in Subsec. 4.3.1, here, the attraction force is also
y-dependent. In the simulations shown further down, only one value for f iAG was used and
only two different ones for the axon-axon attraction, depending, if the two axons are of
the same (fsAA) or different (fdAA) types:

f ijAA = fdAA + δij(fsAA − fdAA). (C.80)

In each time step, these effective ’attraction forces’ both towards other axons (FAA)
and due to a cue (FAG) are calculated for each axon. Then, a ’winner takes it all’ strategy
is implemented: The attraction strengths to all axons available within the radius Lc and
the one due to the cue are compared and the highest force determines the next step. The
axon then either makes a step of length ∆L towards the winner-axon (avoiding overlap, i.e.
the minimum distance is 2rA) or towards the future position of the glomerulus of its type.
The geometries of both steps are illustrated in Fig. C.1 and Eqs. (C.81) give the relations
to calculate the positions of the axon in the next plane (xA1

(yn) = xA1
(yn) + ∆xs,...; ∆x

is the difference in the x-coordinates of the axon and the other axon or the future position
of the glomerulus, respectively; ∆y is kept fixed all the time for all axons),

DAA > 2rA : ∆xs =
∆x∆L

DAA
∆zs =

∆z∆L

DAA

DAA ≤ 2rA : ∆xs =
∆x(DAA − 2rA)

DAA
∆zs =

∆z(DAA − 2rA)

DAA
(C.81)

∆xs =
∆x∆L

DAG
∆zs =

∆z∆L

DAG
.

The flowchart in Fig. C.2 summarises the algorithm used, leaving out some details.
Axon positions at the next y-position y + ∆y are updated all at once.

Figs. C.3 show a typical time evolution of this algorithm with carefully chosen parame-
ters. Each 25 axons of 21 different species (different colours and symbols) start in a random
configuration with minimum distance 2rA = 0.4 (area occupancy ∼ 0.7%). Since in the
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DAG
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yz

Fig. C.1: Geometry of the steps towards a neighbouring axon (’A’ – left) and towards the
glomerulus (’G’ – right). D denotes a distance and ∆L is the step size.

first few time steps, there is typically no other axon within Lc, the axons can only react
towards the guidance cue, which moves them small distances in the x-z-plane. Within less
than 50 time steps, approximately 50% of the axons find another one within a distance
Lc and form bundles (Fig. C.4). The bundles do not react to the cue and move straight
forward in the y-direction. Only later, when the ’attraction force’ of the cue becomes
stronger (due to the shorter distance DAG), a further sorting and movement of the axons
towards their respective future glomeruli is observed. Finally, very near to the glomerular
layer (yG = 310), perfect bundling and positioning is seen.

More quantitative features of the simulation can be read from Fig. C.4. Two transitions
can be observed, corresponding to the three plateaus of the curve depicting the total
number of bundles (counting single axons as one bundle). The first plateau (100 . t . 500)
is the region where mostly heterogeneous bundles exist. Latest at

y = DAG =
fAG
fdAA

2rA = 50 corresponding to t = 500, (C.82)

the attraction towards the respective glomerulus becomes stronger than the attraction
towards an axon of a different type, therefore heterogeneous bundles split and free axons
move towards the glomerulus for some time. The second plateau in the blue curve is
the region of many homogeneous bundles, which then leads to the third plateau with 21
homogeneous bundles at the correct positions. The last transition is completed at y = 206,
which can be obtained from Eq. (C.82) by replacing fdAA with fsAA (for the parameters
used, see the caption of Fig. C.3).

In the simplest realisation of the algorithm of Fig. C.2, in each time step for each
axon the distance to all other axons has to be calculated, which makes this algorithm
slow for large numbers of axons. If one discretises space also in the x-z-plane, the check
if DAA < Lc is simply implemented by considering a limited (small) set of neighbouring
lattice sites. The model described in Subsec. 4.3.1 uses this simplification and by that
also comes closer to models known from other fields of statistical physics. Since the same
geometry as in Subsec. 4.3.1 is used in the model presented above, the comments regarding
the difficulties of relating this to the biological system do also apply here.
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Fig. C.2: Flowchart of the algorithm used in the continuous model with all axonal growth cones
growing in one plane (appendix C.1).
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Fig. C.3: Time evolution of a random distribution (t = 0) of 525 axons (21 different species
- depicted by different colours and symbols - with each 25 axons). The time step of ∆t = 1
corresponds to a step in the y-direction of ∆y = 0.1. The y-position of the attracting cues is
yG = 310. Other parameters used are rA = 0.2, Lc = 3, ∆L = 1, fd

AA = 2, fs
AA = 5 and

fAG = 1300.
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Fig. C.4: Three different quantities describing the evolution of the system of Fig. C.3. The
red points depict the number of axons that are connected to at least one other axons. The blue
points count the number of bundles (including free axons) and the green line is a measure of the
’purity’ of the bundles. The first data point is at t = 10, i.e. already within the first ten time
steps, approximately 200 axons find a partner and form a bundle.
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C.2 Additional figures for chapter 4

C.2.1 Further plots from the generalised Potts model

Fig. C.5 shows the system of Fig. 4.8 at time t = 999000 when one starts the simulations
with different (random) initial configurations. The results look quite the same in all three
cases but the positions (absolute and relative) of the ’bundles’ or ’glomeruli’ are obviously
varying. Similar results are obtained if one starts with the same initial distribution but
uses different sets of pseudo-random numbers for the simulation.

(a) (b) (c)

Fig. C.5: The same system as in Fig. 4.8 after 999000 time steps when started with different
random initial configurations. The positions of the ’bundles’ are not conserved.

C.2.2 Flowchart for the detailed turning-model including axon-
axon interaction
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Fig. C.6: Flowchart for the algorithm of the turning-model from Subsec. 4.3.2 including axon-
axon interactions (and therefore bundling).
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C.2.3 Further configurations of the interacting directed random
walks

(a) t = 8·105 (b) t = 4·106 (c) t = 7.2·106

Fig. C.7: Time evolution of the axon configuration with Ehom = −4.5 from Fig. 4.18. Fig. (c)
is the same as Fig. 4.18(b).



122 Appendix



Bibliography

[1] B. Alberts, D. Bray, and A. Johnson. Essential Cell Biology. Garland Science, 2nd edition,
2003. 72, 73

[2] R.R. Anholt and A.M. Rivers. Olfactory transduction: cross-talk between second-messenger
systems. Biochemistry, 29(17):4049–4054, 1990. 23

[3] Aristoteles. De Anima. e.g. http://classics.mit.edu/Aristotle/soul.html, –350. 2

[4] G. Barnea, S. O’Donnell, F. Mancia, X. Sun, A. Nemes, M. Mendelsohn, and R. Axel.
Odorant receptors on axon termini in the brain. Science, 304(5676):1468, 2004. 78

[5] U. Becker, S. Ganter, and C. Just. Herder Lexikon der Biologie. Spektrum Akad. Vlg.,
1994. 12

[6] V. Bhandawat, J. Reisert, and K.-W. Yau. Elementary response of olfactory receptor
neurons to odorants. Science, 308(5730):1931–1934, 2005. 14, 68

[7] W. Bialek. Physical limits to sensation and perception. Annu.Rev.Biophys.Biophys.Chem.,
16:455–478, 1987. 79

[8] W. Bialek. Thinking about the brain. In H. Flyvbjerg, F. Jülicher, P. Ormos, and F. David,
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[10] F. Bitter, O. Böttcher, A. Dahms, J. Kasche, B. Müller, and D. Müller. Handbuch
zur Messung der empfundenen Luftqualität; Hermann-Rietschel-Institut, TU Berlin.
http://www.tu-berlin.de/fb6/hri/dokumente/LQ-Handbuch/LQ_Handbuch_v08.pdf,
2004. 7

[11] I. Boekhoff and H. Breer. Termination of second messenger signaling in olfaction.
Proc.Natl.Acad.Sci. USA, 89(2):471–474, 1992. 12

[12] F.F. Borisy, G.V. Ronnett, A.M. Cunningham, D. Juilfs, J. Beavo, and S.H. Snyder.
Calcium/calmodulin-activated phosphodiesterase expressed in olfactory receptor neurons.
J.Neurosci., 12(3):915–923, 1992. 11

[13] J. Bradley, D. Reuter, and S. Frings. Facilitation of calmodulin-mediated odor adaptation
by cAMP-gated channel subunits. Science, 294(5549):2176–2178, 2001. 11, 23

[14] A.J. Bray. Theory of phase-ordering kinetics. Adv.Phys., 43(3):357–459, 1994. 83

[15] D. Bray. Reasoning for results. Nature, 412(6850):863, 2001. 1

[16] H. Breer, I. Boekhoff, and E. Tareilus. Rapid kinetics of second messenger formation in
olfactory transduction. Nature, 345(6270):65–68, 1990. 12

[17] S. Brenner. Loose ends. Curr.Biol., 5(3):332, 1995. 1

[18] I.N. Bronstein and K.A. Semendjajew. Handbook of Mathematics. Springer, 3rd edition,
1998. 40, 110

[19] I.N. Bronstein, K.A. Semendjajew, G. Musiol, and H. Mühlig. Taschenbuch der Mathematik.
Harri Deutsch, 3rd edition, 1997. 36, 38, 45, 52, 109

[20] L.B. Buck. The molecular architecture of odor and pheromone sensing in mammals. Cell,
100(6):611–618, 2000. 5

123

http://classics.mit.edu/Aristotle/soul.html
http://www.tu-berlin.de/fb6/hri/dokumente/LQ-Handbuch/LQ_Handbuch_v08.pdf


124 Bibliography

[21] M. Canepari and F. Mammano. Imaging neuronal calcium fluorescence at high spatio-
temporal resolution. J.Neurosci.Methods, 87(1):1–11, 1999. 13

[22] CellNetAnalyzer. http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html, 2006. 21

[23] M. Chaichian and A. Demichev. Path Integrals in Physics, volume I. Institute of Physics
Publishing, 2001. 41

[24] C. Chen, T. Nakamura, and Y. Koutalos. Cyclic AMP diffusion coefficient in frog olfactory
cilia. Biophys.J., 76(5):2861–2867, 1999. 11, 17

[25] T.Y. Chen and K.W. Yau. Direct modulation by Ca2+-calmodulin of cyclic nucleotide-
activated channel of rat olfactory receptor neurons. Nature, 368(6471):545–548, 1994. 11

[26] D. Chowdhury and D. Stauffer. Principles of Equilibrium Statistical Mechanics. Wiley-
VCH, 2002. 84

[27] B.L. Clarke. Stability of complex reaction networks. Adv.Chem.Phys., 43:1–215, 1980. 19,
21

[28] B.L. Clarke. Complete set of steady-states for the general stoichiometric dynamical system.
J.Chem.Phys., 75(10):4970–4979, 1981. 21

[29] B.L. Clarke. Stoichiometric network analysis. Cell Biophys., 12:237–253, 1988. 19, 22

[30] B.L. Clarke. Stoichiometric network analysis of the oxalate persulfate silver oscillator.
J.Chem.Phys., 97(4):2459–2472, 1992. 19

[31] B.L. Clarke and W.M. Jiang. Method for deriving Hopf and saddle-node bifurcation hyper-
surfaces and application to a model of the Belousov-Zhabotinskii system. J.Chem.Phys.,
99(6):4464–4478, 1993. 19

[32] P. Cohen and C.B. Klee. Calmodulin (Molecular Aspects of Cellular Regulation). Elsevier
Science Ltd., 1988. 23, 103, 104

[33] D.M. Cooper, N. Mons, and J.W. Karpen. Adenylyl cyclases and the interaction between
calcium and cAMP signalling. Nature, 374(6521):421–424, 1995. 31

[34] M.E. Csete and J.C. Doyle. Reverse engineering of biological complexity. Science,
295(5560):1664–1669, 2002. 1, 72

[35] S.K. Das and S. Puri. Dynamics of phase separation in multicomponent mixtures.
Phys.Rev.E, 65(2):026141, 2002. 83, 85, 86

[36] A. Delville, P. Laszlo, and D.J. Nelson. Calmodulin: calcium, potassium, and magnesium
ion multiple equilibria and kinetics for interconversion, including the effect of repeated
stimulation. J.Theor.Biol., 112(1):157–175, 1985. 23, 103, 104

[37] P.B. Detwiler, S. Ramanathan, A. Sengupta, and B.I. Shraiman. Engineering aspects of
enzymatic signal transduction: photoreceptors in the retina. Biophys.J., 79(6):2801–2817,
2000. 1

[38] J.M. Deutsch. Aggregation disorder transition induced by fluctuating random forces.
J.Phys.A:Math.Gen., 18(9):1449–1456, 1985. 96

[39] D.P. Dougherty, G.A. Wright, and A.C. Yew. Computational model of the cAMP-mediated
sensory response and calcium-dependent adaptation in vertebrate olfactory receptor neu-
rons. Proc.Natl.Acad.Sci. USA, 102(30):10415–10420, 2005. 31, 32

[40] M. Eiswirth. Kagaku ni okeru fuanteisei to shindoo (Instability and oscillations in chem-
istry). Suuri Kagaku, 372:59–64, 1994. The english translation is available on request. 19,
21

[41] M. Eiswirth, J. Burger, P. Strasser, and G. Ertl. Oscillating Langmuir-Hinshelwood mech-
anisms. J.Phys.Chem., 100(49):19118–19123, 1996. 19, 22

[42] R. Elsaesser and J. Paysan. Morituri te salutant? Olfactory signal transduction and the
role of phosphoinositides. J.Neurocytol., 34(1–2):97–116, 2005. 3, 10

[43] I.R. Epstein and J.A. Pojman. An Introduction to Nonlinear Chemical Dynamics: Oscil-
lations, Waves, Patterns, and Chaos (Topics in Physical Chemistry). Oxford University
Press, 1998. 19

http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html


Bibliography 125

[44] M.R. Evans and T. Hanney. Nonequilibrium statistical mechanics of the zero-range process
and related models. J.Phys.A:Math.Gen., 38(19):R195–R240, 2005. 96

[45] G.L. Fain. Sensory Transduction. Sinauer Associates, 2003. 4, 5, 6

[46] P. Feinstein, T. Bozza, I. Rodriguez, A. Vassalli, and P. Mombaerts. Axon guidance of
mouse olfactory sensory neurons by odorant receptors and the β2 adrenergic receptor. Cell,
117(6):833–846, 2004. 90

[47] P. Feinstein and P. Mombaerts. A contextual model for axonal sorting into glomeruli in the
mouse olfactory system. Cell, 117(6):817–831, 2004. 75, 79, 80, 90

[48] S. Firestein. How the olfactory system makes sense of scents. Nature, 413(6852):211–218,
2001. 4, 5, 10

[49] R.J. Flannery, D.A. French, and S.J. Kleene. Clustering of cyclic-nucleotide-gated channels
in olfactory cilia. Biophys.J., 91:179–188, 2006. 17

[50] Flavornet. http://www.flavornet.org/, 2006. 2

[51] C.G. Galizia and R. Menzel. Odour perception in honeybees: coding information in glomeru-
lar patterns. Curr.Opin.Neurobiol., 10(4):504–510, 2000. 76

[52] P. Gavazzo, C. Picco, E. Eismann, U.B. Kaupp, and A. Menini. A point mutation in the
pore region alters gating, Ca2+ blockage, and permeation of olfactory cyclic nucleotide-gated
channels. J.Gen.Physiol., 116(3):311–326, 2000. 35

[53] A. Gierer. Directional cues for growing axons forming the retinotectal projection. Develop-
ment, 101(3):479–489, 1987. 87

[54] A. Gierer. Possible involvement of gradients in guidance of receptor cell axons towards their
target position on the olfactory bulb. Eur.J.Neurosci., 10(1):388–391, 1998. 78, 90

[55] D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J.Phys.Chem.,
81(25):2340–2361, 1977. 56

[56] R. Glaser. Biophysics. Springer, Berlin, 2001. 34

[57] Glomerular activity response archive. http://leonserver.bio.uci.edu, 2006. 7, 76

[58] gnuplot. http://www.gnuplot.info/, 2004. Version 4.0. 67

[59] A.L. Goldman, W. Van der Goes van Naters, D. Lessing, C.G. Warr, and J.R. Carlson.
Coexpression of two functional odor receptors in one neuron. Neuron, 45(5):661–666, 2005.
3

[60] C. Gomez-Diaz, F. Martin, and E. Alcorta. The cAMP transduction cascade mediates
olfactory reception in Drosophila melanogaster. Behav.Genet., 34(4):395–406, 2004. 5, 30
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cyclic-nucleotide-gated, 9, 11, 17, 25
inhibited, 17, 19, 24
open probability, 38
single, 35, 68

characteristic polynomial, 21
chemical kinetics, 16
chemical reaction

thermal effects in, 34
cilia, 4, 9, 12, 29, 33, 68, 71
cineole, 14
CNG, see cyclic-nucleotide-gated channel
coarse graining, 94
coefficient of variation, 49, 59, 66
conformation, 72

energy differences between, 34
convergence, 4, 75
correlation function, 37, 41

auto-, 37, 42, 47, 50, 53, 60, 61, 63, 64
cross-, 37, 42, 49, 64

correlations
spatial, 69
temporal, 69

cytosol, 10

degradation, 31
dendrite, 4
dendritic knob, 2, 9
diffusion, 16, 30, 68, 69
double pulse experiment, 14, 24
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double-exponential, 44
dye, 23

calcium-sensitive, 13

eigenvalue, 21, 27
electronics, 72
energy

barrier, 34
effective interaction, 84, 92, 93
penalty, 93, 95
thermal, 34

ensemble, 37, 56
enzyme, 10, 34, 72
Eph, 77
ephrine, 77
evolution, 7
exchanger

sodium-calcium, 11, 24
extreme current, 20

feedback
inhibition, 72
negative, 11, 71
parameter, 35, 41
positive, 71

filopodia, 80, 83
fitting, 67
flow

passive, 11
fluctuation dissipation theorem, 41, 50
fluctuations, 33, 55

mean squared, see variance
relative, see coefficient of variation
root mean squared, see standard devi-

ation
fluorescence measurement, 13, 14
flux

through extreme current, 21
Fourier transform, 38, 50, 54
frog, 12

G-protein, 10
Gamma function, 40
gene, 73

expression level, 29
genome, 3
Glauber dynamics, 84
glomerulus, 4, 6, 75, 80

number of, 4
purity of, 81

Goldman-Hodgkin-Katz current equation,
18

Green’s function, 43, 45, 46, 57, 59, 62
grid

tilted, 92
growth cone, 77, 78, 80

idealised, 87
guidance cue, 88

chemical, 77
in the olfactory bulb, 78
interpretation of, 78
modelling of, 84

Hamiltonian, 84
Heaviside function, 38
Hill coefficient, 11, 22, 31
Hill-type equation, 18, 20, 71
hydrogen bond, 34
hypergeometric function

confluent, 40

IBMX, 13
in silico, 82
insects

axon targeting in, 78
olfactory system in, 4

integrated circuit, 72
interaction

heterotypic, 84, 90, 92, 95
homotypic, 84, 90, 92

ion
calcium, 11, 18
chloride, 11
pump, 11, 21, 51

chloride, 11
sodium, 11, 24

ion channel, see channel
IP3, 10, 78
Ising model, 84

Jacobian, 21, 27, 44

Kawasaki dynamics, 84
kinase, 72, 73
kinetic

equation, 20
exponent, 21
parameters, 19

Kummer’s function, see hypergeometric
function

Langevin equation, 74
Laplace transform, 45
latency time, 14
lattice, 84, 91

neighbouring positions, 92
ligand, 11
linear response function, see response func-

tion
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loo, 7

mass action
kinetics, 20
law of, 17, 78

master equation, 38, 39, 41, 52, 56, 62
maxillary palp, 4
ME, see master equation
mean value, 37, 41, 42, 46, 47, 52, 54, 56,

58, 62
mean-field, 52
microelectrode, 12
micropipette, 12, 13
miswiring, 81, 91
mitral cell, 4, 82
modelling

different approaches, 30
module, 71, 101

coupling of, 71
signalling, 34, 35

Monte Carlo time step, 84
moth, 7
motif, 72
mouse, 12
mRNA, 73
mucus, 2, 9

n-point function, 37, 55
nasal cavity, 2
Nernst potential, 11, 68
network, 71

chemical, 12, 19
diagram, 19
metabolic, 72
topology, 19

neural activity
role in olfactoy map formation, 82

neural map, 7
neuron, 3, 9

secondary, 4
neurons

secondary, 82
newt, 12
nitric oxide, 30
noise, 7, 23, 59, 74

in chemical guidance, 79, 88
noise-to-signal ratio, see coefficient of vari-

ation
non-Markovian dynamics, 37
norm, 39
nose, 2

electronic, 6

odourant, 10

odourant binding protein, 3, 5, 10
olfactory

bulb, 3, 4, 75, 80
accessory, 5

epithelium, 2, 3, 12
map, 75

precision of, 76
refinement of, 81

receptor, 3, 10, 78
number of, 3
reception range, 3, 6

receptor neuron, 2, 12, 68
life time, 81
spatial distribution, 76
varying sensitivity, 15

sense, 2
olfactory sensory neuron, see olfactory re-

ceptor neuron
olfactory system

in insects, 4
operon, 73
oscillations, 23, 27, 29, 71

coupled cAMP-Ca2+, 30
damped, 24, 29

path coalescence, 96
path integral, 38, 41, 42, 56
pattern formation, 75
PDE, 11, 13
periodic boundary conditions, 70
phase separation, 82
phase transition, 96
pheromone, 5
PI, see path integral
pole, 40
potential, 84
Potts model, 84

critical temperature, 85
generalised, 85
vacancies, 86

power spectrum, 38, 48, 51, 59, 63, 64
probability density, 43
procaryotes, 73
promoter, 73
propagator, 42

reduced, 43
protein, 34, 72
protein kinase, 12
pump, see ion pump

random number, 56, 84, 88, 92
random walk

interacting directed, 91
rat, 12
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reaction kinetics, 12
reception range, 40, 65
receptor, 72, 73

deactivation of, 12
repressor, 73
response, 38, 68

oscillatory, 14
response function, 38, 41, 42, 49, 50, 61, 67
retinotectal projection, 77
Ringer solution, 12
robustness, 18, 26, 29
Routh scheme, 21

salamander, 12, 13
saturation, 21
SC, see self-consistent
second messenger, 11, 72
self-consistent, 38, 51, 56, 70
sense

auditory, 1
chemical, 2
classical, 2
of smell, see olfactory
olfactory, 1, 2

three stages of, 2
visual, 1

sensillia, 4
sensitivity, 6
signal transduction, 9, 33, 72, 78

cascade, 3, 71
pathway, 9

cAMP-mediated, 10
stochastic effects in, 34

SNA, see stoichiometric network analysis
soma, 4, 29
sorting, 85

of axons, 76
spike train, 3

information encoding in, 12
stability, 27
standard deviation, 48

normalised, see coefficient of variation
statespace, 27
stimulus, 11–13, 23, 35, 50, 69

periodic, 67
stoichiometric matrix, 20
stoichiometric network analysis, 16, 19
structure

tertiary, 10, 34
tetrameric, 11

suction pipette, 12
synapse, 4
synchronisation, 29
systems biology, 101

temperature, 34, 50
effective, 50, 84, 85

thermal effects, 34
thermal equilibrium, see thermodynamic

equilibrium, 86
thermodynamic equilibrium, 34, 41
time delay, 31
transcription, 73
transmembrane current, 12, 14
trout, 12
tryptophan, 73
tufted cell, 4

variance, 41, 48, 59, 65
visual system, 12, 78
voltage, 18, 30, 31

transmembrane, 11
vomeronasal organ, 5

whole cell measurements, 12, 14

zero-range process, 96
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