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Abstract

The DNA contained in every living cell not only stores the genetic information; it
functions in a complex molecular network that can condense, transcribe, replicate
and repair genes. The essential role played by the sequence dependent structure
and deformability of DNA in these basic processes of life, has received increasing
attention over the past years.

The present work aims at better understanding sequence dependent elasticity
of double stranded DNA elasticity, across biologically relevant length scales. A
theoretical description is developed that makes is possible to relate structural,
biochemical and biophysical experiments and simulation. It is based on the rigid
base–pair chain (rbc) model which captures all basic deformation modes on the
scale of individual base–pair (bp) steps.

Existing microscopic parametrizations of the rbc model rely on indirect meth-
ods. A way to relate them to biochemical experiments is provided by the indirect
readout mechanism, where DNA elasticity determines protein–DNA complexation
affinities. By correlating theoretical affinity predictions with in vitro measurements
in a well–studied test case, different parameter sets were evaluated. As a result
a new, hybrid parameter set is proposed which greatly reduces prediction errors.
Indirect readout occurs mostly at particular binding subsites in a complex. A sta-
tistical marker is developed which localizes indirect readout subsites, by detecting
elastically optimized sub-sequences.

By a systematic coarse–graining of the rbc to the well–characterized worm–like
chain (wlc) model, a quantitative connection between microscopic and kbp scale
elasticity is established. The general helical rbc geometry is mapped to an effective,
linear ‘on-axis’ version, yielding the full set of wlc elastic parameters for any given
sequence repeat. In the random sequence case, structural variability adds confor-
mational fluctuations which are correlated by sequence continuity. The sequence
disorder correction to entropic elasticity in the rbc model is shown to coincide
with the conformational correction. The results show remarkable overall agree-
ment of the coarse–grained with the mesoscale wlc parameters, lending support to
the model and to the microscopic parameter sets.

A continuum version of the rbc is formulated as Brownian motion on the rigid
motion group. Analytic expressions for angular correlation functions and moments
of the end–to–end distance distribution are given. In an equivalent Lagrangian
approach, conserved quantities along, and the linear response around, a general
equilibrium shape are explored.
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Zusammenfassung

Die in jeder lebenden Zelle enthaltene DNS speichert nicht nur die genetische
Information; Sie funktioniert innerhalb eines komplexen molekularen Netzwerks,
das in der Lage ist, Gene zu kondensieren, transkribieren, replizieren und reparie-
ren. Die zentrale Rolle, welche der sequenzabhängigen Struktur und Deformier-
barkeit von DNS in diesen grundlegenden Lebensprozessen zukommt, erregte in
den letzten Jahren zunehmendes Interesse.

Die vorliegende Arbeit hat ein besseres Verständnis der sequenzabhängigen ela-
stischen Eigenschaften von DNS auf biologisch relevanten Längenskalen zum Ziel.
Es wird eine theoretische Beschreibung entwickelt, die es ermöglicht, strukturbio-
logische, biochemische und biophysikalische Experimente und Simulationen in
Beziehung zu setzen. Diese baut auf dem Modell einer Kette aus starren Basenpaa-
ren (rbc) auf, das alle wichtigen Deformationsmoden von DNS auf der Ebene von
einzelnen Basenpaar (bp)–Schritten abbildet.

Bestehende Parametersätze des rbc-Modells beruhen auf indirekten Methoden.
Eine direkte Beziehung zu biochemischen Experimenten kann mithilfe des in-
direkten Auslese-Mechanismus hergestellt werden. Hierbei bestimmt die DNS–
Elastizität Komplexierungsaffinitäten von Protein–DNS–Komplexen. Durch eine
Korrelation von theoretischen Vorhersagen mit in vitro Messungen in einem gut
untersuchten Beispielfall werden verschiedene Parametersätze bewertet. Als Resul-
tat wird ein neuer Hybrid–Parametersatz vorgeschlagen, der die Vorhersagefehler
stark reduziert. Indirektes Auslesen tritt meistens an speziellen Teilbindungsstellen
innerhalb eines Komplexes auf. Es wird eine statistische Kenngröße entwickelt, die
indirektes Auslesen durch Detektion elastisch optimierter Subsequenzen erkennt.

Durch ein systematisches Coarse–Graining des rbc-Modells auf das gut charak-
terisierte Modell der wurmartigen Kette (wlc) wird eine quantitative Beziehung
zwischen der mikroskopischen und der Elastizität auf einer kbp-Skala hergestellt.
Die allgemeine helikale Geometrie wird auf eine effektive, lineare Version der
Kette ‘auf der Achse’ abgebildet. Dies führt zur Berechnung des vollen Satzes von
wlc-elastischen Parameters für eine beliebig vorgegebene periodische Sequenz. Im
Fall zufälliger Sequenz führt die Strukturvariabilität zu zusätzlichen Konformati-
onsfluktuationen, die durch die Kontinuität der Sequenz kurzreichweitig korreliert
sind. Es wird gezeigt, daß die Sequenzunordnungs-Korrektur zur entropischen
Elastizität im rbc-Modell identisch ist zur Korrektur der Konformationsstatistik.
Die Ergebnisse zeigen eine bemerkenswerte Übereinstimmung der hochskalierten
mikroskopischen mit den mesoskopischen wlc-Parameter und bestätigen so die
Wahl des Modells und seiner mikroskopischen Parametrisierung.

Eine Kontinuumsversion des rbc-Modells wird formuliert als Brownsche Be-
wegung auf der Gruppe der Starrkörpertransformationen. Analytische Ausdrücke
für Winkelkorrelationsfunktionen und Momente der Verteilung des End-zu-End–
Vektors werden angegeben. In einem äquivalenten Lagrange-Formalismus werden
Erhaltungsgrößen entlang von Gleichgewichtskonformationen und die lineare Ant-
wort in ihrer Umgebung untersucht.
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Introduction

The implementation of the genome

When asked to name the most important biomolecule, one would probably say it’s
DNA, deoxyribonucleic acid. DNA is present in every living cell, with a chemical
structure that has been conserved over billions of years. It functions as the physical
implementation of the genome, preserving the genetic information of any living
organism with unmatched storage density and reliability. Our DNA base sequence
defines if not who we are, so at least what we are, by encoding for the protein
components all cells are made of.

After completion of the Human Genome Project [Int03b, Int03a], the genetic
information of man is readily available, and more and more species are being
sequenced. Given the rapid progress in efficiency, it will soon be possible to
sequence entire genomes of individuals for an affordable price. So in a way, one
could think that all secrets that have surrounded DNA are finally resolved, and
one should move on to study something else.

However, neither the complete genome sequence nor the atomic structure of the
double helix discovered 50 years earlier [Wat53b] can explain how the molecule
really works. How exactly is DNA able to perform the enormous tasks of stor-
ing gigabytes of genetic information in an error–tolerant way, repairing inevitable
damage? How can the appropriate bits of that information be read out with ap-
propriate frequency? How does the machinery work that allows DNA to replicate
itself faithfully, then to condense and separate before cell division and finally to
de-condense in the nucleus afterward?

Like any component of a complex system, DNA does not function on its own.
Understanding DNA means understanding its interactions with a multitude of co-
evolved proteins, whose intricate biochemical network performs essential molecu-
lar processes of life collectively.
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DNA as a physical object

In all of these interactions, the physical properties of the DNA molecule as a
complex polymer are essential. Here, thinking in terms of physics can give insight
of the constraints under which the biological system works. Some examples follow.

In a stereotyped eucaryotic cell 10 µm in length, between divisions, DNA is
concentrated in the nucleus of 1 µm radius. The total contour length of DNA is
of the order of 1 cm, less than could be fit into the nucleus by tight packing. So is
DNA really compressed at all? From polymer physics one knows that the bending
persistence length of 50 nm sets the scale for the extension of a coil of DNA free
in solution. The result is at least 50 µm radius for 1 cm of DNA, indicating that
confinement into the nucleus does require work.

Separating such a highly condensed coil of threadlike polymer for cell division
is a nontrivial task, since the inevitable entanglement of strands poses topological
constraints [Sch04]. Cells deal with them on one hand by a set of enzymes that can
actively change the linking of DNA coils, and on the other hand by a whole hierar-
chy of organized packing structures which compact DNA and limit entanglement
at the same time (see e.g. [Sin94, Alb02]).

Of this packing hierarchy, the lowest level is best understood. The basic packing
motif is called the nucleosome core particle. It consists of about 50 nm of DNA
wrapped in 1.7 turns around a cylindrical spool with about 10 nm diameter [Ric03].
The histones that form the spool and other DNA–associated proteins actually make
up more than half of the material in the cell nucleus. The tight bending of DNA
onto the 5 nm outer radius of the histone spool costs energy, and there exists a free
energy balance between chemical bonds of DNA with the histone surface, and its
wrapping. In effect, histones are bound strongly enough to occupy DNA almost
densely but still not too strongly to block transcription [Sch03].

Protein levels in the cell are regulated in response to cell fate and to environ-
mental conditions. One of the involved feedback mechanisms works at the level
of transcription of DNA to RNA (ribonucleic acid). Here, depending on protein
product concentration, a regulatory protein binds DNA at a specific sequence
of several base–pairs, close to the transcription initiation site, thereby modifying
the rate of transcription. In crystal structures of such complexes, DNA is often
deformed from its equilibrium shape. As a result, the base–sequence dependent
deformability of DNA affects the binding strength of the complex and thus also
the resulting protein levels [Kou06, Kou87, Heg02].
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In fact, sequence–dependent packing and transcription regulation do have an
overlap: Nucleosome core particles are known to form much [Clo04] more stably
with DNA sequences whose specific structure and bendability match well with the
prescribed wrapping path of DNA around the spool [Dre85, Shr90]. Stable nucle-
osomes suppress transcription [Kne86], so the detailed positioning of nucleosomes
has a regulatory effect.

Even regulatory proteins that bind at a specific location hundreds of base–pairs
away from the actual gene, have been observed to influence transcription rates
[Sch75]. In order for this to happen, DNA loops back onto itself to allow direct
contact of the ‘distant’ regulatory protein and the transcription initiation site of
the gene [Sch92]. The free energy associated with such a loop depends on its size
and on the stiffness of the looped DNA and thus plays a role in the final expression
levels of the gene [Vil03, Sai06].

DNA elasticity across scales

In all of these examples, the elastic properties of the intact double helical B-
DNA structure are important for the functioning of a biological process. It is not
surprising that DNA elasticity and macromolecular structure is a long–standing
field of research, see e.g. [Gar07]. A large variety of experimental techniques are
sensitive to some combination of the intrinsic conformation and deformability of
DNA on different length scales.

On a µm scale, the topological constraint that the molecule cannot pass through
itself is most important, and has been studied, e.g, using the gel electrophoretic mo-
bility of different knot types of circular DNA [Sta96]. On shorter length scales, this
constraint becomes weaker since bending persistence of the molecule suppresses
self–intersections. At around 50 nm contour length, DNA behaves on average like
a thin homogeneous elastic rod that can resist thermal bending and twisting forces
so that its contour looks only ‘mildly curved’.

The elasticity of DNA on this scale can be measured comparatively well. The ba-
sic idea of a widely used biochemical method is to observe the cyclization reaction
of short pieces of DNA that have ‘sticky ends’. The stiffness and structure of the
molecule can be reconstructed from the reaction kinetics [Clo05, Vol02, Du05]. A
biophysical technique consists in tracing the thermally randomized conformation
of DNA molecules adsorbed on a surface, either by electron microscopy [Bed95]
or by atomic force microscopy [Wig06]. Finally, micro-manipulation experiments
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allow to probe the stiffness of individual molecules in solution by recording force–
extension or twist–extension relations of DNA tethers [Str00, Lio06, Gor06].

At 5 nm contour length, the scale of one turn of the double helix, thermal
forces cannot bend the molecule very much, but interactions with proteins can and
typically do. Also, the deformation free energy is strongly sequence–dependent on
this short scale. Experimental data on sequence–dependent DNA elasticity on the
scale of individual bases is rather indirect. From the distortions of DNA observed
in crystal structures of protein–DNA complexes or in oligonucleotide structures,
empirical sequence–dependent elastic potentials can be constructed [Ols98]. In a
related approach, molecular dynamics simulations have been used to characterize
DNA deformability on the scale of base–pairs [Lan03].

Answers and questions

The aim of this work is to understand better how the elastic properties of DNA
influence its biological function. A general strategy in pursuing this goal will be to
combine a range of available experimental data from biochemistry, single–molecule
biophysics, and structural biology, as well as atomistic simulations. To make this
possible, a new theoretical framework is developed that is able to quantitatively
connect DNA statistical mechanics on different length scales.

The first part of the thesis concentrates on the question

• How in detail can DNA elasticity influence gene regulation?

Besides the chemical features of individual base–pairs, the short–scale deformabil-
ity of DNA is another property specific to certain sequences, providing another
‘interface’ that connects DNA to the network of proteins in which it functions.
In this way, binding affinities and eventually, the expression levels of proteins in
the cell are influenced by the short–scale, sequence–dependent structure and de-
formability of DNA. These properties are captured by the rigid base–pair model,
introduced in chapter 1. The combined statistical mechanics of sequence and
deformation of this model allow predictions for biochemical competitive binding
experiments. This comparison of structural and biochemical data is carried out in
chapter 2 for a well–studied test case. In this way, the rather indirect parametriza-
tions of the rigid base–pair model are directly compared to experiment. A further
application is presented in 3: A new statistical marker allows the local detection
of elastically optimized subsites in a given protein–DNA crystal structure.

The state of the art of parametrization of the rigid base–pair model is based
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solely on indirect methods. To improve on this point, in the second part of the
thesis, a connection is established between the microscopic parametrization of the
rigid base–pair model and direct stiffness measurements on larger scales:

• What is the relation between sequence–dependent base–pair elasticity and
effective mesoscopic elasticity of the molecule?

Here, a quantitative answer is possible. The discussion begins with a new theo-
retical framework for chains of elastically coupled rigid base–pairs. Large parts
of chapter 4 are concerned with details of the mathematical formalism and may
be skipped by the reader interested primarily in the physics; the main ideas are
summarized in the last section. The main virtue of the formalism is that it allows a
convenient description of the combined elasticity of groups of coupled base–pairs.
This is put to work in chapter 5, where a systematic coarse–graining procedure is
presented that links the rigid base–pair model to the worm–like chain, which is the
established model of DNA elasticity on scales of hundreds of base–pairs. Chapter
6 extends the procedure to the case of irregular DNA sequence. This closes the
gap between the microscopic parametrizations of the rigid base–pair model on
one hand, and direct measurements of the conformational statistics of DNA, as
well as single–molecule experiments of DNA stiffness on the other hand. Detailed
quantitative comparisons are given.

The third part of the work is more theoretical in nature. It revolves around the
question

• What is the appropriate continuum description of DNA elasticity with all
rigid body degrees of freedom?

Generalizing the worm–like chain, a continuous model for the conformation of a
chain of rigid base–pairs with a total of six, translational and rotational, local de-
grees of freedom is constructed in chapter 7. The resulting ‘continuous rigid body
chain’ is motivated by DNA, but the model is more general; it may be applied for
other macromolecules that exhibit coupled shear and bending deformation modes
as well as for the diffusion of self–propelled particles. The formulation in terms
of a Brownian path evolving on the Lie group of rigid motions allows explicit
evaluation of several interesting moments of the end–to–end frame distribution. In
chapter 8, the continuous rigid base–pair chain is treated in a Lagrangian formal-
ism; the associated equations of motion govern the equilibrium shape of the chain,
and allow to identify a set of conserved quantities. Finally, the linear response
around an arbitrary, known equilibrium shape is computed.

5



Contents

The set of methods developed to address the questions above suggest a number
of other exciting topics of research. They could be barely scratched in this work.
Nevertheless, in the outlook chapter 9, some preliminary results are presented to
give a hint how some of the following points could be investigated in the future:

• Do different classes of DNA–binding proteins have characteristic ways of
recognizing DNA deformability?

• What local forces and torques does DNA experience in a given complex
structure?

• Can the histone positioning observed throughout eucaryotic genomes be
quantitatively explained by elastic effects?

6



1 DNA at the base pair level

The rigid base–pair model for DNA elasticity is introduced, and its basic assump-
tions as well as microscopic parametrization methods are discussed. This sets the
ground for applications and further theoretical development in the later chapters.

1.1 Sequence dependent DNA elasticity

What is the best description of DNA elasticity? Judging by the sheer number
of different models for DNA deformability that are in use, ranging from atom-
istic molecular dynamics (MD) interaction potentials to continuous semiflexible
polymer models [Wig05, Gol00, Yam97, Kam97, O’H98, Kra49, Col03, Moa05,
Mar94, Win03, Leb96], this is not a simple question. The answer, as usual, de-
pends on what aspect and which length scale of the problem are most interesting.

1.1.1 Basic structure of the molecule

The structure of the DNA molecule has been known for more than 50 years
[Wat53b, Wat53a]. Free DNA in physiological conditions occurs as a right–handed
double helix in which two sugar–phosphate chains, the backbones, wind around a
core of stacked base–pairs, see fig. 1.1.

The bases form planar pairs that are held together by hydrogen bonds. A two–
cycle purine combines with its complementary single–cycle pyrimidine to form
the Watson–Crick pairs Adenosine–Thymine (A·T) or Guanine–Cytosine (G·C),
fig. 1.2.

Since the bases are covalently bound to the backbone sugar rings in an asymmet-
ric manner, the two backbones are unevenly spaced, so that their double helical
path around the base core leaves a small (minor) and a large (major) groove. The
backbones are strongly negatively charged due to the presence of one phosphate
group per base–pair step (bps). They also carry a structural asymmetry that allows
to assign a direction; base sequences are conventionally read from the end where
the phosphate is bound to the carbon at the 5’ position, to the end where it is
bound to the 3’ carbon, see fig. 1.3.

7



1 DNA at the base pair level

Figure 1.1 | B-form DNA oligonucleotide structure.[Dre81]

Figure 1.2 | The canonical Watson–Crick base pairs. Adapted from [Sin94].

8



1.1 Sequence dependent DNA elasticity

Figure 1.3 | A single stranded tetranucleotide. Adapted from [Sin94] (not to scale).

The two strands are paired together in opposite directions, so that the structure
has a strand–change symmetry: Interchange of complementary bases combined
with reversal of the base sequence, transforms the molecule to itself, except for
a rotation by 180°. When the base sequence is disregarded, the molecule has no
preferred direction but it is chiral: spatial inversion changes the handedness of the
helix.

Apart from the B-form just described, DNA exists in a variety of other helical
geometries (A, Z, etc.), depending on salt concentrations, humidity and on the
tension in the molecule.

1.1.2 Quantum effects?

The deformations of the DNA double helix on the base–pair level will be treated
throughout as a purely classical system, disregarding all effects of quantum inter-
ference. An estimate to justify this approximation follows.

The energy scale of thermal excitations is kBT ' 4×10−21 J at room temperature.
An internal energy scale for the deformation of a bp step is given by a quantum
mechanical energy level spacing  hω. Here ω =

√
κ/m is the characteristic fre-

quency of a harmonic oscillator describing small deformations of one bp step. The
stiffness can be estimated from the known deformability of DNA, to be discussed
below. For the extension and shear modes, a typical value is κ = 2 N

m . The mass of
a naked bp is around m ' 700 a.u. = 1.2 × 10−21 g, so that  hω ' 1.3 × 10−22 J.

9



1 DNA at the base pair level

Thus the mean thermal energy is bigger than the quantum level spacing by at least
one order of magnitude. This is not as much as one might have expected. Still,
thermal excitations over many levels are possible, and the strong coupling to the
surrounding heat bath is expected to destroy quantum correlations along the DNA
molecule. In conclusion, a classical treatment of DNA conformations, starting
from single base–pairs, appears justified.

1.2 Rigid base–pair elasticity

In this work, we focus on the sequence dependent linear elastic response of DNA
ranging from a single bps to DNA loops several hundred base–pairs long. The
natural discretization for sequence–dependent properties is one bps, about 0.34
nm. We consider a level of detail that captures all deformation modes at this
scale of double–stranded DNA. In the corresponding model, each bp constitutes
one basic unit without internal structure, and the DNA molecule is built up as a
helical stack of base–pairs. Any two base–pairs are related through a rigid body
transformation, i.e. by a three–dimensional rotation and translation, which specify
their relative orientation and position in space. This widely used description is
called the rigid base–pair (rbp) model [Cal04, Cal84].

The name is somewhat misleading: In contrast to the relatively rigid and planar
aromatic rings of the individual bases, the hydrogen bonds that connect comple-
mentary bases are flexible, so that in atomic structures of DNA, base–pairs often
deviate considerably from the coplanar equilibrium shape. Figure 1.4 illustrates
the internal deformations of a bp as well as the rbp parameters which relate differ-
ent base–pairs. In the rbp model, internal bp deformations are effectively averaged
out, and each rigid bp represents the mean structure of a flexible real bp.

1.2.1 Basic mechanics

Many features of the elastic response of double–stranded DNA (dsDNA) can be
understood by looking at a brick representation [Cal04] of the rbp model, fig. 1.5.
Each brick has the spatial dimensions of a bp, about 0.3× 1× 1.8 nm. The sugar–
phosphate backbones of the double helix are approximated by inextensible sticks
that are attached to the minor groove edges of each bp via flexible hinges.

Two basic physical effects govern the response of a bps to deformation. The
van der Waals–like stacking interaction has an energy minimum for base–pairs

10



1.2 Rigid base–pair elasticity

Figure 1.4 | Internal bp deformations (Shear, Stretch, Stagger, Buckle, Propeller–Twist,
Opening) and rbp parameters (Shift, Slide, Rise, Tilt, Roll, Twist). Bases are represented
as bricks, the minor groove face is shaded. Adapted from [Dic89].
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1 DNA at the base pair level

Figure 1.5 | Brick representation of double–stranded DNA. Base–pairs are represented as
bricks, backbones as lines. The minor groove is shaded.

aligned on top of each other, i.e. when Rise' 0.34 nm and all other rbp parameters
vanish. On the other hand, the backbone linkers with a fixed length of about 5.5
nm impose a conformational constraint that forbids aligned stacking. The helical
shape with Twist ' 33◦ shown in fig. 1.5 (but not the handedness) then appears
naturally as a ground state of the system. On the basis of this picture one can also
guess some of the main features of the elastic response:

• Bending into the grooves (Roll) is easier than towards the backbones (Tilt).

• Stretching (∆Rise > 0) is coupled to untwisting (∆Twist < 0)

• Slide and Shift are coupled to Tilt.

This intuition is correct, at least for fairly large deformations of dsDNA. A physical
model expanding on this idea was developed in [Eve03, Mer03].

In this work, we will be concerned with small rbp deformations within the
regime of linear response. These are strongly sequence dependent, and internal
deformations lead to an elastic response that differs in some aspects from that
expected by the arguments above. A notable example is the anticorrelation of
Twist and Stretch for small deformations.

1.2.2 State space

Within the rbp model, the conformation of a bps is described by a set of 3+3
variables specifying the relative position and orientation of the two base pairs. We
combine these variables into a vector q = (Ti, Ro, Tw, Sh, Sl, Ri)T. Here Ti, Ro,
Tw are the rotation angles Tilt, Roll and Twist around the x, y and z-axes of the
material frame. Correspondingly Sh, Sl, Ri are the translations Shift, Slide and
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1.3 Fluctuations of rigid base–pair steps

Rise along the axes, as depicted in fig. 1.4.1

To characterize a bps completely, one also needs to specify the identity of the
bases b1, b2 along one preferred strand in 5’ to 3’ direction, that is their two–base
sequence σ, e.g. σ = b1b2 = AC. A rbp step is then fully specified by (q, σ).

1.2.3 Strand change symmetry

When specifying the state (q, σ) of some rbp step, the choice of preferred strand is
arbitrary. Therefore, physical quantities have to be invariant under the symmetry
operation of switching strands. When changing from ‘Watson’ to ‘Crick’, the
reading sense has to be reversed simultaneously, to keep the 5’ to 3’ convention,
cf. fig. 1.4. Referring now to the Crick strand, one will describe the same physical
bps by the complementary sequence σ = b2 b1, e.g. AC = C A = GT, and by a new
conformation q. Conventionally [Dic89], the conformation variables are defined
such that q has entries with a definite parity under strand change. Specifically
q = Iq, where I = diag(−1, 1, 1, −1, 1, 1).2

Due to this symmetry, only ten out of the sixteen possible step sequences are
physically different, and symmetry relations exist between the energy functions of
complementary steps. For a detailed account thereof see [Col03].

1.3 Fluctuations of rigid base–pair steps

We now discuss the equilibrium statistical mechanics of uncoupled rigid base–pair
steps, taking a probabilistic approach.

1.3.1 Joint distribution

Suppose we have by some means collected an ensemble {(qi, σi)}16i6N of elas-
tically fluctuating, independent rbp steps. Their conformations and sequences
are jointly distributed according to some normalized probability density function
(pdf)3 p(q, σ), which contains all available statistical information. This pdf is given
with respect to the measure dVqdσ, which reflects an unbiased distribution on the

1There are many different ways to define the material frame as well as the rbp parameters in detail,
see sec. 4.2.8. In chapters 2 and 3 we will adhere to the definition used in the 3DNA program
[Lu03].

2I.e, the body x-axis vector is even and the y, z-axes are odd under strand change.
3As is customary, the various pdfs are always written with the same symbol p and can be distin-

guished by their arguments.

13



1 DNA at the base pair level

state space. The sequence measure dσ ≡ 1 just assigns unit weight to each step
sequence and will be omitted. The conformation measure dVq depends on the
choice of curvilinear coordinates and is generally different from dq1 · · ·dq6, see
chapter 4.

At inverse temperature β = (kBT)−1 we associate to the joint pdf a free energy
K, where

βK(q, σ) = − ln[v p(q, σ)]. (1.1)

The constant v is a volume scale in q space needed to fix dimensions, and will drop
out in all free energy differences. Log–relative probabilities of bps that differ in
sequence and structure, are K–differences:

ln
[
p(q ′, σ ′)

p(q, σ)

]
= β

(
K(q, σ) − K(q ′, σ ′)

)
. (1.2)

Taking partial averages, we get the marginal pdfs: p(σ) =
∫

p(q, σ)dVq gives the
frequency of a sequence σ in the ensemble while p(q) =

∑
σ p(q, σ) is the pdf to

find the conformation q in any sequence step. Using the notation of a dot · for
an empty slot in a function, one can also write the them as expectation values:
p(σ) = 〈δσ·〉 and p(q) = 〈δ(q − ·)〉.

1.3.2 Conformation distribution

Sequence–dependent elasticity determines the conformation probabilities for fixed
sequence. They follow the normalized conditional pdf to find q given σ,

p(q|σ) =
p(q, σ)

p(σ)
. (1.3)

We associate a conformation free energy,

βFσ(q) = − ln[v p(q|σ)] = βK(q, σ) + ln[p(σ)]. (1.4)

A free energy difference Fσ(q)−Fσ(q ′) expresses the relative probability to observe
the conformation q ′ rather than q in the data, given that one is looking at a fixed
sequence σ. F differs from K only by a sequence–dependent normalization offset.

1.3.3 Sequence distribution

Similarly, we may ask for the probability to find the sequence step σ among all steps
at fixed conformation q in the ensemble. It is given by the (discrete) normalized
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1.3 Fluctuations of rigid base–pair steps

conditional pdf

p(σ|q) =
p(q, σ)

p(q)
, (1.5)

and we associate a sequence potential

βGq(σ) = − ln p(σ|q) = βK(q, σ) + ln[v p(q)]. (1.6)

A potential difference Gq(σ) − Gq(σ ′) expresses the relative probability to find
the sequence σ ′ rather than σ, at a fixed conformation q. By normalization, when
Gq(σ) = 0, the sequence σ occurs with certainty among steps with conformation
q. G differs from K by a conformation–dependent normalization offset.

1.3.4 Relations between free energies

Quite generally, differences in K can be split up into ∆F and ∆G terms :

K(q, σ) − K(q ′, σ ′) = Fσ(q) − Fσ(q ′) + Gq ′(σ) − Gq ′(σ ′) (1.7)

Often, it is interesting to compare sequences in an unbiased ensemble where
each sequence step is equally probable, so p(σ) = const. In this special situation,
the formulas look simpler. E.g,

βGq(σ) = βFσ(q) + ln
∑
σ ′

e−βFσ ′(q). (1.8)

From (1.7) or (1.8), also Gq(σ) − Gq(σ ′) = Fσ(q) − Fσ ′(q), so the relative proba-
bilities of sequences are in this case expressed by their F differences.

1.3.5 Thermodynamic analogy

A analogy to basic thermodynamics may help clarify how the different free en-
ergies are related. Note first that deformation and sequence are not conjugate
variables, so F and G are not related by a Legendre transformation. Consider a
thermodynamic system at constant temperature consisting of some gas in a box.
We let the deformation of a bps correspond to a change of the volume V of the
box. Further, the step sequence is analogous to the chemical composition of the
gas in the box, given by the particle numbers Ni.

In this setup, fixed σ corresponds to a closed box with a certain gas species.
Since the Ni cannot change, the Helmholtz free energy A of the system is then a
function of the volume only, dA = p dV. It corresponds to the conformation free
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1 DNA at the base pair level

energy F which is a function of the deformation. Indeed, statistical mechanics tells
us that the Helmholtz free energy is the log of the normalized canonical partition
function, which in the bp setting, corresponds to p(q|σ).

On the other hand, fixing q while allowing σ to vary, corresponds to an open box
allowing particle exchange, at fixed volume. In this situation, the Helmholtz free
energy is a function of the particle numbers only, dA =

∑
µidNi. Consequently,

the sequence potential G corresponds to the Helmholtz free energy, in the grand
canonical ensemble with the constraint of fixed volume. Taking the analogy a step
further, when considering single bp steps, we can index the set of particle numbers
by the sequence; {Ni} = σ corresponds to one particle of type σ, and no particles
of other types. Then, a sequence free energy difference Gq(σ) − Gq(σ ′) can be
identified with a difference in chemical potential µσ − µσ ′ of the two species.

Releasing the volume constraint, the joint pdf p(q, σ) corresponds to the grand
canonical partition function of the gas mixture in the box, and the grand potential
K is the Helmholtz free energy without constraint; dA = p dV +

∑
µidNi.

In summary, the different free energies arise by imposing different kinds of
constraint on the system.

1.4 Fluctuations of rigid base–pair chains

We build up a statistical model for DNA by combining independently fluctuating
rbp steps into a chain.

1.4.1 Basic assumptions

A piece of DNA in solution undergoes thermal fluctuations. We describe it as a
chain of rbp steps or short, a rbc. The main basic assumption of the model is that
conformational fluctuations of any two rbp steps along the chain are independent.
In other words, coupling terms between steps in the conformational free energy
are neglected. This also means that the internal base–pair deformations are treated
on a mean–field level: fluctuations within a bps are averaged, and correlations in
internal fluctuations between steps are discarded.

The assumption of independence is motivated by mathematical simplicity but
also by the fact that microscopic parameter sets for the conformation free energy
are available only without coupling of neighboring steps, see sec. 1.6. It is worth
mentioning that independent step conformations also imply that no repulsive self–
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1.4 Fluctuations of rigid base–pair chains

contact interactions in a looped rbc are included in the model. We are therefore
considering only ‘ideal’ chains. For chains shorter than a few bending persistence
lengths, this is not a serious limitation.

On the other hand, there is no assumption of linear elasticity inherent the model.
The functional form of the conformation free energy is in principle completely
arbitrary. Again, microscopic parameters are available only for the regime of linear
elasticity, so only this case will be considered in detail later on.

1.4.2 Free energies

We now extend the free energies introduced above for single steps, to a chain of
consecutive steps. By the basic assumption of the rbp model, bps conformations are
independent random variables. However, we have to make sure that consecutive
steps form a meaningful sequence, e.g. AC can only be followed by CN where
N = A, C, G, T. This requirement of sequence continuity correlates the sequences
of neighboring steps. Clearly, the correlation is just a result of considering the bp
steps as the basic objects rather than the individual base pairs.

Extending previous notation, we now denote a rbp chain made of l bps by
(q, σ) = ((qj, σj))16j6l. We additionally require that the sequence steps match up,
σj = bjbj+1 where σ = b1 . . . bl+1 is some sequence of l + 1 bases.

We now compute the free energies for chains. To start with, we immediately
have p(q|σ) =

∏
j p(qj|σj) since the conformations are independent. Consequently

the chain conformation free energy, Fσ(q) =
∑

j Fσj
(qj) is the sum of step free

energies.

Chain free energies depending on the sequence argument σ are generally not
additive. This is because the sequence pdf p(σ) has to be renormalized so that its
sum over all matching sequences

∑ ′
σ =

∑
b1,...,bl+1

is unity. If the normalization
factor

Wl =
∑ ′

σ ′

l∏
i=1

p(σ ′
i), (1.9)

then clearly p(σ) = W−1
l

∏
j p(σj) is the properly normalized sequence distribution.

In the special case where all sequences are equally likely, one can check that indeed
p(σ) = 4−(l+1).

Likewise one finds that the joint distribution p(q, σ) = W−1
l

∏
j p(qj, σj). This
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1 DNA at the base pair level

renormalization makes the joint free energy K non-additive,

βK(q, σ) = − ln[vlp(q, σ)] = β

l∑
j=1

K(qj, σj) + ln Wl. (1.10)

Finally, we compute the sequence distribution for given chain conformation as

p(σ|q) =
p(q, σ)∑ ′
σ ′ p(q, σ ′)

. (1.11)

The resulting sequence free energy,

βGq(σ) = − ln[p(σ|q)] = βK(q, σ) + ln[vl
∑ ′

σ ′

p(q, σ ′)] (1.12)

can be written in a more compact form. We first note that

vl
∑ ′

σ ′

p(q, σ ′) = W−1
l

l∏
j=1

v p(qj)
∑

b ′
1,...,b ′

l+1

p(b ′
jb

′
j+1|qj). (1.13)

We now introduce the 4× 4 transfer matrix T(qj) with entries(
T(qj)

)
b ′,b ′′ = p(b ′b ′′|qj) = e

−βGqj
(b ′b ′′) (1.14)

and rewrite the primed sum as a matrix multiplication. With 1T = (1, 1, 1, 1) and
using (1.10) and (1.6), the sequence free energy of a rbc can be rearranged as

βGq(σ) = β

l∑
j=1

Gqj
(σj) + ln[1TT(q1) · · · T(ql)1]. (1.15)

Note that for l = 1, the formula does reduce to the single step result since p(σ|q) is
normalized. G is not stepwise additive, and is defined as an average over an expo-
nentially growing set of 4l+1 sequences (1.12). Still when using the transfer matrix
approach, the computational cost of evaluating it is only O(l)! No approximation
by an additive quantity (as used in [Mor05] in a related context) is necessary for
efficient computation in longer chains.

Finally, from eqns. (1.10) and (1.12) the basic relation ∆K = ∆F + ∆G (1.7)
follows also for chains of bps. Whenever the sequences are equidistributed, the
chain free energies reduce to simpler expressions. In particular, one can see from
eqns. ((1.14),(1.15)) that like for single steps, Gq(σ) − Gq(σ ′) = Fσ(q) − Fσ ′(q)

whenever p(σ) = const.
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1.5 Linear elasticity of rigid base–pair steps

1.5 Linear elasticity of rigid base–pair steps

How are the elastic free energies introduced above related to the more familiar
concepts of elastic energy and linear elasticity?

1.5.1 Linear response

Consider a rbp step with fixed sequence in thermal equilibrium, so that its confor-
mation is a random variable. When an external generalized force4 µ is exerted on
the step (by global bending of the chain, protein contacts etc.) the conformation
distribution is modified; we can write this as p(q|σ; µ) or p(q|µ), suppressing se-
quence notation in the remainder of this section. The response of its first moment,
the average step conformation 〈q|µ〉, may be written as

〈q|µ〉− 〈q|0〉 = βCµ + o(µ). (1.16)

Here, βC is the linear response coefficient. The force and torque µ is a six-
dimensional vector, so C is a 6 × 6 matrix. To parametrize it, it is not necessary
to actually measure the linear response in experiment, since C is related to the
equilibrium fluctuations of q. From linear response theory one knows that C is
identical to the covariance matrix of deformations at zero force:

Cij =
〈
(q − 〈q|0〉)i (q − 〈q|0〉)j

∣∣0 〉. (1.17)

1.5.2 Linear elasticity

From a slightly different perspective, one may view the rbp step as an elastic
element and write an expansion of its elastic internal energy to second order in
the strains (q − q0) as

E(q) =
1
2

(q − q0)
T

S (q − q0) + O(q − q0)
3, (1.18)

where S is the 6× 6 stiffness matrix. In a thermal environment with no external
force and at inverse temperature β, one obtains a Boltzmann distribution of step
conformations,

p(q|0) = Z−1e−βE(q), (1.19)

4µ is the variable conjugate to q, as discussed in detail in chapter 4.
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1 DNA at the base pair level

where the partition sum Z =
∫

e−βE(q)dVq. At this point, the choice of curvilinear
coordinates matters, since the volume element dVq = A(q)d6q makes the integral
non-Gaussian [Gon01]. However, for typical rbp steps in DNA, the distribution
p(q|0) is sharply peaked around q0. Then to a good approximation, the metric
factor A(q) is constant, and one can also neglect the finite integration boundaries
of the angular part of q. By doing a Gaussian integral,

Z = det(2πβS)−1/2, (1.20)

〈q|0〉 = q0, and (1.21)〈
(q − q0)

i (q − q0)
j
∣∣0 〉 =

(
(βS)−1)ij. (1.22)

If we let βS = C−1, this is consistent with (1.16), bringing the two views into
agreement. For a somewhat more accurate version of these small–angle relations
for particular choices of coordinates, see section 4.2.8 and appendix A.7.

Conceptually, it is misleading to think of a rbp as a macroscopic elastic element,
since the thermal environment is inherent in this microscopic system; the elastic
response as well as the structure of DNA depend heavily on the solution condi-
tions and temperature, and an elastic response of DNA without fluctuations is an
abstraction that does not correspond to a realizable experiment. So when talking
about linear elasticity in the following, this is always to be understood in the sense
of linear response theory of average quantities as outlined in section 1.5.1.

In particular, q0 and S are defined by eqns. (1.21) and (1.22), and the quadratic
elastic energy 1

2(q − q0)
TS(q − q0) is by definition the second order term in

the expansion of the conformation free energy F around its minimum. Using
((1.19),(1.4)) we can write

Fσ(q) = Eσ(q) + β−1 ln Z(σ) + β−1 ln v (1.23)

Disregarding the irrelevant global constant β−1 ln v, we can rewrite this as F =

E − TΣ where the term Σ(σ) = −kB ln Z(σ) has the form of a sequence–dependent
entropy of the harmonic rbp step. Clearly, Σ is not the thermodynamic entropy,
Σ 6= − ∂F

∂T since E as defined here is not the true internal energy of the system.
Rather, E is a version of the free energy F, with a sequence–dependent offset which
ensures that E(q0) = 0. The true entropic and enthalpic parts of F are not separable
just from data at constant temperature.

By construction, C is a positive definite, symmetric matrix, therefore also S has
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1.6 Microscopic parametrization of rbp potentials

these properties, so that equilibrium (or spontaneous) configuration q0 is stable .
Both q0 and S depend on the sequence σ of the step.

1.5.3 Boltzmann inversion

Whenever the conformational distribution p(q|σ) is given as a result from experi-
ment, eqns. ((1.21),(1.22)) can be used to extract q0(σ) and S(σ). This is equivalent
to fitting the Boltzmann distribution (1.19) with a six-dimensional Gaussian, which
is the maximum entropy distribution with the mean and covariance of the data. In
the following, we will always use the linearized versions of the elastic free energies
K, F and G which result from such a fitting procedure.5

The basic assumption here is that the observed pdf is indeed an equilibrium
distribution at a certain fixed temperature T , so that thermal energy is equally
distributed among hard and soft modes: 1

2CijSjk = 1
2k

B
Tδi

k.
It is worth mentioning that when external constraints are present, this assump-

tion can easily break down. Although the total system may have a Gaussian distribu-
tion, constraints destroy internal equipartition of energy. As an example, imagine
a toy model in which two springs with stiffness constants k1 > k2, are arranged in
series, so that they share the common tension f. Consequently, their elongations
have the constant ratio x2

x1
= fk1

fk2
= k1

k2
. If now the combined spring elongation

x = x1 + x2 has a Boltzmann–like distribution with a certain variance
〈
x2〉, one

calculates immediately that the ratio of mean energies is 1/2 k2〈x2
2〉

1/2 k1〈x2
1〉

= k1
k2

> 1, so
equipartition is violated. Similar considerations apply to elongation rather than
force constraints, or to springs in parallel.

1.6 Microscopic parametrization of rbp potentials

To completely specify the linear elasticity of the rbp model, for each step there are
6 (for q0) + 21 (for S) parameters required, which gives a total of 270 (!) for the 10
different steps. It is not surprising that even the most detailed rbp parameter sets
are only given in linear approximation. Two different approaches [Ols98, Lan03]
have been utilized to tackle the problem of parametrization, detailed below. Both
start from a set of atomistic bps structures which are interpreted as representing a
sample from a thermal equilibrium distribution. The recipe then consists of first

5With more detailed (multi-modal) free energy functions, parametrization would become even
more difficult and conformation space integrals would get more involved but the formalism
would not change.
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1 DNA at the base pair level

extracting the corresponding ensemble of rbp parameters and then computing the
first moments.

1.6.1 Extraction of rbp parameters

In order to compute the rbp parameters of a particular bps in a given all-atom
structure, the standard procedure is to perform a least-squares fit of an ideal,
coplanar model base–pair to each of the deformed base–pairs that make up the step.
The rbp parameters of the step are then defined by the rigid body transformation
between reference frames fixed to the two best–fit model base–pairs.6

This procedure involves a ‘physical’ choice of details of the fitting procedure and
reference frame used and a ‘mathematical’ choice of parameters used to describe
the rigid body transformation between the reference frames. Both of these choices
have been partially fixed in the community by agreements on basic symmetry
properties of the parameters [Dic89] and on a reference frame [Ols01]. For a
comparison of several different extraction schemes as implemented in various
computer programs see [Lu99a, Lu99b]. In the following we will use the 3DNA
program by Lu and Olson [Lu03].

1.6.2 Molecular dynamics simulation

Lankaš et al. [Lan03] obtained an ensemble of fluctuating base pair steps at tem-
perature T = 300K from MD simulation of oligonucleotides. Under the assump-
tion that the MD trajectories are equilibrated sufficiently, the bps ensemble is
Boltzmann distributed, and the equilibrium values [Lan06b] and stiffness matrices
[Lan03], {q0,MD, SMD} can be extracted as described above. The partition sum
Z(σ, T) = det(2πβS(σ))−1/2 gives a natural measure for the overall strength of
fluctuations, counting all six degrees of freedom.

1.6.3 Crystal structure analysis

In an experimental, but rather indirect approach, Olson et al. [Ols98] used en-
sembles of statically deformed bps, obtained from high–resolution DNA crystal-
lographic structures. Their ‘B-DNA’ ensemble consists of B-form DNA oligonu-

6In this sense, it is the least–squares fitting procedure that defines exactly which deformations are
internal to the bp, and which are step parameters.
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1.6 Microscopic parametrization of rbp potentials

cleotide structures, while their ‘P•DNA’ ensemble is obtained from protein–DNA
co-crystals.

The means q0(σ) and covariance matrices Ĉ describe the ensemble on a Gaussian
level. Stiffness matrices can be extracted under the additional assumption that
equipartition of energy holds also in crystal ensembles at some, yet undetermined
effective temperature. External constraints such as force balance make this a
problematic assumption, see section 1.5.3. However, this strategy is the only way
of gaining experimental access to rbp flexibility.

To fix the energy scale given by the effective temperature, we require that
the fluctuation strength of the MD ensemble and that of the crystal ensembles
X = B, P be equal on sequence average, i.e. 〈ZX(σ, T)〉 = 〈ZMD(σ, T)〉 [Bec07]. If
we define the crystal stiffness matrices by SX(σ) = kBTXĈX(σ)−1, then the effective
temperature definition

TX = 300 K
〈( det ĈX(σ)

det ĈMD(σ)

) 1
6
〉

(1.24)

satisfies this requirement. Performing the calculation, we obtain TB = 107 K and
TP = 233 K. Our resulting B and P ensembles then have equilibrium values and
stiffness matrices {q0,B, SB} and {q0,P, SP}, and each ensemble has by construction
the same overall stiffness as the MD simulations [Lan03]. After the effective tem-
perature is set, we replace the observed distribution of deformations, p̂X(q|σ), by
the corresponding Boltzmann distribution pX(q|σ) at T = 300 K. This distribution
has covariance CX(σ) = (kB300K)S−1

X (σ).

Also in [Lan03], the effective temperature for the P-DNA ensemble [Ols98]
was computed, by comparing the persistence lengths for DNA oligomers as ex-
trapolated from a normal mode analysis of oligomers without temperature scale
[Mat02], to experimental values for B-DNA in solution. This yielded a value of
TP, La = 295 K. While our microscopic approach matches fluctuations of all six rigid
bp degrees of freedom to an MD simulation, this mesoscopic method effectively
matches the bending fluctuations only, to experimental data. For comparison, we
have repeated our fixing of effective temperatures, eqn. (1.24), using only the
bending (i.e, Roll and Tilt) stiffness submatrices. This gives effective temperatures
of TB’ = 166 K and TP’ = 232 K, the latter value surprisingly unchanged from TP.
We denote the resulting crystal ensembles by B’ and P’.
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1 DNA at the base pair level

1.6.4 Hybrid potential parametrizations

In rescaling the crystal stiffness matrices with a single parameter to match MD simu-
lation we have, strictly speaking, constructed a hybrid parametrization. One could
extend the procedure, introducing multiple effective temperatures that match all
sequences or even all deformation degrees of freedom separately to the MD stiff-
ness matrices. At the extreme, one ends up with the B and P equilibrium values
combined with the pure MD stiffness matrices. We also include these hybrid
combinations {q0,B, SMD} and {q0,B, SMD} in the analysis, denoted MB and MP,
respectively.

Although this combination of data from different sources seems somewhat arti-
ficial, it does avoid some of the weaknesses of the ‘pure’ approaches:

• The equilibrium values obtained from MD using the parm94 force field
[Cor95] are known to have Twist and Rise values that are lower than com-
monly accepted on the basis of structural data [Bev04].

• The stiffness matrices (even if rescaled) obtained from the crystal ensembles
suffer from the unjustified assumption of equipartition of energy.

In chapter 2, we compare the success of different parametrizations MD, B, P, MB
and MP in predicting binding affinities.
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2 Indirect Readout in Protein-DNA complexes

Sequence–dependent elasticity of DNA plays an important role in regulating specific
protein–DNA interactions. The formalism developed in the previous chapter can
give some insight into the mechanism of regulation. A test of its validity using
biochemical data on bacteriophage 434 repressor–DNA affinities is presented.

2.1 DNA-protein recognition

The DNA base sequence together with the genetic code as a dictionary encodes for
the amino acid sequence of all proteins that a living cell can produce. However,
the set of expressed proteins is not nearly enough information to keep a cell
running. At the very least, the expression levels of proteins have to be regulated
in response to environmental conditions, cell fate, cell cycle phase etc. Also, the
DNA molecule has to be physically handled; packing and replication need to be
spatially organized to allow the separation of genetic material at cytokinesis. For
all of these processes, targeted binding of a host of specialized proteins to their
specific sequence motifs on DNA is essential.

2.1.1 Another code in DNA?

It is an appealing idea is that besides the genetic code, an additional sequence
code is used at the binding sites of regulatory proteins on DNA, the operators.
This ‘recognition code’ would be used to store information required for gene
regulation and DNA management, and read out by the DNA–binding proteins.
Despite much effort to understand the mechanisms of protein–DNA recognition,
it has proved impossible to decipher a simple sequence code that can explain
specific protein–DNA interactions, based on direct chemical contacts between
amino acid side chains and bases [Mat88]. Refined versions of a recognition code
include adapted weights for each combination of residue and base, which may also
depend on their spatial arrangement [Suz95, Pab00, Cho97]. Their applicability
is however restricted to certain geometries or certain protein classes. It seems
that the recognition code resembles an industrial–strength encryption algorithm
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much more than a simple look-up table for codons. A possible explanation of
this complexity lies in the fact that DNA–protein recognition involves the coupled
elastic properties of DNA along the operator site.

2.1.2 Mechanisms of specific binding

The non-covalent binding (or complexation) of a protein to a specific stretch of
DNA is driven by the free energy gained in bringing the amino residues into contact
with their base counterparts. This involves enthalpic contributions, e.g. from the
formation of hydrogen bonds and salt bridges, as well as entropic parts, mainly
due to changes in the solvent entropy [JJ00], see also [Bru02] for a lucid review
of the basic physics involved. The complexation free energy thus depends on
chemical properties of the bases, which allows for specific binding according to the
chemical base identity. Thus, the DNA operator sequence is directly read out by
the protein, which usually binds in the major groove. An example in which binding
specificity is dominated by direct readout, is the zinc–finger class of proteins, see
e.g. [Dau99, Cho97].

However, complexation necessarily also depends on the elastic free energy re-
quired to distort both the protein and the operator into their three–dimensional
structure in the complex. This extra term always disfavors complexation, but it
does depend on DNA sequence. In this way, sequence–dependent structure and
deformability can contribute to binding specificity. This effect is called indirect
readout, and has been found to be important in the transcription factors bacterio-
phage 434 repressor [Kou87], lac repressor [Sas90a, Sas90b] and papillomavirus
E2 protein [Hin98], among many other examples. It is also important in nucleo-
some positioning [Tha99, Wid97]. See [Kou06] for a recent review of indirect
readout.

The relative importance of direct and indirect readout for protein–DNA binding
affinities have also been addressed computationally. The considered elastic models
range from a combination of fixed coarse–grained protein structure with DNA
rigid rod [Gro97, Gro05], rigid base–pair [Ste02, Gro04] and rigid base [Mor05]
models, to all-atom force fields with partial protein structure relaxation [Pai04a,
Pai04b] and more recently, with residue–dependent protein sidechain relaxation
[End06, Ash06], leading to numerically demanding algorithms.

In the following the focus is on the indirect readout part of the complexation
free energy and its relation to the elastic free energies within the rbp model.
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2.1 DNA-protein recognition

2.1.3 Competitive binding

In an idealized experiment, consider a protein that can bind different operator
sequences σ , deforming them into corresponding conformations q. This idealized
‘indirect readout–only’ protein has no intrinsic sequence preference, i.e. we assume
that direct readout which drives complex formation has the same strength for
all operators. It may be put in contact with a solution containing an ensemble
of fluctuating rbp chains, perhaps viral DNA, containing operators with relative
frequencies p(σ). Further assume that the free energy required to deform the
protein into its structure in the complex does not depend on the DNA sequence.
In this situation, the relative occupancies of the protein with the different operators
are entirely determined by elastic free energy differences.

Fixing an operator with sequence σ into a structure q costs a deformation free
energy Fσ(q). We multiply the probability p(σ) to find σ at all in the ensemble and
get the relative occupancy Q of (q, σ) compared to (q ′, σ ′) ,

Q =
p(q, σ) dVq

p(q ′, σ ′) dVq ′
= e−β(K(q,σ)−K(q ′,σ ′)). (2.1)

Using (1.7), this expression simplifies in the following two special cases:

On one hand, whenever all steps in the bps ensemble are equally frequent
(p(σ) = const), those sequences will bind best whose bound structures are the most
relaxed. Here,

Q =
p(q|σ)

p(q ′|σ ′)
= e−β(Fσ(q)−Fσ ′(q ′)). (2.2)

F accounts for the entropic cost of fixing the rbp deformation fluctuations to a value
q in the complex; softer steps acquire a higher entropic penalty of complexation.
Note that substituting the elastic energy E in (2.2) would give different results, since
E does not capture this sequence–dependent physical effect. For the parameter
sets we used, the term E − F = TΣ(σ) varies by up to 2 kBT .

On the other hand, the protein may be very stiff, forcing all sequences into one
fixed deformation q, combined with an arbitrary sequence distribution p(σ). In
that situation

Q =
p(σ|q)

p(σ ′|q)
= e−β(Gq(σ)−Gq(σ ′)). (2.3)

The sequence that minimizes G is the one that fits best with the prescribed structure,
when weighted with its frequency in the ensemble.

These two special cases coincide when q is fixed and p(σ) is uniform. Then
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2 Indirect Readout in Protein-DNA complexes

indeed F and G differ only by a constant, giving identical relative occupancies, see
(1.8).

How realistic is the idealized experiment discussed above? Neglecting direct
readout is far off most of the time, but it can be justified for appropriate subsites
of the operators, see chapter 3. For the sake of argument we have also treated
the bound conformation of the step as non-fluctuating. This is not a necessary
assumption. In fact, when treating the bound fluctuations as finite but independent
of (q, σ), all free energy differences are unchanged from the values given above.
Thus, the approximation made here is effectively that of weak dependence of
bound fluctuation strength on sequence and conformation.

2.1.4 Sequence–structure threading

In the sequence–structure threading approach (see e.g. [Pai04b, Mor05, Gro97]),
a set of different operator sequences is threaded through a single, fixed com-
plex structure, usually obtained from x-ray scattering. The resulting free energies
are then used to predict binding affinities in solution. This can clearly work
well only if the crystal structure is representative of the protein in solution. Fur-
ther, the protein needs to be much stiffer than the operator, enforcing a single,
sequence–independent bound conformation also in solution. At the same time,
a stiff protein stores little deformation energy, which justifies the assumption of
sequence–independent protein conformational energy. Also, the remaining fluctu-
ations of the bound rbp are suppressed by a stiff protein, so that their sequence
dependence can be neglected.1

In summary, the stiff protein limit justifies the idealizations made in the previous
paragraph, and coincides with the special case (2.3). The sequence–structure
threading approach will next be applied to a specific test case to evaluate its
performance.

1A toy model to clarify the limit: We represent a protein by a linear spring with stiffness kpr

and resting position xpr. The DNA operator sequence is represented by a spring with stiffness
kop = ηkpr and resting position xop. Upon ‘complexation’, driven by some external binding
energy, the springs are connected in parallel, summing up to k. Then one calculates the resting
position of the complex to be kpr

k
xpr +

kop
k

xop = xpr + O (η). At this position the ratio of stored
elastic energies becomes Epr

Eop
= η. In this sense, in the stiff protein limit η → 0, the bound DNA

conformation and protein deformation energy are sequence–independent. Deviations occur in
first order in the relative stiffness η.
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2.2 Indirect readout in 434 repressor

Figure 2.1 | Representation of 434 repressor–OR3 complex structure [Rod93]. The outer
5+5 and the inner 4 base pairs are shaded differently. Together they form the 14 base
pair binding site. The OR sequences are also shown.

2.2 Indirect readout in 434 repressor

The bacteriophage 434 repressor, fig. 2.1, is a well-studied example of indirect
readout. Mutations of the non-contacted region of the protein were surprisingly
found to affect DNA binding affinities. This was one of the first pieces of evidence
for indirect readout [Kou87].

2.2.1 Structure of the complex

The 434 repressor is a viral transcription factor that forms part of a genetic switch
between the lytic and lysogenic states in the bacteriophage 434 virus. There exist
two operator regions OR, OL in the bacteriophage genome with three binding
sites of 14 base pairs in each region [Kou87]. High–resolution x-ray crystal struc-
tures have been solved for the three operators OR1,2,3 [Agg88, Shi93, Rod93].
The protein binds in dimeric form in a so-called helix–turn–helix motif, making
the complex approximately two-fold rotationally symmetric. The outermost 5+5
bases on each binding site are directly contacted by two α-helices of the protein
dimer. The sequence of the outermost 4+4 bases is conserved in all six OR,L bind-
ing sites, with a single base exception. The consensus sequence of the contacted
outer 5+5 bases shows the two-fold symmetry that can be expected from the
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2 Indirect Readout in Protein-DNA complexes

structural symmetry.

In contrast, the inner four bases are not contacted directly. Their sequence
is neither conserved nor rotationally symmetric. Interestingly, binding affinities
of the native binding sites vary 40-fold, and those of synthetic binding sites can
vary as much as 200-fold, depending only on the sequence of the inner four bases
[Agg88, Kou87]. This is true even though in the existing structures none of the
individual bps is kinked strongly, and the overall bend is moderate, between 25 and
40 degrees. In gel shift experiments [Kou91], the overall bend was estimated to
be small and sequence-independent, supporting the idea that the protein is indeed
stiffer than DNA also in physiological solution conditions.

A correlation of affinity to the twisting rigidity and intrinsic twist of these
mutations was found in further biochemical studies, such as insertion or deletion
of a bp in the central region [Kou92, Kou88, Kou98].

Together these facts establish that indirect readout in the central region of the
complex is important in tuning the relative affinities of 434 repressor for different
operators. On the other hand, for the contacted outer 5+5 base pairs we expect no
particular elastic specificity. At these positions, protein–DNA contacts necessarily
dominate interaction energies since they drive the complexation. DNA distortion
is moderate and the protein is reasonably stiff, so quadratic bps potentials should
reflect this behavior. Moreover, the existence of three different structures allows
an evaluation of the sequence–structure threading approach. The 434 repressor
is thus an ideal candidate for a test of our formulation of the elastic free energies
within the rbp model, to be described next.

2.2.2 Relative binding affinities in 434 repressor

Experimental evidence for indirect readout in 434 repressor comes from the de-
pendence of binding affinity on the sequence of the central, non-contacted bases
[Kou87]. Can DNA elasticity alone already explain the observed affinities? If
it can and if in addition the protein forces all of the equally probable artificial
sequences into a common structure q, one expects that

β(Gq(σ) − Gq(σ ′)) = β(Fσ(q) − Fσ ′(q)) = ln
[

c1/2(σ)

c1/2(σ
′)

]
. (2.4)

Here the affinity c1/2(σ) is the (normalized) repressor concentration needed to
occupy half of the operators σ, which is proportional to p(σ|q) in dilute solution.
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2.2 Indirect readout in 434 repressor

But which version of F is the correct one? There exist three different structures
that may serve as template, and a total of seven different ways to parametrize
the elastic energy, see section 1.6. An overview of the affinity predictions for all
21 different resulting combinations is given in fig. 2.2 [Bec06]. In each of the
panels, the left hand side vs. right hand side of eqn. (2.4) is shown.2 They exhibit
widely varying root mean square (rms) deviation, ranging from 1.5 kBT to 26 kBT

depending on the parametrization and structure used. This variation occurs even
though the global energy scale agrees for all potentials, with the sole exception of
the rescaled B’, see sec 1.6.3.

Possible reasons are:

1. Failure of basic model assumptions: independent bps, stiff protein, elasticity
dominates binding free energy differences in the central region of 434;

2. The crystal structures do not correspond to the relevant structures in solution
closely enough;

3. The parametrizations of the potential are inexact.

2.2.3 Choice of a preferred parameter set

A posteriori, we can now check whether one combination of parametrization and
crystal structure stands out as the best model for the measured solution affinities.

The linear correlation coefficients shown in each panel vary between −0.52
and 0.64. They measure the quality of a linear regression of the data points
with arbitrary slope. Although a negative correlation coefficient does identify
bad correspondence, the correlation coefficients are insufficient as indicators of
fit quality. E.g, B’ has higher correlation than B but is far off the correct energy
scale. Indeed, the theoretical model to be compared with the data is a line of fixed
slope equal to one. The rms deviations from this model together with the linear
correlation indicate clearly that overall, the combination of MP potential and OR3

2We used affinity data of ten 14-bp artificial sequences, which differ only in the central base pairs
[Kou87]. The experimental affinities for the R1-R69 subdomain of the repressor given in this
paper were used, since this eliminates cooperative binding effects and corresponds to the domain
that was crystallized [Agg88]. All F differences are computed using the total 14-bp deformation
free energies for the same sequences in each of the three OR crystal structures. Out of the two
possible orientations in which the repressor can bind, we used the one with lower F value. This
makes a difference only for those three artificial sequences that are not self-complementary. All
possible combinations of σ and σ ′ are shown, so the plots are inversion symmetric.
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2 Indirect Readout in Protein-DNA complexes
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2.2 Indirect readout in 434 repressor

Figure 2.3 | Computed deformation free energy differences vs. measured log affinity dif-
ferences. From left to right, we used ∆F values for all structures and parametrizations
(AVG), the OR3 structure and all parametrizations (OR3), all structures and the MP
parametrization (MP), and OR3 together with MP (MP, OR3). Error bars indicate the
spread in ∆F.

structure gives the best agreement with measured affinities, at a comparatively very
low rms error 1.5 kBT and acceptable correlation 0.47. Although this is clearly
not enough for quantitative predictions, it should be mentioned that no fitting
parameter is involved here; in comparison to related, knowledge–based potential
approaches (e.g. in [Mor05]) that use a learning set of complexes with known
affinities as input, the quality of correlation appears surprisingly good.

Fig. 2.3 shows the same data as fig. 2.2, in summarized form. One can see that
the variation among parametrizations within the best structure (OR3 panel), is
greater than that among structures for the MP parametrization (MP). A standard
χ2-test using the respective error bars reveals that at a 5% confidence level, the
model β∆F = ∆ log c1/2 is compatible with the averaged data in the panel (OR3),
but is rejected for those in (MP). This is in accord with the observation that MP
together with OR1,2 give no positive correlation, while OR3 together with B, MB,
P and MP results in acceptable correlation coefficients.

These observations give some indication that the parametrization error 3. is
more important than the failure of basic approximations 1. made in the model,
and that improvements in the determination of a harmonic base pair potential
will eventually lead to quantitative affinity predictions. If we accept the MP
potential as a valid representation of solution DNA elasticity based on its small
rms deviation, we can then identify the OR3 structure as the template that is the
best representative of the affinities in solution.

33



2 Indirect Readout in Protein-DNA complexes

This also points to the basic limitation 2. of sequence–structure threading: it is
not clear a priori that the given structural template is at all suitable to calculate
solution binding affinities. In fact, if the protein structure is not rigid enough,
there may not even exist a single structural template that is able to account for
indirect readout.

Table 2.1 | Computed free energy differences for mutations of the inner four bases of
the sequence ACAATNNNNATTGT. Sequences used in [Kou87] are shown with the
experimental log affinity difference ∆ log c. In addition to these, the five highest and
lowest affinity random sequences are shown. For complementary sequences, the lower
F value was used.

rank β∆F ∆ log c NNNN rank β∆F ∆ log c NNNN
1. −1.9 AAAA 39. 0.9 2.7 ACGT
2. −1.5 AAAG 51. 1.3 1.1 GTAC
3. −1.4 ATAA 55. 1.5 2.8 AGCT
4. −1.2 0.3 TTAA 75. 2.2 0.3 AATT
5. −1. ATAG 132. 5.7 CATA
8. −0.5 −0.5 AAAT 133. 6.2 TGCA
17. 0. 0. ATAT 134. 6.8 CACA
21. 0.1 1.1 CTAG 135. 7. CATC
25. 0.3 0.6 GTAT 136. 8.6 CATG
37. 0.9 1.4 AGAT

Table 2.1 lists some of the binding affinity predictions made with the MP hybrid
potential–OR3 template combination [Bec06]. One can see that the range of com-
puted free energies is bigger than that of the measured ones, and that the measured
affinities are generally higher. The highest affinity sequence AAAA coincides with
the central part of the native sequence of OR3, which however differs slightly
from the consensus in the non-contacted region, see fig. 2.1. These observations
underscore the importance of ongoing efforts to improve DNA elastic potentials
[Bev04]. The quantitative prediction of indirect readout–mediated relative affini-
ties is suggested as a method to benchmark them. To test improved rbp potentials,
it appears helpful to extend this kind of experiments to the sequences with extreme
predicted affinities.

In conclusion of these results, for the discussion of localized specificity in chapter
3, the MP hybrid potential parametrization will be used chosen on the basis of its
superior performance in affinity prediction. To give an idea of the sensitivity of
results to the choice of parametrization, plots with error bars showing the variation
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2.2 Indirect readout in 434 repressor

among parameter sets are included in appendix A.1.
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3 Local elastic optimization

Although sequence–dependent elasticity is important for specific binding of DNA
operator sequences to proteins, there are always other important mechanisms for
specificity. In this chapter, we discuss how to identify binding subsites in which
elastic effects are dominant for specificity, by searching for local elastic sequence
optimization.

3.1 Local elasticity in 434 repressor

From the 434 repressor crystal structures, it is evident that the central region of the
operator is not contacted by the protein, so that direct chemical interactions cannot
provide a recognition mechanism there. This fact allowed the conclusion that the
central base–pair sequence is read out according to elastic free energy differences.
It was shown in chapter 2 that calculated elastic free energies of sequences that
differ in the central region, do indeed correlate with the experimentally observed
affinities.

It is now interesting to ask conversely: What is special about the detailed struc-
ture of the central stretch of the bound operator that produces this specificity?
Is the structure somehow optimized to perform indirect readout? Is it possible
to quantify such a feature more rigorously than by referring to DNA–protein
distances in a crystal structure?

3.1.1 Elastic free energy profiles

To start addressing these questions, consider the distribution of elastic energy along
the available 434 repressor–OR1,2,3 structures. In fig. 3.1 elastic energies Eσ(q)

vs. base pair number are plotted in a moving window of length 3 steps around each
bps. Partial energies for bend, twist, shear and stretch are calculated by replacing
the full covariance matrix C = S−1 (see eqn. (1.22)) by its (Ti,Ro), (Tw), (Sh,Sl)
and (Ri) submatrices, respectively.1

1In each case, the covariance 1×1 or 2×2 submatrix is inverted to give the partial energy stiffness
matrix. It is easily checked that this is equivalent to integrating out the other variables. Since all
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Figure 3.1 | Elastic energy E per bps along OR1,2,3, shown in units of kBT . A 3 bps
window and the MP parameter set were used. The top curve shows the full energy;
partial contributions are successively shifted down, see the legend.

The full and partial energies for the three crystal structures show significant
variation along the structure. However, curves for different structural templates
look remarkably different and have no common features at the central four base
positions. E.g, the increase in bending energy in the center visible in OR1,2 is
absent in OR3.

The overall bending angles for OR1,2,3 are around 25, 40 and 30 degrees,
respectively. Although OR1 has the lowest overall bend, OR3 clearly is the most
relaxed structure.

Also, the elastic energy is not strongly dominated by any one of the partial
energies. Rather, the identity of the most important partial energy varies between
the structures and even within each structure. In OR1 and OR3, bend and stretch
appear most important, respectively. In OR2 there is a balance between all four
partial energies.

The main contributions to the twist energy at bases 6 to 10 result from over-
twisting, in accord with experimental results that indicate overtwisting of the
central region [Kou92]. However, twist does not appear more important than
other partial energies.

The reason to show E here instead of the free energy F here is that the normal-

coupling stiffnesses are averaged out, the partial energies obtained in this way do not sum up to
the full energy.
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Figure 3.2 | Difference of free energy F to elastic energy E. The normalization–dependent
constant offsets are superimposed with a sequence–dependent variation. MP, 3 bps
average, partial energies as in fig. 3.1.
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Figure 3.3 | Elastic energy as in fig. 3.1 but including parametrization error bars. No offset,
MP, 3 bps average.

ization E(q0) = 0 allows a direct comparison of partial energies with different
dimensionality. When using F, the choice of volume scale in the angular vs. linear
dimensions of q space adds a constant offset, see (1.23). This is clearly visible
in fig. 3.2, where F − E is shown. Apart from the uninteresting constant, the
two versions of the deformation energy also differ by a sequence–dependent term
−TΣ(σ).

To complete the picture, the parametrization uncertainty of elastic energies is
shown in fig. 3.3. The error bars summarize the variation due to different choices
of parametrization. Their size is ± the standard deviation of E values computed
with the full set of {MP, MB, P, B, MD} parametrizations. While single values do
vary by up to 2 kBT , the global shape of the curves is well above this ‘noise’. Even
the finer details of the partial energies are significant.
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3.2 Elastic optimization

3.2 Elastic optimization

A first guess about optimization in protein–DNA complexes could be that the
elastic energy should be low (‘optimized’) at those base positions where indirect
readout takes place. As shown in the previous section, this is incorrect: The elastic
energy in itself does not exhibit any special features at the central four bases of the
434 complex. It seems worthwhile to think more carefully about how sequence
specificity and elastic optimization are related.

3.2.1 Optimal subsequences and indirect readout

In thermal equilibrium, when some protein binds specifically to a certain sequence,
this happens because the sequence has optimal binding free energy. It is then
interesting to ask, which part of the binding free energy is most important for
specificity. Certainly, if DNA elasticity is the dominant part, the operator must be
optimized with respect to DNA elasticity.

Our working hypothesis is the converse: We assume that if the sequence is
elastically optimized at a certain position along the operator, then DNA elasticity
is the dominant part of the binding free energy. Otherwise, elastic optimization
would occur just by coincidence. It is natural to call that position an indirect
readout position.

The strategy is then to detect elastic optimization as a marker for indirect read-
out. This may lead to false positive detections. To systematically exclude these
false positives, one would have to make a comparison of the indirect to the direct
readout part of the free energy. This additional information requires much more
detailed modeling, which is not attempted here. One can nevertheless reduce the
probability of false positives by a reasonably high threshold for detection and by
considering simultaneous optimization of multiple–base subsites, see below.

The question whether an operator is elastically optimal can be given two differ-
ent precise meanings. Consider a known structure of some stretch of DNA in a
co-crystal. We may ask

1. Is the structure optimal for the observed sequence? I.e, is the given structure
the most relaxed one for that sequence?

2. Is the sequence optimal for the observed structure? In other words, is it
more relaxed than other sequences?
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3 Local elastic optimization

The respective answers were already formulated in chapter 1: Question 1. corre-
sponds to the q with minimal Fσ(q) , question 2. to the σ with minimal Gq(σ).

One important objection2 can be made at this point: It may be true that the
elastically optimized sequences bind most strongly in an idealized test tube experi-
ment as introduced in section 2.1.3. However in Nature, the direct readout part
of the free energy drives binding and at the same time restricts the set of possible
binding sites to just a few cognate DNA operators in the relevant genome. There
is no reason why the indirect readout contribution should further increase binding
strength, if its biological function is just to fine–tune the affinities in a certain range.
On the contrary, overly strong binding must be avoided, since there has to be a
way to remove the protein from DNA at some point.

In the 434 repressor example, the 5+5 outer base pair sequence could provide
enough specificity to allow binding just to the OR,L sites, and the inner four posi-
tions, even though they exhibit indirect readout, would not appear optimized in
the sense of question 2.

In response to this objection, one can point out that while there may be no reason
why biological function requires optimization of elastic energy in the complex, it
is true that the observed crystal structures represent states where the total free
energy is minimized. The structural templates used to calculate free energies,
are co-crystallized with their respective native operator sequences. Therefore the
measured co-crystal structure is adapted to the native sequence.

The amount to which it is adapted to its elastic properties can be measured by
trying to fit other sequences into the same structure and checking if the elastic
free energy drops. At positions where this can be done, the complex structure
is obviously not accommodating very well the elastic properties of the native
sequence. Turning this around, at positions where the native sequence has the
lowest elastic free energy among all sequences, we postulate that indirect readout
dominates.

In this line of thought, the adaptation of the crystal structure to the native
operator sequence introduces a bias which justifies the assumption that the native
sequence must have the lowest free energy. In summary it is fair to say that the local
elastic optimization of the native sequence is an interesting observable, pointing
to dominant indirect readout. In accord with this picture, table 2.1 lists the native
OR3 free energy as the lowest possible one, and the OR1,2 free energies still in the

2Thanks to J. Widom for pointing this out.
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3.2 Elastic optimization

low 20% of the trial set of mutated sequences.

3.2.2 Measures of elastic optimization

For some stretch (q, σ) of DNA in a given co-crystal structure, we would like to
tell whether it is specifically bound because of DNA elasticity. Naively, one might
assume that this is the case if it carries a small elastic energy, but this not correct.
We are really asking: Compared to all mutated sequences, is σ elastically optimal?
In general, this is the case if K(q, σ) < K(q ′, σ ′) for all other (q ′, σ ′), as explained
in section 1.3.

The typical situation is that there is only one crystal structure q available as a
model for the solution complex. When threading sequences through that particular
structure, one automatically makes an additional simplification. The assumption
is that the (experimentally inaccessible) complexes (q ′, σ ′) of the protein with any
other DNA sequence σ ′ will force the DNA into essentially the same structure
q ′ ' q, which is valid in the stiff protein limit. Considering eqn. (1.7), the
approximation is that |Fσ ′(q) − Fσ ′(q ′)| � |Gq(σ) − Gq(σ ′)|, so that F difference
between structures can be neglected. The same approximation is effectively made
in [Pai04a], where after an initial partial structure relaxation the structure was
kept fixed, and in the static model of [Mor05]. The validity of the stiff protein
limit depends on the protein in question. However, when only one structure is
known, it is a reasonable strategy to see what the known part of the free energy
difference can explain.

Whenever all possible mutated sequences occur with equal probability p(σ ′) =

const, G differences coincide with F differences between sequences, see sec. 1.3. An
example of an F histogram of all sequence mutations is shown in fig. 3.5, discussed
in more detail below. A widely used [Gro04, AB05] way to quantify optimization
of the native sequence based on such histograms is the Z-score. In our case, it is
given by

Zmean =
〈Fσ〉− Fσnat〈

(Fσ − 〈Fσ〉)2
〉1/2 , (3.1)

i.e. the difference of the mean F to the native F, normalized by the width of
histogram. Since we are interested in the low F (optimized) tail of the histogram,
we consider also a modified score: the normalized difference of the native F to the
minimal F leads to

Zmin =
Fσnat − minσ{Fσ}〈
(Fσ − 〈Fσ〉)2

〉1/2 > 0. (3.2)
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3 Local elastic optimization

A shortcoming of any Z-score is that information on the global scale of free energy
differences in a histogram is disregarded by the normalization. No quantitative
connection to competitive binding experiments is impossible.

An alternative way to quantify optimization is to consider just the free energy
Gq(σnat) of the native sequence. G is the logarithm of a normalized pdf, so
a sequence σ has a higher–than–random probability of occurring if and only if
Gq(σ) is lower than that of an ensemble with p(σ ′|q) = const. A value Gq(σ) = 0
means that σ occurs with certainty at that deformation, Gq(σ) 6 ln 2 means that
σ has half of the total probability, and Gq(σ) = (l + 1) ln 4 is the random value for
a rbc with l steps.

Considering these properties, clearly the value of Gq(σ) already summarizes
information about how low the corresponding Fσ lies in the F histogram of all
sequences in the ensemble. This observation can be made more precise: In the case
p(σ ′) = const, from the definitions (1.4) and (1.6), we get Gq(σ) = Fσ(q) − F(q),
where βF(q) = − ln

∑
σ ′ e−βFσ ′(q). This can be interpreted as the difference of

Fσ to an ‘exponential mean’ F which is taken over the Boltzmann factors of all
mutations. In this respect, the sequence potential Gq(σ) is similar to a Z-score, but
one that is computed for the histogram of Boltzmann weights.

Since G is a true free energy, it can be directly related to relative affinities
in a competitive binding experiment, unlike the Z-scores. By normalizing G to
the length of the considered window, an unbiased comparison of specificity for
different subsequence window lengths is also possible. The expected dependence
of a Z-score on window length is less clear [AB05].

3.2.3 Quantifying elastic optimization in 434 repressor

What can be learned by applying the different measures of elastic optimization
of the native sequence to the 434 repressor test case? Fig. 3.4 gives an overview
[Bec06]. The free energies F, G and the Z-scores are calculated with respect to
sequences in a centered moving window of length 3 bps, which gives sufficient
spatial resolution to distinguish the central from the outer base pairs.

As emphasized before, the deformation free energy shows no features special to
the inner four bases (6 to 9). What matters for sequence optimization is only the
native value of F compared to the whole F distribution of mutated sequences.

As an example of such a distribution, in fig. 3.5 the F histograms of sets of
mutated sequences in three consecutive 5 bps windows along the OR2 structure are
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Figure 3.4 | Elastic optimization in 434 repressor structures OR1,2,3. Deformation free
energy F, first row. Z-scores of mean (green) and minimum (gray), second row. The
third row shows the sequence potential G together with the random level. F is given
per bps while G is per bp. Again, a moving window of 3 bps was used. Lighter shading
highlights the inner 4 bp, see also 2.1. MP parameters.

shown. One sees that the free energies follow a skewed, Gamma–like distribution
which varies in both mean and width. The native value is lowest in the left window
position, but only in the central window does the native sequence lie below the
mean and close to the minimum of the distribution. So the low F value in the left
window does not correspond to an optimal sequence!

Quantifying these observations, consider again fig. 3.4. The second row shows
the Z-scores Zmean and Zmin, computed from F histograms of all mutated sequences
in the same moving windows as in the rest of the panel. In correspondence
with fig. 3.5, the OR2 plot shows a maximum in the central region. Similar
bumps in the other Z-score plots show that also in OR1,3 the native sequence is
particularly low–lying only at the central base positions. The constant difference
Zmean − Zmin indicates that the shape (not the width!) of the histograms stays the
same. Therefore the two Z-scores carry essentially the same information.

The third row of fig. 3.4 shows the sequence potential G, given per bp, together
with the random G level. It is computed in a 3 bps (i.e. 4 bp) window and for
a uniform sequence probability p(σ). In contrast to the deformation energy, G
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Figure 3.5 | Histograms of the free energy per bps of mutated sequences, around bps 3, 7
and 11 from left to right. The red line indicates the F value of the native sequence. All
possible mutations inside a 5 bps window were generated. OR2 structure.

shows a significant dip below the random value close to the center, in all structures.
Since G is normalized per bp, a value G = .5 corresponds to 8% probability of the
native 4 bp subsequence in the unbiased ensemble, which is 20 times the random
value of 4−4 ' 0.4%.

The G dip shows that subsequences around the central, but not the outer, base
pairs of the binding site occur with a probability above chance, when accounting
only for DNA elasticity. In this sense the respective native sequences of the central
base pairs are optimized in each of the three available structures. The minimum
in G agrees well with the maximum of Zmin, which can be explained with the
exponentially high weight of the sequences with low F.

Following the reasoning in section 3.2.1, these measures give a clear indication
for indirect readout mediated by DNA elasticity in the central region of 434
repressor. The fact that all available structures show the same feature, lends
support to the method of inferring the presence of indirect readout from one
representative crystal structure in general.

The moving window used in the profiles smoothes the results, and provides
better defined histograms in the case of the Z-score. In the above results, the
moving window length is not crucial for the central dip. While any window from
1 to 5 bps will show the same trend, there is a tradeoff between spatial resolution
and noise. Importantly, the feature of a central dip is robust with respect to
parametrization errors, see Appendix A.1.
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Figure 3.6 | Sequence potential G for OR1,2,3. From top to bottom, shifted in 2 kBT steps:
Full sequence–dependence, averaged equilibrium values, averaged stiffness. The random
baseline is at 2 ln 2 kBT .

3.3 Origins of specificity

3.3.1 Structure vs. stiffness

Indirect readout is caused by the sequence dependence of both DNA structure
and DNA stiffness.Which dependence is stronger? Either one can be selectively
switched off: By sequence–averaging the equilibrium values, the structural ef-
fect is eliminated; by averaging the covariance matrices, the effect of stiffness is
suppressed.

The profiles of the resulting partially averaged sequence free energies in 434
repressor are shown in fig. 3.6 [Bec06]. Interestingly, the characteristic G dip at
the central bases persists when stiffness matrices are averaged, in fact the G curve
roughly traces the fully sequence–dependent one. In contrast, averaging equilib-
rium values and retaining sequence dependent stiffness, does alter the shape of the
curves, and the central G dip is lost in OR2,3. This indicates that sequence depen-
dent structure is more important for indirect readout than sequence dependent
stiffness, at least in the only moderately deformed example of the 434 repressor.

3.3.2 Bending vs. twisting

Is it possible to explain sequence specificity by a reduced set of variables? E.g. can
twisting alone explain indirect readout in the 434 repressor, as suggested by the
experimental fact [Kou92] that operators with higher twist in the central region
have higher affinity for 434 repressor than those with lower twist? This question
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Figure 3.7 | Sequence potential G along OR1,2,3, analogous to fig. 3.1. The partial free
energies are shifted down by 2 kBT successively, and each one is shown together with
the level of random probability. A 3 bps moving window was used.

can be addressed using partial sequence free energies, defined in the same way as
G but with subsets of the conformation variables. In fig. 3.7 we show both full
and partial sequence free energies (compare fig. 3.1). The result is ambiguous. In
OR2, twist can account for the characteristic G minimum in the center. In the
other structures, sequence specificity appears to arise from an interplay between
all deformation modes, and and thus cannot be generally attributed to the twisting
mode only.

3.4 Elastic consensus sequences

The central 4 bp native subsequences are elastically optimized in the 434 repressor
structures. But how strongly is the identity of each individual base of the native
sequence preferred? One can try using very short subsequences to calculate G,
but then the results get noisy. A typical example of the tradeoff between spatial
resolution and noise is shown in fig. 3.8.

The most widely used way of describing localized specificity is not a free energy
profile; instead it is based on the concept of a consensus sequence. Here, usually
on the basis of a biochemical competitive binding assay, a set of operators for the
protein question is the data. Aligning these sequences, one can then look for base
identities that are ‘conserved’. E.g, it may happen that b4 = G is required for
binding in any sequence. Combining this kind of information for different base
position, the consensus sequence might look something like to ACNGNNA, with
undetermined bases that are denoted N.
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Figure 3.8 | Elastic energy (E, per bps) and sequence free energy (G, per bp) in the OR1
structure. The moving window lengths 1, 2 and 3 bps are shown with short, long and no
dashes, respectively. While using a moving window for E amounts to a simple moving
average, this is not the case for G.

3.4.1 Single–base elastic consensus sequences

This approach has been made quantitative for the case where an exhaustive set of
binding sequences is available [Sch90]: Instead of considering only whether a cer-
tain base identity is required, one can incorporate the strength of this requirement.
This is done by scaling the height letters in the consensus sequence by the relative
frequency of that base. This is a preliminary version of the so-called sequence
logos [Sch90] which show the four base letters with varying height stacked on top
of each other at operator position.

This kind of idea can be applied in the context of elastic sequence specificity.
Moreover, we will extend the approach to include correlated preferences for short
subsequences instead of isolated bases only [Bec06].

Assuming a stiff protein with structure q, and regarding only DNA elasticity, mu-
tated operator sequences σ ′ of length l bind with a probability p(σ ′|q) = e−βGq(σ ′).
Instead of looking at an entire sequence one can first ask for the probability pi(b)

to find just the i-th base b ′
i = b in all length l subsequences. It is given by the

expectation
pi(b) =

∑ ′

σ ′

δbb ′
i
e−βGq(σ ′) =:

〈
δb·
∣∣
i

〉
(3.3)

where δ is the Kronecker delta. See 1.4 for the notation. Using eqn. (1.15),we
have [Bec06]

pi(b) =
1TT(q1) · · · T(qi−1)PbT(qi) · · · T(ql)1

1TT(q1) · · · T(ql)1
. (3.4)

Here, the projection matrix onto the base b, (Pb)b ′b ′′ = δb ′bδb b ′′ has to be
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3 Local elastic optimization

inserted at position i. Note that if the transfer matrices T were scalars, this would
reduce to a purely local expression depending only on bi−1, bi, bi+1. However
the elastic step energy in conformation space induces short–range correlations in
sequence space, embodied in the non-commuting transfer matrices. Note that it is
not necessary to make an approximation of additive free energy in sequence space
(as done in [Mor05] in a related context).

Calculating pi(b) for all bases b =A,T,C,G along a given structure, using cen-
tered windows of constant length, gives a base–per–base picture of elastic prefer-
ence in the structure. This information is often called a weight matrix. To check
for elastic preference for the native sequence, one can just pick out b = bnat, the
native base at every position.

3.4.2 Multiple–base correlated consensus

We have seen above that the step deformation energy introduces correlations in the
sequence. It is therefore natural to extend the approach to correlation functions of
k + 1 bases (where k = 0 is the case in sec. 3.4.1). The joint probability pi,i+k(σ)

to find k + 1 specific bases bi . . . bi+k = σ at positions (i, . . . , i + k) is not hard to
write down using the transfer matrix formulation. One just has to insert projectors
at all of these base positions [Bec06],

pi,i+k(σ) =
〈
δbi·

∣∣
i
· · · δbi+k·

∣∣
i+k

〉
=

1TT(q1) · · · T(qi−1)Pbi
T(qi)Pbi+1T(qi+1) · · ·Pbi+k

T(qi+k) · · · T(ql)1

1TT(q1) · · · T(ql)1
. (3.5)

Again, if the ‘tails’ of non-projected transition operators to the left and right were
scalars and canceled with the denominator, one would end up with the probability
p(σ|q) of the k + 1-bp sequence σ alone, see sec. 1.4. The difference to the full
expression pi,i+k(σ) is that the latter includes sequence correlations extending
left and right from the subsequence σ. When k = l, both probabilities agree.
In practice, one can simply choose for l the whole binding site length, since the
computational cost is O(l) only.

It has been pointed out [Sch90] that different shapes of distributions pi(b)

contain varying amounts of information, and that this gives a measure of sequence
specificity at that position. E.g, any position i at which all bases are equally
probable has zero Shannon information and it clearly carries no elastic specificity
whatsoever.
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3.4 Elastic consensus sequences

The entropy of the distribution pi,i+k(σ) is

Σi,i+k = −
∑ ′

σ ′

pi,i+k(σ ′) ln[pi,i+k(σ ′)] 6 (k + 1) ln 4. (3.6)

From this a measure for the information content of the distribution that ranges
from 0 to 1 is derived as

Ii,i+k = 1 − Σi,i+k/((k + 1) ln 4). (3.7)

The method [Sch90] of scaling the base frequencies with the information content
of the distribution at each position to get a compact representation of sequence
preferences can be transferred to our situation: Ii,i+kpi,i+k(σ) gives the relative
frequency of σ, scaled with the information content which indicates the overall
strength of base preference at that position. However this quantity cannot be rep-
resented as a sequence logo with the usual letter scaling notation whenever k > 0,
since the neighboring subsites in a moving window overlap with each other. How-
ever, the most interesting information can be shown by plotting Ii,i+kpi,i+k(σnat)

for the native subsequences only, see fig. 3.9 below. Such a plot shows directly
whether a strong elastic sequence preference exists and how well the native se-
quence coincides with it. Thus Ii,i+kpi,i+k(σnat) gives a local marker for which
significantly nonzero values point to elastic specificity [Bec06]. Again, since the
subsequence length of interest is usually just a few base pairs, computation is cheap.

3.4.3 Native vs. elastic consensus sequences in 434 repressor

How do the elastic consensus sequences look in our test case?

Figure 3.9 shows the similarity of the native sequence to elastic consensus. The
plots of the scaled native probability I p indicate elastic specificity of the native
sequence on the level of single base–pairs, dimers, and tetramers, from top to
bottom. Interestingly, in the OR1,2 complex structures, elastic specificity is con-
centrated on two central bases at positions 7 and 8, while the OR3 structure shows
a more distributed preference, mainly at positions 5 and 7. Going from from base–
pairs to dimers, the peak for OR1,2 at bps 7/8 stays sharp. For the tetramers, the
distribution shows still a concentration to a preferred set of sequences indicated
by the maximum in I but the native sequence cannot claim a significant part of the
total weight among its 44 competitors anymore. In summary, the OR1 structure
exhibits the strongest elastic specificity, localized to a dinucleotide, and OR3 has a
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Figure 3.9 | Similarity to elastic consensus for native subsequences in the OR complexes.
Information (gray) and scaled native probability (green) are shown for 1, 2 and 4 bp sub-
sequences, from top to bottom, centered on the subsequence window. MP parameters.

more distributed specificity.

3.5 Summary

A theoretical framework for modeling indirect readout based on appropriate elas-
tic free energies was introduced in chapter 1. These describe affinities in idealized
competitive binding experiments, and compare favorably to experimental affini-
ties, see chapter 2. Starting form the elastic free energies, statistical markers were
developed that can detect sites of dominant indirect readout by locating elastically
optimized subsequences in protein–DNA co-crystals. They are linked to experi-
mentally measurable ensemble properties of relative binding affinities of operators
mutated at these sites, as detailed in section 3.2.1.

The success of this approach depends on the applicability of the particular model
used to describe DNA elasticity, as well as on the quality of the parametrization.
The description on the rigid base–pair level appears as a sensible compromise
between computationally much more expensive all-atom models on one hand and
coarser rigid rod representations on the other. State–of–the–art parametrizations
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from MD simulation and from structural data analysis were combined using a new,
microscopic method of adapting the effective temperature scale [Bec06].

Quantitative predictions for relative binding affinities depend quite sensitively
on the choice of parametrization. In the case of the 434 repressor, results averaged
over the available elastic potentials and structural templates are compatible with
measured binding affinities, but the margins of error are too wide to allow quan-
titative predictions. Closer inspection showed that the new MP hybrid potential
[Bec06] performs significantly better than alternative parametrizations.

Qualitative observations appear much more robust with respect to the para-
metrization uncertainty, as can be appreciated by plotting parametrization error
bars. Examples are the location of indirect readout sites, the relative importance
of structure and elasticity for specificity, or the distinction of contributions from
different elastic degrees of freedom, see also appendix A.1.

The deformation fluctuations of base pairs in the model are taken to be indepen-
dent, which is an oversimplification. Since adjacent rbp steps are coupled through
the DNA sugar–phosphate backbones, their fluctuations are expected to be corre-
lated to some extent. To overcome this limitation, two different ways to refine of
the model can be considered.

One is the inclusion of nearest-neighbor step cross–correlation terms in the
rbp elastic energy, leading to tetranucleotide stiffness matrices. The corrections
to a dinucleotide model due to flanking base sequence were recently investi-
gated [AB05] using MD simulation. In most cases these are much smaller than the
difference between the dinucleotide potentials we used for the same step. At the
precision of parametrization available today, these correlations are still a secondary
effect.

Another possible refinement is to consider rigid bases instead of rigid base–pairs.
There are indications from MD simulation that this improves the quality of a
purely local description [Mad]. However, a corresponding parameter set is not
available, so an experimental test of this extended model cannot yet be performed.

In the bacteriophage 434 repressor complex, the elastic energy (fig. 3.1) and
specificity (fig. 3.7) profiles of the OR1,2,3 co-crystal structures reveal differences
in detail. However, in all three cases, agreement between the native and the
elastic consensus sequence is confined to the central, not directly contacted part
of the operator. On a qualitative level, this supports the working hypothesis that
strong elastic optimization in protein–DNA co-crystals is an indicator for dominant
indirect readout in real protein-DNA solution complexes, which is at heart of the
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proposed marker for indirect readout [Bec06].
While the numerical complexity of the present analysis is negligible, DNA defor-

mation (free) energies in protein–DNA co-crystals substantially extend the insights
that can be gained from structural data.
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4 Rigid base–pair chains

Starting with this chapter, the perspective on DNA elasticity is shifted; Instead of
single base–pair steps that are individually constrained to some conformation, we
now consider rigid–body chains that fluctuate as a whole. Deformations occurring
at different steps of the chain can be conveniently related using group language
which is successively developed in this chapter in a rather formal way. The final
section then relates the introduced mathematical notions back to the physics.

While none of the mathematical tools presented in the section is new, their sys-
tematic collection and application constitutes a novel approach to DNA mechanics.

4.1 Linear elastic response of a rigid base–pair chain

In order to give a physical motivation for the formalism to be presented in the
following, let’s consider a stretch of homogeneous DNA, modeled by a rbc, in
a thermal environment. We maintain the basic assumption that its step confor-
mations fluctuate independently. Each rbp step then obeys a thermal equilibrium
distribution, carrying the mean elastic energy of 6

2kBT .

Figure 4.1 | Snapshots of a thermally fluctuating, 42-bp chain, aligned on, or clamped at,
the first bp (far left).
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Fig. 4.1 shows a collection of random conformations, as seen from from a frame
of reference that is fixed to rbp frame 1. Clearly, the deviation from the regular
helical equilibrium conformation grows with the bp number. More importantly, a
bending deformation close to frame 1 results in a large lateral displacement of e.g.
frame 42, while bending at frame 40 doesn’t displace frame 42 much. When seen
from a fixed material frame, all rbp steps are not the same; they differ by their
respective lever arm with respect to the fixed frame.

The same observation applies to the linear response of a rbc to external forces
and torques (cf. section 1.5.1): Fig. 4.1 can also be interpreted as representing a
rbc which is clamped at the first bp frame. Any transversal force acting at frame
42 then induces a torque on the other bp steps by lever action. The lever arm is
longest at frame 1, which will therefore feel the highest torque. The response of the
chain is a sum of the responses of the individual steps, weighted with appropriate
leverage terms.

The basic quantities that enter the description can be summarized as follows:

Step conformations (ξ) are the six degrees of freedom of every step, i.e. the
configuration space of the model. Rotations are converted into lateral dis-
placement at distant steps by the connecting chain segment.

Elastic energies (E) are naturally given with respect to the local material frame.
Apart from sequence dependence, the functional form E(ξ) in the material
frame is the same for all steps.

Forces (µ) are the differential change of elastic energy when varying the confor-
mation, µ = −dE. The generalized force µ includes a linear force and a
torque component. Lateral linear forces at distant steps induce torque by
lever action of the intermediate chain segment.

To understand the collective mechanics of a rbc, it is essential to relate the different
frames of reference along the chain. They are connected by the group SE(3) of
Euclidean frame transformations, or rigid motions. SE(3) constitutes both the
configuration space and the basic transformation group of the rbp model. We will
consider its mathematical structure in some detail in section 4.2 below; the link to
rbp elasticity will be made in section 4.3.
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4.2 Basic properties of the rigid motion group

4.2 Basic properties of the rigid motion group

Some Lie group theory basics are put into the context of our specific example
SE(3), setting up the tools and notation used later on. The basic approach is
adapted from the robot kinematics literature [Mur93, Zef02]; for more mathemat-
ical background, see [Sat86, Lee02].

4.2.1 Homogeneous representation

The position and orientation of a right–handed, orthonormal frame in three–
dimensional Euclidean space is determined by six real parameters. The position
is specified by a vector p from the lab frame to its origin. The three orientational
parameters can be given in many possible ways, such as (some choice of) Euler
angles, the orientation and magnitude of the rotation axis vector etc, each of which
has its advantages and limitations. We avoid a choice of coordinates here by using
the whole 3 × 3 rotation matrix which has the frame’s body axes as its columns,
R = (e1, e2, e3). To write the frame as a so-called homogeneous matrix, we add an
extra row to obtain a 4× 4 matrix. In block form1:

g =

[
e1 e2 e3 p

0 0 0 1

]
=

[
R p

0 1

]
. (4.1)

The main advantage of this notation is that frame transformations can be written as
a matrix multiplication. If ·x denotes a point’s Cartesian coordinates with respect
to some frame x = 1, 2, and R12, p12 specify the frame 2 given with respect to
frame 1, then [

q1

1

]
=

[
R12q2 + p12

1

]
= g12

[
q2

1

]
. (4.2)

Concatenating frame transformations, one sees immediately that

g13 = g12g23 , and (4.3)

g21 = g−1
12 =

[
RT

12 −RT
12p12

0 1

]
. (4.4)

The identity transformation e is given by the 4× 4 identity matrix I4.
This shows that the g-matrices form a faithful matrix representation of the

group of frame transformations in three–dimensional Euclidean space. This so-

1As a notational convention, block matrices are always written with square brackets.
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Figure 4.2 | Conjugation. A rigid motion transforming the body frames from their initial
(red) to their final positions (black). In this particular example, it looks like a rotation
and translation h when using the frames ‘1’, or like a pure rotation igh, when using the
frames ‘2’.

called special Euclidean group SE(3) is the semidirect product SO(3) n R3 of
the three–dimensional rotations and translations. SE(3) (or shorter, SE) is a six-
dimensional Lie group, i.e. its group space is a smooth manifold, on which the
group multiplication and inverse operations are smooth maps.

4.2.2 Left and right translations

Group multiplication by g from the left is called left translation2, lg : SE →
SE, h 7→ gh. The complementary notion is right translation rg : h 7→ hg. The map
ig = lg ◦ rg−1 = rg−1 ◦ lg : h 7→ ghg−1 is called conjugation by g. As can be seen
from eqns. (4.2) and (4.3), lg implements a change of the (non-moving) lab frame
of reference by an amount g−1. In a similar way, rg can be seen to correspond to
a change of the (moving) body frame of reference from e to g. All of lg, rg, ig are
bijective with inverse maps lg−1 , rg−1 , ig−1 , respectively.

Consider for fixed h, the map g 7→ igh. This amounts to changing both the
lab and the body frame together, by an amount of g−1, see fig. 4.2. It is shown
readily that if hp is a pure translation, ighp is a translation by the same distance
but in a direction rotated by R. 3 Rotations on the other hand become mixed with
translations when changing reference frames with ig.

2This is not to be confused with “translations” which are the group elements without rotation part,
i.e. with R = I3.

3This makes the translations a ‘normal subgroup’ of SE.
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Figure 4.3 | Left (V, red) and right (W, black) invariant vector fields visualized on a
subgroup of pure rotations around a fixed axis.

4.2.3 Vector fields

A tangent vector V based at a point g in the manifold SE can be defined as the
velocity vector V = ġ(0) to some smooth curve g(s) with g(0) = g. It acts on
functions f : SE → R by taking the directional derivative Vf := d

ds
f(g(s)) (a real

number). At each point g on the group manifold, the tangent vectors span the
six–dimensional tangent space TgSE. A smooth map V : g 7→ V

∣∣
g
∈ TgSE is called

a vector field. As a special case, coordinate vector fields ∂qi take the derivative in
the direction of the local coordinate qi.

The chain rule reads as follows: For a smooth map ϕ : SE → SE, we have
V(f ◦ϕ) = (ϕ∗V)f. Here ϕ∗ : TgSE → Tϕ(g)SE is variously known as tangent map,
differential map, or pushforward of ϕ. In local coordinates {qi} and {ϕi}, it is the
Jacobian matrix

(
∂ϕi

∂qj

)
. Writing also V = Vi∂qi in local coordinates, we get the

usual chain rule: V(f ◦ϕ) = ∂ϕi

∂qj Vj∂ϕif.

Using left translation in place of ϕ, we can move any vector to a different
base point: If V is based at h, lg∗V is based at gh. An important special class
of vector fields is in some sense ‘parallel to the group operation’: V is called left
invariant if V

∣∣
gh

= lg∗V
∣∣
h

for all g, h. As a consequence, any left invariant field V

is completely determined by its values at e; to evaluate it at other points, just left
translate it over using lg∗. Since left invariance means invariance under changes of
the lab frame (sec. 4.2.2), local material properties are necessarily left invariant.

In the same way, W is right invariant if W
∣∣
hg

= rg∗W
∣∣
h

for all g, h, i.e. W does
not change when using a different material frame. Therefore, external forces are
expected to be right invariant.
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4 Rigid base–pair chains

4.2.4 The Lie algebra

The left invariant vector fields span a six-dimensional vector space se(3) (or short,
se), which can be identified with TeSE. Its elements are the infinitesimal generators
of the group. Moreover, the commutator of left invariant vector fields [U, V]f =

UVf−VUf is again left invariant. se with the commutator bracket [·, ·] : se×se → se
is the Lie algebra of SE.

We calculate the homogeneous matrix representation of the infinitesimal gen-
erators. Any vector is the tangent vector of some curve, so V

∣∣
g

= ġ for some
choice of curve g(s). Since the group operation is linear in the matrix represen-
tation, it coincides with its own tangent map: lg∗ = g · . We then get explicitly4

V
∣∣
e

= lg−1∗ġ = g−1ġ =
[

RTṘ RTṗ
0 0

]
. Since RTṘ is an antisymmetric matrix, a

matrix basis for se is given by

Xi =

[
εi 0
0 0

]
, with (εi)jk = εjik and

Xi+3 =

[
0 di

0 0

]
, with (di)j = δij.

(4.5)

Here, εijk and δij are the antisymmetric and symmetric tensors, respectively, and
1 6 i, j, k 6 3. We can write any infinitesimal generator uniquely in terms of this
basis as V

∣∣
e

= ViXi.

For 1 6 i 6 3, Xi generates a rotation around the di axis, while Xi+3 generates a
translation along di. The generators satisfy a real version of the usual commutation
relations of angular and linear momentum in quantum mechanics:

[Xi, Xj] = εk
ijXk, [Xi, Xj+3] = εk

ijXk+3, [Xi+3, Xj+3] = 0; 1 6 i, j, k 6 3. (4.6)

One sees that {Xi}16i63 span the subalgebra so(3) (or short, so) of three–dimensional
rotations, while {Xi+3}16i63 span the commutative subalgebra of translations. The
commutation relations are tabulated in the structure constants ck

ij via

[Xi, Xj] = ck
ijXk, 1 6 i, j, k 6 6. (4.7)

A complementary set of relations are given by the anticommutators {Xi, Xj} =

4The notation does not distinguish between a tangent vector and its homogeneous matrix repre-
sentation. Both are completely equivalent but suggest different a different viewpoint: A tangent
vector carries the association of a direction, which is not what comes to mind first when one
thinks about a matrix.
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4.2 Basic properties of the rigid motion group

Figure 4.4 | Left and right invariant frames. The group elements g, . . . are pure rotations
around the lab z axis. The vector fields L1,2 rotate along, while R1,2 do not change.

(XiXj + XjXi). Unlike the commutators, the resulting matrices are not elements of
the Lie algebra and thus cannot be represented in terms of the basis {Xi}i. We add
the symmetric 4×4 basis matrices ∆ij with entries (δi

j+δj
i). The anticommutation

relations then are

{Xi, Xj} = ∆ij − δijδ
kl∆kl, {Xi, Xj+3} = εk

ijXk+3, {Xi+3, Xj+3} = 0;

1 6 i, j, k, l 6 3. (4.8)

4.2.5 Invariant frames

The left invariant vector fields provide a basis for all tangent spaces TgSE, i.e. a
‘moving frame’. We will denote this left invariant frame5 by {Li}16i66, where
Li

∣∣
g

= lg∗Xi has the matrix representation gXi. Any vector has unique compo-
nents in this basis: V = ViLi. However, it is impossible to find local coordinates so
that the Li coincide everywhere with the partial derivatives in these coordinates;
{Li} is not a coordinate frame.6

In the same way, a right invariant frame {Ri}16i66, Ri

∣∣
g

= rg∗Xi can be built. It
has the matrix representation Xig. Interestingly, left invariant fields do commute
with right invariant ones, which follows from the fact that even for finite group
operations, lgrg ′h = rg ′lgh = ghg ′. Summarizing

[Li, Lj] = ck
ijLk; [Ri, Rj] = −ck

ijRk; [Li, Rj] = 0. (4.9)

5This is not to be confused with a ‘frame’ which is an element of SE.
6 Proof: for any coordinate frame [∂i, ∂j] = 0, in contradiction to (4.6).
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4 Rigid base–pair chains

The action of any left invariant vector field V on a function f by differentiation
can be written in matrix form as

V
∣∣
g
f = ViLi

∣∣
g
f = Vi d

ds

∣∣∣∣
0
f (g(e + s Xi)) . (4.10)

In a similar way, the action of a right invariant vector field W on a function is given
by

W
∣∣
g
f = WiRi

∣∣
g
f = Wi d

ds

∣∣∣∣
0
f ((e + s Xi)g) . (4.11)

It is useful to group the invariant components in rotational and translational
parts: (Vi)16i66 = (ω, v). Here, ω and v are three–dimensional component
vectors. The matrix representation becomes

V
∣∣
e

= ViXi =

[
ω̂ v

0 0

]
,

where ω̂ = ωiεi is the 3×3 matrix that implements the cross product: ω̂ = ω× · .
Both parts of V have direct physical meaning: ω is the angular velocity and v is
the linear velocity of the infinitesimal motion generated by V.

We will generally use the letter ξ to denote a column vector of left invariant
components of the velocity of a curve g(s), and ζ for right invariant components
in the following. To get the velocity components ξ and ζ of some curve g(s), one
needs to solve the linear equations

ξi(s)Xi = g−1(s)ġ(s) and ζi(s)Xi = ġ(s)g−1(s), (4.12)

respectively.

4.2.6 The adjoint representation

To be able to switch between left and right invariant components, we calculate the
g dependent transition matrix. Note that Li

∣∣
e

= Ri

∣∣
e

= Xi so

Li

∣∣
g

= lg∗Ri

∣∣
e

= lg∗rg−1∗Ri

∣∣
g

= ig∗Ri

∣∣
g
. (4.13)

The matrix representation of ig∗ is called the adjoint matrix Ad g. If a vector field
V
∣∣
g

= ξi(g)Li

∣∣
g

in left invariant components, its right invariant components are
ζ = Ad g ξ. Explicitly, we get from (4.12) or (4.13),

gXig
−1 = Ad gj

iXj, (4.14)
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4.2 Basic properties of the rigid motion group

and the (3 + 3)× (3 + 3) block matrix comes out to be

Adg =

[
R 0
p̂R R

]
. (4.15)

The Ad matrices form an alternative faithful matrix representation of the group,
isomorphic to the homogeneous representation. Specifically, we have the relations

Ad−1
g := (Ad g)−1 = Ad(g−1), Ad gh = Ad g Ad h. (4.16)

They are also compatible with the commutators:

[Ad g V, Ad g W] = Ad g [V, W]. (4.17)

Thinking again of a smooth curve g(s), if ġ(0)’s left invariant components are
ξ = (ωl, vl) we can get the corresponding right invariant components as

ζ =

[
ωr

vr

]
= Ad g(0)

[
ωl

vl

]
=

[
Rωl

Rvl + p× Rωl

]
. (4.18)

Not surprisingly, this is the composition rule for linear and angular velocities: The
angular velocity vector is merely rotated, see also fig. 4.4. In contrast, the linear
velocity vr attains an extra contribution due to the axis offset.

Differentiating one step further, one defines ad V = Vi

∣∣
g=e

Ad g, acting on the
matrix entries, so ad V is again a 6× 6 matrix. Using the definition,

ad Xi Xj = Xi

∣∣
g=e

gXjg
−1 = XiXj − XjXi, (4.19)

so the adjoint matrix ad is the matrix representation of the commutator: ad V =

[V, ·], from which follows (ad Xi)
j
k = cj

ik. In block matrix notation,

ad V =

[
ω̂ 0
v̂ ω̂

]
. (4.20)

From (4.17) it follows that

ad[V, W] = [ad V, ad W], (4.21)

which is the Jacobi identity for the commutators.
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4 Rigid base–pair chains

Figure 4.5 | Exponential coordinates on SE. The components ω and v give angular and
linear velocity of a screw motion ending at exp(ω, v).

4.2.7 The exponential map

Any Lie group G can be parametrized by its infinitesimal generators in a neighbor-
hood of the identity. This is achieved by the exponential map exp : TeG → G,
which is defined by integration along left invariant vector fields: exp V = g(1),
where g(s) is the solution of g(0) = e, ġ(s) = lg∗V.

In our case G = SE, the path g(s) corresponds to a screw motion, i.e. a simul-
taneous rotation and translation about a common axis. A classical theorem of
Chasles states that all rigid body motions can be expressed in this way.

In a matrix representation, the exponential map is the ordinary matrix exponen-
tial, defined by its series. For V ∈ TeSE,

exp V = exp(ViXi) =

∞∑
n=0

1
n!

(ViXi)
n. (4.22)

The exponential series of a conjugated group element is

g exp V g−1 =

∞∑
n=0

1
n!

(gVg−1)n = exp(Adg V), (4.23)

This relation may be written as ig ◦ exp = exp ◦ig∗ : se → SE in short. This means
that exponential coordinates transform just like tangent vectors under simultane-
ous changes of lab and body frame.

In practice, it convenient to reduce (4.22) to a finite sum of matrix powers, with
nonconstant coefficients, see appendix A.3.

The fact that the homogeneous and adjoint representations are isomorphic leads
to the basic relation

Ad exp V = exp ad V (4.24)
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4.2 Basic properties of the rigid motion group

Here, exp on the right hand side is the matrix exponential of the 6×6 square matrix
ad V.7 This correspondence makes it possible to switch to the most convenient
representation when needed. As an instructive example, we use it to make explicit
all screw motions that commute with a given one g = exp(ω, v). Noting that

g exp(ω ′, v ′)g−1 = exp Ad g (ω ′, v ′) = exp
((

exp ad(ω, v)
)
(ω ′, v ′)

)
, (4.25)

one sees that g exp(ω ′, v ′)g−1 = exp(ω ′, v ′) ⇔ (ω ′, v ′) ∈ ker ad(ω, v). The kernel
of ad(ω, v) is just the set of infinitesimal motions that commute with (ω, v). It
is computed in appendix A.2. The result is that the commuting tangent vectors
generate exactly either those screw motions that have the same axis: ω ′ = ω, or
pure translations in that direction. In short screw motions commute iff they have
the same screw axis.

4.2.8 Coordinate charts for SE

There are many different ways to represent a rigid body motion g = (R, p) by a
set of six parameters. We give a short, non-exhaustive overview of the possibilities
that are relevant in the following.

Exponential coordinates use log = exp−1 as the coordinate chart8. The linear
order expansion is g = exp q = e + qiXi + o(q). They have a direct geo-
metrical interpretation in terms of screw motions: ω gives the angular and v

the linear velocity, which are constant in the instantaneous body frame g(s),
see fig. 4.5. Therefore, ‖ω‖ is the total angle of rotation, and v is the initial
linear velocity ṗ(0), in the lab frame, see fig. 4.5.
The exponential coordinates of g and its inverse sum up to 0. It is however
not true that exp(q + q ′) equals the product exp q exp q ′ because of non-
commutativity.
The partial derivatives {∂qi} provide a coordinate frame that coincides with
both invariant frames at e but nowhere else. The transformation relating
invariant and exponential coordinate frames at other points is detailed in
appendix A.4.

7This relation can be verified directly by noting that conjugation (a similarity transformation) and
taking a matrix power, commute in each term of the exponential series.

8This function has multiple branches. However, the set {exp(ω, v)|‖ω‖ < π} covers almost all of
SE, except for the set of zero measure where tr R = −1, i.e. rotations by π. The branch of log
with ‖ω‖ < π is invertible. See appendix A.3 for more details.
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4 Rigid base–pair chains

Exponential coordinates based at g0 are a left translated variant of exponential
coordinates. Explicitly, q̃ = log(g−1

0 g). In linear order, g = g0 + q̃ig0Xi +

o(q̃), so that at the base point, the coordinate frame coincides with the left
invariant frame, ∂q̃i

∣∣
g0

= Li

∣∣
g0

. The relation to the exponential coordinate
frame is ∂q̃i

∣∣
g

= lg0∗∂qi

∣∣
g−1

0 g
.

Product coordinates result when some parametrization of R ∈ SO is combined
with separate coordinates for p. Of the many possibilities, we already used
in chapter 2 the coordinate system implemented in the 3DNA program
[Lu03]. Here, the R is described by a certain choice of Euler angles adapted
to the geometry of B-DNA, and p is given in Cartesian coordinates with
respect to the mid–frame. For details and conversion formulas to exponential
coordinates see appendix A.8.

4.2.9 Invariant coframes

Every tangent space TgSE has an associated six–dimensional, dual vector space
T∗gSE of linear maps m : TgSE → R, called covectors. A smooth map g 7→ m

∣∣
g
∈

T∗gSE is called a covector field or one-form. The space se∗ of left invariant covector
fields is spanned by the basis {λj}16j66, dual to {Li}, so that 〈λj, Li〉 = λj(Li) = δ

j
i

everywhere. These covector fields form a basis of the cotangent spaces T∗gSE at
every point, i.e. a left invariant coframe. In the same way, a right invariant coframe
is defined by 〈ρj, Ri〉 = δ

j
i.

The natural pairing with the coframe elements projects out vector components,
similar to a scalar product on a vector space:V = 〈λi, V〉Li = 〈ρj, V〉Rj, from
which follows Ad gi

j = 〈ρi, Lj〉 and Ad−1
gi

j = 〈λi, Rj〉. The same also works for a
covector: m = 〈m, Li〉λi = 〈m, Rj〉ρj.

Clearly, V (m) is a left invariant (co)vector field exactly if all pairings 〈λi, V〉
(〈m, Li〉) are constant on the group.

4.2.10 The coadjoint representation

The components of a covector with respect to right and left invariant coframes are
related in much the same way as the vector components. Changing the frame, a
covector field m

∣∣
g

= νiρ
i
∣∣
g

= νi〈ρi, Lj〉λj
∣∣
g

= νiAd gi
jλ

j
∣∣
g
. We conclude that if

a covector field has left invariant components µ(g) = (τl, fl), its right invariant
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4.2 Basic properties of the rigid motion group

components are ν(g) = Ad−T
g µ(g). In block form, the transformation matrix is

Ad−T
g =

[
R p̂R

0 R

]
. (4.26)

Separating this into three–vector components,

ν =

[
τr

fr

]
= Ad−T

g µ =

[
Rτl + p̂Rfl

Rfl

]
. (4.27)

The τ component attains an extra leverage term, namely the cross product p×Rfl,
see fig. 4.6. These are exactly the transformation rules for forces and torques, see
sec. 4.3.

By differentiation of AdT
g at the identity, one gets the map adT

V : se∗ → se∗,

adT
V µ = V

∣∣
g=e

AdT
g µ = V

∣∣
g=e

〈µ, Ad g ·〉. (4.28)

Note that adT does not correspond to a commutator since it depends on one vector
and one covector. A relation analogous to (4.24) holds, and [adT

V, adT
W] =

− adT
[V, W] (note the extra minus sign here).

4.2.11 Tensor fields

A vector V can be regarded as a linear map V ≡ 〈·, V〉 : T∗gSE → R. More
generally, a tensor of type (k, l) on some vector space T is a linear map t : T∗k ×
T l → R. A tensor field t on SE can be written in left invariant components as
t = ti1...ik

j1...jl
Li1 ⊗ · · · ⊗ Lik

⊗ λj1 ⊗ · · · ⊗ λjl . When changing from left invariant
to the right invariant (co)frames {ρi} and {Ri}, the k contravariant indices are
transformed with Ad while the l covariant indices are transformed with Ad−T.
Clearly, vectors are (1, 0) tensors and covectors are (0, 1) tensors.

Symmetric tensors of types (2, 0) and (0, 2) play a major role in the context of
DNA elasticity. We therefore introduce additional abbreviated notation. If Cij are
the left invariant components of a (2, 0) tensor at g, its right invariant components
can be written as a matrix by

C′kl = (AD g C)kl := (Ad g C AdT
g)kl = Ad gk

iC
ijAd gl

j, (4.29)

where we have introduced the new representation AD of linear operators acting
on the space of symmetric (2, 0) tensors. The relations AD g−1 = AD−1 g and
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AD gh = AD g AD h, follow from the analogous properties of the Ad matrices.

If S = C−1, then the inverse S ′ of C ′ in (4.29) is the component matrix of a
(0, 2) tensor field,

S′kl = (AD−T g S)kl := ((AD g C)−T)kl = Ad−1
gi

kSijAd−1
gj

l. (4.30)

The AD−T representation introduced here thus acts on (0, 2) tensors.

After choosing a matrix basis for the 6×6 symmetric matrices (a 21-dimensional
space), AD g can be written as an invertible 21 × 21 matrix9. In complete anal-
ogy to (4.19), one can further define the aD representation of the algebra se, by
aD V = V

∣∣
g=e

AD g. Then from ((4.24)) we immediately have the basic relations
exp aD V = AD exp V.

Although the AD matrices may seem huge, they contain no more or less infor-
mation than a group element itself. They can be seen as an abbreviated matrix
notation for simultaneously transforming both tensor indices.10

4.3 Rigid base–pair elasticity revisited

Hoping to justify the rather dry collection of mathematical definitions in the previ-
ous section, we now give an interpretation of rbc elasticity within this framework.
We will see that many of the quantities defined above have a natural physical
meaning.

4.3.1 Rigid base–pair deformations

A bp step conformation in a rbc is naturally represented as an element of SE.
Having found the equilibrium conformation of a step g0, one may parametrize
deformations from it by choosing exponential coordinates based at frame g0. Then
the total conformation

g = g0 exp(ξiXi) = g0(e + ξiXi + o(ξ)). (4.31)

In thermally fluctuating B-DNA, step deformation angles are so small that the step
conformation is well approximated by its linear order expansion. E.g, in the en-
sembles from [Lan03, Ols98], the angular width of the conformation distributions

9The reader is kindly asked to excuse the lack of explicit formulas in this section. . .
10 Mathematically speaking, all of the properties of AD are an immediate consequence of the fact

that C ′ is the component matrix of the pullback i∗gτ of a 2-tensor τ by the conjugation map ig.
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is below 8◦, where 1 − cos α < 0.01. Thus in the thermal regime, it is sufficient to
think of single step deformations as elements of the tangent space Tg0SE, with left
invariant vector components ξ. Therefore, ξ is the strain of the elastic medium,
given in the material frame.11

4.3.2 Forces

Generalized forces are defined as the conjugate variables of the step deformations,
so that an increment of the step elastic energy can be written as dE = µidξi =

〈µ, dξ〉 where µ is the force acting on the bps given in the material frame. Forces
are therefore covectors. Explicitly, if µ = (τ, f),

dE = 〈µ, dξ〉 = τ · dω + f · dv, (4.32)

so the three–dimensional components of the generalized force µ are the torque τ

with respect to the origin of the material frame, and the linear force f. In other
words, µ is the stress, given in the material frame.

By choosing invariant frames to describe the components of deformations, we
have obtained a formulation in which the generalized forces have a straightforward
physical interpretation as the usual torque and linear force. An equally intuitive
interpretation would have been impossible had we used a parametrization such as
Euler angles for the rotation.

4.3.3 Elastic energy

In the rbc model with purely local elasticity, the elastic deformation energy E,
quadratic or not, can depend only on the deformation in the material frame. If
a chain has the configuration g1kg0 exp(ξiXi), the elastic energy of the last step
gkk+1 is thus a function of ξ only, independent of g1kg0. In other words, the
function E : TgSE → R is left invariant.

The step deformations fluctuate around a mean value 〈ξ〉 = 0. Their positive
definite, symmetric covariance matrix Cij =

〈
ξiξj

〉
determines the linear response

dξ to some external force dµ, via

dξi = βCijdµj, (4.33)
11The choice of reference frame within a single step is somewhat arbitrary. Instead of referring to g0,

one could have taken the start frame e of the step, which gives a component vector ξpre = Ad g0ξ,
or the frame at half of the equilibrium step leading to ξmid = Ad g

1/2
0 ξ. We will stay with ξ in the

following.
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Figure 4.6 | Transformation of a force with right invariant components (τ, f). While the
linear component is merely rotated, the torque gets an extra leverage contribution
proportional to the offset radius, see (4.27).

which can be written as dξ = βC(dµ, ·). The total elastic work done up to a
deformation ξ within the linear response regime is then

E =

∫
〈µ, dξ〉 =

∫
βCijµidµj = β

2 C(µ, µ). (4.34)

The covariance matrix C is thus a symmetric, positive definite, left invariant (2, 0)

tensor field. Substituting βS = C−1,

E = 1
2S(ξ, ξ), (4.35)

where S is a symmetric, positive definite, left invariant (0, 2) tensor field. Its left
invariant components are the stiffness matrix. The linear stress–strain relation
of the chain, written in the material frame, is thus µ = Sξ. The left invariant
components of C and S in general still depend on the base sequence, but not on
chain conformation.

4.3.4 Change of frame along the chain

The local elastic response of a rbc is naturally described in the material frame,
reflected in the fact that the stiffness is left invariant. However, external forces
acting on the chain are typically not left invariant covectors. Consider for example
a rbc, clamped to a fixed support at bp 1 and subject to an external linear force
f applied at the end bp k + 1, as may occur in an optical tweezers experiment.
Here, the external force is naturally given in lab frame components, ν = (0, f). We
can compute the material frame elastic response ξ of the last step deformation by
transforming the external force ν to the material frame: If g = g1kg0 is the total
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transformation from the fixed base to the mean material frame, then

ξ = C AdT
g ν, (4.36)

see sec. 4.2.10. The same relation holds for a general right invariant force/torque
combination.12

Since there is nothing special about bp 1 as a reference point, we can also express
forces or deformations given with respect to some frame along the chain, in any
other frame. We just need to replace g in (4.36) by the interjacent transformation
which connects the two frames.

Is there a restriction to what local forces can be achieved by an external right
invariant force field? To start with, for fixed g, every material force/torque can
be produced by varying ν, since AdT

g is an invertible matrix. On the other
hand, if the external force ν is fixed, by varying the orientation and position g

of the end frame, one can only reach a certain subset of material frame forces
orbT

ν = {AdT
g ν|g ∈ SE}, the so-called coadjoint orbit of ν = (τr, fr). From

the block matrix representation one readily proves that orbT
ν = {(τl, fl)|fl · fl =

fr · fr, τl · fl = τr · fr}, i.e. the linear force magnitude and the torque projection in
the linear force direction are conserved quantities, restricting the accessible force
range.

4.3.5 Compound steps

The ability to express step deformations relative to an arbitrary bp reference frame,
makes it possible to combine deformations occurring at different base pairs. This
is done by first transforming all deformations to a common frame and then adding
them up. Recalling sec. 4.2.6, from the basic relation hgh ′ = gig−1(h)h ′ one
derives the first–order relation for small deformations h = e + V, h ′ = e + V ′,

hgh ′ = g(e + ig−1∗V + V ′) + o(V + V ′). (4.37)

Consider now a k-step rbc with equilibrium conformations g0,l l+1,

g1 k+1 = g0,12(e + ξi
12Xi)g0,23(e + ξi

23Xi) · · ·g0,k k+1(e + ξi
k k+1Xi). (4.38)

Applying (4.37), one can commute all of the first order deformations to the right
and equilibrium steps to the left. The error made due to non-commutativity is
12In a typical magnetic tweezers setup, the torque τ is constant with respect to the bead center, not

the base point. Such an external torque is not right invariant.
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compensated by the appropriate Ad matrices in first order. Explicitly, the result is

g1 k+1 = g0,1 k+1

(
e +

k∑
l=1

(
Ad g−1

0,l+1 k+1ξl l+1
)i

Xi

)
+ o
(∑

ξl l+1
)
, (4.39)

where g0,lm = g0,l l+1 · · ·g0,m−1 m and g0,mm = e. This formula may look more
complicated than it really is; essentially, each ξ acquires one Ad−1 factor per
commutation.

4.3.6 Diagonalization of the stiffness matrix

We chose the basis {Li} of left invariant deformations in se without making refer-
ence to the stiffness matrix. An idea that comes to mind is that one should first
diagonalize the symmetric, positive definite matrix S by choosing an appropriate
basis of eigenvectors, before calculating anything else.

A problem in this approach comes from the fact that the 3 × 3 blocks of the
stiffness matrix correspond to subalgebras of basis vectors with distinct commuta-
tion relations, see (4.6). If the new basis is to be interpreted as again consisting of
infinitesimal pure rotations and pure translations, the transformation S ′ = UTSU

must preserve the commutation relations, U([V, V ′]) = [U(V), U(V ′)].13

The Ad matrices have this property by equation (4.17). It is proved explicitly
in appendix A.5 that in fact they are the only commutator–preserving transforma-
tions. They correspond to a physical rotation and offset of the frame of reference,
just as the usual principal axis transformation of an inertia tensor in mechanics
corresponds to a pure physical rotation. The larger set of transformations SO(6)

which allows full diagonalization of the stiffness matrix does not have an equally
simple physical interpretation.

So what is the simplest form of S attainable by a physical change of reference
frame? In other words, by transforming

S ′ = AdT
g S Ad g = ADT g S, (4.40)

what kind of partial diagonalization can be reached at best? A discussion of this
question in the generic case is given in appendix A.6. The following alternative
partial diagonal forms for the block matrix S ′ =

[
S ′

11 S ′
12

S′T
12 S ′

22

]
result:

• S ′11, S ′22 both diagonal,

13I.e, U is a Lie algebra automorphism.
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4.3 Rigid base–pair elasticity revisited

• S ′12 diagonal,

• S ′11 diagonal and S ′12 symmetric

• S ′22 diagonal and S ′12 symmetric.

In particular, the coupling of rotation and translation in the stiffness matrix cannot
be eliminated by a change of reference frame. In general, the stiffness matrix
depends also on the step sequence σ. Any diagonalization procedure would have
to be carried out for each σ separately, which further limits its use. In the following
chapters, we will therefore retain the full stiffness matrices, staying in our original
original frame of reference determined by the choice of basis {Xi}.
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5 Coarse graining of helical DNA

In this chapter, we relate descriptions of DNA elasticity on different length scales.
While the rigid base–pair model captures sequence–dependent elasticity on a micro-
scopic length scale of a few bps, the mesoscopic elastic properties of B-DNA over
hundreds of bps are described by sequence–averaged, semiflexible polymer mod-
els. By coarse–graining the rigid base–pair chain to a semiflexible polymer model,
experiments on the microscopic and mesoscopic scale are made comparable.

5.1 DNA elasticity is scale dependent

Local elastic properties of DNA on a nm length scale play a vital role in basic
biological processes such as chromatin organization [Wid01, Seg06] and gene reg-
ulation, via indirect readout [Kou87, Hin98, Heg02, Pre93] or via DNA looping
[Sch72, Sch92, Rip01].

On a mesoscopic length scale, it is possible to directly measure force–extension
relations for DNA in single–molecule experiments [Cha04]. For small external
forces, DNA behaves as a worm–like chain (wlc) [Bus94], i.e. an inextensible semi-
flexible polymer with a single parameter, the bending persistence length, and no
explicit sequence dependence. An extension of the classical wlc model, reflect-
ing the chiral symmetry of the DNA double helix, includes coupled twisting and
stretching degrees of freedom [Str96, Mar97, Kam97, Mor97]. These become
important in a force regime where the DNA molecule is already pulled straight but
not yet overstretched [Clu96]. Recent measurements indicate that DNA overtwists
when stretched in the linear response regime [Lio06, Gor06].

The issue of relating atomistic and mesoscopic descriptions of DNA elasticity has
been addressed mainly by simulation of oligonucleotides. Normal mode analysis
using atomistic [Mat99] or knowledge–based rigid base–pair chain (rbc) potentials
[Mat02] can give an impression of global bending and twisting modes but disre-
gards viscous damping. In a MD simulation study in explicit solvent, a full set of
elastic constants of a fluctuating global helical axis were determined [Lan00]. A
recent study [Maz06] extends this approach, elaborating on technical difficulties
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5.2 Thermal fluctuations in a rigid base–pair chain

of the global axis definition and on convergence criteria.

In this chapter, a systematic coarse–graining of the rbc model down to the wlc
scale is described. Here, the average helical geometry of the chain is taken into
account exactly. As a result, we obtain exact expressions for the average helical
parameters and the full set of stiffnesses for bend, twist, stretch, as well as twist–
stretch coupling that characterize an extended wlc elastic model.

5.2 Thermal fluctuations in a rigid base–pair chain

Consider a base pair step g = gk k+1 in a rbc that fluctuates around a mean or
equilibrium value g0. Deformations can be conveniently expressed in exponential
coordinates based at g0; small deformations are well approximated just by the
linear order expansion, i.e. as a tangent vector ξ in left invariant components,
see chapter 4. We determine the mean g0 such that the expectation over all
fluctuations, 〈ξ〉 = 0. This is always possible for not too wide step distributions
[Ken90], and can be implemented by a gradient search with no numerical problems.
The covariance matrix is Cij =

〈
ξiξj

〉
.

Note that we have not specified the source of fluctuations yet. In this chapter,
we will consider steps fluctuating thermally. The thermal mean values as well as
the thermal covariance matrices depend on the sequence of the step; g0 = g0(σ),
C = C(σ). In the next chapter, the effects of random sequence will be added as
another independent source of randomness.

5.2.1 Compound steps

Using the matrix formalism described in 4, we can combine a chain of m consecu-
tive steps into one compound step, which in turn is described in terms of its mean
and covariance matrix. This is possible as long as the combined fluctuations stay
small. In other words, the short chain must be well approximated by a (helical)
rigid rod.

Consider a rbc with k steps as in eq. (4.38),

g1 k+1 = g0,12(e + ξi
12Xi)g0,23(e + ξi

23Xi) · · ·g0,k k+1(e + ξi
k k+1Xi), (5.1)

where g0,l l+1 = g0(σl l+1) are the equilibrium steps.

Successively commuting the equilibrium steps g0 to the left, using (4.39), the
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5 Coarse graining of helical DNA

compound step takes on the form

ξ1 k+1 =

k∑
l=1

(
Ad g−1

0,l+1 k+1ξl l+1
)
, (5.2)

where g0,lm = g0,l l+1 · · ·g0,m−1 m and g0,1 k+1 is the equilibrium compound step.
Since the Admatrices in this expression are non-random and all single step defor-
mations are assumed independent, the compound covariance C(σ1 m+1) equals
[Bec07]

m∑
k=1

Ad g−1
0,k+1 m+1C(σk k+1) AdT

g−1
0k+1 m+1 =

m∑
k=1

AD g−1
0 (σk+1 m+1)C(σk k+1).

(5.3)
We have now characterized the compound step in terms of its mean and covari-

ance. This will allow us to treat repetitive, poly-(σ1 m) DNA on the same footing
as homogeneous DNA. The validity of this combination of steps is limited by the
first order approximation for the deformations. For combining, it is necessary that
the compound step angles stay small, ‖ω1 m‖ � 1.

5.3 Effective semiflexible polymer for homogeneous chains

What is the effective wlc model that corresponds to a given rigid base–pair chain?
We address this question first for a homogeneous (or repetitive, see above) se-
quence.

Up to this point, step deformations and therefore also the covariance matrices
were given with respect to a reference frame equal to the equilibrium base–pair
frame g0, which in general is offset and tilted relative to its own local helical axis.
To relate the rbc deformations to a coarse–grained wlc model, we are much more
interested in the elastic properties of the centerline of the chain.

Once a covariance matrix for deformations of centerline segments is known, the
large–scale elastic properties of the wlc are determined. E.g, the bending persis-
tence length of the wlc is defined as the decay length of bend angle correlations and
thus depends only on the second moment of the centerline bend angle distribution.

5.3.1 Helical centerline

In the case of a non-fluctuating chain with identical steps, the centerline can be
conveniently described using the matrix formalism introduced in chapter 4.
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5.3 Effective semiflexible polymer for homogeneous chains

The screw motion s 7→ exp[sξiXi] joins the identity frame e with g as s increases
from 0 to 1, see fig. 4.5. Its screw axis is determined by a vector from the origin
of e to a point on the axis, given by pax = ‖ω‖−2ω× v, and by its direction, ω.
It is the ‘local helical axis’ [Lav89] associated with the base pair step g. When
concatenating many identical steps g one generates a rbc with frame origins lying
on a regular helix with this axis.

In addition to pax we can define a matrix Rax which rotates e such that ω

becomes its third direction vector. One choice is to take pax as the second new
direction. In combination, we then get [Bec07]

gax =

[
Rax pax

0 1

]
=

[
(ω×v)×ω
‖(ω×v)×ω‖

ω×v
‖ω×v‖

ω
‖ω‖

ω×v
‖ω‖2

0 0 0 1

]
, (5.4)

which takes e to a frame e ′ = egax = gax sitting on the helix axis with its third
direction pointing along it. One can check that g ′ = ggax also has these properties.
The primed, on-axis frames are ‘local helical axis systems’ in the terminology of
[Lav89].

Under the influence of thermal fluctuations, the helical structure of the chain
becomes irregular. It turns out that in this case the definition of a centerline
is problematic in itself. One could try to define it as the local helical axis for
each individual base–pair step, cf. fig. 4.5. This has the disadvantage that for
a fluctuating chain, the local centerline pieces of consecutive steps do not form
a continuous curve, since they are laterally offset. An alternative approach is
to fit a continuous centerline globally to a stretch of a rbc, using the Curves
algorithm [Lav89], as carried out in [Lan00]. The fitting procedure involves a free
parameter, namely the relative weight of translational and rotational deviations
from an ideal helix shape. By a reasonable choice of this relative weight a posteriori,
periodic artifacts in the analysis can be reduced but not eliminated [Maz06]. Also,
the fact that the resulting centerline depends non-locally on the base pair step
conformations introduces artificial correlations on the length scale over which the
fitting procedure extends.

We circumvent these problems in three steps. First we transform all rigid base–
pairs of the chain to new frames of reference. These are chosen such that without
fluctuations, all new bp frames lie exactly on, and point in the direction of, a single
straight helical axis. We can then identify and average over the unwanted shear
degrees of freedom. In a last step, this reduced model is averaged over the helical
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5 Coarse graining of helical DNA

phase angle and mapped to the wlc models.

5.3.2 On-axis rbc

The first task is to transform small deviations from an equilibrium conformation
g0 into small deviations from an equivalent on-axis version of g0. Consider first
a regular helix composed of identical g0 steps. As explained in section 5.3.2, the
on-axis step between the k-th and k + 1-th on-axis frames is

g0q = (gk−1
0 gax)

−1gk
0gax = g−1

ax g0gax, (5.5)

where gax is the on-axis transformation (5.4) corresponding to g0. Since g0q is
a transformation between on-axis frames, its rotation and displacement vectors
point along the d3 axis, ω0q = ‖ω0q‖d3 and p0q = ‖p0q‖d3.

For a step gk k+1 = g0 exp[ξiXi] of a fluctuating rbc we calculate an on-axis
version as

(g1kgax)
−1g1k+1gax = g−1

ax gk k+1gax = g0qg
−1
ax exp[ξiXi]gax. (5.6)

The three rightmost factors in (5.6) clearly represent the deviation from the on-axis
equilibrium step g0q. Using the property (4.23) we can rewrite

g0qg
−1
ax exp[ξiXi]gax = g0q exp[ξi

qXi], (5.7)

where the deviation from the on-axis equilibrium step ξq = Ad g−1
ax ξ. ξq has zero

mean and covariance matrix C
ij
q =

〈
ξi

qξ
j
q

〉
,

Cq = Ad g−1
ax C AdT

g−1
ax = AD g−1

ax C. (5.8)

The rbc composed of steps (5.7) is an equivalent description of the original
chain, which one may call its on-axis version [Bec07]. Intuitively, to each fluctu-
ating frame g1k of the original chain, we rigidly connected a frame g ′

1k in such
a way that the primed, on-axis chain fluctuates about a straight, but still twisted,
equilibrium conformation. This is illustrated in fig. 5.1: The equilibrium confor-
mations generate a tilted helix that is offset from the helical centerline. Thermal
fluctuations distort it, producing an irregular helix. However, on average, the
on-axis configuration is exactly lined up on a straight helical axis. Note that we
had no need to compute a fluctuating axis explicitly, nor choose a weighting factor
[Maz06].
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5.3 Effective semiflexible polymer for homogeneous chains

Figure 5.1 | Equivalent descriptions of a poly-G rbc. Left: Colored blocks represent base
pairs in their equilibrium conformations. Wireframe blocks represent their on–axis
counterparts. Right: Thermal fluctuations distort the helix. (MP parameter set, base
pair size scaled down by 1/2 for clarity.)

5.3.3 Averaging over shear variables

The on-axis rbc has the nice property that the translational fluctuations (ξ4
q , ξ5

q ) =

(v1
q , v2

q ) are now exactly transversal to the equilibrium helix axis. They are pure
shear modes and do not contribute to compression fluctuations along the chain.
Let η = (ωq, v3

q ) be the vector of the four remaining variables. Noting that the
invariant volume element dVξ in exponential coordinates depends only the angular
part (see appendix A.7), one has

〈
ηiηj

〉
=

∫
d3ωqdv3

qA(ωq)︸ ︷︷ ︸
dVη

∫
dv1

qdv2
qp(ξq)︸ ︷︷ ︸

p(η)

ηiηj, (5.9)

from which one can see that the 4 × 4 covariance matrix C̃ ij =
〈
ηiηj

〉
is in fact

the same as Cq with its v1
q , v2

q rows and columns deleted. Thus, η has a distribution
around 0 with covariance matrix C̃ . Here and in the following, ·̃ indicates deletion
of the shear rows and columns in an on-axis, 6 × 6 matrix. E.g, Ãd is the 4 × 4
adjoint matrix. Its on-axis version Ãd g0q has a particularly simple form. Using
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5 Coarse graining of helical DNA

(4.15) and noting that p0q ∝ ω0q ∝ d3 we obtain

Ãd g0q =


cos ‖ω0‖ sin ‖ω0‖ 0 0

− sin ‖ω0‖ cos ‖ω0‖ 0 0
0 0 1 0
0 0 0 1

 . (5.10)

5.3.4 Averaging over the helical phase

A shear–averaged, on-axis rbc still has a finite equilibrium twist and anisotropic
bending stiffness. To relate it to a wlc with isotropic bending rigidity, one can
perform an average over a continuous helical phase angle rotation of the reference
frame [Mar94]. An on-axis covariance matrix which is rotated by a helical phase
angle ϕ around the average local helical axis (see (6.7)), is

Ĉ (ϕ) = Ãd gϕC̃ Ãd Tgϕ, (5.11)

where gϕ = exp[ϕX3] is a pure rotation by an angle ϕ around d3. Since Ãd gϕ has
the form (5.10), the helical phase average comes out as [Bec07]

C̄ =
1

2π

∫2π

0
Ĉ (ϕ)dϕ =


C̃ 11+C̃ 22

2 0 0 0

0 C̃ 11+C̃ 22

2 0 0
0 0 C̃ 33 C̃ 34

0 0 C̃ 34 C̃ 44

 . (5.12)

From C̄ one can read off the bend persistence length as lb = hq/C̄ 11. E.g, the
mean square end–to–end distance of a homogeneous chain

〈
R2〉 ∝ 2lbl for contour

lengths l � lb. The torsional modulus, normalized to units of length is called the
twist persistence length lt = hq/C̄ 33 1 (see e.g.[Mar94]). Here, the on-axis helical
rise hq = ‖p0q‖. The wlc stiffness matrix βS̄ = C̄ −1 can be found by inversion and
has the same block structure as C̄ , see also appendix A.7.

When the considered covariance matrix actually belongs to a compound step,
C̄ = C̄ 1 m+1, all of the elastic parameters can be extracted in the same way, the only
difference being that hq has to be taken as the total helical rise on the compound
step. Also, S̄ will be the compound step stiffness, which can be renormalized to
one bp step by multiplying with m.

1This is the modulus for unconstrained stretching degree of freedom.
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5.4 Coarse–graining relations

5.4 Coarse–graining relations

We have derived all wlc elastic parameters starting from an arbitrarily oriented and
offset homogeneous rbc. We now discuss in some detail how these coarse–grained
parameters are related to the microscopic rbc parameters.

5.4.1 Equilibrium step

The transformation of the equilibrium step onto the helical axis (5.5) leaves the
total rotation angle invariant. Therefore the equilibrium twist of g0q is θq =

‖ω0q‖ = ‖ω0‖ > |ω3
0|. I.e, the twist per base pair of the wlc equals the total angle

of rotation, not the Tw angle of the off-axis step. The equilibrium rise on axis is
hq = ‖p0q‖ = ωT

0 p0/‖ω0‖ which is different from both off-axis quantities ‖p0‖
and p3

0. These differences are of order O(ω1
0 + ω2

0)
2 so they become important

only when the equilibrium rotation axis ω0 has significant roll and tilt with respect
to the material frame, i.e. when the local helical parameters Inclination and Tip
[Dic89] are not negligible.

5.4.2 Fluctuations

Unlike the equilibrium step, the covariance matrix is changed not only by the
rotation Rax but also by the shift pax onto the average local helix axis. Intuitively,
the on-axis frame g ′ is rigidly connected to g, cf. fig. 5.1. Therefore, a rotational
fluctuation of g with rotation vector δω will result in an additional translational
fluctuations of g ′ equal to δω× pax.

A familiar example of this geometrical effect is the stretching of an ordinary
coil spring along its helix axis, see fig. 5.2. In the wire material, this deformation
corresponds mainly to torsion, i.e. a rotational deformation of consecutive wire
segments. On a larger scale, the same deformation is levered into a translation of
one coil end along the helix axis. The transformation (6.7) captures exactly this
lever arm effect, which is proportional to the total axial displacement ‖pax‖ and
so becomes relevant if the chain deviates from an idealized B-DNA form.

We calculate explicitly the 3 × 3 blocks C
(ab)
q of Cq, (5.7), in terms of the

corresponding blocks C(ab) of C, using (6.7) and (4.15). Here a, b ∈ {ω, v} stand
for the set of rotational or translational components, respectively. Further, we
let C(ab)′ = RT

axC
(ab)Rax, and P ′

ax = Rax
i
jp

j
axεi, which is an antisymmetric matrix.
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5 Coarse graining of helical DNA

Figure 5.2 | What looks like linear extension of a coil spring on the “mesoscale” is almost
exclusively due to torsion when described in the “microscopic” material frame of the
wire.

Using this notation,

Cq =


C(ωω)′ C(ωv)′ + C(ωω)′P ′

ax

C(vω)′ − P ′
axC

(ωω)′ C(vv)′ − P ′
axC

(ωω)′P ′
ax+

+C(vω)′P ′
ax − P ′

axC
(ωv)′

 . (5.13)

Inspecting this expression, the rotational block C
(ωω)
q is merely a rotated version

of the off-axis rotational block C(ωω). In contrast, the translational block C
(vv)
q

and the coupling block C
(ωv)
q have ‘leverage terms’, since rotational fluctuations

about directions perpendicular to the offset vector contribute through a cross
product with pax. For C

(vv)
q , these involve the off-axis coupling C(vω) in first

order and rotational fluctuations C(ωω) in second order in ‖pax‖. The coupling
block C

(ωv)
q has contributions from C(ωω) in first order. These leverage terms

persist in the reduced wlc covariance matrix C̃ . They are the remainder of the
microscopic description of fluctuations with respect to a material frame that is
offset from the average helical axis.

Consider for example a base pair step that exhibits x-displacement but no Incli-
nation or Tip, i.e. pax ∝ d1, ω ∝ d3, Rax = I3. Then (5.13) implies that any coupled
Roll–Rise (C26) and Roll (C22) fluctuations will add to the stretching fluctuations
C66

q of the chain. In addition, the off-axis Roll–Twist fluctuation (C23) contributes
to twist–stretch coupling fluctuation on axis, C36

q .
When Inclination or Tip are nonzero, then due to the additional rotation Rax
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5.4 Coarse–graining relations

Table 5.1 | Comparison of wlc geometry and stiffness parameters of all six unique repetitive
sequences of period two, for the MP hybrid parametrization. In the ‘av’ row, the values
for the average step is shown. MP parameter set.

π
‖ω13‖

1
2hq 13 βS̄ 11 βS̄ 33 βS̄ 44 βS̄ 34 rresp

AA
AC
AG
AT
GG
CG
〈σ〉

10.2
10.4
10.5
10.7
10.9
10.3
10.5

0.327
0.333
0.334
0.334
0.338
0.338
0.334

144
132
139
111
159
124
134

141
142
159
195
186
126
153

976
1140
1120

975
1090

831
1050

−38.3
−105
−103
−80.1
−89.9
−78.5
−87.9

0.27
0.74
0.64
0.41
0.48
0.62
0.57

units bp nm rad−2 rad−2 nm−2 (nm rad)−1 rad nm−1

also Shift and Slide fluctuations contribute to the resulting wlc parameters. It is
therefore essential to transform to an on-axis frame before averaging over the
shear degrees of freedom.

5.4.3 wlc parameters of dinucleotide repeats

As a result of the coarse–graining procedure outlined above, we can extract the
wlc parameters of repetitive sequences from the sequence–dependent rbc stiffness
(or covariance) matrices and equilibrium offsets [Bec07].

A detailed view of wlc geometry and stiffness is given in table 5.1. The twist rate
and equilibrium rise per bp vary by roughly 2 %. Their respective values for the
average step, obtained by averaging the equilibrium conformation and covariance
initially, closely match commonly accepted values for B-DNA.

The poly-AT repeat stands out as the most bendable sequence which is at the
same time torsionally rather stiff. Another common trend in our results is that poly-
G DNA is comparatively stiff with respect to bending. The values are comparable
to MD studies in which elastic constants of oligonucleotides were measured, with
repeats AA, AT, GC and GG [Lan00] and with AT and GC [Maz06]. There too,
poly-AT is torsionally stiff but bendable. However, bending persistence lengths
from [Lan00, Maz06] are up to two times bigger than either our or experimental
values, possibly due to bending relaxation too slow to be seen in that simulation
[Lan00]. The twisting persistence lengths in [Lan00, Maz06] are generally larger
than our results by about a factor of two, and show stronger sequence–dependence,
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5 Coarse graining of helical DNA

Figure 5.3 | Bending anisotropy. The ratio of larger over smaller bending stiffness decays
in an oscillating fashion with compound step length. MP parameter set, average step
geometry.

but with similar trends. The stretch modulus and the twist–stretch coupling depend
on the sequence in a correlated way. Again comparing with [Lan00], their stretch
moduli agree qualitatively but show a different sequence dependence. Also, their
twist–stretch coupling constants are positive, unlike our and recent single–molecule
experimental results [Gor06, Lio06].

The rightmost column of table 5.1 shows the ratio of overtwist over elongation
in response to an external stretching force, rresp = C̄ 34/C̄ 44. When a repetitive
sequence is cut by one bp and then stretched to the original length, the “missing
twist” at the last bp ranges from 29 (AA) to 20 (AC) degrees undertwist.

5.5 Anisotropic bending

A feature of short compound steps not captured by the coarse–grained wlc limit
is their anisotropic bending stiffness. Using the compound covariance C̃ 1 k+1 (see
(5.3)) it is possible to quantify the decay of anisotropy for short chains. On scales
much longer than a full turn, bending will be isotropic.

The ratio of the two principal bending stiffnesses as a function of chain length
is shown in fig. 5.3.

The oscillatory decay results from orientational averaging over fractional turns
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of the helix. Since linear response is always symmetric, the bending anisotropy
has minima every half turn of the double helix. For exactly two full turns (21
bp), anisotropy is suppressed completely, but already a 5 bp compound step at
almost a half turn is essentially isotropic. This behavior agrees nicely with that of
the two principal bending stiffnesses measured in [Lan00] for oligonucleotides of
increasing length. Their stiffnesses are equal at around 6 bp, in line with the fact
that MD potential produces a 12 bp/turn helix structure.

5.6 Discussion

This chapter presented a way to quantitatively connect experiments on DNA elas-
ticity on different length scales. We relate the stiffness expressed in terms of rigid
base–pair deformations, obtained via an initial coarse–graining [Gon01], to the
long–wavelength wlc parameters of a homogeneous chain [Bec07]. In this coarse–
graining step it is essential to properly account for the helical base–pair geometry.
For this purpose an on-axis version of the rigid base–pair chain was introduced,
which on average has ideal B-DNA shape. This makes it straightforward to in-
tegrate over the shear degrees of freedom and helical phase, to finally obtain all
four linear elastic constants allowed by the large–scale symmetry of the molecule
[Kam97, Mar97, Mor97].

The results allow a direct comparison of the different microscopic effective
potentials to single molecule and cyclization experiments. It involves no free
parameter, once a microscopic rbc parameter set is specified. One finds good
qualitative agreement, including the negative sign of twist–stretch coupling.

Does the rather involved computation of macroscopic parameters actually make
a noticeable difference? The calculations could be simplified by disregarding the
details of average helical geometry of the chain. Treating all base–pair steps as
ideal B-DNA from the beginning as in [? ], one would perform an average of
the off-axis covariance matrix, over Shift, Slide and helical phase angle. Inverting
this, one obtains a “naïve” stiffness matrix Sna. The relative error made in such a
computation, eij = (S

ij
na − S̄ ij)/S̄ ij is shown in table 5.2.

While the bending and twisting stiffnesses are well approximated by the naïve
guess, the error in stretch modulus and twist–stretch coupling is considerable.
For these terms, leverage due to the axis offset becomes important (section 5.4).
Especially the naive twist–stretch coupling is not negative enough. The effect is
more pronounced with the pure MD parameter set [Lan03, Lan06b], since it has
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5 Coarse graining of helical DNA

Table 5.2 | Relative error in stiffness parameters made when using “naive” matrix elements
instead of the coarse–grained parameters described above. Values are given in per cent.
Average step bp parameter.

e11 e33 e44 e34

MD 3 -13 59 50
MP 2 -7 -5 48

unusual equilibrium conformations with stronger axis offset.
The coarse–graining procedure just described involves no approximations re-

garding the geometry. This makes it directly applicable to alternative DNA struc-
tures, and indeed any polymer with average helical geometry, once microscopic
covariance matrices are available. In fact, the more the average geometry devi-
ates from idealized B-DNA, the greater is the need to treat the helical geometry
correctly.

The main model assumption is that thermal deformation fluctuations of neigh-
boring steps are independent. Another limitation of any rigid base–pair model
is that internal deformation fluctuations of a base–pair such as propeller twist or
buckle, are not explicit and thus effectively treated as uncorrelated between base
pairs.

The framework can be extended to improve on both of these points. Nearest–
neighbor correlations in base–pair parameters may be included by extending the
model to a full Markov chain. Internal deformations could then be added by
extending the configuration space, leading to a bi-rod [Moa05] in the continuum
limit. However for either of these interesting generalizations, a microscopic para-
metrization is an open challenge in itself. The fact that dinucleotide step stiffness
depends overall rather weakly on the flanking sequence [AB05] and the encour-
aging agreement with mesoscopic data, suggest that the main features of coarse–
grained DNA elasticity are captured already by the presented more basic model.
However, the low twist rigidity calculated here might be a result of missing nega-
tive twist correlations.
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The correspondence of DNA elastic models on different length scales is expanded.
We now turn the attention to sequence dependent DNA elasticity as captured by
the rigid base–pair model. The resulting local variability of structure and stiffness
on a few-bps length scale, will translate into effective conformational and elastic
properties of the mesoscopic worm–like chain model. We look at the specific case
of uncorrelated, random sequence, leading to a homogeneous effective worm–like
chain.

6.1 Mapping a random sequence rbc to a homogeneous wlc

As has been known for twenty years [Tri88], the total apparent persistence length
of a wlc is composed of a static part which originates from the sequence depen-
dent equilibrium bends of the molecule, and a dynamic part induced by thermal
fluctuations. Their relative contributions have been more recently measured, with
incompatible results [Bed95, Vol02]. The idea of splitting the fluctuations into a
static and a thermally induced part can be adapted to the case of a random sequence
rbc. Extending the coarse–graining procedure to include structural variability, in
this chapter, the conformational statistics of rigid base–pair chain ensembles with
random, uncorrelated base sequence will be calculated. One arrives again at an
effective homogeneous wlc description. On short scales, deviations from the ef-
fective wlc due to stiffness variability do occur. A quantitative estimate for these
deviations will be given.

The method presented in chapter 5, consists in expressing the fluctuating con-
formations as deformations with respect to a helical reference structure, and then
transforming to an idealized, on-axis helix. Finally, irrelevant degrees of freedom
are identified and averaged over.

Two new difficulties arise in a random sequence rbc: The first is the choice of
reference structure when structural disorder is present, since the chain no longer
forms a regular helix in the absence of thermal fluctuations. This issue is addressed
in the following sections 6.1.2, 6.1.3 and 6.1.4. The second difficulty arises
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6 Coarse graining of random DNA

from the fact that the sequence distribution features independent bases, while the
conformation distributions depend on the base–pair steps. Loosely speaking, the
sequence distribution lives on the ‘nodes’ of the model while the conformation
distribution lives on its ‘links’. We explain in section 6.1.5 how this introduces
effective short–range correlations.

6.1.1 Random sequence rbc

Instead of homogeneous or repetitive sequences, we now turn our attention to
random sequences, as a generic approximation to the properties of natural DNA.
The crucial difference is that the relaxed conformation of any realization of ran-
dom DNA is no longer a regular helix, and that the relaxed conformations of
consecutive steps are correlated due to sequence continuity. To get around these
complications, we introduce an ensemble average over sequence randomness in
addition to the thermal average at fixed sequence.

A random sequence rbc is by definition a sequence of rigid base–pair frames
generated iteratively in the following way: Start with some choice of base at
position i = 1. Then for each new base–pair i + 1,

1. choose a base identity bi+1 at random, following a fixed base distribution
p(b) 1.

2. Generate the bp step conformation gi i+1. Due to thermal fluctuations, this
conformation is also random. It follows a pdf p(g|σ) whose center and width
depend parametrically on the step sequence σi i+1 = bibi+1.

After m − 1 iterations, one ends up with a realization σ1 m = b1 . . . bm of the ran-
dom sequence and a corresponding realization g1m = g12 . . . gm−1m of conforma-
tions. The random sequence rbc built up in this way has the same conformational
statistics as an ensemble of thermally fluctuating rbcs, each with random but fixed
sequence.

Generally, denote 〈f(g1m)〉 an expectation value of some function f over con-
formations of a thermal, random sequence rbc ensemble. It can be carried out
sequentially:

〈f(g1m)〉 = 〈 〈f(g1m)|σ1m〉 〉 =
∑

b1,...,bm

p(σ1m) 〈f(g1m)|σ1m〉 (6.1)

1In the examples below, a flat distribution is chosen, although a sequence bias can be included.
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6.1 Mapping a random sequence rbc to a homogeneous wlc

Here the conditional expectation 〈·|σ〉 2, is identical to a thermal average and 〈·〉
denotes the global average over both thermal and sequence randomness. Averages
over the sequence ensemble only, are not considered. The second equality in (6.1)
follows because 〈f(g1m)|σ1m〉 is already averaged over thermal fluctuations.

A random sequence rbc captures the effects of sequence dependent structure
and stiffness. It is a good model for DNA under the assumptions that (a) sequences
of bases are independent, that (b) thermal conformations of base–pair steps are
independent, and that (c) step conformations are independent of flanking base
sequence. All of these assumptions are wrong in general, but may be considered
reasonable first approximations. In particular, relaxing (a) requires extra knowl-
edge about sequence statistics. Also, no parametrizations of conformational corre-
lations are yet available that would allow to relax (b). In MD simulation studies
[Dix05, AB05], (c) was investigated, and a dependence of stiffness and equilibrium
conformations on flanking base sequence was found. It is however much weaker
than the dependence on the actual step sequence and can be reasonably neglected
in a first approximation.

6.1.2 Irregular helix axes

The crucial step in the coarse–graining procedure is the ‘on-axis transformation’
described in sec. 5.3. For a homogeneous or repetitive rbc this was straightfor-
ward, since a regular reference structure is formed by the thermal equilibrium
conformations.

For a typical realization of random sequence however, the thermal equilibrium
conformation is already an irregular helix, which leads to the same problems of
defining a centerline as discussed in sec. 5.3.1 even without thermal fluctuations.
We will therefore not choose the approach of expressing thermal deformations
of each sequence realization with respect to irregular on-axis frames. Rather, our
strategy will be to describe random sequence conformations, just like those of
homogeneous sequences, as deformations from some sequence–averaged, regular
helix. The task is then to determine the geometrical parameters of this helix and
the corresponding on-axis covariance.

2The conditional expectation of some function f is defined with respect to the conditional distribu-
tion, 〈f|σ〉 =

∫
f(g)p(g|σ)dg
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6 Coarse graining of random DNA

6.1.3 Thermal and sequence randomness

Consider a base pair step with sequence σi i+1 in a chain which fluctuates in a
thermal environment. Its sequence dependent thermal mean conformation as well
as the covariance matrix are moments of the conditional pdf p(gi i+1|σi i+1). What
changes when σi i+1 itself is a random variable?

To start with, it is important that the sequence dependent variability in equilib-
rium conformations of B-DNA bp steps is in fact smaller than the average thermal
fluctuation size. Since only the limit of small thermal deformations has been con-
sidered throughout, it is only consistent to use the same small deformation limit
for the sequence induced conformational variability.

The basic idea then is to treat sequence variability exactly on the same footing
as thermally induced fluctuations; we add the sequence induced deviations from
a global equilibrium conformation as another independent source of randomness.
I.e. the basic setup is changed slightly. A random sequence step g = g0 exp[ξiXi]

now fluctuates around a sequence–independent global center g0. Its total fluctu-
ations are characterized by a covariance matrix Cij =

〈
ξiξj

〉
resulting from both

sequence and thermal fluctuations.
We now need to calculate the global center g0 and the total covariance C from

the thermal and sequence statistics. Recalling that 〈·〉 denotes a total thermal and
sequence ensemble average, we can determine g0 by the condition that 〈ξ〉 = 0,
analogous to sec. 5.2.

One can split the deformation from g0 into sequence plus thermal parts:

ξ = 〈ξ|σ〉+ (ξ − 〈ξ|σ〉). (6.2)

Note that the thermal equilibrium deformation 〈ξ|σ〉 is a random variable, depend-
ing on σ, while (ξ − 〈ξ|σ〉) is the thermal deformation, another random variable.

Within a regime of linear response, the deformation energy of a step with fixed
sequence σ is a quadratic function of the deviation from the thermal equilibrium
value 〈ξ|σ〉. The associated thermal covariance matrix is sequence dependent:

Cij(σ) =
〈
(ξ − 〈ξ|σ〉)i(ξ − 〈ξ|σ〉)j

∣∣σ〉. (6.3)

Comparing this with the thermal fluctuations introduced in sec. 5.2.1, one sees
that g0(σ) ' g0(e+ 〈ξ|σ〉). Also, (6.3) agrees with the C(σ) used there to quadratic
order in the deformations.

On the other hand, the covariance of the thermal mean values is sequence–

88



6.1 Mapping a random sequence rbc to a homogeneous wlc

independent:
C

ij
0 =

〈
〈ξ|σ〉i 〈ξ|σ〉j

〉
, (6.4)

where the outermost expectation is effectively taken with respect to p(σ) only, cf.
(6.1).

What is the total covariance C ? The two sources of randomness are of inde-
pendent physical origin, but are not independent random variables: Although the
realization of the thermal conformation is sequence–independent, its distribution
depends on σ. I.e, p(ξ|σ)p(σ) = p(ξ, σ) 6= p(ξ)p(σ). Using the decomposition
(6.2), 〈

ξiξj
〉

=
〈
〈ξ|σ〉i 〈ξ|σ〉j

〉
+
〈
(ξ − 〈ξ|σ〉)i(ξ − 〈ξ|σ〉)j

〉
+

+
〈
〈ξ|σ〉i (ξ − 〈ξ|σ〉)j

〉
+
〈
(ξ − 〈ξ|σ〉)i 〈ξ|σ〉j

〉
.

(6.5)

Now note that
〈
〈ξ|σ〉i (ξ − 〈ξ|σ〉)j| σ

〉
= 0 trivially. Using this with the identity

〈·〉 = 〈〈·|σ〉〉 in (6.5), the cross–terms vanish. The simple result is that the sequential
covariance and the sequence–averaged thermal covariance add up to give the total
covariance C:

C = C0 + 〈C(σ)〉 . (6.6)

This basic result [Bec07] is the generalization of the well–known relation that the
inverse persistence lengths of thermal and structural disorder are additive. In fact,
this relation can be recovered from (6.6), see below.

In summary, given the covariance (or stiffness) matrices and equilibrium values
of all sixteen dinucleotide steps, and a distribution of relative step frequencies
p(σ), by computing g0 and C we have characterized a single, thermally fluctuat-
ing random sequence step in terms of its center and second moment. The global
equilibrium step g0 defines a regular helix which is taken as the reference struc-
ture structure in the following. Deformations from this reference are governed
by the total covariance C which includes a contribution from sequence–induced
conformational variability.

6.1.4 Transformation onto the average helical axis

Having identified the regular reference structure to use, one can now begin to
follow the coarse–graining procedure from chapter 5. As a first step, the total
deformation fluctuations are transformed onto the average helical axis: ξq =

Ad g−1
ax ξ, where gax is defined by the global equilibrium g0 via (5.4). The on-axis
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6 Coarse graining of random DNA

Figure 6.1 | Equivalent descriptions of a realization of a random sequence rbc. ‘seq’: Col-
ored blocks represent base pairs in their thermal equilibrium conformations. Wireframe
blocks represent their on-axis counterparts, which do not lie on a straight line without
sequence averaging. ‘thermal+seq’: The same, but with added thermal fluctuations. The
top views show the reduced helix axis offsets of the on-axis frames. (MD parameter set,
base pair size scaled down by 40 % for clarity, sequence GCGTTGTGGGCT.)

deformation then still has zero mean 〈ξq〉 = 0 (but 〈ξq|σ〉 6= 0) and covariance
matrix

Cq = Ad gax
−1C AdT

gax
−1 = AD g−1

ax C. (6.7)

One realization of a random sequence rbc, together with its on-axis version, is
shown in fig. 6.1.

6.1.5 Correlations induced by sequence

While by assumption thermal fluctuations of neighboring steps are independent
random variables, the sequences of different bases, not steps, are independent.
Any realization of a random sequence of dinucleotide steps must be ‘continuous’,
e.g. σ12 = AG implies that σ23 can only start with a G. Since the step sequences
are correlated, so are the step sequence dependent static offsets 〈ξ|σ〉.

Consider the combined fluctuations of a short rbc consisting of m bp steps.
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6.1 Mapping a random sequence rbc to a homogeneous wlc

The joint pdf of sequence steps along the chain is the product of base pdfs,
p(σ12, . . . , σm m+1) =

∏m+1
k=1 p(bk). This implies that correlations between ther-

mal mean values extend up to nearest neighbor steps:

〈
〈ξi

qk k+1|σk k+1〉〈ξj
ql l+1|σl l+1〉

〉
=


C

ij
0q l = k

C
ij
1q l = k + 1

C
ji
1q l = k − 1
0 otherwise.

(6.8)

Here, the on-axis covariance of thermal means C0q and the new on-axis nearest–
neighbor term C1q are defined by the left hand side (lhs). They can be computed
when p(σ) is known. No further thermal or thermal–sequential nearest–neighbor
terms occur by the assumptions of the model, as can be verified by splitting the
deformation in thermal and sequence parts as in (6.5).

Now combine the m base pair steps of the chain into a compound step. The
compound deformation is given by eqn. (4.39),

ξq1 m+1 =

m∑
k=1

Ad gk−m
0q ξqk k+1. (6.9)

What is the sequence induced covariance matrix

C0q
ij
1m+1 =

〈
〈ξi

q1 m+1|σ1 m+1〉〈ξj
q1 m+1|σ1 m+1〉

〉
(6.10)

of the compound deformation, now that nearest–neighbor correlations are present?
Using (6.8), one obtains a sum of appropriately transformed single–step covari-
ances C0q and in addition a sum of nearest neighbor cross–terms involving C1q:

C0q1 m+1 =

m−1∑
l=0

AD g−l
0q C0q +

m−2∑
l=0

AD g−l
0q C×,

where C× = C1q AdT
g−1

0q + Ad g−1
0q CT

1q

(6.11)

The cross–covariance C× represents the fact that nearest neighbor equilibrium
steps are correlated and their frames of reference have a relative offset equal to
g0q.

Note that two neighboring compound steps are still correlated by sequence
continuity at their interface. From (6.11) one extracts the recursion relation

C0q1 l+1 = AD g−1
0q C0q1 l + C0q + C×. (6.12)
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6 Coarse graining of random DNA

The same relation is obeyed by a sequence of independent steps with covariance
matrix Ĉ 0 = C0q + C×. This means that except for a boundary term C× from the
beginning of the chain, a rbc with independent steps and covariance Ĉ 0 exhibits
the same effective sequence induced conformational covariance as the original
chain which is short range correlated by C×. The relative error in effective com-
pound covariance is of order 1/m. We neglect this error in the following, writing
C0q1 m+1 =

∑m−1
l=0 AD g−l

0q Ĉ 0.

Finally, we can combine the independent version Ĉ 0 of the sequence induced
covariance with the thermal covariance according to (6.6). The total conformation
covariance of the thermally fluctuating, random sequence chain is then given by
Ĉ = Ĉ 0 + 〈C(σ)〉.

In summary, the conformational statistics of a compound step including se-
quence randomness are now represented by an effective, stepwise independent
on-axis rbc governed by Ĉ that incorporates the additional requirement of se-
quence continuity [Bec07].

6.1.6 Averaging over shear and helical phase

The final step in the coarse–graining procedure is to average over unwanted degrees
of freedom. The first average to be taken is that over the shear degrees of freedom
(v1

q , v2
q ). As explained in sec. 5.3.3, the result is that the remaining four variables

η = (ωq, v3
q ) have a 4 × 4 covariance matrix C̃ which equals Ĉq with its (v1

q , v2
q )

rows and columns deleted. It turns out that due to the particular block structure
of the Ad g0q matrices, the row and column deletion may be carried out before the
summation3 in the following equation, so that for a compound step

˜̂
C 1 m+1 =

m−1∑
l=0

Ãd g−l
0q
˜̂
C Ãd Tg−l

0q . (6.13)

Alternatively, one can also directly perform an average over the helical phase
for an individual Ĉ step, producing a version of the covariance that has isotropic
bending as well as twist, stretch and twist–stretch coupling covariances:

C̄ =
1

2π

∫2π

0
Ãd gϕ

˜̂
C Ãd Tgϕ dϕ, (6.14)

as in sec. 5.3.4. The covariance matrix C̄ determines the long–scale conformational

3This is because the (v1, v2) columns of Ad g−l
0q contain no coupling to the (ω, v3) rows
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statistics of the chain, i.e. the parameters of the effective wlc.

6.2 Random sequence chain conformations and numerical test

The global offset g0 and the combined covariance matrix Ĉ are set up such that
they capture the conformational statistics of an ensemble of thermally fluctuating,
random sequence rigid base–pair chains, cf. eqn. (6.1). From C̄ one can read off
the bend persistence length as lb = hq/C̄ 11. The torsional modulus4 normalized
to units of length, one can call the twist persistence length lt = hq/C̄ 33 (see e.g.
[Mar94]). Here, the on-axis helical rise hq = ‖p0q‖. Since they reflect sequence
variability, these are apparent persistence lengths [Bed95, Vol02]. E.g, the square
end–to–end distance, averaged over a random sequence sequence ensemble

〈
R2〉 =

2lbl for long contour lengths l � lb.
Entirely analogous quantities can be defined ‘at zero temperature’ when thermal

fluctuations are switched off, by just setting the thermal part of the covariance to
0. So if C̄ 0 = 1

2π

∫2π
0 Ãd gϕ

˜̂
C 0Ãd Tgϕ dϕ is the pure sequential, helical–averaged

covariance, then l0,b = hq/C̄ 11
0 and l0,t = hq/C̄ 33

0 are the static bend and twist
persistence lengths, respectively.

The coarse–graining from rbc to wlc was tested with a simple–sampling Monte
Carlo (MC) simulation according to the algorithm in sec. 6.1. The measured
mean squared base–pair center end–to–end distances are shown in fig. 6.2. The
theoretical curves 〈R2〉 = 2llb − 2l2

b(1 − e−l/lb) for an inextensible wlc using the
computed contour and bending persistence lengths, l and lb, fit the simulation
data to within numerical error. The only deviations occur below 3 nm, where the
inextensible wlc model fails to reproduce the displacement due to compression
and shear modes present in the rbc. In chapter 7, an alternative way of computing
the mean squared end–to–end distance is presented, see section 7.4.3. While it is
less intuitive than the on–axis transformation, that method yields accurate results
over the whole range of contour lengths.

In addition to the full covariance C, simulations were also carried out for struc-
tural disorder only, setting all of the C(σ) = 0. The corresponding wlc using C0 and
the next–neighbor term C1 (see (6.8)) again fits the data. However, disregarding
C1 is clearly wrong.

Experiments that include a sequence ensemble average over conformations
and thus measure apparent persistence lengths, include cryo-electron microscopy

4for unconstrained stretching
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6 Coarse graining of random DNA

Figure 6.2 | Comparison of an MC simulation of a random–sequence rbc to the coarse–
grained effective wlc. Symbols designate the measured mean squared end–to–end dis-
tances for static disorder only (upper row) and for static plus thermal fluctuations (lower
row). The theoretical curves assuming a wlc model are shown from top to bottom for
static disorder (Ĉ 0, blue), uncorrelated static disorder (C0 only, red), and static plus
thermal fluctuations (Ĉ , orange), respectively. MD parameter set.

of frozen conformations of oligonucleotides [Bed95], AFM tracing of adsorbed
random–sequence DNA [Wig06], and cyclization of random fragments [Vol02].
Whenever such experiments are interpreted in terms of a intrinsically straight,
homogeneous DNA, then the apparent stiffness matrix extracted from experiment
corresponds to the inverse of the total covariance, (βC̄ )−1.

6.3 Response to external forces

A slightly different situation arises in force–extension experiments carried out on
single molecules (e.g, [Gor06, Lio06]). Here, an external stretching force tilts the
elastic energy landscape of each step along the chain, introducing a bias towards
those thermal fluctuations that increase the molecule’s extension. No such bias can
be introduced on the sequence. Therefore the sequence randomness part of the
total conformational covariance does not directly result in additional compliance
to an external force.

What is the remaining effect of irregular sequence in micromanipulation experi-
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ments? This question is discussed below in the weak static disorder limit, which is
a good approximation for DNA. We adopt the basic idea of [Nel98] which is to ex-
pand the elastic Boltzmann factor B ∼ e− β

2 (ξ−〈ξ|σ〉)T(〈S〉+δS(σ))(ξ−〈ξ|σ〉) for weak
static disorder, and to interpret the result in terms of a homogeneous chain with
renormalized stiffness. The somewhat surprising result is that the renormalized
stiffness is the inverse total covariance, (βĈ )−1[Bec07].

How does this come about? The expectation value of an observable f(g1m), e.g,
the z-extension p3

1m, for a fixed sequence σ1m, is given by the multiple integral

〈f|σ1m〉ε =
1
Z

∫(m−1∏
k=1

dVξk k+1

)
f(g1m)Bεe−βU(g1m);

Bε = e
− β

2

n−1∑
k=1

(ξk k+1−ε〈ξ|σk k+1〉)TS(ξk k+1−ε〈ξ|σk k+1〉)
. (6.15)

In this expression, Z is the partition sum and U(g1m) is an external potential, e.g.
U = ‖f‖p3

1m for linear stretching with a force f = ‖f‖d3. For a start, the elastic
Boltzmann weight Bε, has sequence dependent offsets but a constant stiffness
matrix S. The auxiliary parameter ε was introduced to keep track of orders in the
following weak static disorder expansion:

Bε

B0
= 1 + ε

m−1∑
k=1

ξT
k k+1βS 〈ξ|σk k+1〉+

ε2

2

m−1∑
k=1

− 〈ξ|σk k+1〉T βS 〈ξ|σk k+1〉

+
ε2

2

(m−1∑
k=1

ξT
k k+1βS 〈ξ|σk k+1〉

)2
+ O(ε3). (6.16)

We proceed to calculate the global expectation value

〈f〉ε =
〈
〈f|σ1m〉ε

〉
=

∑
b1...bm

p(σ1m) 〈f|σ1m〉ε . (6.17)

Using (6.16) and (6.15), after interchanging sequence average and integration, the
result is

〈f〉ε =
〈
f
[
1 + ε2β2(1

2

m−1∑
k=1

ξT
k k+1SC0Sξk k+1 +

m−1∑
k=2

ξT
k−1 kSC1Sξk k+1

)]〉
0

+ O(ε3). (6.18)

As can be seen, in sequence average the first order term drops out. The first of
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the quadratic terms from (6.16) produces a constant which is relevant only for
normalization. It was discarded from (6.18).5 The surviving second quadratic
term can be seen to produce the sums involving the static covariance C0 and
nearest–neighbor covariance C1 (see (6.11) ).

The square bracket in (6.18) may be interpreted as the truncated expansion
of an exponential. Written that way, eqn. (6.18) is to second order, identical to
an expectation value taken without static disorder but with renormalized elastic
energy [Nel98]:

〈f〉ε =
1
Z̃

∫(m−1∏
k=1

dVξk k+1

)
fe−βU×

× e
− β

2

(m−1∑
k=1

ξT
k k+1(S−ε2βSC0S)ξk k+1−2

m−1∑
k=2

ξT
k−1 kε2βSC1Sξk k+1

)
+ O(ε3) (6.19)

It is an exercise in multidimensional Gaussian integrals to verify that the renormal-
ized elastic energy in (6.19) produces the covariances

〈ξi
k k+1ξ

j
k k+1〉 = (βS)−1 ij + ε2C

ij
0 and 〈ξi

k−1 kξ
j
k k+1〉 = ε2C

ij
1 (6.20)

to second order in ε, in the free case U = 0.

As a next step, sequence dependent stiffness can be incorporated. What changes?
Splitting up the thermal covariance matrix (6.3) into its average and sequence
dependent parts, Cth(σ) = 〈Cth〉 + δCth(σ). Since C scales as O(ξ)2, it is a natural
choice to assign an order O(ε)2 to the term δCth(σ). In this way, the changes in
width of the distribution are O(ε). We then replace

βS → (〈Cth〉+ ε2δCth(σk k+1))
−1 = βSav − ε2β2SavδCthSav + O(ε3) (6.21)

in eqn. (6.15), where βSav = 〈Cth〉
−1. Repeating the expansion of Bε as before,

all occurrences of S in (6.16) are replaced by Sav. The only extra term in second
order, −ε2β

∑
ξT

k k+1SavδCth(σk k+1)Savξk k+1 drops out in the sequence average
(6.18). Thus, sequence dependent stiffness is averaged out in this order.6

In summary, to second order in ε, the random rbc with sequence disorder in
offsets and stiffness, produces the same response to external forces or torques as a

5Including this constant can be seen to fix the correct normalization of the elastic Boltzmann factor
to second order.

6 Note that if one treats δCth(σ) = O(ε), the effect of stiffness variability is not as trivial. It involves
correlations between stiffness and offsets which are outside the scope of this work.
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homogeneous chain with a renormalized elastic energy [Bec07]. This renormalized
energy corresponds to step deformation covariances which are the sum of thermal
and nearest–neighbor correlated static parts. As explained in sec. 6.1.5, any chain
of this kind can be mapped to an rbc with independent step deformations which
have the total covariance Ĉ = 〈Cth〉+C0 +C×. I.e, although the sequence disorder
is quenched, its effect on the entropic elasticity of the random chain is the same as
if the sequence randomness were an additional elastic compliance. When fitting
force–extension measurements with homogeneous elastic parameters of a wlc
model, the measured result corresponds to the total, or apparent stiffness S̄ and
not to the bare, local stiffness S̄ av.

6.4 Effective worm–like chain parameters

This section gives an overiew of the results of the coarse–graining procedure for
random sequence DNA [Bec07].

6.4.1 Conformational covariance of random DNA

In table 6.1 the coarse–grained wlc geometry and covariance parameters corre-
sponding to a random sequence rbc are shown. The values are comparable to
all experiments in which an ensemble average over DNA sequence is implicitly
performed, see sec. 6.2.

For the crystal parameter sets, the equilibrium rise and twist are close to the
commonly accepted values of 0.34 nm/step and 10.5 bp/turn. The MD rise and
twist are both low, a known effect for the force field used in that study [Bev04].
The MD bending persistence length is smaller than the commonly accepted values
at physiological conditions, which are around 48 nm [Vol02]. The low equilibrium
Rise of the MD conformations accounts for half of this deviation. The elastic
constants of the B and P parameter sets differ from the MD ones since the choice
of effective temperature only fixes overall fluctuation strength, not relative stiffness
of different modes, see sec. 1.6.

For all parameters sets, the twist persistence length is similar to the bend persis-
tence length, and is smaller than the result of 58 nm extracted from cyclization
data [Vol02].

No rescaling by a different effective temperature can bring all crystal stiffness
parameters into reasonable agreement with MD since the various deviations occur
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Table 6.1 | Random sequence wlc geometry, persistence lengths and conformational co-
variances for the considered rbc potentials.

2π
θq

hq lb lt C̄ 11 C̄ 33 C̄ 44 C̄ 34

B
P
MD
MP

10.1
10.5
11.9
10.5

0.334
0.334
0.318
0.334

27.1
43.4
38.9
42.8

15.2
35.7
45.1
47.8

12.
7.7
8.2
7.8

22.
9.4

7.
7.

0.79
0.86

1.9
1.

0.67
0.85

1.2
0.55

units 1 nm nm nm rad2

103
rad2

103
nm2

103
nm rad

103

Table 6.2 | Thermal and static contributions to the apparent persistence length for different
potentials. For comparison, the l ′ column shows the static persistence lengths when
sequence continuity is disregarded.

lb lb,th lb,0 l ′b,0 lt lt,th lt,0 l ′t,0

B
P
MD
MP

27.1
43.4
38.9
42.8

29.5
45.3
42.
44.6

327
1040

519
1040

211
575
175
575

15.2
35.7
45.1
47.8

15.4
36.3
47.7
48.8

1260
2430

818
2340

88.3
172
256
172

units nm

in opposite directions.

6.4.2 Thermal vs. sequence randomness

Instead of combining fluctuations in a random DNA ensemble, one can consider
thermal and sequence fluctuations separately. Table 6.2 shows the corresponding
static and thermal persistence lengths [Tri88], whose inverse additivity follows
from eqn. (6.6). In disagreement with the cryo–EM study [Bed95], the static
persistence lengths are much higher than the thermal ones, leading to a correction
of only a few nm. This is in accordance with the analysis based on cyclization
[Vol02]. Also, the static lb,0 for the P parameter sets correctly reproduces the
value found numerically in that study, using the same parameter set. When the
requirement of sequence continuity is dropped, as shown in the l ′ columns, static
variability is strongly overestimated (for twist, more than tenfold).

98



6.4 Effective worm–like chain parameters

Table 6.3 | Experimental stiffness parameters as given in the literature and average thermal
stiffness (using the MP parameter set). The conversion factor for B, C, G, S from [Gor06]
is β/hq. The conversion factors for B, C, D in [Lio06] are respectively, θ2

q/h3
q , 1/hq, θq/h2

q .
Beware of a missing 1/2 factor in their first formula.

βS̄ 11 βS̄ 33 βS̄ 44 βS̄ 34

Gore et al.[Gor06]
Lionnet et al.[Lio06]
MP

163±15

128

327±15
294
149

781±150
710

1045

−64±15
−47±20
−82

units rad−2 rad−2 nm−2 (nm rad)−1

6.4.3 Stiffness of random DNA

Recent single–molecule experiments at moderate applied tension have given new
data on DNA stiffness [Lio06, Gor06]. All of the elastic parameters given in
these articles are collected in table 6.3, together with the stiffness of a random
rbc computed from the MP parameter set, see sec. 6.3. The bending modulus
of 128 kBT/rad2 is lower than the result from [Gor06] and still on the low end
of the range of 132 − 138 kBT/rad2 found in previous [Wan97, Bau97, Wen02]
single–molecule experiments. However, in [Sal06] a lower experimental value is
reported.

The deviation in torsional rigidity is much more dramatic. Recent experimental
values are about twice as high as the coarse–grained rbc results, see also [Cha04]
for a review. This low twist rigidity is a feature of all parameter sets. For the
crystal parameter sets one might argue this indicates that torsional deformations
carry more elastic energy than bending deformations, thus ‘violating’ an assumed
equipartition of energy. However, for the MD parameter set, this is clearly not
the case; the rbc version of the simulated DNA oligomers is indeed more twistable
than experimental values for DNA suggest. A speculative explanation is that there
may exist negative correlations between thermal twist deformations of neighboring
base pair steps which are neglected in the independent base–pair model, leading
to an underestimation of twist stiffness.

Negative twist–stretch coupling has been demonstrated in [Gor06, Lio06], a
feature that is reproduced with good agreement by the microscopic data, and is
also visible in the local Twist-Rise coupling of the microscopic parameter sets [? ].
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6 Coarse graining of random DNA

6.5 Limits of applicability of the wlc model

As a continuous model, the wlc is defined down to arbitrarily small length scales.
However the microscopic structure of DNA suggests that there must be a lower
limit to its applicability. Indeed, recent experimental studies [Wig06, Lan06a] have
highlighted examples of strong bending on short scales, which are in disagreement
with standard wlc elasticity. At what length scale does an isotropic, homogeneous
wlc fail to reproduce the behavior of a random rbc?

6.5.1 Bend angle distributions for short chains

The combined covariance matrix C̃ 1 m+1 gives the second moment of the distribu-
tion p(η1 m+1) of deformations, observed in a random sequence, thermal ensemble
of length m compound steps. Here it is not necessary that the single step deforma-
tion distributions have a Gaussian shape. Indeed such an assumption depends on
the choice of coordinates, and is not justified by experiments.

Nevertheless, assume for the moment additionally that for each sequence, the
single step thermal deformation distributions were in fact Gaussians in the chosen
coordinates. The deformation of a specific compound step with sequence σ1 m+1

then again follows a Gaussian distribution p(η1 m+1|σ1 m+1), since in the small
deformation angle approximation considered, it is the result of a convolution of
the single step covariances.

Sequence randomness changes this picture. The deformation distribution of
an ensemble of random compound steps p(η1 m+1) = 〈p(η1 m+1|σ1 m+1)〉 is a
sequence average of several Gaussians with different offsets and widths and thus
in general deviates from a Gaussian shape. So a perfect Gaussian shape cannot be
expected for short random sequence compound steps.

In a recent AFM study of DNA adsorbed to a coverslip [Wig06], bend angle
distributions of DNA over short lengths have been found to favor large bend
angles much more than expected from the wlc model. It is interesting to ask
whether this can be explained as an effect purely of sequence randomness as
outlined above. In fig. 6.3, the effective potential Ueff for the total bend angle
ϑ = ((η1

1,m+1)
2 + (η2

1,m+1)
2)1/2 of random sequence compound steps of different

lengths m, is shown. It was extracted from histograms of a simulation as described
in section 6.1.

For compound steps shorter that 5 bp, the effective potentials stay well below
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6.5 Limits of applicability of the wlc model

Figure 6.3 | Effective potential for the total bend angle ϑ (curve with symbols, green).
The curves without symbols (blue) show the harmonic approximation to the effective
potential that results of a fine–graining of an isotropic wlc with the corresponding
coarse–grained persistence length. Compound step length, from left to right: 1,2,3,5,10
bp. MP parameter set.

the respective harmonic potentials that correspond to an isotropic wlc model
with the coarse–grained, random DNA persistence length of lb = 42.8 nm. This
is the combined result of the spread is bending stiffness resulting from sequence
randomness, as well as from anisotropic bending, as illustrated in fig. 5.3. However,
above 5 bp the observed deviations are negligible and thus insufficient to explain
the wide bend angle distributions observed in [Wig06] for DNA as long as 15 bp.

6.5.2 Short–scale stiffness variability

When the considered random chains get shorter, the effective stiffness will start
to exhibit stronger fluctuations depending on sequence. The following section
addresses the breakdown of the assumption of constant wlc stiffness for short
chains.

The thermal covariance matrix C̃ (σ1 m+1) of a compound step with fixed se-
quence σ1 m+1 was calculated in sec. 6.3. While the mean thermal covariance
matrix M =

〈
C̃ (σ1 m+1)

〉
is just the sequence average, the covariances of the 4×4
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6 Coarse graining of random DNA

matrix entries are given by

V
ijkl
1 m+1 =

〈
(C̃ ij(σ1m+1) − Mij)(C̃ kl(σ1m+1) − Mkl)

〉
. (6.22)

This expectation can be evaluated in terms of single–step and nearest–neighbor
sequential covariances of the matrix entries, analogous to the procedure for the
sequence covariance itself, see eq. (6.11). The bulky result is stated here for com-
pleteness:

V
ijkl
1 m+1 =

m−1∑
l=0

a(−l)ij
noV

nopq
0 a(−l)kl

pq +

m−2∑
l=0

a(−l)ij
noV

nopq
× a(−l)kl

pq,

where V
ijkl
× = V

ijno
1 a(−l)kl

no + a(−l)ij
noVnokl

1 ,

Vijkl
s =

〈
(C̃ σn n+1 − 〈C̃ σ〉)ij(C̃ σn+s n+1+s

− 〈C̃ σ〉)kl
〉
, s = 0, 1,

and a(−l)ij
kl = (Ãd g−l

0q )i
k(Ãd g−l

0q )j
l is closely related to AD g−l

0q . (6.23)

Using a small fraction of this information, one can characterize stiffness variability;
the relative spread of angular stiffness coefficients of compound steps over all
sequences is shown in fig. 6.4. Explicitly, ∆S/S = (Viiii

1 m+1)
1/2/Mii, where S = Sii

and i = 1, 3.
Again, including the nearest neighbor cross-covariances V1 takes sequence con-

tinuity into account. E.g, the fact that it is impossible to combine two of the
comparatively soft pyrimidine–purine [Ols98] steps in a row, reduces the variabil-
ity of the average stiffness across random sequence compound steps.

After one full turn, variability in stiffness is down to 5%. The effect of sequence
continuity is to reduce the variability compared to a model with independent step
sequences, analogous to table 6.2.

6.6 Conclusions

In addition to homogeneous or repetitive DNA as considered in chapter 5, the
coarse–graining formulas have been extended to the generic case of random DNA
sequence. In the rbc model, sequence randomness affects equilibrium structure as
well as stiffness parameters, as described by existing microscopic parametrizations
of rbc potentials.

The conformational fluctuations of random sequence DNA are directly compa-
rable to persistence lengths measured in experiments such as cyclization and AFM
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6.6 Conclusions

Figure 6.4 | Relative spread ∆S/S of the bend (lower curve with diamonds, green) and
twist (upper curve with diamonds, blue) stiffness coefficients vs. compound step length.
Ignoring sequence continuity by setting V× = 0 leads to overestimation of the stiffness
variability (bend, lower green triangles; twist, upper blue triangles).

imaging of random fragments. There is good agreement in the observation that
structural disorder contributes only a small correction to the total conformational
statistics. The fact of sequence continuity reduces structural variability.

On short scales below a full double-helical turn, a homogeneous wlc model does
not capture all features of a random rbc. Notably, the bend angle distributions of
a random ensemble may have considerably bigger tails than the assumption of a
Gaussian that is made in one particular incarnation of the wlc model, see chapter
7.

The variability of torsional and bending rigidities in a random ensemble of
short chains reaches noticeable levels below one full turn of the double helix.
Disregarding sequence continuity would lead to an overestimation of stiffness
variability, similar to the structural variability.

In view of an experimental precision approaching one percent for the meso-
scopic bending rigidity [Vol02], a quantitatively correct relation between meso-
scopic and microscopic stiffness parameters is needed. The method [Bec07] pre-
sented in the last two chapters provides part of this link, bridging at least the gap
between the base–pair scale of 1/3 nm and the scale 50nm of a persistence length
of DNA.
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7 Random walks on the rigid motion group

In this chapter, the continuous limit of the rigid base–pair chain is investigated.
Motivated by the description of the worm–like chain in terms of a diffusion process,
we construct a continuous rigid body chain as a diffusion process on the group of
rigid body transformations and calculate some interesting moments of its transition
function. In intrinsically superhelical DNA, these show feature that are not captured
by the corresponding intrinsically straight worm–like chain.

7.1 Continuous models for DNA

DNA has a natural discrete structure in terms of its base–pairs. However when the
length scale of interest is much bigger than the discretization length, a continuous
model is much more appropriate: It allows a description of the molecule’s shape in
terms of differential equations, which is almost a prerequisite for analytical results.

In chapter 5, it was shown how to average over the helical geometry of a rbc,
arriving at the elastic properties of one segment of a discrete version of a chiral,
extensible wlc. Averaging also over the sequence irregularity gave a way to extend
this mapping to a random sequence rbc (chap. 6). By its construction, the resulting
wlc is a description valid for length scales above one helical repeat. The coarse–
graining followed the order rbc → discrete wlc → wlc.

In the following, a more direct way, rbc → continuous rigid body chain (crbc)
of formulating a continuous limit of the rbc will be considered, without averaging
on the intermediate scale of a helical repeat. The resulting crbc does not have a
chiral symmetry on short scales of a few bp. The intermediate scale where crbc
and wlc may differ, is set by the helical axis offset. This regime can extend up to
hundreds of bp in the case of repetitive, intrinsically superhelical DNA. On long
scales, the crbc approaches the wlc, as shown below.

7.2 The worm–like chain limit

To illustrate the relation between discrete and continuous polymer models, we
start by a brief consideration of the limit for the well–known worm–like chain

104



7.2 The worm–like chain limit

(Kra49, see also Yam97, Rub03). For computational simplicity, we restrict the
discussion to two space dimensions.

7.2.1 Discrete versions of the worm–like chain model

A generic discrete polymer chain with inextensible contour can be defined as a se-
quence of beads i joined by link vectors pi i+1 with constant length l0 and summed
bond angles θk l ∈ (−π, π), such that cos θk l = l−2

0 pk k+1 · pl l+1. The thermally
fluctuating individual θi i+1 are modeled as independent random variables, identi-
cally distributed and symmetric around 〈θi i+1〉 = 0.

The projection of the end–to–end vector of an n-link chain on the direction of
its first link is

Rq(n) = l−1
0 p01 ·

n−1∑
i=0

pi i+1 = l0

n∑
i=0

cos θ0i, (7.1)

and the bending persistence length can be defined as the expectation value of Rq

for a long chain, lb = limn→∞〈Rq(n)〉.
Observe that 〈sin θi i+1〉 = 0 and let 〈cos θi i+1〉 = cθ. Then, rewriting the

cosine of the sum θ0 i+1 =
∑i

0 θj j+1, one has 〈cos θ0 i+1〉 = 〈cos θ0i cos θi i+1〉 −

〈sin θ0i sin θi i+1〉 = 〈cos θ0i〉 cθ. By induction,

lb = l0

∞∑
i=0

cθ
i =

l0

1 − cθ
, (7.2)

for arbitrary bond angle distribution p(θ). In the limit of small variance vθ =〈
θ2

i i+1

〉
� 1, cθ → 1 − vθ/2 and the persistence length lb → 2l0/vθ. Two of the

many choices of bend angle distribution are

1. the two–state chain with two possible values of each bond angle, p(θ) ∝
δ(θ − v

1/2
θ ) + δ(θ + v

1/2
θ )

2. the linearly elastic chain with Gaussian distribution p(θ) ∝ e
− θ2

2vθ .

Clearly, on length scales ' l0, the two discrete models are markedly different. Only
after many links n ' n= � 1, the central limit theorem brings the distributions of
Rq(n) into agreement, leading to the same persistence length.

The wlc is obtained by setting simultaneously vθ → αvθ, l0 → αl0 and letting
α → 0. In this way, the ratio lb stays constant in the limit. We define a continuous
chemical distance s =

∫
ds by setting ds so that the contour length l = l0s. Thus s
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7 Random walks on the rigid motion group

is the contour length along the chain, measured in units of the original link length
l0. In the wlc limit, the chemical distance s= at which different refined discrete
models agree, tends to zero: s= = n= · (αl0)/l0 = n=α → 0.

In other words, starting from a discrete chain, the corresponding wlc is obtained
by a limiting procedure which guarantees agreement on long scales. But since
interactions are purely local, the condition (7.2) for long–scale agreement is given
in terms of the local quantities cθ and l0.

7.2.2 The wlc as a diffusion process

To clarify the mathematical structure of the wlc, it is worthwhile to consider the
limiting process in some more detail.

When letting αvθ → 0, αl0 → 0, the number of independent bond angles
increases, but this increased variability is compensated by their more and more
narrow distribution. The typical bond angle fluctuation decreases in size with the
square root, (αvθ)1/2 ∝ α1/2. Therefore in the wlc limit, the tangent direction
Θ(s) = limwlc θ0 i (where i = [s/α]), becomes a continuous function of s. In
contrast, difference quotients of the tangent direction are of size (αvθ)1/2/(αl0) ∝
α−1/2 and diverge in the limit: Θ(s) is nowhere differentiable.

Continuous sample paths with independent increments and linearly growing
variance are a well–known characteristic property of Brownian motion. The inte-
grated bond angle of the wlc is thus nothing but a Wiener process defined by

Θ̃(s) =

∫s

0
dΘ̃(s ′) =

∫s

0
(2l0/lb)

1
2 dW(s ′). (7.3)

Here, dW is standard Gaussian white noise with 〈dW(s)dW(s ′)〉 = δ(s − s ′)ds.
The prefactor gives the angular diffusion constant and is chosen such that (7.2)
comes out right: vθ = 〈Θ̃(1)2〉 = 2l0/lb. The integral on the right hand side (rhs)
of (7.3) is to be understood as an Itō stochastic integral.

The Langevin–like equation (7.3) also suggests an extension of the continuous
model to include non-random intrinsic deformations. Adding a deterministic term
θ0ds to the rhs results in a diffusion with a drift which corresponds to nonzero
mean curvature of the chain.

The spatial conformation of the wlc can then be obtained by one further inte-
gration,

p(s) =

∫s

0

(
sin Θ̃(s ′)

cos Θ̃(s ′)

)
ds ′, (7.4)
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7.2 The worm–like chain limit

Figure 7.1 | Parallel transport on S2 is path dependent: The vector parallel transported
along the points 1 → 2 → 3 → 4 is rotated with respect to the same vector, parallel
transported along 1 → 4.

assuming that the initial tangent pointed in
(

0
1

)
-direction. I.e, the wlc contour is

once continuously differentiable. Note that the integrated bond angle Θ̃ can attain
arbitrary real values, which can be repaired by an additional modulo operation
Θ = Θ̃ mod (−π, π).

The wlc in two dimensions, defined as a special continuum limit of a class of
discrete models, is an integral over a Brownian motion on the unit circle S1 whose
noise strength determines the large scale statistics of the chain.

7.2.3 Diffusion on the sphere

Consider now a wlc in three spatial dimensions. The unit tangent vector Θ lives
on the unit sphere Θ ∈ S2. Increments dΘ̃ of tangent vectors are elements of the
respective tangent space TΘS2 ' R2.

In this setting, the integral over the components of dΘ̃ is more difficult to
interpret. The reason is that unlike the S1 case, there is no global way to identify
tangent spaces based at different points with each other: As illustrated in fig. 7.1,
the natural way to identify different tangent spaces, parallel transport of tangent
vectors, depends on the chosen path! The appropriate path here is the sample
path Θ(s) itself. We will not pursue this approach leading to the rather technical
stochastic calculus on manifolds, see e.g. [Elw82, Eme90].

On the other hand, the Fokker–Planck equation on S2 corresponding to the 3-d
wlc [Her52], is well known. In particular, its analogy to the Schrödinger equation
of a quantum mechanical top [Sai67] has been exploited extensively. It made
possible the use of tools from the quantum theory of angular momentum, see e.g.
[Yam97]. Recently, this has led to exact continued fraction expansions for the
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7 Random walks on the rigid motion group

Laplace–transformed end–to–end vector distribution of the wlc [Spa04].

7.3 Continuum limit of the rigid base–pair chain

Analogous to the description of the worm–like chain as a diffusion process, we
will formulate an Langevin equation for the rbc model. Although this approach
appears less fruitful than the solution of the Fokker–Planck equation at first sight,
the fact that the configuration space of the model is identical to the transformation
group which acts on it (SE), actually simplifies the Langevin description compared
to the wlc in three dimensions.1

This description will result in a diffusion process with values on the Lie group
SE. The study of diffusion processes on Lie groups was originally motivated by
rotational Brownian motion of particles in a thermal bath [Per28, McK60], and
has been extended to matrix [Ibe76, Kar82] and to general [HD86] Lie groups.
Quite generally, a continuous stochastic process on a Lie group G can be obtained
as a stochastic integral over some driving process with values in the associated Lie
algebra g. The intuitive picture for this is that random increments in the configu-
ration g ∈ G of the diffusing particle are ‘small’ group operations, parametrized
by the infinitesimal generators of the group which are elements of g. The fact
that the random increments are multiplicative in nature will lead to processes with
multiplicative noise.

7.3.1 Choice of step coordinates

Let’s take another look at the discrete rbc. If a step has a mean (or center) confor-
mation g0 and random deformations away from the center, it can be represented
as

g = g0 exp(ξ̃iXi) = g0(e + ξ̃iXi + O(ξ̃)2), (7.5)

where
〈
ξ̃
〉

= 0, as done throughout in chapter 5. For taking the continuum limit,
we switch to a more symmetric formulation in terms of exponential coordinates:

g = exp
(
(ξi

0 + δξi)Xi

)
. (7.6)

Here, ξ0 is the mean value ξ0 = 〈log g〉, and δξ represents the fluctuations, in terms
of exponential coordinates. As detailed in sec. 4.2.8 and app. A.4, to first order in

1The same is true for inextensible and unshearable rods, which can be described by a diffusion on
the rotation group SO(3).
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7.3 Continuum limit of the rigid base–pair chain

the deformations, both representations of a fluctuating step are related in a simple
way: g0 = exp(ξi

0Xi) and ξ̃i = Ωi
jδξj where the matrix Ω = (f1(− ad ξ0)).

7.3.2 Diffusion on the Lie algebra

Recall that a chain of bp frames can be written as a product of homogeneous
matrices. Using exponential coordinates for each step,

g0n = exp(ξ01) exp(ξ12) · · · exp(ξn−1 n), (7.7)

where we have used the shorthand notation exp ξ = exp(ξiXi), and ξl l+1 =

ξ0 + δξl l+1. The δξl l+1 denote mutually independent single step deformations.
In a rbc with sequence dependent elasticity, ξ0 and the covariance C = 〈δξiδξj〉 of
deformations both depend on the step index l.

Observe that the discrete chain (7.7) has the property that the mean of the sum
of coordinate vectors is proportional to chain length,

〈∑n−1
l=0 ξl l+1

〉
= nξ0. Also,

since fluctuations are independent, the variance of the sum is proportional to chain
length, too:

〈
(
∑n−1

l=0 δξl l+1)
2〉 ∝ n. This is characteristic of a diffusion process,

with drift equal to ξ0. In fact, we can construct a corresponding continuous ‘time’
diffusion process Ξ(s) with values in the Lie algebra se in a standard way, as a
solution to the stochastic differential equation (sde)

dΞ(s) = ξ0ds + BdW(s), Ξ(0) = 0. (7.8)

The continuous parameter s is the chemical distance, reaching integer values after
every completed bp step, and plays the role of time.

When the drift vector ξ0 and the fluctuation strength matrix B are constants,
(7.8) describes a time–invariant diffusion, and the solution is just given by Ξ(s) =

sξ0 + BW(s), where (Wi)16i66 are six independent, standard Wiener processes.
Since 〈dW〉 = 0 and 〈dWi(s)dWj(s ′)〉 = δijδ(s − s ′)ds, the covariance of Ξ is

〈(BW(s))i(BW(s))j〉 = Bi
kBj

lδ
kl

∫s

0

∫s

0
δ(s ′ − s ′′)ds ′ds ′′ = s Bi

kBj
lδ

kl. (7.9)

Also, since Wiener increments over disjoint intervals are independent, so are the
increments Ξ(l + 1) − Ξ(l) for different l. Identifying ξl l+1 = Ξ(l + 1) − Ξ(l),
the sum of step conformation vectors

∑n−1
l=0 ξl l+1 has been interpolated by the
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continuous process Ξ(s). If the noise strength B satisfies

Bi
kBj

lδ
kl = Cij = 〈δξi

l l+1δξ
j
l l+1〉, (7.10)

then the interpolation Ξ exactly reproduces the discrete statistics of
∑n−1

0 ξl l+1

at integer values s = n.2

What changes when the step parameters ξ0 and C are sequence–dependent?
Looking at sde (7.8), the mean value over one step is

∫l+1
l ξ0(s)ds and can be

matched to 〈ξl l+1〉. To match the sequence–dependent fluctuation strength, the
condition is now that

∫l+1
l Bi

k(s)Bi
k(s)δklds = 〈δξi

l l+1δξ
j
l l+1〉. A possible choice

to fulfill these matching conditions is just to choose B(s) and ξ0(s) to coincide
with the discrete values on the interval of each original discrete step.

The reader may worry about the structure of the expressions B and ξ0 in terms
of units. After all, rotations are dimensionless while translations carry a dimension
of length. A brief discussion is given in appendix A.9.

7.3.3 Diffusion on the group space

The main idea is now to lift this interpolation from se to the group SE. This is
done by using the continuous process Ξ(s) on the algebra to drive a diffusion on
the Lie group. The result is a continuous diffusion process on the group. This
interpolation on the group is no longer exact at the discrete ‘time’ intervals s = l.

One can think of g0n (7.7) as a discrete process on the group, generated the
following procedure: After each ‘time’ lag of ∆s = 1, take a snapshot of the
process Ξ(s) and then multiply the exponential exp ∆Ξ of the finite increment
∆Ξ(s) = Ξ(s + ∆s) − Ξ(s) on the right. The result after n steps is

g0n = g(n) = exp(∆Ξ(0)) exp(∆Ξ(∆s)) · · · exp(∆Ξ(n − ∆s)). (7.11)

Then, rewriting (7.7), for integer values of s,

g(s + ∆s) − g(s) = g(s)(exp(∆Ξ(s)) − e) = g(s)
[
exp(Ξ(·) − Ξc)

]s+∆s

s
(7.12)

where Ξc = Ξ(s) is a constant offset: the process Ξ − Ξc is a shifted version of Ξ

which has the value 0 at s.

To approach a continuous limit, we can now choose smaller steps ∆s, creating

2Note that C = BBT defined here is slightly different from the covariance matrix of left invariant
increments used in chapter 5, there also denoted C.
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7.3 Continuum limit of the rigid base–pair chain

finer subdivisions of the driving process ξ. In the limit ∆s → 0, the result is the sde

dg(s) = g(s)d exp(Ξ(s) − Ξc)
∣∣
Ξc=Ξ(s)

. (7.13)

This sde has multiplicative noise, so here the question of Itō vs. Stratonovich inter-
pretation does matter. Looking again at the discrete version (7.12), the integrand
g(s) is evaluated at the beginning of the interval, so the limit (7.13) is an Itō sde.

We use Itō’s lemma to expand the differential d exp. First note that the shift Ξc

is trivial: d(Ξ(s) − Ξc)
∣∣
Ξc=Ξ(s)

= dΞ(s). Then, we need to expand the exponential
to second order around 0, substituting dWidWj = δijds and ds2 = dWds = 0.
The result is

d exp((Ξ(s) − Ξc)iXi)
∣∣
Ξc=Ξ(s)

= XidΞi(s) + 1
2(Bi

jXidWj(s))2

= (ξi
0Xi + 1

2CijXiXj)ds + Bi
jXidWj(s), (7.14)

which can be plugged into (7.13) to get an explicit Itō sde:

dg(s) = g(s)
(
(ξi

0Xi + 1
2CijXiXj)ds + (Bi

jXidWj(s)
)
, g(0) = e. (7.15)

This is somewhat counter-intuitive, since it says that the right increment of the
diffusion process on the group cannot be written purely in terms of the Xi, i.e
is not an element of the Lie algebra! However, if we transform (7.15) into an
equivalent Stratonovich equation (see e.g. [Ris89]), the extra drift term in (7.14)
drops out again; one obtains

dg(s) = g(s)◦dξiXi = g(s)(ξ0ds + B◦dW(s))iXi, g(0) = e, (7.16)

where the standard notation ◦d now indicates a Stratonovich differential. It is
satisfying that when using the Stratonovich formulation which has the usual rules
of variable transformation, the increment dg manifestly lies in the tangent space
again.

The continuum limit constructed step by step above, is in fact a known rigorous
mathematical result. The stochastic exponential of a continuous semimartingale
on some Lie algebra (here, Ξ) is defined as the unique solution to (7.16) in the
corresponding Lie group (here g(s)) [HD86]. It is a generalization of the usual
path–ordered exponential to integrands which are stochastic processes. On the
other hand, the multiplicative integral [McK60, Ibe76] of Ξ is defined as the
continuum limit ∆s → 0 of (7.7). It has been shown [Ibe76, HD86] that both
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7 Random walks on the rigid motion group

notions agree, which is just the content of our limit construction above.

As mentioned, unlike the diffusion on the algebra, the correspondence between
the original, discrete model and the continuum limit is not exact at integer values
of s. The reason for that is the non-commutativity of the group. Indeed, note that
if all noise terms commuted, then one could rewrite (7.7) simply as

g0n = exp(ξ01) · · · exp(ξn−1 n) = exp(Ξ(n)), (7.17)

so exp Ξ(s) would solve a commuting version of (7.16) and coincide with the
original chain at integer s. However in the general case, exp(Ξ(1)) 6= g(1) since the
lhs is an unordered exponential, while the rhs is path–ordered. Their difference
originates from the non-commutativity of the random increments at different
‘times’.

In summary, the process described by (7.16) is the continuum limit of the discrete
rbc model, to be called a crbc. It has six continuous degrees of freedom, three
linear (v) and three angular (ω) ‘velocities’ whose δ(s − s ′)-correlated fluctuations
around the equilibrium value ξ0 = (ω0, v0) produce conformational fluctuations
of the molecule.

A discrete rbc with ξ0, C converges to the continuous rbc with the same param-
eters in the limit ∆s → 0. However, this limit is generally not the best–matching
continuous description of the original chain because of the non-commutativity of
noise terms. One can expect that the best match will have renormalized parame-
ters. Their calculation is an interesting open problem. Similar to the motivating
example of the wlc, it is unimportant whether the original, discrete distributions
p(δξ) are Gaussians. A matching diffusion Ξ(s) can always be constructed as long
as the second moment of p(δξ) exists.

Finally, it is worth mentioning that in contrast to the wlc, the path g(s) is
continuous but not continuously differentiable, as can be seen by noting that the
increment in (7.15) is δ-correlated.

7.3.4 Generator and Fokker–Planck equation

Now that the continuous crbc model is defined, we write down the corresponding
Fokker–Planck equation for completeness, however not making further attempts
at its solution.

The generator L of a diffusion process is a second–order differential operator.
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7.4 Moment odes

Applied to a function f, it returns the initial change in expectation value g:

(Lf)(g) = ∂s

〈
f(g(s))

∣∣ g(s) = g
〉

. (7.18)

The generator can be read off from the drift term in 7.15; in terms of the left
invariant basis vector fields, L = ξi

0Li + 1
2CijLiLj, see also [Ibe76]. Whenever the

coefficients ξ0, C in (7.16) are constants, L is left invariant and the process g(s) is
a left invariant diffusion.

We denote by p(g, s|g ′, s ′) the normalized transition probability density function
to observe g(s) = g when starting at g(s ′) = g ′.3 It has the usual properties
p(g, s|g ′, s ′) =

∫
p(g, s|g ′′, s ′′)p(g ′′, s ′′|g ′, s ′)dg ′′ for intermediate ‘times’ s ′′ and

lims ′↑s p(g, s|g ′, s ′) = δ(g ′−1g).4 Let f be an arbitrary function with compact
support in SE. Composing conditional probabilities, the change in expectation
when starting at an earlier ‘time’ s ′ is

∂s

〈
f(g(s))|g(s ′) = g ′〉 =

〈
(Lf)(g(s))|g(s ′) = g ′〉 =

∫
SE

p(g, s|g ′, s ′)Lf(g)dg.

(7.19)
Note that the lhs can be rewritten as

∫
∂sp(g, s|g ′, s ′)f(g)dg. Integrating the rhs

by parts and using the fact that f is arbitrary, the transition pdf solves the partial
differential equation (pde),

∂sp(g, s|g ′, s ′) = L†p(g, s|g ′, s ′), (7.20)

which is the Fokker–Planck equation of the continuous chain. Here the Fokker–
Planck operator L† = −ξi

0Li + 1
2CijLiLj acts on the ‘unprimed’ g-dependence. It

is the adjoint of L. The expression for L† is unchanged in the sequence–dependent
case, since then ξ0 and C are functions of s but not of g. One sees that the Fokker–
Planck equation is left invariant, corresponding to the fact that random increments
are naturally given in the local material frame g(s) of the chain.

7.4 Moments as solutions to ordinary differential equations

Some interesting moments of the crbc transition probability p(g, s|e, 0) can be
calculated directly from the Langevin equations (7.15,7.16), without invoking any
advanced machinery for solving the Fokker–Planck pde (7.20), such as harmonic

3p(g, s|g ′, s ′) is variously known as heat kernel, propagator, or fundamental solution.
4
∫

SE δ(g)f(g)dg = f(e) defines the δ-distribution on the group.
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7 Random walks on the rigid motion group

analysis on the group [Chi00, Chi01]. The basic idea is to just to take the expecta-
tion of the matrix sde governing the quantity of interest. This approach was used
previously for inextensible, unshearable rods [Pan00].

We consider three quantities in detail: The mean rotation matrix, the mean end–
to–end vector, and the mean squared end–to–end distance. All three can be used
for defining the bending persistence length of the chain, and the three definitions
give the same result for a wlc. As shown below, in the crbc, the three definitions
are mutually different; they agree only in appropriate limits.

7.4.1 Mean end–to–end rotation

The end–to–end transformation of a rbc is the matrix g(s) =
[

R(s) p(s)
0 1

]
. The

s-dependence of the expectation value of this matrix gives insight into the statistical
properties of the chain. The mean rotation matrix is nothing but the matrix of
direction cosine correlators 〈

Ri
j(s)

〉
=
〈
ej(s) · ei(0)

〉
, (7.21)

which contains information on directional persistence of all rotational deformation
modes along the chain.

We write down the ordinary differential equation (ode) solved by5 〈g(s)〉 =

〈g(s)|e, 0〉. Taking the expectation of 7.15,

d 〈g(s)〉 = 〈g(s)〉 (ξi
0 + 1

2CijXj)Xids, (7.22)

〈g(0)〉 = e (7.23)

where we used the essential fact that the Itō differential is independent,〈
g(s)dWi(s)

〉
= 〈g(s)〉

〈
dWi(s)

〉
= 0. (7.24)

Note that the matrix 〈g(s)〉 is not in SE anymore, since the rotation part 〈R〉 is not
orthogonal! A simple example for this effect is illustrated in fig. 7.2.

Correspondingly, the right increment of 〈g(s)〉 in (7.22) is not in se.6 In block

5Here and in the following, the notation of initial condition in the angular brackets of the expecta-
tion value is suppressed.

6Eqn. (7.22) lives in the embedding matrix space Aff (3) of affine transformations of R3.
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Figure 7.2 | The average of a fluctuating unit vector is shortened: 〈cos θ〉2 + 〈sin θ〉2 6 1.
Therefore, it does not lie on the unit circle anymore!

form it can be written as

ξi
0Xi + 1

2CijXiXj = M =

[
Mω mv

0 0

]
=

[
ω̂0 + ω̃ v0 + ṽ

0 0

]
, (7.25)

where, summing only over 1 6 i, j 6 3, ṽ = 1
2Cij+3εidj, and ω̃ = 1

2Cijεiεj. The
vector ṽ results from the cross–product of translational and rotational fluctuations,
and the matrix ω̃ is symmetric and negative definite7, see also app. A.10.

Since (7.22) is a linear ode, its solutions can be written in terms of a matrix
exponential, which has to be path–ordered in the case of s-dependent coefficients.
To evaluate it explicitly, we split up (7.22) into its blocks to find

∂s 〈p(s)〉 = 〈R(s)〉mv, (7.26)

∂s 〈R(s)〉 = 〈R(s)〉Mω, (7.27)

with the solutions 〈R(s)〉 =
<

exp
∫s

0 Mω(s ′)ds ′ and 〈p(s)〉 =
∫s

0 〈R(s ′)〉mv(s ′)ds ′,
for the initial condition (7.23).8

One way to define the bending persistence length in the wlc model is to take
the decay length of bending correlations along the chain. How can this be done
in the crbc? Let’s investigate 7.27 in the case of constant coefficients in some
more detail. An intuitive definition of the correlator of bending is the projection
of 〈R(s)〉 on the local helical axis direction: cb(s) =

ωT
0

‖ω0‖
〈R(s)〉 ω0

‖ω0‖
. Looking at

(7.27), the right increment Mω of 〈g〉 has an antisymmetric part ω̂0 and a negative
definite symmetric part ω̃. Together they lead to exponentially damped oscillations.
The problem with the correlator cb(s) is that it is not an exponentially decaying

7In the marginal case of constrained rotations where C(ωω) has only rank 1, ω̃ is only semidefinite.
8The path ordering in

<
exp is for increasing s from left to right.
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7 Random walks on the rigid motion group

function; it still shows oscillations. This can be overcome by considering instead
of cb the correlator cno of the non-oscillatory direction, cno(s) = ωT

no 〈R(s)〉ωno.
Here ωno is defined as the unit eigenvector of Mω with real eigenvalue −1/sno < 0.
For moderate noise strength, there exists exactly one such eigenvector. With this
definition, from (7.27) immediately the exponential decay rule ċno = −cno/sno

follows. We have found an exponentially decaying correlator. sno can now be
identified as the bending persistence length of the chain, given in bp units. To get
an actual length, we scale with the mean helical rise l0 =

ωT
0 v0

‖ω0‖
, so that lno = l0sno.

How does the decay of cno compare with the on-axis bending persistence length
lb obtained in chapter 5 by a mapping of the rbc to the wlc? There, the on–axis
version of the covariance was denoted Cq, eqn. (6.7). Its (ω

1,2
q ) submatrix gives the

rotational fluctuations in the subspace orthogonal to ω0. After helical phase angle
averaging (sec. 5.3.4) around the ω0 axis, 2/(C11

q + C22
q ) = sb gives the bending

persistence length of the chain in bp units. Although this is not the same as sno, the
two definitions agree whenever ω0 coincides with the non-oscillatory eigenvector
of Mω. One can check that in that case, sno = −

‖ω0‖2

ωT
0 ω̃ω0

= sb. On the other
hand, helical phase averaging of the covariance matrix by rotating around ω0

automatically makes ω0 a real eigenvector of ω̃! Therefore, for isotropic bending
chains, the relation sno = sb (or lno = lb) is exact.

In conclusion, for all practical purposes in DNA, it is safe to use lb as the bending
persistence length. This is so because on one hand, the thermal fluctuations of
a bps are much smaller than the equilibrium conformation of the step, so that
Mω = ω̂0+small perturbations. On the other hand on scales above a helical
repeat, DNA has essentially isotropic bending.9

7.4.2 Mean end–to–end vector

The mean end–to–end vector 〈p(s)〉 provides an alternative way to characterize
directional persistence; in section 7.2.1 the persistence length of a wlc was defined
as the projection of 〈p(s)〉 on the initial direction, in the long chain limit. We will
refer to this definition as the projective persistence length in this section, denoted
by lproj.

The solution of (7.26), for constant coefficients, reduces to

〈p(s)〉 =

∫s

0
exp(s ′Mω)ds ′mv = s f1(sMω)mv, (7.28)

9with the exception of intrinsically bent sequences
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where the function f1 is defined in A.3. From its series form f1(z) = 1 + 1
2z + · · ·

one can see that the initial growth of 〈p(s)〉 is linear in s with velocity mv = v0 + ṽ.
The extra initial velocity ṽ means that coupling fluctuations influence the mean
shape of the chain also for small distances.

Consider the long–chain limit s → ∞ of eqn. (7.28). Clearly, for convergence,
the matrix exp(sMω) should show exponential decay rather than growth. This is
ensured by the negative definiteness of ω̃. We can directly evaluate the limit by
using the formally integrated expression

〈p(∞)〉 = lim
s→∞ 〈p(s)〉 = lim

s→∞ exp(sMω) − e

Mω
mv = −M−1

ω mv. (7.29)

In between its finite limits 0 and (7.29), the mean end–to–end vector traces
out a path that has the generic shape of a ‘helical logarithmic spiral’, resembling
a regular helical shape in the beginning but then spiraling into its limiting point.
This is illustrated in fig. 7.3 for arbitrarily chosen values of the mean deformation
and covariance. (Cf. a similar plot in [Yam97, chapter 4] for the unshearable
inextensible case.)

It turns out that there exists a critical fluctuation strength above which all re-
mainder of a helical oscillation is extinguished. Reconsider the eigenvalues of the
non-symmetric matrix Mω = ω̂0 + ω̃ in different limits. Without fluctuations
(ω̃ = 0), the eigenvalues 0,±i‖ω0‖ lead to pure oscillatory behavior in the plane
normal to ω0. In the opposite limit of strong fluctuations (ω̂ = 0), Mω has three
real negative eigenvalues. In between, there exists a finite threshold fluctuation
strength at which two eigenvalues just leave the negative real axis.10 Below this
fluctuation strength, all helical structure of the chain is ‘forgotten’. This feature
has been discussed for unshearable and inextensible rods in [Pan00].

Looking at the generic helical shape of the spiraling paths, it is clear that the
projective persistence length of the wlc cannot correspond to the projection of
〈p(s)〉 on the initial tangent direction. Instead, as considered to great lengths
in chapter 5, one needs to project on the initial direction of the mean helical
centerline. Again, it is better to choose the initial non-oscillatory unit eigenvector
ωno instead of ω0. We define the projective persistence length of the crbc as

lpro = ωno
T 〈p(∞)〉 = snoω

T
no(v0 + ṽ). (7.30)

10 If ω̃⊥ = P⊥
ω0

ω̃P⊥
ω0

denotes the projection of ω̃ perpendicular to ω0, the condition for oscillatory
motion in that plane is given by tr2 ω̃⊥ − 4 det ω̃⊥ < 4‖ω0‖2, at which point the eigenvalues of
P⊥

ω0
MωP⊥

ω0
acquire an imaginary part.
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7 Random walks on the rigid motion group

Figure 7.3 | Traces of the mean end–to–end vector 〈p(s)〉, color coded for chemical dis-
tance s. The trace numbers 0,1,2,3 correspond to fluctuation covariances scaled with a
prefactor 0,0.1,1,13, respectively. The traces range form a regular helix (0) for switched–
off fluctuations to eliminated oscillations in trace (3) . The latter also demonstrates that
the initial tangent differs from v0 in general.

Interestingly, this does not give the same result as the persistence length of bend-
ing correlations: lpro 6= lno. The reason is that the coupling of translational and
rotational fluctuations adds an extra term ṽ which is absent in the pure rotational
decay length lno.

Does this make a difference for DNA? The conditions that led to lb = lno in
the previous section, have the same effect here: In the limit of small fluctuations,
ωno → ω0

‖ω0‖
and also ṽ � v0 so that lpro → sb

ωT
0 v0

‖ω0‖
= lb. Moreover, when

the covariance is averaged over helical phase only twist–stretch couplings survive
which means that ṽ → 0 for isotropic bending. So also in the isotropic bending case
lpro = lb is exact. For DNA on scales of a helical repeat length, both conditions
are fulfilled, so here lpro = lb is a good approximation.
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7.4.3 Mean squared end–to–end vector

Another interesting moment of the crbc transition pdf p(g, s|e, 0) is the mean
squared end–to–end distance

〈
p2(s)

〉
=
〈
pT(s)p(s)

〉
. The chain has no long–range

correlations. In the limit of long chains, it will therefore approach a Gaussian
behavior, so that

〈
p2(s)

〉
grows linearly in s. The prefactor is an effective diffusion

constant in 3-d space, resulting from both drift and diffusion on SE.

In the wlc model, this diffusion constant equals 2l0lb. Therefore setting ldiff =
1
2 lims→∞ 1

l0s

〈
p2(s)

〉
, one gets yet another definition of persistence length, which

is equivalent to lb in the wlc case.

Relating this to the crbc, the monomer length is l0 = ω0
Tv0

‖ω0‖
. To get a handle on〈

p2〉, observe that the matrix

gTg =

[
I3 RTp

pTR pTp + 1

]
/∈ SE (7.31)

contains the squared distance in its 4, 4 entry. We write down a Langevin equation
for this matrix. From (7.15), using the product rule of Itō calculus,

d(gTg) = dgTg + gTdg + dgTdg =

=
(
MTgTg + gTgM + CijXT

i gTgXj

)
ds +

(
XT

i gTg + gTgXi

)
Bi

jdWj(s).
(7.32)

The initial condition is as usual, (gTg)(0) = e.

Consider the extra drift term CijXT
i gTgXj = M ′. A straightforward calculation,

using the algebraic properties of the basis matrices Xi (cf. sec. 4.2.4), and the fact
that RTR = e for all s, gives the block form11

M ′ =

[
−Cijεiεj −Cij+3εidj

Ci+3jdT
i εj Ci+3j+3δij

]
=

[
−2ω̃ −2ṽ

−2ṽT m ′

]
; 1 6 i, j 6 3. (7.33)

Thus, taking the expectation value,

d
〈
gTg

〉
=
(〈

gTg
〉
M + MT〈gTg

〉)
ds + M ′ds, (7.34)

which is an inhomogeneous linear ode.

To solve it, note first that the associated homogeneous equation is eqn. (7.34)
with M ′ set to 0. For the initial condition

〈
gTg

〉
(0) = A, it has the solution

11As a check, one can plug this into (7.32); one then sees that the rotation part −2ω̃ exactly cancels
with MT

ω + Mω = 2ω̃ inside the drift term.
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s 7→ 〈g(s)〉T A 〈g(s)〉, where 〈g(s)〉 is a solution of the ode (7.22) with (7.23).
A particular solution of the inhomogeneous equation starting at 0 is given by
s 7→

∫s
0 〈g(s − s ′)〉T M ′ 〈g(s − s ′)〉ds ′. Combining, we get an explicit formula,12

〈
gTg

〉
(s) = 〈g(s)〉T 〈g(s)〉+

∫s

0

〈
g(s ′)

〉T
M ′ 〈g(s ′)

〉
ds ′. (7.35)

We can now plug in the explicit block form of 〈g〉 and calculate the 4, 4 matrix
element to extract the mean square displacement

〈
pTp

〉
. The result is

〈
pTp

〉
(s) = 〈p〉T 〈p〉 (s)+

∫s

0
−2
〈
p(s ′)

〉T
ω̃
〈
p(s ′)

〉
−4

〈
p(s ′)

〉T
ṽ+m ′ ds ′. (7.36)

In this equation, the ‘square of the mean value’ 〈p〉T 〈p〉 gives only a constant
offset for long chains, whereas the integral term produces a linear increase in
mean square displacement. The limiting behavior is

1
s

〈
pTp

〉 s→∞−→ −2 〈p(∞)〉T ω̃ 〈p(∞)〉− 4 〈p(∞)〉T ṽ + m ′, (7.37)

which can be further simplified. Plugging in (7.29), and using symmetry properties
of ω̃ and ω̂0, the effective diffusion constant after some algebra becomes

2l0ldiff = −2(v0 + ṽ)T(ω̂0 + ω̃)−1(v0 − ṽ) + m ′. (7.38)

One sees that all blocks of the covariance matrix enter. In particular, in the limit
of vanishing rotational diffusion ω̃ but finite drift v0, ldiff diverges, since then the
helical shape is persistent which leads to ballistic growth. In the opposite limit of
strong rotational fluctuations, the first summand vanishes and a pure translational,
isotropic diffusion with diffusion constant m ′ remains, a perfectly sensible result.
The fact that m ′ occurs in the mean square displacement also means that ldiff 6= lpro

in general, since the projective persistence length does not include any translational
diffusion.

Consider the limit of ldiff in which the fluctuation terms ω̃, ṽ are small compared
to the static offsets ω0, v0. Since ω̂0 is singular, (ω̂0 + ω̃)−1 will diverge in the
limit of no noise, but only on the null space of ω̂0; The leading behavior is

(ω̂0 + ω̃)−1 =
ω0ω

T
0

ωT
0 ω̃ω0

+ O
( ‖ω̃‖
‖ω0‖

)
. (7.39)

12As it stands, this solution is valid only for constant coefficients. It is a technical matter to extend
the solution to s-dependent coefficients.
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The translational term m ′ is small in comparison. Using this in (7.38),

ldiff → −l−1
0

vT
0 ω0ω

T
0 v0

ωT
0 ω̃ω0

= −
ωT

0 v0‖ω0‖
ωT

0 ω̃ω0
= lb. (7.40)

Summarizing, in general the bending persistence length lb , the projective per-
sistence length lpro and the diffusive persistence length ldiff are mutually different
quantities. However in the limit where the size of fluctuations per monomer is
much smaller than the drift, the pure rotational fluctuations dominate the long–
scale statistics of the chain. Then the rotation–translation coupling present in lpro

and the translational fluctuations additionally present in ldiff are unimportant and
lb ' lpro ' ldiff . For DNA, this is a good approximation. The relations among the
different definitions of persistence length are summarized in table 7.1.

Table 7.1 | Different persistence length definitions in the crbc model.

lb lno lpro ldiff

definition covariance⊥ ω0
non-oscillatory

decay
end–to–end

vector

end–to–end

distance

fluctuation modes rot ⊥ ω0 rot ⊥ ωno rot, rot×trans
rot, rot×trans,

trans

helical average → lb → lb → lb → lb + m′

2l0

small fluctuations → lb → lb → lb → lb

The full s-dependence of the mean squared displacement can be also made more
explicit than (7.35). Integrating over (7.28) and simplifying, one obtains〈

pTp
〉
(s) = 2(v0 + ṽ)TM−1

ω

(
exp(sMω) − sMω − I3

)
M−1

ω (v0 − ṽ) + s m ′. (7.41)

Comparing this with the well–known wlc result〈
p2(s)

〉
= 2lb(exp(−sl0/lb) + sl0/lb − 1)lb, (7.42)

one can draw a close analogy by identifying −Mω ↔ l0
lb

and (v0 ± ṽ)TM−1
ω ↔ lb,

and disregarding the translational diffusion term sm ′ which is absent in the wlc.
After inserting the limiting behavior (7.39), the matrix equation (7.41) is seen to
approach the scalar equation (7.42).

In fig. 7.4, plots of 1
s〈p

Tp〉(s) corresponding to those in fig. 7.3 are shown. The
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Figure 7.4 | Mean squared distance of the crbc , divided by chemical distance. The param-
eters used, and the color coding are the same as in fig. 7.3.

curves 1, 2, 3 correspond to finite fluctuation strength. Their plateaus for small s

values give the translational diffusion coefficient m ′. The translational diffusion
regime is normally not observed in DNA, as it is below the natural discretization
of the molecule, but may play a role in different contexts. The plateau values at
high s give the effective diffusion coefficient 2l0ldiff.

In contrast, the zero–temperature curve 0 shows ballistic growth in both limits;
its shifts in y-direction correspond to the speed ‖v0‖ along the helix and to the
monomer length l0, respectively.

The non-monotonic behavior in s of the mean square distance is a consequence
of the helical structure and can already be guessed from the traces in fig. 7.3. Curve
3 corresponds to high fluctuation strength above the threshold for oscillations; it
is therefore monotonic.

Interestingly, also the effective diffusion coefficient exhibits non-monotonic be-
havior as a function of the fluctuation strength. From divergence at low noise
strength (0) it drops to a minimum and then increases again (1, 2, 3). This can
be understood when considering that low bending fluctuations lead to high di-
rectional persistence, i.e. to a high diffusion constant, whereas high translation
fluctuations also cause a high diffusion constant. Their competition leads to the
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7.4 Moment odes

Figure 7.5 | Comparison of wlc (orange) and crbc (blue) predictions to discrete rbc simu-
lation data (symbols). In the left panel, 〈p2〉/s is shown as in 7.4. The right panel shows
〈p2〉/s2 and zooms in on short lengths. The red curve corresponds to switched–off
translational fluctuations. Static covariance, MD parameter set.

minimum. Its location depends on the relative strength of rotational and transla-
tional fluctuations in the covariance matrix C.

7.4.4 Numerical verification

We compare the predictions of the crbc and wlc models for the mean squared
distance with a simple–sampling Monte–Carlo simulation of a discrete rbc. Essen-
tially, we repeat the same comparison as the one made in sec. 6.2. To make the
differences clear, this time a homogeneous discrete rbc which has only the static
covariance matrix of the MD parameter set as its covariance is chosen. Thus, the
data points shown in fig. 7.5 correspond to the upper row of symbols in the fig. 6.2.
The curves are the wlc and crbc predictions for the mean squared displacement,
eqns. (7.42) and (7.41), respectively. The parameters are not fitted but directly
calculated from the covariance matrix used in the simulation.

In the left panel one sees that the wlc prediction is very good starting form a
few tens of bases, while there is a small but significant discrepancy below a helical
repeat. This is clearly visible in the rescaled representation in the right panel.
The oscillatory behavior of 〈p2(s)〉 cannot be captured by the wlc model, but is
perfectly reproduced by the crbc prediction. The shoulder below 5 bp is not a
result of translational diffusion, which can be seen from the red curve which is a
version of (7.41) with ṽ and m ′ set to 0. Rather, it results form the mean helical
geometry of the MD parameter set, which has a comparatively high axis offset.
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7 Random walks on the rigid motion group

Figure 7.6 | Equilibrium conformation of 20 repeats of the sequence ‘CCCCCCTTTAA’.
On-axis compound steps are shown in gray. MP parameters.

7.4.5 Superhelices are described by the crbc but not by the wlc

In chapter 5, repetitive sequence rbcs were reduced to ideal B-DNA form by
considering the on-axis version of the chain. The on-axis ‘phantom’ bases fluctuate
around the helical centerline, and allow a derivation of the correct long-wavelength
statistics of the chain.

However, on short to intermediate length scales, the on-axis version may have
very little to do with the true conformation of the rbc. Fig. 7.6 shows an example
of an 11-bp repeat, whose intrinsic conformations combine to produce a superhe-
lix. The thermal conformation statistics of this repetitive DNA can be treated by
combining all steps of the repeat into a compound step as explained in sec. 5.2.1.
The resulting chain of repeats is homogeneous but has a rather large axis offset.
The on-axis versions of the compound steps lie on the superhelical centerline, see
fig. 7.6.

Clearly, on scales of the order of the superhelical repeat (220 bp in this case), the
influence of the superhelical axis offset on end-to-end vector statistics is noticeable.
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7.4 Moment odes

Figure 7.7 | Comparison of wlc (orange) and crbc (blue) predictions for the mean squared
distance 〈p2〉/s. The red curve corresponds to switched–off translational fluctuations.
Sequence and parameters as in fig. 7.6.

It is captured neither by the on-axis chain nor by its coarse–grained wlc counterpart.
In contrast, the crbc chain does trace the superhelical oscillations. This is clearly
visible in fig. 7.7 where the mean squared end-to-end distance is shown. While the
wlc does reproduce the long-wavelength behavior, the true mean squared distance
is increased on the scale of a superhelical repeat, as shown by the crbc result. This
extra shoulder is mainly a remainder of the superhelical oscillations. Additionally,
an effect of what appears as translational fluctuations of the compound step is
visible below 10 bp, in the difference between the full result and the curve with
suppressed translation fluctuations.

In conclusion, for repetitive sequences which produce superhelices with large
axis offset, there exists an intermediate regime where the crbc model makes non-
trivial predictions that the wlc cannot capture. Such superhelical repeats may be
relevant in the sequence dependent positioning of nucleosomes in eukaryotic DNA,
where sequential signatures of ‘pre-curled’ DNA have been found on a length of
around 100 bp [Aud01, Aud02]. In contexts different from DNA, for example
a different helical macromolecule or true rigid body diffusion in the time do-
main, the helical axis offset and thus the differences between wlc and crbc become
important.
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8 Lagrangian mechanics on the rigid motion group

In this chapter, an alternative Lagrangian formulation of the continuous rigid body
chain in is considered. The equilibrium shape equations are derived, and a set of
conserved quantities is found. Finally, the linear response of the chain is calculated
around a known solution of the equilibrium shape. While shearable, extensible rods
have long been investigated in elasticity theory, the following work is new in that
emphasis is put on exploiting the underlying rigid motion group structure. This
chapter should be considered an addition of mainly theoretical interest.

8.1 Lagrangian approach to random paths

In this section, we establish the correspondence between the diffusion–type de-
scription of a crbc and a formulation in terms of a local energy functional that
depends on derivatives of the configuration.

We start from the wlc case where this analogy between chain conformations
and particle trajectories in the Lagrangian formulation of mechanics is well known.
Then, we extend the formulation to the crbc model, drawing an analogy to the La-
grangian mechanics of systems which have configurations in Lie groups as treated
in, e.g. [Arn98].

8.1.1 Elastic energy of the wlc

The worm–like chain model is defined as the continuum limit of a class of discrete
models with confined bending angle at each joint, see section 7.2.1. The bending
confinement results from an elastic energy. E.g, using the equipartition theorem,
the linear elastic model (2.) in 7.2.1, has an elastic energy per link E(θ) = θ2

2vθβ .

To relate this discrete picture to the continuous diffusion model discussed in
sec. 7.2.2, we define a quadratic energy functional A[Θ(s)] as a stochastic process.
Taking the limit of the sum of bond angle energies, one obtains the stochastic
differential equation dA(s) = 1

2a(dΘ(s))2, where a is the stiffness constant. Using
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8.1 Lagrangian approach to random paths

Table 8.1 | Correspondence between wlc statistics and Lagrangian mechanics.

wlc quantity mechanics quantity
chemical distance s time t

chain conformation p(s) particle trajectory q(t)

elastic energy density L Lagrangian L

total elastic energy A action A

the Itō formula, this can be transformed into

dA(s) =
l0a

lb
dW(s)dW(s) =

l0a

lb
ds. (8.1)

One sees that the quadratic functional A is in fact a non-random function, linear in
s.1 To match the original mean energy density 1

2β along the chain, we set a = lb
2βl0

.
Then, (8.1) can be rewritten as

A =
1
2

∫
lb

2βl0
(dΘ(s))2 =

1
2

∫
lb

2β
(∂lΘ)2dl =

1
2

∫
lb

2β
(∂2

lp)2dl. (8.2)

Note that strictly speaking, ∂lΘ does not exist, since the random path Θ(l) is
nowhere differentiable. In integrals over a quadratic form, this derivative can be
interpreted by the relation (dΘ(s))2 =: (∂sθ)2ds = (∂lΘ)2dl. In the case of the 3-d
wlc, the bending angle corresponds to two degrees of freedom, so the mean energy
density is 2 · 1

2β . Therefore, the corresponding 3-d version of (8.2) has a = lb
β

instead of lb
2β as stiffness constant.

The elastic energy functional (8.2) is an alternative, equivalent definition of
the wlc model. It is entirely analogous to the Lagrangian function in classical
mechanics or in field theory. The basic correspondences are listed in table 8.1. In
the following, we adopt some of the standard notation, freely changing between
the ‘time’ and ‘chemical distance’ nomenclature.

8.1.2 Elastic energy of the crbc

We now translate the construction of a continuous energy density to the crbc
case. The new ingredients are the six–dimensional conformational space and the
presence of drift.

In order to get a constant energy density 6
2β for the six degrees of freedom along

1This well–known fact is a result of the central limit theorem: In the continuum limit, the normal-
ized sum of random single step variances becomes δ-distributed, i.e. non-random [Oks98].
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8 Lagrangian mechanics on the rigid motion group

the chain, we write

dA(s) =
1
2

(dΞ(s) − ξ0ds)iSij(dΞ(s) − ξ0ds)j, (8.3)

where S = (βC)−1 is the stiffness matrix. Using (7.8) and the Itō formula for
expanding the differential dΞ, indeed dA = 1

2Bi
kBj

lδ
klSijds = 6

2βds, analogous
to the wlc example above.

Equation (8.3) is analogous to (8.2); we can again write it in a more traditional
way using a dot˙to denote s derivatives of the fluctuating quantities,2

dA(s) = Lds =
1
2

(Ξ̇ − ξ0)
iSij(Ξ̇ − ξ0)

jds. (8.4)

Note that the derivative Ξ̇ is by definition nothing but the body velocity of the end
frame Ξ̇ = g−1ġ = ξ. The energy density L is analogous to the Lagrangian of a
classical rigid body with a rotational and translational generalized inertia tensor
Sij. We will use the terms Lagrangian and energy density interchangeably.

A crucial difference to the classical mechanics situation is the drift ξ0, which
reflects the material property of intrinsic shape. A way to interpret the drift is
by expanding the product in (8.4); then Sξ0 plays the role of an external field
which exerts force and torque on the particle, analogous to a vector potential
in electrodynamics. However, the term Sξ0 is constant with respect to the body
frame g(s).3 This is atypical of an external force, which should be constant in the
lab frame,4 see also section 4.3.

We can now extend the table of correspondences between Lagrangian mechanics
and chain conformations in the crbc case, using some of the notions introduced in
chapter 4, see tab. 8.2.

8.2 Euler–Lagrange equations

Since dξ is just the component vector of g−1dg(s) = Xidξi(s), the Lagrangian
depends on the frame configuration and its derivative in a very specific way:

L = L(g, ġ; s) = L(g−1ġ; s), (8.5)

2Since ∆ξ(s)−ξ0∆s

∆s
is of order 1/

√
∆s, this expression does converge!

3i.e. it is a left invariant covector field
4i.e. right invariant
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8.2 Euler–Lagrange equations

Table 8.2 | Correspondence between crbc statistics and Lagrangian mechanics.

crbc quantity rigid body mechanics quantity
chemical distance s time t

material frame g(s) body frame g(t)

chain conformation s 7→ g(s) body frame trajectory t 7→ g(t)

elastic energy density L Lagrangian L

total elastic energy A action A

material frame strain ξ body frame velocity ξ

material frame stress µ body linear/angular momentum µ

body frame drift ξ0 – ? –

where the explicit s dependence represents that of ξ0(s) and S(s). We will sup-
press its notation in the following. Since L depends only on left invariant vec-
tor fields it is, not surprisingly, itself left invariant: For a constant left offset
h, L((hg)−1∂s(hg)) = L(g−1ġ). Consequently, also the action is left invariant,
A[g(s)] = A[h g(s)]. Neither L nor A are right invariant.

We can consider the action of arbitrary paths on SE. The path which has the
highest probability according to a Boltzmann distribution with energy density L

is that which minimizes the total energy A. In analogy to Lagrangian mechanics,
we call it the classical path. Since minimization of the total elastic energy A is
equivalent to a stable mechanical equilibrium of the chain, the classical path is the
equilibrium shape of the crbc. It is determined by the Euler–Lagrange equations
of the problem together with the appropriate boundary conditions.

To find the Euler–Lagrange equations, we extremize the action. Since the La-
grangian has a simple form when given in the left invariant frame, we write a
first–order variation of the path in the left invariant frame, as5

g(s) → g(s)(e + δξ(s)). (8.6)

Note that any first order variation can be written in this basis, so we are imposing
no additional restriction on the allowed variations. The body velocity changes as

ξ = g−1ġ → (e − δξ)g−1(ġ(e + δξ) + gδξ̇) = ξ + [ξ, δξ] + δξ̇ + O(δξ2) (8.7)

The variation of the action among paths with fixed initial and final points (a, b) is

5Here again the abbreviated notation ξ stands for the matrix ξiXi .
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8 Lagrangian mechanics on the rigid motion group

then
δA[g(s)] =

∫
δL(ξ(s)) ds =

∫( ∂

∂ξi
L(ξ)

)
(δξ̇i + [ξ, δξ]i)ds. (8.8)

Partial integration from initial (0) to final (sf) points leads to

δA[g(s)] =

∫sf

0

(
−

d
ds

∂L

∂ξi
+

∂L

∂ξj
ad ξj

i

)
δξids +

[
δξi ∂

∂ξi
L
]sf

0
. (8.9)

From this expression, the Euler–Lagrange equations can be read off by considering
arbitrary variations with the constraint δξ(0) = δξ(sf) = 0. Written in explicit
matrix form, they are

−
d
ds

S(ξ − ξ0) + adT
(ξ)S(ξ − ξ0) = 0. (8.10)

In the special case of s-independent coefficients, these six equations may be sim-
plified somewhat and written as

ξ̇ = S−1 adT
ξ S(ξ − ξ0), (8.11)

a system of six first–order, quadratic odes.

Recalling the discussion on the linear response of the chain in section 4.3, µ =

S(ξ−ξ0) is the stress corresponding to the strain ξ−ξ0 of the molecule, expressed
in the material frame. Expressed in terms of µ, the general sequence dependent
Euler-Lagrange equations (8.10) become

µ̇ = adT
ξ µ = adT

(ξ0 + S−1µ) µ. (8.12)

8.3 Conservation laws

The first variation may be carried out as well in a right invariant setting. This leads
to a set of cyclic coordinates and conserved quantities. Proceeding in the same
manner as before, the right invariant variation g(s) → (e + δζ(s))g(s) changes the
body frame velocity in the following way:

g−1ġ → g−1(e − δζ)((e + δζ)ġ + δζ̇g) = ξ + g−1δζ̇g + O(δζ2), (8.13)

which using the Ad matrix notation, leads to

δA[g(s)] =

∫sf

0

(
−

d
ds

(Ad−1
g)j

i

∂L

∂ξj

)
δζids +

[
δζi(Ad−1

g)j
i

∂L

∂ξj

]sf

0
, (8.14)
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8.3 Conservation laws

from which an equivalent version of the Euler–Lagrange equations is derived:

d
ds

Ad−T
g S(ξ − ξ0) = 0. (8.15)

Carrying out the differentiation indeed gives back 8.10. What is the interpretation
of these six conserved quantities? As explained in section 4.3.4, by multiplying
with Ad−T

g, we can transform the material frame stress µ back to the base frame
g(0) = e. I.e, the force and torque components, expressed in the base frame:

ν = Ad−T
µ = Ad−T

g S(ξ − ξ0), (8.16)

are conserved. This is nothing but the statement of force balance in mechanical
equilibrium, accounting correctly for the moving reference frame.

Continuing the analogy to Lagrangian mechanics, ν is a set of conserved mo-
menta, equal to the initial momenta, and can be computed from the configuration
and velocity g, ġ at each point. This set of conserved momenta is a direct conse-
quence of the invariance of L under left translations by Noether’s theorem. In
the special case of pure rotational motion and no drift, the crbc is equivalent to
the free motion of an asymmetric top. In this case, the conserved momenta are
nothing but the conserved total angular momentum vector, given relative to the
lab frame. The equations of motion ν̇ = 0 of systems whose configuration space is
a general Lie group are due to Arnol’d, see e.g. [Arn98].

We also expect to find the equivalent of conservation of energy in the chain.
Defining a left invariant Hamiltonian by the usual rule,

H = ξi ∂L

∂ξi
− L =

1
2

(ξ + ξ0)
TS(ξ − ξ0); (8.17)

note the sign change. When expressed in terms of the material stress,

H =
1
2

µTS−1µ + µTξ0. (8.18)

We can plug in (8.9) to get

d
ds

H(ξ) = ξ̇i ∂L

∂ξi
+ ξiad ξj

i︸ ︷︷ ︸
0

∂L

∂ξj
−

dL

ds
= −

∂L

∂s
, (8.19)

so d
ds

H(ξ(s); s) = ∂
∂sH(ξ(s); s). The Hamiltonian is conserved whenever L has no

explicit s-dependence. Note that the Hamiltonian is not the same as the energy
density L; even in the constant coefficient case ∂L

∂s = 0, their difference is generally
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8 Lagrangian mechanics on the rigid motion group

not constant,
d
ds

(H − L) = (ξ − ξ0)
T
S ad ξ ξ0. (8.20)

We conclude that the elastic energy L is equidistributed along the homogeneous
crbc whenever [ξ, ξ0] = [ξ − ξ0, ξ0] = 0, i.e. when the material frame strain
commutes with the equilibrium shape everywhere along the chain. As explained
in section 4.2.7, this is the case exactly if the strain is an infinitesimal deformation
which shares the same helical axis with the equilibrium shape.

As an example, consider a force–free equilibrium shape of a crbc which is a
straight, twisted rod. E.g, such a chain is the result of an on-axis transformation
as in chapter 5. We now pull on it in the direction of the axis (say, d3) with a
generalized force ν = (τ, f) = (0, ‖f‖d3). Consider the response of the chain at
s = 0. If the on-axis compliance has the property that Cqν = ξ(0) is a screw
motion with helical axis d3, then the resulting shape will be a regular helix and
the energy will be equidistributed. This is automatically the case if we choose the
helical phase averaged version C̄ for the on-axis compliance. On the other hand, if
the on-axis compliance does not have that property, a periodic variation of helical
parameters and of the energy will result.

8.4 Linear response of the crbc

To determine the equilibrium shape of the crbc, the Euler–Lagrange equations have
to be solved for given initial and final configurations. This is a hard problem due to
the nonlinearity of the shape equations, and can be best solved numerically. In the
following we consider not the explicit solution but the dependence of solutions
on the boundary conditions.

8.4.1 Variation of the boundaries

Denote the action evaluated along the classical path (i.e. the minimal chain energy)
from g(0) = a to g(sf) = b by A(a, b; sf). We can completely eliminate the initial
point dependence: Note that due to left invariance of L, any left translated classical
path is again a classical path, from which follows A(a, b; sf) = A(e, a−1b; sf). This
property of the action is completely analogous to that of a classical system in which
the Lagrangian is translation invariant, e.g. for a particle in a uniform magnetic
field, so that the action depends only on the difference of final and initial positions.
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8.4 Linear response of the crbc

Thus, it is enough to consider only the initial condition a = e. We write the
classical action starting from e as A(e, h; sf) =: A(h; sf).

The question to be investigated is: How does the minimal chain energy depend
on small changes in the initial and final configurations, in other words, what are
the derivatives of A(a, b; sf)? When the final configuration but not the chemical
length of the chain is varied, the chain will adopt a new shape, which is again a
solution to the Euler–Lagrange equations, but corresponding to the new boundary
values.

Looking back at (8.9), since we are starting from a solution of (8.10), this time
only the boundary term survives in the first variation, so that

δA =
[
δξi ∂

∂ξi
L
]sf

0
= δξi(sf)µi(sf) − δξi(0)µi(0), (8.21)

where the body momentum µ(s) = S(ξ(s) − ξ0). Note that µ(0) = ν is the stress
expressed in the lab frame. We call the final body stress µ(sf) = µf. Then (8.21)
amounts to

Li

∣∣
b ′=b

A(a, b ′; sf) = µf
i and Li

∣∣
a ′=a

A(a ′, b; sf) = −νi. (8.22)

Because the classical action actually depends only on one argument, it is possible
to express its derivatives with respect to initial and final points as derivatives of the
back–translated action A(h; sf). To do this, note that by definition A(a, b; sf) =

A(a−1b; sf) = A((b−1a)−1; sf).

Since Li is left invariant, we have immediately

Li

∣∣
b ′=b

A(a, b ′; sf) = Li

∣∣
h=a−1b

A(h; sf). (8.23)

For the initial point derivative, recall from (4.11) that the right invariant basis
vector fields act on functions by Rif(g) = d

ds

∣∣
0f((e + sXi)g). One calculates

Li

∣∣
a
f(a−1b) =

d
ds

∣∣∣∣
0
f
(
(b−1a(e + sXi))

−1) =
d
ds

∣∣∣∣
0
f
(
(e − sXi)a

−1b
)

= −Ri

∣∣
a−1b

f.

(8.24)
We can thus rewrite (8.26) as

Li

∣∣
h=a−1b

A(h; sf) = µf
i and Ri

∣∣
h=a−1b

A(h; sf) = νi. (8.25)
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8 Lagrangian mechanics on the rigid motion group

8.4.2 Calculation of the linear response of a crbc

After these preliminaries, we can now proceed to calculate the second derivatives
of the classical action with respect to the boundary conditions. In view of (8.25),
they will just give the linear response of the chain stress to deformations of the end
configuration gf = g(sf). More explicitly, we consider the non-symmetric matrix
RiRkA(gf; sf) which can be written in a variety of different forms;

RiRkA = Riνk = Ad g−1
f

j
iLjνk = Ad g−1

f
j
iLkµf

j , (8.26)

where µf = µf(g; sf) is the final material frame stress and ν = ν(g; sf) is the
lab frame stress which is conserved along the length sf chain from e to g. The
derivatives in (8.26) are understood to act on the end–to–end separation gf. Recall
also from sec. 4.2.5 that [Ri, Rk]A = cl

kiνl and [Ri, Lj] ≡ 0.

Here, care has to be taken when crossing conjugate points. Consider a solution
g(s) of the Euler-Lagrange equations. At every value sc < sf where there exists
not an isolated solution reaching g(sc) in the same ‘time’ sc but a whole family,
the matrix RiRkA becomes singular. In general, for each additional conjugate
point, one additional eigenvalue matrix becomes negative. We do not consider
these difficulties here, therefore the discussion is restricted to the case where the
equilibrium path is a true local minimum, so that (8.26) remains positive definite.

Rather than directly varying the boundary value gf, we look at the response of
the chain when varying the stress, i.e. the inverse matrix of (8.26). We write the
integrated response of the shape on the left, i.e,

g(s) → (e + δZ(s))g(s) (8.27)

is the accumulated first–order change in g. We can express δZ in terms of the
material frame deformation. The material frame deformation ξ = g−1ġ, to first
order, changes as

ξ(s) → g−1(e − δZ)((e + δZ)ġ + δŻg) = ξ(s) + Ad g−1(s)δŻ, (8.28)

so that
δŻ = Ad g δξ = Ad g Cδµ. (8.29)

A crucial point is now that we are considering variations of the classical action,
i.e. variations among classical paths. For this reason, the lab frame stress stays a
conserved quantity along all varied paths: δν is independent of s. By the group
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8.4 Linear response of the crbc

property of the Ad matrices and the product rule,

δµ = δ(AdT
g ν) = AdT

g δν + AdT
g adT

δZ ν. (8.30)

Observe that δZ itself depends on the history of δµ ′, s ′ < s via (8.29). In effect,
eqn. (8.30) results in an ode, known as the Jacobi equation, which we will now
write down. At this point it is convenient to introduce yet another variant of
the ad matrices. Let (ad⊥ τ)ij = τlc

l
ij, the contraction of the structure constants

with a covector. This is made so that for any τ ∈ se∗, V ∈ se we can interchange
adT

V τ = − ad⊥ τ V. Using this notation and inserting (8.29),

δŻ = Ad g C AdT
g δν − Ad g C AdT

g ad⊥ ν δZ = AD g C(δν − ad⊥ ν δZ). (8.31)

(Recall that AD g C := Ad g C AdT).

The Jacobian matrix Jij =
∂δZi

f
∂δνj

gives the first order change of the end configura-
tion gf, when the stress is varied. Here, both the change in end frame configuration
δZf and the change in stress δν, are expressed in the lab frame. We can derive from
the ode (8.31) which is a vector equation, an ode for the 6× 6 matrix J, by taking
partial derivatives with respect to the δνj. The result is the Jacobi differential
equation,

J̇ = AD g C − AD g C ad⊥ ν J; J(0) = 06×6. (8.32)

The only external s dependence which is left in this ode is that of the known
equilibrium shape g(s). It is thus a linear system of odes with variable coefficients.6

The solution can be written formally in different ways. Before doing so, note
that whenever the equilibrium is stress–free, i.e. equal to the intrinsic shape, the
equation can be integrated directly, and the result is

J(sf) =

∫sf

0
AD g(s) C(s)ds. (8.33)

In the stressed case, we note that the solution of the associated homogeneous
equation is the ordered matrix exponential,

>
exp

(
−

∫s

AD g ′C ′ ad⊥ νds ′
)

, (8.34)

where we used the abbreviated notations g ′ = g(s ′), C ′ = C(s ′), and the path
ordering now places higher s values to the left. By the method of variation of

6Explicitely, (− AD g C ad⊥ ν)i
j = Ad gi

kCklAd gm
lνpcp

im.
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8 Lagrangian mechanics on the rigid motion group

constants, we can build the solution in the inhomogeneous case. The result is

J(sf) =

∫sf

0

>
exp

(
−

∫sf

s
AD g ′C ′ ad⊥ νds ′

)
AD g Cds, (8.35)

which can be checked by differentiating. 7

In all but the simplest examples, the matrices AD g ′C ′ do not commute for differ-
ent ‘times’ s ′. Therefore, the solution (8.35) can only be evaluated by integrating
(8.32) numerically, and is really only a formal solution.

The inverse of the Jacobian J is equal to the matrix of lab frame derivatives of
the classical action,

(J)−1
ki = Riνk(gf; sf) = RiRkA(gf; sf). (8.37)

This is what we set out to calculate.

8.4.3 Simple special cases of the linear response

Whenever the ordered exponential term in (8.35) is just the identity matrix, the
Jacobian reduces to (8.33).

Transforming (8.33) to the material frame, we get

∂δΞi
f

∂δµf
j

= AD g−1
f J =

∫sf

0
Ad(g−1

f g)C AdT
(g−1

f g)ds, (8.38)

where δΞf = Ad g−1
f δZf is the end-frame change, expressed in the material frame.

In the terminology of chapter 5, (8.38) is nothing but the covariance of the crbc
interpreted as a (continuous) compound step. Indeed, (8.38) is exactly the contin-
uous version of eqn. (5.3) derived there.

We now calculate the linear response explicitly in a very simple example. Con-
sider a crbc that is bent intrinsically so that it closes up into a plane circle which is
relaxed, fig. 8.1. For this circle, the intrinsic shape is given by ξ0 = (0, κ, 0, 0, 0, 1),
so that κ−1 is the radius of the circle, and s is identical to the relaxed arc-length.

7Alternative formulations can be derived by noting that the integrand almost has the form exẋ.
One obtains the relation

I6 − J(sf) ad⊥ ν =
>

exp
(
−

∫sf

0
AD g ′C ′ ad⊥ νds ′

)
, (8.36)

which however cannot solved for J since ad⊥ ν is a singular matrix.
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8.4 Linear response of the crbc

Figure 8.1 | A circle in the d1-d3 plane.

The equilibrium shape g(s) is

exp(sξ0) =
[

exp(sκε2) f1(sκε2)d3
0 1

]
=

 cos(sκ) 0 sin(sκ) 1
κ (1−cos(sκ))

0 1 0 0
sin(sκ) 0 cos(sκ) 1

κ (sin(sκ))

0 0 0 1

 . (8.39)

Let’s for simplicity assume that the covariance matrix of the chain allows only
bending around material frame d2 axis and stretching along d3 with compliances
cb and cs, respectively and no coupling. Then C = diag(0, cb, 0, 0, 0, cs). Since
the circle is stress–free, J is given by (8.33), which can be evaluated as

J =

∫1

0
Ad g(s)C AdT

g(s) =


0 0 0 0 0 0
0 2πcb

κ 0 0 0 2πcb
κ2

0 0 0 0 0 0
0 0 0 π

κ3 (cb+csκ2) 0 0
0 0 0 0 0 0
0 2πcb

κ2 0 0 0 π

κ3 (3cb+csκ2)

 . (8.40)

This combined covariance matrix can be reduced to the compliance J2d of in–plane
motions, by deleting the rows and columns 1, 3 and 5. The resulting in–plane
stiffness is the inverse, J−1

2d . Note that the end frame of the circle can respond
to stress also by translation along d1, although the material cross section cannot.
Also, d3 translation and in-plane bending around d2 are positively coupled. Both
of these results make intuitive sense, looking at fig. 8.1.

A global measure for the in–plane compliance is given by the determinant,

det J2d = 2π3(c3
b

κ7 +
2c2

bcs

κ5 +
cbc2

s

κ3

)
. (8.41)

Interestingly, the scaling with the circle radius κ−1 is different for the different
deformation modes. In particular, for an inextensible chain, cs → 0 and the
compliance determinant scales with the seventh power of the radius.
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8 Lagrangian mechanics on the rigid motion group

While more general shapes will have less tractable results, the evaluation of
eqn. (8.35) can always be implemented on a computer. All that is necessary is
knowledge of the equilibrium shape g(s) and the lab frame stress ν for that shape.

Consider now an intrinsically straight crbc in the d1-d3 plane that has constant
compliance matrix C = diag(0, cb, 0, 0, 0, cs). Subjected to a pure torque µf =

(0, t, 0, 0, 0, 0), at its end, the chain curves into a circle in the plane, and the
material torque is µ(s) = µf all along the chain. This can be checked by noting
that the Euler–Lagrange equation (8.15) reads[

R(s) p̂(s)R(s)
0 R(s)

]
µ(s) = const (8.42)

which is fulfilled if R is a rotation around the d2 axis. Therefore, the equilibrium
shape is given by (8.39) with κ = cbt. The chain will close into a circle of radius
κ−1 if it has length sf = 2πκ−1 and torque κ

cb
.

Now note that in eqn. (8.31), the δZ dependent term vanishes if C ad⊥ ν =

C ad⊥ µf ≡ 0, which is in fact the case for our choice of parameters. In effect,
the path-ordered exponential term drops out, so that like in the case of vanishing
stress, J reduces to the simple result (8.33). Therefore, the results (8.40), (8.41)
are valid for all homogeneous, planar circles which allow bending and stretching
only.

8.5 Fluctuations

Until now, we have used the Lagrangian approach to highlight some of the features
of equilibrium shapes. To consider the fluctuations of chains in a thermal ensemble,
we once again invoke the Boltzmann distribution.

The statistical weight of each path g(s) is given by a Boltzmann factor in the
total energy, e−βA[g(s)]. Since the state space is now a function space, expectation
values over ensembles of continuous paths have to be written as functional (or
path) integrals

〈F[g(s)]|g(0) = e〉 =

∫
Dg(s)F[g(s)]e−βA[g(s)], (8.43)

where by convention the integration extends over all finite energy paths g :

(0, sf) → SE that start at e. We define the path integral by a time–sliced limit
which is essentially the same as the continuum limit of (7.11). By composing the
normalized transition pdfs of the discrete approximations to the process and taking
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8.5 Fluctuations

the limit, we make sure to obtain the correct transition pdf of the continuous chain.
In this way, the division by a partition function “missing” from (8.43) is in fact
included in the measure Dg.

The path integral is defined by the limit∫
Dg(s)F[g(s)]e−βA[g(s)] :=

lim
∆s→0

Z−1
0n

∫
SE
· · ·

∫
SE

F[g(n)(s)]e−βA01e−βA12 · · · e−βAn−1 n dg01dg12 · · ·dgn−1 n.

(8.44)

Here, n = sf/∆s, and the approximate path g(n)(s) is given for integer values on
s/∆s by the increasing product g(n)(s) =

∏s/∆s
1 gl−1 l.

We derive the short time action Ai i+1 from the initial definition of the continu-
ous chain, so that the covariance in exponential coordinates is C∆s, and the mean
value is ξ0∆s. If ξk−1 k = log gk−1 k,

Ak−1 k =
1
2

(ξk−1 k − ξ0∆s)i Sij

∆s
(ξk−1 k − ξ0∆s)j −

1
2β

ξi
k−1 kĀijξ

j
k−1 k. (8.45)

The metric factor Ā is a constant matrix needed to cancel the volume element in
exponential coordinates, see appendix A.7. It has the effect that the single step
partition sum is

Zk−1 k =

∫
SE

e−βAk−1 kdgk−1 k =

∫
e− β

2∆s (ξ−ξ0∆s)TS(ξ−ξ0∆s)d6ξ =
(2π∆s)3

det(βS)1/2

(8.46)
and the covariance

〈
(ξk−1 k − ξ0∆s)i(ξk−1 k − ξ0∆s)j

〉
= ∆s (βS)−1 ij, as required.

The metric correction factor becomes unimportant in the continuum limit. Even
with the metric factor included,∑

Ak−1 k
∆s→0−→ 1

2

∫
(Ξ̇ − ξ0)

TS(Ξ̇ − ξ0)ds. (8.47)

The total partition sum is Z0n =
∏n

k=1 Zk−1 k ∝ ∆s3n. The time–sliced definition
of the path integral given here relies on the facts that

1. the discrete chain g(n)(s) has the the energy
∑

Ak−1 k

2. the discrete process g(n)(s) converges to the continuous g(s) defined by
(7.16), proved in [Ibe76, HD86].
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8 Lagrangian mechanics on the rigid motion group

The pdf to reach g(sf) = g when starting at g(0) = e can be written as

p(g, sf|e, 0) =
〈
δ(g−1g(sf))|g(0) = e

〉
=

∫
Dg(s)δ(g−1g(sf))e

−βA[g(s)], (8.48)

The functional integration measure in (8.48) is analogous to the standard Wiener
measure for Brownian paths. The difference is that here, the paths live in a
group, and that they have a drift, so that the path with highest probability is the
equilibrium shape determined by ξ0.

It is interesting to calculate transition pdf (8.48) in the approximation of Gaus-
sian fluctuations around a known minimal shape g(s) for given boundary condi-
tions. The leading order of the transition pdf is always given by the Boltzmann
factor e−βA[g(s)] = e−βA(g(sf;sf)). In Euclidean spaces, the Gaussian fluctuation
correction to this factor, which is equivalent to the semiclassical approximation to
the propagator in quantum mechanics, is well known. It is given by the so-called
van Vleck–Morette determinant, which is the determinant of the second deriva-
tives of the minimal energy with respect to the initial and final points. In our
setting, this corresponds exactly to the matrix RiLjA, as explained in section 8.4.1.
This is the main motivation why in the previous section, the matrix J−1

ij = RjRiA

was calculated.8

However whether the formula

p(gf, sf|e, 0) = det J−1/2e−βA(gf;sf) (8.49)

is the correct quadratic fluctuation correction also in the crbc case, is less obvious.
The reason is that the crbc evolves on a Lie group, which is a curved space. Also,
the Fokker–Planck operator L† of the crbc is not the same as the Laplace–Beltrami
operator on the group, which precludes direct application of a variety results for
the semiclassical propagator on curved spaces, see e.g. [Sch81, Gro98].

The resolution of these difficulties is an interesting open task; it would allow
a (more or less) explicit calculation of the transition pdf of the crbc model to
Gaussian order, from known minimal energy shapes.

8Note that since det Ad g = 1, in fact det J−1 = det(RiLjA).
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9 Outlook

In this final chapter, some interesting open questions are presented. They arose in
the context of the present work, and can addressed using the methods discussed
before. Overall, more questions remain open than could be answered. On the other
hand, finding the right questions is arguably even more important.

9.1 Superhelical looping

The ability of DNA to form tight loops is of prime importance in various biological
contexts (see [Gar07]) such as nucleosome positioning and transcription regulation
via DNA looping. It depends on the free energy of cyclization, i.e, the propensity of
short pieces of DNA to close up into loops, rather than to concatenate, depending
on their sequence. This is a topic of active discussion [Clo04, Clo05, Du05].

As a specific example, consider the cyclization free energy of the sequence
repeat ‘CCCCCCTTTAA’, fig. 7.6. As in section 7.4.5, we combine the repeat into
a compound step, and consider a homogeneous, continuous rbc which is modeled
on the compound step equilibrium geometry and compliance. By construction,
the twist degree of freedom of the underlying DNA double helix is fixed in the
superhelical crbc, and all original double-helical structure is then ‘forgotten’. As
emphasized in sec. 7.4.5, the resulting superhelical crbc has a large helix axis offset;
its helix radius is 9 nm with a helical rise of 50 nm per full turn. One can now
apply an external force and torque on this continuous chain to force it onto a
plane circular path. The free energy of deforming the superhelix crbc into to a
plane circle is an approximation to the cyclization free energy after full 11 bp
repeats; the oscillations in cyclization free energy that appear by the twist degree
of freedom are removed.

In comparison to ‘CCCCCCTTTAA’, one can consider randomly selected 11
base repeats. They have on average much less helical axis offset than that extreme
example above. In fig. 9.1, the resulting elastic cyclization energies A(e, sf) are
plotted. Clearly, there is a huge sequential variation in looping energy, and the
‘CCCCCCTTTAA’ sequence is easier to cyclize by more than 10 kbT than the best
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Figure 9.1 | Cyclization energies for random 11-bp repeats (gray) and for ‘CCCCCCTT-
TAA’ (blue). The looping energy of intrinsically straight average DNA is shown in black.

random one, at the optimal radius of 12 nm. The closure energy of intrinsically
straight DNA decreases with the typical wlc 1/r dependence.

What is the entropic correction to the cyclization free energy? Let’s assume that
the semiclassical expansion of the transition probability is given by a Boltzmann
factor with an entropic correction as in eqn. (8.49), see sec. 8.5. The free energy
of the end frame gf = g(sf) of the chain is

F(gf; sf) = A(gf; sf) +
1

2β
log det J(gf; sf). (9.1)

A zeroth approximation to the entropic contribution can be obtained by evalu-
ating log det J along the undisturbed superhelical shape, fig. 9.2, where the simpler
form (8.33) applies. The net effect is to shift the optimal loop radius from 12 nm
down to 10.2 nm in the superhelical case. In the intrinsically straight case, a
free energy minimum appears at 70 nm, which is at over 6 persistence lengths
in circumference and is outside the range of validity of the weakly fluctuating
approximation.

The first step for a better approximation is an improvement on the plane circle
approximation: The equilibrium shape of a closed loop with general equilibrium
shape and stiffness, is not a plane circle in general, as can be checked by inspection
of the shape equations. In a further step, the full entropic correction given by
(8.35) will find a biologically useful application.
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9.2 More on indirect readout

Figure 9.2 | Looping energy (dotted lines) and free energy (solid lines) for the superhelical
repeat ‘CCCCCCTTTAA’ (blue) and for intrinsically straight, random sequence DNA
(black). MP parameters.

9.2 More on indirect readout

In chapter 3, indirect readout effects in protein–DNA crystal complexes were
examined at a local, base–per–base level. The model protein used there was the
bacteriophage 434 repressor protein. This choice was motivated by the amount
of experimental data that is available, and by the fact that a comparison between
complex structures with different bound operator sequences could be made. Of
course, the proposed method is really useful only when applied to other complexes
of interest. We make a start here by considering two important cases where indirect
readout is assumed to play a key role.

9.2.1 I-ppoI

The DNA–binding protein I-ppoI is part of the so-called His-Cys box family of
homing endonucleases. It can recognize a 14-bp sequence and upon binding
induces cleavage of DNA near the center of its 20-bp binding site. The protein
binds as a homo-dimer (like 434 repressor) and its specific target sequence is
palindromic. Although the protein can cleave target sequences that are mutated
at many of the base positions, mutations in the central four–base region prevent
cleavage [Jur99]. A high–resolution structure of the complex of a non-cleaving
variant of the protein with DNA [Gal99] (see fig. 9.3) shows that DNA is bent by
approximately 70°, localized to the central 6 bp. Like in the case of 434 repressor,
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Figure 9.3 | Structure of I-ppoI.

the central region of the site has no specific contacts to the protein. In summary,
the homing endonuclease I-ppoI is a candidate for indirect readout that has some
similarities to 434 repressor but distorts DNA more strongly.

What can the tools developed in chapter 3 say about this complex? For a first
overview, the elastic energy is shown in fig. 9.4 which is analogous to fig. 3.1.
In contrast to 434 repressor, the deformation energy shows distinct features in
I-ppoI. Notably, the windows around the bases 8 and 13 show peaks in elastic
energy, mostly due to shearing. Indeed, a careful analysis of the structure shows
these bases to be ‘pushed out’ of their equilibrium positions by contacts with the
protein.

Between these prominent peaks and towards the free ends, the structure is more
relaxed. The resulting characteristic double peak of the elastic energy is robust
with respect to parametrization uncertainties.

The same basic shape persists in the sequence free energy G, evaluated for the
palindromic sequence bound in the complex, shown in fig. 9.5. The peaks around
bases 8 and 13 show that the native sequence has a disfavorable elastic energy at
these positions. Although the sequence is symmetric and the protein as a homo-
dimer has the same two–fold rotation axis around the central bps, the G profile is
not symmetric around that point. It appears that the packing of the crystal used to
solve the x-ray structure, breaks this symmetry. Of the two comparatively relaxed
end regions, the one with low base numbers accommodates its sequence better.

What can local elastic optimization tell about indirect readout in this complex?
Recall from chapter 3 that the information content of the elastically determined
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Figure 9.4 | Elastic energy E per bps in I-ppoI, split up to the partial energies for the
different deformation modes. A 2 bps window was used. Lines indicate the mean and
error bars indicate the spread among parametrizations.
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Figure 9.5 | Sequence free energy G of the native sequence, for a 2 bp moving window,
given per bp. MP parametrization.
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Figure 9.6 | Similarity to elastic consensus for the native bases in the I-ppoI complex.
Information (gray) and scaled native probability (green) are shown for single base distri-
butions. MP parameter set.

sequence distribution Ii, scaled with the weight of the native sequence pi, gives
a picture of how much the native sequence is optimized for the given complex
structure. Plots of these quantities are shown in fig. 9.6. Although the complex is
more relaxed at the ends, the elastic sequence preference for the bound sequence
is strongest in the central region between the bends. This suggests that elastic opti-
mization occurs at these sites, in agreement with the observation that there are no
specific contacts of the protein in the center. Note that the bases 8 and 13 directly
at the bends are elastically non-optimized. It should be mentioned that the shape
of these markers depends quite strongly on the chosen parametrization in I-ppoI.
E.g, the single peak in the center does not occur when using the P parametrization
instead of the preferred parameter set MP (cf. chap. 2). It is replaced by two peaks
around positions 7 and 14 (not shown). One feature that is however robust re-
garding the different parameter sets, is the total absence of elastic optimization at
the equivalent positions 6 and 15.

9.2.2 The nucleosome core particle

The nucleosome is the basic building block of chromatin organization. Eucaryotic
DNA is almost densely covered with histone octamers, around which DNA is
wrapped roughly 1.7 times in a left–handed superhelix. The x-ray crystal structure
of a nucleosome core particle containing 147 bp has been solved at near–atomic
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9.2 More on indirect readout

Figure 9.7 | Atomic structure (left) and DNA conformation (right) of the nucleosome core
particle.

resolution [Dav02]. Fig. 9.7 shows a cartoon of the full structure and a brick
representation of the path of DNA around the histone spool.

The sequence is symmetric, around bp 74, and the structure has an approximate
two-fold rotation axis passing through that bp. The intrinsic structural and elastic
features of DNA are known to influence the positioning of histones to different
sequences. In particular, there exist empirically discovered ‘positioning sequences’
that are able to strongly localize histones [Clo04].

Specific chemical contacts are made only at certain points around the spool.
They involve the backbone phosphates, not individual bases of the bound DNA,
suggesting that elasticity may play a dominant role in positioning. These contacts
are spaced 10 or 11 bp apart but are not symmetrically arranged with respect to
the rotation axis.

What information can the local deformation free energies give about the nucleo-
some structure? In figure 9.8, the elastic energy E is shown. There is considerable,
quasi-periodic variation between relaxed and deformed regions. Peaks in elastic
energy have high energies of more than 5 kBT per bp and occur often but not al-
ways at bps with backbone contact. Depending on local deformation of the helix,
a local energy maximum can also be shifted to the region between the contacts, as
seen around bp 55.

Does the particular sequence used in the crystal appear particularly optimized for
the structure? The profile shown in fig. 9.9 gives a global picture of the sequence
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Figure 9.8 | Elastic energy E per bps in the NCP147 nucleosome core particle. A 3 bps
window was used. The blue line indicates the central bp. Black lines indicate points of
specific contact. MP parametrization.

0 20 40 60 80 100 120 140
0

1

2

3

4

5

bases

Figure 9.9 | Elastic sequence free energy energy G per bp in the NCP147 nucleosome core
particle. A 4 bp window was used. Line marks as in fig. 9.8.
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Figure 9.10 | Similarity to elastic consensus in the NCP147 complex. Information content
(gray) and scaled native probability (green) are shown for dinucleotide distributions. MP
parameter set.

free energy of the native sequence. Strikingly, in contrast to the E profile, points of
contact are associated rather with minima than with maxima in the profile, with
the exception of the most central positions.

The profile of agreement with elastic consensus Iipi, fig. 9.10 is surprisingly
asymmetric. In agreement with intuition, the information content Ii i+1 of the
elastic Boltzmann distribution for dinucleotides is mostly highest at the sites of
the strongest constraints, i.e. at the histone contacts. The scaled native probability
Ii i+1pi i+1 profile shows that only at some of the positions, the native dinucleotide
in the crystal is the optimal choice in terms of elasticity. One example is the peak
around bp 101. In contrast, at bp 39 there is a strong preference for one specific
dinucleotide, indicated by a peak in Ii i+1 but this does not coincide with the native
one.

9.3 Forces and torques in crystal structures

Another intriguing possibility offered by the rigid body framework developed in
this thesis, is to investigate the forces and torques that act on DNA. The basic idea
here is to take the elastic energies in the rigid base–pair model seriously; when
a bps is statically deformed, it reacts with a force and torque that balance the
externally applied force and torque. They can be calculated for any given DNA
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conformation, using the appropriate rbp stiffness matrix. Thus it is possible to
take an arbitrary protein–DNA crystal structure as input and from it calculate the
local distribution of forces and torques acting on the bound DNA. In this way,
DNA becomes a nanometer–scale force probe!

Consider a rbp step inside a protein–DNA complex. Its deformation ξ − ξ0

results from a combination of the internal tension µin in the bound rbc, and, if
present, external forces µex exerted through contacts with the protein,

ξ − ξ0 = C(µin + µex). (9.2)

If no external forces act on base i, it will adopt its equilibrium conformation
adapted to the boundary conditions at its ends. Assuming that bases i− 1 and i+ 1
are held fixed, base i takes on a configuration such that the energy Eσi−1 i

(ξi−1 i) +

Eσi i+1(ξi i+1) is minimized. We have formulated the equilibrium shape equation
already in the continuous case, see (8.15). In the discrete case, it takes on the form
of a force balance between the two steps flanking the base i,

S(σi−1 i)(ξi−1 i − ξ0(σi−1 i)) − AdT
g−1

i i+1S(σi i+1)(ξi i+1 − ξ0(σi i+1)) = 0. (9.3)

Conversely, any deviation from this local force balance means that an external
force is acting additionally on the base i. More precisely,

S(σi−1 i)(ξi−1 i − ξ0(σi−1 i)) − AdT
g−1

i i+1S(σi i+1)(ξi i+1 − ξ0(σi i+1)) = µex,i.
(9.4)

Thus by calculating (9.4) from a given crystal structure, a detailed picture of forces
and torques between protein and DNA can be extracted. An advantage of the
particular choice of left invariant components for the deformations of each bps,
is that the conjugate variable µ = (τ, f) is a combination of true force and torque
vectors, given in the material frame. In a different coordinate system, this direct
interpretation of the generalized force is not possible.

We show two examples of the resulting stress profiles, using the I-ppoI and
NCP147 structures introduced above. Figure 9.11 shows profiles of the total stress
and the extracted, external stress µex, split up into force and torque magnitudes.
The force magnitude follows the deformation energy quite closely. One problem-
atic point is that the magnitude reaches very high values that greatly exceed the
overstretching transition observed around 65 pN in naked B-DNA. The torque
is computed with respect to an axis that goes through the base pair center. It
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9.3 Forces and torques in crystal structures

Figure 9.11 | Force (f = ‖f‖) and torque (t = ‖τ‖) magnitude profiles along the I-ppoI
structure. The total stress is shown in gray, the external components are colored. P
parametrization.

clearly shows that the total torque magnitude does not give a good estimate of the
externally applied torque; the internal torsional stress along DNA is of the same
order of magnitude.

Figure 9.12 gives a three–dimensional representation of forces and torques in
I-ppoI. Only the highest values are shown, compare also the profiles in 9.11.
Clearly, the steps between base–pairs 6 and 7 and between 14 and 15 are pulled
apart strongly by the protein. These bp steps do not coincide with the actual sites
of cleavage of the functional form of the endonuclease, which occurs between bases
8 and 9 (or 11 and 12). Aside form this dominant effect, the bases at the cleavage
positions 9 and 12 are twisted roughly in clockwise direction when viewed from
the ends.

The same kind of analysis can provide insight also on the elastic state of DNA
bound in the nucleosome core particle. In the same way as fig. 9.11, the profiles
of force and torque magnitudes are shown in figure 9.13. To make clearer the
trends on a scale just below a helical repeat, a moving average is used. One sees
that generally, the external stress is are higher in magnitude than the total, which
in the light of 9.3 means that total forces on adjacent steps tend to be oriented
in opposite directions. Again the calculated forces are very high, especially when
compared to the overstretching threshold. The force and torque profiles show
large variations. In the left half of the complex, below the symmetry center bp
74, the positions of the peaks in external forces are not in a clear correlation with
the known contact points. On the other hand, in the right half of the complex,
there is quite some overlap, starting from the peak at bp 81 upwards. The torque
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9.3 Forces and torques in crystal structures

Figure 9.13 | Force and torque magnitude profiles along the NCP147 structure, plotted in
the same way as in fig. 9.11. A moving average of length 3 bp is used. P parameter set.

magnitudes show a similar trend.
A three–dimensional representation of external forces in the NCP147 complex

is shown in fig. 9.14. Only the most extreme forces and torques are shown. In
the upper gyre, the correspondence between contact points and points of strong
external forces is visible which is expected from fig. 9.13. Interestingly, a kinked
path of the line connecting bp centers is not generally associated with strong
external forces. It follows that a distorted bound DNA conformation often results
from sequence–dependent equilibrium structure in conjunction with internal stress
of DNA.

The force profiles shown here do depend quite strongly on the chosen para-
metrization, and the observed high forces may in part be due to the fact that
experimental error in itself destroys the force balance in eqn 9.3. However, it is
encouraging that the most important observed features are reasonable in light of
known details of the structures. For example, in fig. 9.14 the external forces occur
mostly as antagonistic pairs attaching neighboring bases, in a direction tangential to
the histone surface. When the error of force determination can be controlled, and
with improved elastic potentials, this method could provide a powerful new tool
to measure the elastic state of protein–DNA complexes from x-ray crystallography,
rather than just the conformation.

153



9 Outlook

Figure
9.14

|
E

xternalforces
acting

in
the

N
C

P147
structure,as

in
fig.9.12.

T
he

base
centers

are
represented

as
dots,and

joined
by

a
line.

B
lack

dots
represent

points
of

backbone
contact.

A
low

er
cutoff

w
as

used
for

both
fex

and
τ

ex .
P

param
etrization

154



A Appendix

A.1 Robustness to parametrization errors

The essential feature that identifies local elastic optimization in protein-DNA com-
plexes is a minimum in the sequence free energy G. We address here whether this
feature is robust to the choice of microscopic parametrization among the available
sets. In the same way as shown in fig. 3.3, the spread of calculated G profiles
among parametrizations is shown in fig. A.1. Although especially for OR1,2 the
parametrization variation in E (fig. 3.3) is quite large whenever the elastic energy
is high, this does not destroy the minimum in the corresponding G profiles. We
conclude that the local detection of elastic sequence optimization is quite robust
to the choice of parameter set.

A.2 The kernel of the adjoint map

We compute the kernel of the map ad V, which is exactly the set of all infinitesimal
motions which commute with V.

Let V ′ = (ω ′, v ′) ∈ ker ad V, so that ad V V ′ = (ω̂ω ′, v̂ω ′ + ω̂v ′) = 0. Consider
first the case of non-zero rotation. Since ker ω̂ = span ω, necessarily ω ′ = αω

for some real α. Using this in the second entry, we obtain ω̂(v ′ − αv) = 0. In the
case ω = 0, one sees immediately that ω ′ = αv but v ′ is arbitrary. Combining, the

2 4 6 8 10 12
-6
-4
-2
0
2

2 4 6 8 10 12 2 4 6 8 10 12
base

OR1 OR2 OR3

Figure A.1 | Sequence free energy as in fig. 3.7 but including parametrization error bars.
Successive 2 kBT offset, MP, 3 bps average.
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two–dimensional kernel of ad V comes out to be

ker ad(ω, v) =

span ((ω, v), (0, ω)) ω 6= 0

span ((v, 0), (0, d1), (0, d2), (0, d3)) ω = 0
. (A.1)

From this result, one can easily derive the kernel of the map adT which is a
subspace of se∗. Taking the transpose of the ad matrix explicitly, one verifies that

ker adT
(ω, v) =

span ((v, ω), (ω, 0)) ω 6= 0

span ((0, v), (d1, 0), (d2, 0), (d3, 0)) ω = 0
, (A.2)

where the vectors v and ω have to be multiplied with appropriate scalars to get
the dimensions right. E.g, αωis a torque if α has dimensions of energy.

A.3 Finite matrix power series

The Cayley–Hamilton theorem states that when a d-dimensional square matrix M

is plugged into its own characteristic polynomial in place of the variable, the result
is 0d×d. As a consequence, the powers {M0 = Id, M, . . . , Md−1} form a matrix
basis for the set of all powers of M. Any powers series of M can therefore be
resummed such that only the powers up to Md−1appear, with coefficients that are
determined by the original series and by the coefficients of expansion of the higher
powers in terms of the basis. We compute explicitly some of these computationally
convenient finite series for cases of interest with regards to SE.

The exponential is defined by its power series. In the case of the antisymmetric
matrix ω̂ ∈ so, one directly computes ω̂2 = ωωT − ‖ω‖2e and ω̂3 = −‖ω‖2ω̂.

We get the so-called Rodrigues formula

exp ω̂ =

∞∑
k=0

ω̂k

k!
= e + ω̂

∞∑
k=0

(−‖ω‖)2k

(2k + 1)!
− ω̂2

∞∑
k=1

(−‖ω‖)2k−2

(2k)!

= e + ω̂
sin ‖ω‖
‖ω‖

+ ω̂2 1 − cos ‖ω‖
‖ω‖2 .

(A.3)

The matrix −ω̂2/‖ω‖2 is a projector onto the orthogonal complement of span ω.
Noting that ω̂2 is symmetric we can read off a direct way to compute the logarithm
of a rotation matrix ω = log R:

2 cos ‖ω‖+ 1 = tr R; ω̂ = (2 sin ‖ω‖)−1(R − RT). (A.4)
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Not surprisingly, the logarithm has multiple branches. Restricting to ‖ω‖ < π, one
covers already all of the rotation matrices except for exact half turns.

Let’s now look at V = (ω, v) ∈ se. Letting V̂ = ViXi, the power series

exp V̂ =

[
R p

0 1

]
= e +

∞∑
k=1

1
k!

[
ω̂k ω̂k−1v

0 0

]
=

[
exp ω̂ f1(ω̂)v

0 0

]
, (A.5)

where

f1(z) =

∫1

0
exp(sz) ds =

exp z − 1
z

=

∞∑
k=0

1
(k + 1)!

zk = 1 +
1
2

z +
1
6

z2 + · · · . (A.6)

Combining this with (A.3), we integrate exp[sω̂] to get

f1(ω̂) = e +
ω̂

‖ω‖
1 − cos ‖ω‖

‖ω‖
+

ω̂2

‖ω‖2
‖ω‖− sin ‖ω‖

‖ω‖
. (A.7)

We can use this result together with the finite series of f1(ω̂) to give a Rodrigues
formula for SE in terms of the first three powers of V̂. One obtains

exp V̂ = e + V̂ + V̂2 1 − cos ‖ω‖
‖ω‖2 + V̂3 ‖ω‖− sin ‖ω‖

‖ω‖3 . (A.8)

The logarithm V = log g can be recovered as ω = log R, v = (f1(ω̂))−1p. The
function 1/f1 has the power series

f−1
1 (z) = 1/f1(z) =

∞∑
k=0

Bk

k!
zk = 1 −

1
2

z +
1
6

z2 + · · · . (A.9)

Here, Bk are the Bernoulli numbers, where B2n+1 = 0, n > 1. Either by re-
summing this series for ω̂, using known properties of the Bk or by inverting the
projectors onto orthogonal subspaces in separately, one then gets

f−1
1 (ω̂) = (f1(ω̂))−1 = e −

1
2

ω̂ +
ω̂2

‖ω‖2

(
1 −

‖ω‖(1 + cos ‖ω‖)
2 sin ‖ω‖

)
, (A.10)

completing the formula for log on SE.

A.4 The differential of the exponential map

Besides the left and right invariant frames, exponential coordinates qi(g) = logi
g

provide yet another way of representing a vector in components. Expanding in
terms of the coordinate frame, V

∣∣
g

= Vi ∂
∂qi

∣∣
g
. Finding the conversion between
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the coordinate and the left invariant frame amounts to calculating the tangent map
exp∗

∣∣
q

: TqTeSE → Texp qSE, in left invariant components, since

(exp∗
∣∣
q
Xi)f = ∂t

∣∣
0f (exp(q + tXi)) = ∂qif. (A.11)

Following the presentation in [Sat86], we consider

A(s, t) = exp(q) exp∗
∣∣
−q

(−∂tq) exp(−q) = exp(sq(t))
d
dt

exp(−sq(t)), (A.12)

where q ∈ se. We compute ∂sA = [q, A] − ∂tq ∈ se, so also A ∈ se. To solve this
differential equation in s, note that the homogeneous equation ∂sA = ad q A, has
the solution A(s2) = exp((s2 − s1) ad q)A(s1). Now by using variation of constants
to solve the full inhomogeneous equation, one obtains

A(s) = exp(s ad q)A(0) +

∫s

0
exp((s − s ′) ad q)ds ′ ∂tq, (A.13)

so since A(0, t) = 0, finally A(1, t) = −f1(ad q)∂tq, where f1 is defined as in (A.6).
Replacing q by −q, one arrives at the general relation

exp∗
∣∣
q

= lexp q∗
∣∣
e
◦ f1(− ad q). (A.14)

Comparing this with (A.11) and recalling that Li

∣∣
g

= lg∗Xi, we get the expression
of the coordinate vectors in the left invariant frame:

∂qi = (f1(− ad q))j
iLj, (A.15)

at the point g = exp q. I.e, the matrix f1(− ad q) consists of the left invariant com-
ponents of the coordinate vector fields. In mathematical terms, it is the component
matrix in exponential coordinates of the Maurer–Cartan form Ω on the group,
defined by Ω : TG → TeG, V

∣∣
g
7→ lg−1∗V. From the trigonal block structure of ad,

det f1(− ad(ω, v)) = det f1(ω̂)2. Using the finite form of f1 (A.7), we get for the
determinant the product of its eigenvalues (1, 1 +

‖ω‖−sin‖ω‖
‖ω‖ ± i

1−cos‖ω‖
‖ω‖ ):

det(Ω
∣∣
g
) =

(2 − 2 cos ‖ω‖
‖ω‖2

)2
(A.16)

Using the group law one can see that, in exponential coordinates exp q =

g, exp q ′ = g ′, the tangent map of left translation from g to g ′ is given by the
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matrix

(lg ′g−1∗
∣∣
g
) = (Ω

∣∣
g ′)

−1(Ω
∣∣
g
) = (f1(− ad q ′))−1(f1(− ad q)). (A.17)

A.5 Lie algebra automorphisms of se

What is the most general change of basis of se that respects the commutation
relations? Denote the transformation A ∈ GL(6) and its inverse by the 6× 6 block
matrices

A =

[
A11 A12

A21 A22

]
, A−1 =

[
A11 A12

A21 A22

]
. (A.18)

We require that [AV, AV ′] = A[V, V ′] for all choices of V, V ′. This is equivalent to
the matrix equation

A ad V A−1 = ad(AV), ∀V = (ω, v) ∈ se. (A.19)

Consider pure translations, ω = 0. We retain the requirement[
Â12v 0
Â22v Â12v

]
= ad(AV) = A ad V A−1 =

[
A12v̂A

11 A12v̂A
12

A22v̂A
11 A22v̂A

12

]
, v ∈ R3.

(A.20)
Consider the 12 block. We compute A12 = −A−1

11 A12(A22 − A21A
−1
11 A12)

−1, so
necessarily 0 = −A12v̂A

−1
11 A12. Considering this as a composition of linear maps,

we have for all v, ker A12 ⊃ im v̂A−1
11 A12. Since rank v̂ = 2 for all v 6= 0, the rank

of A12 can be at most 1. This implies that the rank of the 11 block of the rhs is
also at most 1. Looking at the lhs, this is a 3 × 3 hat matrix, but the only such
matrix with rank 6 1 is the zero matrix! We conclude that A12 = A12 = 0.

Let now v = 0. We have[
Â11ω 0

0 Â11ω

]
=

[
A11ω̂A11 0

A21ω̂A11 + A22ω̂A21 A22ω̂A22

]
, ω ∈ R3. (A.21)

Recall that tr ω̂2 = −2‖ω‖2, valid for hat matrices. Applying this relation, −2‖A11ω‖2 =

tr A11ω̂A11A11ω̂A11 = −2‖ω‖2. Therefore A11 is orthogonal. Also, A22 = A11 =:

R.
This matrix has determinant +1: If A fulfills (A.19), then −A does not. Since I3

satisfies (A.19) and the determinant is a continuous function, all admissible choices
of R have determinant +1.

Computing now the remaining blocks for general V, using the relation for
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R ∈ SO, Rω̂RT = R̂ω, we are left with[
R̂ω 0

Â21ω + R̂v R̂ω

]
=

[
Rω̂RT 0

A21ω̂RT + Rω̂A21 + Rv̂RT Rω̂RT

]
, ω, v ∈ R3. (A.22)

Computing A21 = −RTA21R
T, the remaining terms are:

Â21ω = A21R
TRω̂RT − Rω̂RTA21R

T = [A21R
T, R̂ω]. (A.23)

Now since the lhs is antisymmetric, the symmetric part of A21R
T must vanish, we

can therefore write A21R
T = p̂ for some p ∈ R3.

So putting it all together,

A =

[
A11 A12

A21 A22

]
=

[
R 0
p̂R R

]
; (A.24)

the most general change of coordinates that respects the algebra, or Lie algebra
automorphism, has the form of the Ad matrix for some rigid body transformation.

A.6 Partial diagonal forms of the se stiffness matrix

Let S denote a positive-definite, symmetric matrix wrt. to the standard basis {Li}

of se. What is the simplest form of this matrix in some other basis that still obeys
the standard commutation relations (4.6)? Under an allowed change of basis
V 7→ V ′ = Ad g−1 V, see A.5, we have, written in 3× 3 blocks,

S ′ = AdT
g S Ad g =

[
RT(S11 + 2(S12p̂)s − p̂S22p̂)R RT(S12 − p̂S22)R

RT(S12 − p̂S22)R RT(S22)R

]
, (A.25)

where ·s denotes symmetrization. Note that since S is symmetric and positive
definite, so are S11, S22, but S12 need have neither property. Clearly, we can
choose R to diagonalize the 22 block, but then R is fixed. What else is possible
with the remaining freedom of choosing p?

Counting the dimensions, the 3 degrees of freedom of p suffice to eliminate the
3 off–diagonal elements of S ′11. So generically, we can simultaneously diagonalize
S11 and S22.

Also, looking at the off-diagonal blocks, for general S12, S22, the freedom of p

is not enough to fulfill the 9 independent equations S ′12 = 0. The coupling terms
between rotation and translation can therefore never be eliminated.
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If we instead try to diagonalize only the off-diagonal blocks rather than S22,
we have p to make (S12 − p̂S22) symmetric (3 equations), and then can use the
freedom in choosing R to diagonalize the remaining symmetric matrix, which is in
general indefinite. Both blocks on the diagonal will remain non-diagonal.

Still another possibility is to make S12 symmetric using p, but diagonalize either
S22 or S11. They will not commute with S ′12, however, so that S ′12 will not be
diagonal in either case, generically.

All of the aforementioned partial diagonal forms were reproduced on the com-
puter for randomly generated initial pos. def, symmetric S by a numerical gradient–
search optimization procedure. However, no further efforts were undertaken to
prove them rigorously.

Summing up, generically, the simplest forms of the metric are

1. S ′11, S ′22 both diagonal,

2. S ′12 = S ′T21 diagonal,

3. either S ′11 or S ′22 diagonal, and S ′12 symmetric.

A.7 Volume element

The invariant volume element is given by the Jacobian determinant for the trans-
formation between the chosen coordinate chart and the left or right invariant
frames, which equals the determinant A of the Maurer–Cartan form in these co-
ordinates. For exponential coordinates q, the result is (A.16), so that ln A(q) =

−1
6‖ω‖

2 + O(‖ω‖4). The Boltzmann distribution gets the form

p(q)dg(q) ∝ e− 1
2 qi(βSσij+Āij)q

j
d6q, Ā =

[
1
3I3 03

03 03

]
. (A.26)

In DNA, the distributions p(ξ) of single steps are very narrow. Therefore when
computing moments, in particular the covariance matrix Cij =

〈
qiqj

〉
, we can

extend the integration boundaries to infinity with negligible error. Performing the
integral we then get the relation βS + Ā = C−1. Since βS � Ā for typical B-DNA
steps, in making the approximation βS = C−1, we introduce small error of less
than 1%. I.e. the stiffness matrix βS is to a very good approximation given by the
inverse of the covariance.
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A.8 Conversion from 3DNA coordinates

The DNA structural analysis program 3DNA [Lu03] uses a coordinate chart
ζ = (Ω, τ, ρ, r1, r2, r3), defined in [Lu97]. Here, θ = (Ω, τ, ρ) are Twist, Tilt
and Roll angles but differ from our choice of angles. The component vector
r = (r1, r2, r3) gives the translation with respect to the mid-frame Rm. These
coordinates parametrize g = (R, p) via1

R(ζ) = exp((Ω/2 − arctan(τ/ρ))ε3) exp(

√
ρ2 + τ2 ε2)

exp((Ω/2 + arctan(τ/ρ))ε3),

Rm(ζ) = exp((Ω/2 − arctan(τ/ρ))ε3) exp(

√
ρ2 + τ2/2 ε2)

exp((arctan(τ/ρ))ε3), and

p(ζ) = Rm(ζ)r.

(A.27)

Choosing exponential coordinates q̃ = (ω̃, ṽ) based at g0 = g(ζ0), we can trans-
form the coordinate frame {∂ζi} into the left invariant frame {Li} at g0 by comput-
ing the Jacobian J0 of the coordinate transition map ζ 7→ q̃(g(ζ)) at the point g0.
After some algebra, the 3× 3 blocks of J =

∂(q̃)
∂(ζ) are

∂ω̃i

∂θj
=1/2 tr(εiR

T∂θjR),
∂ω̃i

∂rj
=0,

∂ṽi

∂θj
=(RT∂θjRmidqr)i,

∂(ṽ)

∂(r)
=RTRmid.

(A.28)

The Jacobian determinant comes out to be det J = det ∂(ω̃)
∂(θ) =

sin
√

ρ2+τ2√
ρ2+τ2

.

A.9 Dimensional structure of the rigid base–pair chain

A basic problem in dealing with rigid body transformations is that rotation matrices
are dimensionless while the translation vectors have dimensions of length [l]. One
way to deal with it is to choose a fundamental lever arm length scale right from
the start, to make all lengths unit-less. However, it turns out to be helpful to retain
the explicit dimensional structure of the rigid body transformations. In this way
one does not lose track of what quantities depend on the choice of fundamental
length scale. Also, the distinct algebraic properties of translations and rotations

1Beware of a sign mistake in [Lu97] !
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remain explicitly visible in the matrices, preventing errors. We now explain how
one can make sense of a matrix group with explicit associated units.

In order to make sense of expressions like g = exp ξiXi one has to take care of
how to assign units to the group and to the algebra elements. Giving the matrix g

an outer product unit structure ,

[g] =


1
1
1

1/[l]




1
1
1
[l]


T

=

 1× I3

[l]

[l]

[l]
1
[l]

1
[l]

1
[l] 1

 , (A.29)

makes products and inverses well–defined unit-wise, see [Har94]. Lie algebra
elements inherit the same structure, being infinitesimal group transformations,
[V] = [g]. Here, the units of angle are [ω] = rad = 1.

When writing V = ξiXias a linear combination, it is safest to assign the units
to the basis matrices. We instead decide for the more intuitive choice to assign
them to the vector components, so that [ω] = rad = 1 and [v] = [l]. It may
seem that this will lead to units like [l]2when computing commutators ξiξ′j[Xi, Xj],
inconsistent with the unit structure [V] of the Lie algebra. However, all inconsistent
commutators are 0. In fact, also the anticommutators respect this dimensional
structure, see 4.2.4. As a result, bilinear matrix products have the same units as
Lie algebra elements:

[VW] = [ξiξ′jXiXj] = [V] = [g], (A.30)

a rather stunning result if one is used to thinking in terms of scalar quantities.

Note that the adjoint matrix Ad is a map se → se, so when written in terms of
the standard basis, its dimensional structure is a block outer product

[Ad g] =

[
[ω]

[v]

][
1/[ω]

1/[v]

]T

=

[
1 1/[l]

[l] 1

]
. (A.31)

What are the units associated with the crbc coefficients, considered in 7.3?
To start out with, we measure the chemical distance in units of base–pair steps,
[s] = bp = 1. The deformation ξ has mixed units of angle per bp, [ω] = rad

bp = 1

and length per bp, [v] =
[l]
bp = [l]. Correspondingly, the covariance matrix has

the following outer product unit structure: [C] =
[

[ω]
[v]

] [
[ω]
[v]

]T
= [BBT]. For the
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product BW with the dimensionless noise vector W to make sense also, the units
of B have to be chosen as [B] =

[
[ω]
[v]

]
⊗
[

1
1

]
. With these choices, the unit structure

of (7.15) is meaningful,

[dg] = [g]
[
(ξi

0Xi + 1
2CijXiXj)ds + Bi

jXidWj(s)
]

= [g]([V][ds] + [V][dW]) = [g],
(A.32)

where it is (A.30) that saves the day.

A.10 Explicit expression for the generator

In explicit matrix notation, the generator of the diffusion process defining the
continuous rbc,

L
∣∣
g
f =

( ∂

∂s
+

∂2

∂s ′∂s ′′
)
f(g [sξi

0Xi +
1
2

s ′s ′′CijXiXj]), (A.33)

which can be seen by choosing f equal to the matrix entries of g, see e.g. [HD86].
Note that the Xi are effectively symmetrized here, CijXiXj = 1

2Cij{Xi, Xj}. Re-
calling the anticommutation relations (4.8), one sees that the pure translational
part C(vv) does not contribute at all. The rotation and coupling parts do contribute,
but through certain superpositions of anticommutators. Using the notation from
4.2.4, the result can be written as a block matrix

1
2

CijXiXj =
1
2

[
Cklεkεl Ckl+3εkdl

0 0

]
, 1 6 k, l 6 3. (A.34)

In terms of the original definition (7.10) of C in the discrete model, this can also
be written as Cklεkεl =

〈
δ̂ω

2〉
and Ckl+3εkdl =

〈
δ̂ωδv

〉
.
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Glossary

AD adjoint matrix representation of a group acting on
two–tensors

Ad adjoint matrix representation of a group
aD adjoint matrix representation of a Lie algebra acting

on two–tensors
ad adjoint matrix representation of a Lie algebra

β inverse temperature
bp base–pair
bps base–pair step[
·
]

block matrix

C covariance matrix
crbc continuous rigid body chain

di basis three–vector, (di)
j = δ

j
i

· empty slot in a function or expression (e.g, f(a, ·))
dsDNA double–stranded DNA

e group identity element, identity matrix
εi antisymmetric 3× 3 basis matrix, (εi)

j
k = ε

j
ik

〈A〉 expectation value of A,
∫

Ap(A) dA

〈A|B〉 expectation value of A conditioned on
B,

∫
Ap(A|B) dA

F conformation free energy

G sequence free energy
g rigid motion group element g = (R, p) or its homoge-

neous matrix representation
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Glossary

^ antisymmetrix matrix of a 3-vector, v̂ = v× ·

K sequence and conformation joint free energy
kB Boltzmann’s constant

lhs left hand side
Li left invariant basis vector fields (l. i. frame)

MD molecular dynamics
µ left invariant force/torque covector components µi

ν right invariant force/torque covector components νi

O(x) order notation: y = O(x) if lim y/x < ∞
o(x) order notation: y = o(x) if lim y/x = 0
ode ordinary differential equation

p translation group element, translation vector
〈·, ·〉 natural pairing of covectors and vectors, 〈µ, V〉 = µ(V)

pde partial differential equation
pdf probability density function

q exponential coordinates qi on SE

R rotation group element, rotation matrix
rbc rigid base–pair chain
rbp rigid base–pair
rhs right hand side
Ri left invariant basis vector fields (r. i. frame)
rms root mean square

S stiffness matrix
sde stochastic differential equation
σ base sequence σ = b1 . . . bk
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AiBi =
∑

i AiBi: implicit summation over all upper/lower
index pairs

wlc worm–like chain

ξ left invariant vector components ξi

ζ right invariant vector components ζi
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