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Abstract

Communication delays are common in many complex systems. It has been shown
that these delays cannot be neglected when they are long enough compared to
other timescales in the system. In systems of coupled phase oscillators discrete
delays in the coupling give rise to effects such as multistability of steady states.
However, variability in the communication times inherent to many processes
suggests that the description with discrete delays maybe insufficient to capture
all effects of delays.

An interesting example of the effects of communication delays is found during
embryonic development of vertebrates. A clock based on biochemical reactions
inside cells provides the periodicity for the successive and robust formation of
somites, the embryonic precursors of vertebrae, ribs and some skeletal muscle.
Experiments show that these cellular clocks communicate in order to synchro-
nize their behavior. However, in cellular systems, fluctuations and stochastic
processes introduce a variability in the communication times. Here we account
for such variability by considering the effects of distributed delays. Our approach
takes into account entire intervals of past states, and weights them according to
a delay distribution.

We find that the stability of the fully synchronized steady state with zero phase
lag does not depend on the shape of the delay distribution, but the dynamics
when responding to small perturbations about this steady state do. Depending
on the mean of the delay distribution, a change in its shape can enhance or
reduce the ability of these systems to respond to small perturbations about the
phase-locked steady state, as compared to a discrete delay with a value equal to
this mean. For synchronized steady states with non-zero phase lag we find that
the stability of the steady state can be altered by changing the shape of the delay
distribution.

We conclude that the response to a perturbation in systems of phase oscilla-
tors coupled with discrete delays has a sharper functional dependence on the
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mean delay than in systems with distributed delays in the coupling. The strong
dependence of the coupling on the mean delay time is partially averaged out by
distributed delays that take into account intervals of the past.
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Notation of variables

• θk – phase of oscillator k

• ω – intrinsic frequency

• Ω – global frequency

• k, l ∈ N – indices of oscillators in the system

• r(t) – synchronization order parameter

• β – phase frustration parameter

• N – total number of oscillators in the system

• nk – number of coupling partners of oscillator k

• K – coupling strength

• h – 2π-periodic coupling function

• g(s) – probability density of delay times

• ĝ(λ) – Laplace transform of the delay distribution g(s)

• D – connectivity matrix

• dkl – components of the connectivity matrix D

• τ – mean of the delay distribution g(s)

• σ2 – variance of the delay distribution g(s)

• γ – skewness of the delay distribution g(s)

• qk(t) – perturbation on oscillator k

• ζ – eigenvalues of the matrix D

• λ – solutions of the characteristic equation

• x – real part of λ

• y – imaginary part of λ
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• ψ, ξ and Ξ – phases of complex variables

• m – integer number of phase twists on a ring

• a, b – shape and scale parameter of the gamma distribution

• m̄, b, c – median and widths of the two step delay distribution

Abbreviations

• PSM – pre-somitic mesoderm

• AP axis – anterior posterior axis

• DCT – Delayed Coupling Theory (of vertebrate segmentation)

• FGF – Fibroblast growth factor
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Part I.

INTRODUCTION
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This part introduces the concepts needed throughout this work.

In Chapter 1 and 2 we give a short introduction to systems of coupled phase
oscillators. Such systems are comprised of many autonomously oscillating parts
that interact and can yield organized collective behaviour, e.g. synchronization.
They play a major role in the work presented in this thesis. We take a look at
some of the earliest work on synchronization phenomena in systems of coupled
oscillators, for example by Christiaan Huygens and outline the contributions to
the field by Winfree, Kuramoto and others. We define phase oscillators and dis-
cuss synchronization phenomena. The Kuramoto order parameter as a measure
of coherence is introduced, and the effects of delayed coupling are discussed. We
also give a short overview on how these oscillators are connected; this is de-
scribed by the coupling topology. At the end we discuss the solutions to systems
of coupled phase oscillators that are investigated in this work.

Chapter 3 puts these concepts into a biological context, the vertebrate segmen-
tation clock. It is thought to act as a pacemaker during the developmental pro-
cess of vertebrate segmentation. We present the concept of the clock and wave-
front mechanism, present biological processes that have been suggested to be in-
volved in vertebrate segmentation, and introduce the Delayed Coupling Theory
of vertebrate segmentation, a model based on the clock and wavefront mecha-
nism. The Delayed Coupling Theory is the starting point for the work in this
thesis. We discuss the effects of replacing the dependence of the current state on
solely one past time, by a dependence on intervals of past times.

Finally, Chapter 4 provides an outline of how the results part of the thesis is
organized.
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1. Coupled Phase Oscillators
Enter the Stage

In this chapter we introduce the concept of synchronization in systems of cou-
pled phase oscillators. This organized collective behaviour, which results from
the interactions of many autonomously oscillating parts, can be quantified with
the Kuramoto order parameter [1]. We give historical examples on synchroniza-
tion phenomena, and introduce phase oscillator models. Two different ways of
how the oscillators are arranged with respect to each other in the system are
discussed, and the effects of communication delays are addressed.

1.1. Adjusting rhythms – synchronization

Synchronization is the coordination of rhythms of many individually oscillating
parts that interact in order to show coherent behaviour on the population level.

Figure 1.1.: Synchronization of applause. (Dresden Monarchs)

For example, a cheering audience as shown in Fig. 1.1, usually starts clapping
in a disordered fashion, but eventually synchronizes to a common rhythm shared
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by all members [2]. Each member of the group receives audio-visual input from
the others, upon which the own behaviour can be adjusted to that of the group.
A detailed and rigorous introduction to synchronization phenomena is given in
[3].

In this work we consider different types of synchronized states. When each
member of an applauding crowd claps their hands with the same repetition
speed, or frequency, and starts each clap at the exact same time as the other
group members, we denote that as phase-locked synchronization with no phase
lags.

The case that all members clap again with the same frequency but do not start
each clap at the exact same time as their neighbours, we call splay state or m-
twist synchronization. Here the integer number m is related to the difference
of the fixed time-points at which neighbours start their individual claps. These
solutions are introduced in more detail in Chapter 2.

The Kuramoto order parameter [1] is a measure of synchrony in systems of
interacting oscillators, which we introduce later in this chapter, see Section 1.4.

1.2. Historical remarks

Christiaan Huygens, the Dutch astronomer, physicist and mathematician was
one of the first scientists to observe and write about synchronization, and to
give a detailed description back in the seventeenth century. He invented and
worked with pendulum clocks, kept advancing them and made efforts to make
them reliable even for travelling on ships on the open sea [3]. When he hung
two pendulum clocks on a common support, a wooden beam (see Fig. 1.2), he
discovered that they align (synchronize) the motion of their pendulum, despite
the small inevitable differences in their intrinsic frequencies. In his memoirs he
described his observation of a pair of such clocks [4, 5]:

“...It was quite worth noting that when we suspended two clocks so constructed
from two hooks imbedded in the same wooden beam, the motions of each pendu-
lum in opposite swings were so much in agreement that they never receded the
least bit from each other and the sound of each was always heard simultaneously.
Further, if this agreement was disturbed by some interference, it re-established
itself in a short time. For a long time I was amazed at this unexpected result,
but after a careful examination finally found that the cause of this is due to the
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Figure 1.2.: Suspended pendulum clocks as used in a sketch by Christiaan
Huygens and described in Horologium Oscillatorium (1673) [4].

motion of the beam, even though this is hardly perceptible. The cause is that the
oscillations of the pendulum, in proportion to their weight, communicate some
motion to the clocks. This motion, impressed onto the beam, necessarily has the
effect of making the pendulum come to a state of exactly contrary swings if it hap-
pened that they moved otherwise first, and from this finally the motion of the beam
completely ceases. But this cause is not sufficiently powerful unless the opposite
motions of the clocks are exactly equal and uniform.”

Huygens had given one of the first qualitative descriptions of the concept of mu-
tual synchronization. By mentioning that “the pendulum come to a state of ex-
actly contrary swings”, Huygens describes a phase-locked state of the system [6].

Another historic example, where the observation of synchronization phenom-
ena is described, goes back to a travel diary of the Dutch physician Engelbert
Kämpfer [3, 7]. In his notes from a travel to Siam in 1680 he wrote [8]:

“The glowworms [...] represent another shew, which settle on some Trees, like a
fiery could, with this surprising circumstance, that a whole swarm of these insects,
having taken possession of one Tree, and spread themselves over its branches,
sometimes hide their Light all at once, and a moment after make it appear again
with their utmost regularity and exactness ... .”

Here Kämpfer describes the observation of a phase-locked state in a large popu-
lation of glowworms [7].

Synchronization phenomena of large interacting populations are abundant in
many physical [9, 10], chemical [11, 12], engineering [13], and biological systems
[14, 15]. In 1976 Winfree formulated the idea that many rhythmic processes in
biology can be modelled by large systems of interacting oscillators [16]. Win-
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free realized that organized collective behaviour and formation of patterns are
possible, despite the differences between oscillators, for example due to genetic
variability, noisy environments and other factors inherent to biological systems
[16]. However the mathematical treatment of large systems of interacting os-
cillators is not simple, and the formulation used by Winfree in his first attempts
was intractable. Despite the difficulties, he recognized that the description would
simplify for weak interactions and nearly identical oscillators. In this limit a sep-
aration of timescales occurs. On the short timescale the oscillators relax to their
limit cycles and can be described by their phases only, while on the long timescale
the phases are influenced by their weak interaction and the differences in their
intrinsic frequencies [17]. Another simplification Winfree proposed for his model
was to take a mean-field like approach, where each oscillator interacts with the
collective rhythm of all oscillators in the system:

θ̇k =ωk +
(

N∑
l=1

X (θl)

)
Z(θk). (1.1)

In this formulation, θk is the phase of the oscillators k = 1, 2, . . . , N, ωk is the as-
sociated intrinsic frequency, X (θl) is the phase dependent influence of oscillator
l, and Z(θk) is a sensitivity function, which governs the response to the interac-
tion dependent on the phase θk. Winfree then used analytical approximations
and numerical simulations to analyze his model [17]. He found a phase transi-
tion from asynchronous to synchronous behaviour, as he decreased the spread in
the intrinsic frequencies of the individual oscillators below a certain threshold.

Another important contribution following Winfree’s work was made by Ku-
ramoto in 1975 [1]. Kuramoto employed perturbation methods and averaging to
derive generally valid phase equations for systems of many weakly interacting
autonomous oscillators that are almost identical. For the tractable case of “all to
all” interaction, Kuramoto derived a set of coupled differential equations that are
known as the Kuramoto model. In the following years Kuramoto kept develop-
ing his model and clarifying the presentation. A broad overview on Kuramoto’s
work can be found in his book [11]. Since then, many important contributions
and advances have been made [18–26], reviewed in [2, 3, 15, 17, 27–30]. In the
next section we introduce phase models in more detail.
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1.3. Reducing variables – phase models

In terms of dynamical systems, a self-sustained oscillatory process is described
by a limit cycle, which is a closed trajectory in phase space [19]. Here phase
space denotes the space spanned by the variables of the oscillatory process. In
steady state, the time evolution of these variables takes place on the limit cycle
which is an attractor of nearby trajectories [3]. During one period of oscillation,
the system variables traverse the limit cycle in phase space once. For quasilinear
oscillators with a nearly circular limit cycle, the amplitude and phase correspond
to the polar coordinates of this point [3].

The amplitude is the intensity of the oscillation, and by definition, the phase
grows linearly in time and describes the fraction of one period of oscillation T

(θ0+π/2, t0+3Δt)

(θ0+π, t0+2Δt)

(θ0+3π/2, t0+Δt)

(θ0+2π, t0+T)
(θ0, t0)

limit cycle
period T

Figure 1.3.: Sketch of a limit cycle [3] with period T. The marks on the limit
cycle depict four equidistant times. As the point moves once around the limit
cycle during one period of oscillation, it advances with different speeds. Despite
that, by definition, the phase grows linearly with time.
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that has been completed [3], see Fig. 1.3:

θ(t)= θ0 + 2π
T

(t− t0). (1.2)

Here θ0 is the initial phase. Since every point on the limit cycle is equivalent,
the phase is neutrally stable with regard to shifts (along the cycle), while the
amplitude is stable, and perturbations imposed to it decay [3]. Even if the point
has gone through different parts of the cycle with non-uniformly growing angle,
as sketched in Fig. 1.3, a linearly growing phase can be defined by an appropriate
transformation. Hence the phase always grows linearly in time.

When we talk of phase models of coupled oscillators we mean systems with
reduced dynamics on a sub-manifold of the original system. Neglecting the am-
plitude, and the interactions of amplitude and phase and vice versa, is valid
in the limit of weakly coupled oscillators [11, 31]. In such systems with weak
mutual interactions, the neutrally stable phase can be freely shifted by pertur-
bations, while the limit cycle is stable and will relax back to its original value.
Averaging and perturbation techniques can be used to derive a phase dynamics
approximation in these cases [32, 33]. The description of the oscillator is reduced
to its phase.

Note that such reduced descriptions of systems of coupled oscillators do not
provide a complete picture of the original system. For example amplitude death
[34–36] cannot be identified in a phase model, since the amplitude is not defined.
The process of synchronization however, where a population of oscillators orches-
trates its dynamics to exhibit a periodic and coherent outcome, can be studied in
systems of coupled phase oscillators.

1.4. The Kuramoto order parameter

We introduce a measure of coherence in a system of coupled phase oscillators,
the so-called Kuramoto order parameter [1]:

r(t)eiΞ(t) ≡ 1
N

N∑
k=1

eiθk(t). (1.3)

Here θk(t), with k = 1,2, . . . , N, corresponds to the phases of the individual oscil-
lators at time t, and N denotes the number of oscillators in the system. The order
parameter is a complex number and defined as the normalized sum over the real
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θ

θ
r(t)

r(t)

θ1 θ1

θ2

θ2

Figure 1.4.: Sketch of r(t) for a system of two oscillators. On the left the oscil-
lators with phase θ1 and θ2 are almost in anti-phase, resulting in a small order
parameter r(t). On the right the phases θ′1 and θ′2 are similar, which leads to a
large order parameter r(t)′.

and imaginary parts of all phases in the complex plane. In Eq. (1.3) r(t) ∈ R is a
measure of phase coherence in the system of phase oscillators, and Ξ(t) denotes
the average phase [17]. Ξ(t) and r(t) characterize the so-called mean-field in sys-
tems where all members are connected to each other, which will be explained in
Section 1.5.

For phase-locked solutions, where all oscillators share the same frequency and
start each cycle of the oscillations at the same time, the oscillators are completely
synchronized and r(t)= 1. Examples for this state are the synchronized flashing
of glowworms [7], or applause where the entire audience starts each individual
clap at the same time. Note however, that other synchronized states can exist
that have r(t) = 0 following the definition in Eq. (1.3). For example, this can oc-
cur if all oscillators share a common frequency, but do not start each cycle of the
oscillations at the same time, but rather in a defined relation that is constant
in time, due to their common frequency. That applies for solutions where the
phases are equally distributed in [0, 2π), e.g. splay states or so-called m-twist
solutions [37, 38]. In systems where the number of oscillators becomes large,
the incoherent state approaches r(t) = 0 [18]. Hence, in such systems the Ku-
ramoto order parameter has to be modified such that these different states can
be distinguished.

A generalized order parameter that becomes r(t)= 1 for m-twist steady states
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can be defined in terms of the number of clusters C ∈ N [39]:

r(t)eiΞ(t) ≡ 1
N

N∑
k=1

ei Cθk(t). (1.4)

The cluster number denotes how many groups of oscillators with the same phase
form in steady state. This can also be formulated in terms of the m-twist and
number N of oscillators in the system, calculating θk(t) modulo the constant
phase difference between adjacent clusters ∆≡ 2πm/N in the system, and rescal-
ing by 2π/∆:

r(t)eiΞ(t) ≡ 1
N

N∑
k=1

ei 2π
∆ mod[θk(t),∆]. (1.5)

1.5. Who talks to whom – coupling topologies

An important characterization of systems of coupled oscillators is the coupling
topology. It contains the information about the connections between different
members in the system. In a previous section we had already heard about “all
to all” mean-field coupling [18, 40, 41], where all oscillators couple to every other
oscillator in the system.

There are many other types of coupling topologies, such as randomly connected
networks [13, 42–44], networks with mobile oscillators where the topology con-
stantly changes [13, 38, 45], and nearest neighbour interactions on different lat-
tices implying different numbers of neighbours [46–48]. A few examples are
shown in Fig. 1.5. These coupling topologies can be distinguished further, e.g.

n=2 n=1 n=4 n=2

Figure 1.5.: Left to right: all-to-all connected system, ring topology with uni-
directional connections, square lattice, and randomly connected system.
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into unidirectional, bidirectional and mixed connections within the system [49–
53], and into systems with different boundary conditions, such as reflecting, pe-
riodic or closed boundaries. In addition to the mutual arrangement of the os-
cillators, the boundary conditions and the directionality of the connection, the
character of the coupling function plays an important role in the coupling. For
example both attractive [1] and repulsive [54] coupling functions are possible.

Mean field coupling – “all to all”

The mean field coupling topology describes an “all to all” coupling within the
system, such as in the Kuramoto model [1]:

θ̇k(t)=ωk +
K
N

N∑
l=1

sin(θl(t)−θk(t)) . (1.6)

Here θk(t) denotes the phase of the oscillators for k = 1, 2, . . . , N, ωk the intrinsic
frequencies, and K the coupling strength. The frequencies ωk are drawn from
a unimodal and symmetric distribution. In such models the individual coupling
interactions can be replaced by an effective coupling to the mean-field:

θ̇k(t)=ωk +K r(t)sin(Ξ(t)−θk(t)) , (1.7)

using the Kuramoto order parameter Eq. (1.3), which characterizes the mean-
field [1]. It is an average or effective description of the entire system of oscil-
lators [16, 55]. This can simplify analytic and numerical treatment drastically,
especially when dealing with large systems of oscillators.

Nearest neighbour coupling

We refer to nearest neighbour coupling when looking at coupled oscillators ar-
ranged on a lattice, if each oscillator couples only to its nearest neighbours, see
Fig. 1.5 B. For square lattices this implies the number of neighbours for each
oscillator is 2D, where D denotes the dimension [48, 56].
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2. Coupled Phase Oscillators
with Delay in the Coupling

2.1. Communication needs time – coupling

delays

When information is processed and exchanged between different elements in a
system, finite signal propagation speed leads to communication delay. In many
cases such delay is not negligible. It can introduce qualitatively new effects that
are not present in the description without delay.

Delays in signal transduction are inherent to many complex processes; for exam-
ple due to molecular transport processes, or in general finite propagation times
[57–62]. Also intermediate steps or states of the process [63], such as transcrip-
tion and translation times in protein synthesis [64, 65] introduce delays.

In systems of coupled oscillators delays in the coupling lead to new phenom-
ena, not present in systems without delay [66, 67]. This can be seen from a

c

Figure 2.1.: Sketch of interaction with finite signal transmission speed c. Such
finite transmission speed leads to delayed communication. (Earthling and alien
images courtesy of Steffen Kleine.)
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simple example: two persons who would attempt to synchronize their 24 hour
wrist watches by sending letters to each other, easily succeed if the letters take
exactly 24 hours. In contrast, letters that take 12 hours would correspond to a
repulsive interaction, and result in watches that run in anti-phase unless the
people know the transit time. Hence, replacing an instantaneous by a delayed
action in a model can lead to qualitatively different outcomes [68].

Two coupled limit cycle oscillators can synchronize to a common frequency and
phase despite the presence of a time delay, as shown by Schuster and Wagner for
systems of coupled phase oscillators [68]. In [69], Yeung and Strogatz derive ex-
act formulas for the stability of the coherent and incoherent states as a function
of the delay in a mean-field coupled system. Dependent on the mean value of the
delay, the global frequency in the synchronized state is different compared to the
frequencies of the individual oscillators. It is not given by the mean of the intrin-
sic frequencies [68]. For values of the delay that exceed a critical value there are
multiple stable and unstable steady states [68, 70–72]. Hence, above the critical
delay multistability of steady states can be found.

In systems of coupled oscillators that also contain the amplitude of oscillation
[73], for example in coupled Stuart-Landau oscillators, amplitude death [34–
36, 74, 75] can occur. Amplitude death denotes the coupling-induced state of zero
amplitude [76], which requires sufficiently strong coupling, and a sufficiently
wide-spread distribution of intrinsic frequencies [77]. With delay in the coupling
amplitude death is also possible if the individual frequencies of the oscillators
are identical [78]. If the intrinsic frequencies of the oscillators are not identical,
an increasing delay value leads to an increase in the size of amplitude death
regions [30], compared to systems without delay. Another reported phenomenon
introduced by delay, in this specific case by distance dependent delays, is the
formation of various patterns such as spirals, targets and travelling rolls [79].

In the next two subsections we introduce distributed and discrete delays and
discuss previous results.

2.1.1. Discrete delays consider one past time

There are many types of delay [80]. One major classification of delay systems
is into systems with discrete or with distributed delays [67]. However, there is
some ambiguity in the literature as to what is meant by these two terms.

In discrete delay formulations, only the state at one past time is taken into
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account for the present time evolution. However, if a discrete delay is randomly
drawn of a distribution at each time-step [81], this is often termed as distributed
delays. In that case we face a temporal distribution of delay times. There is
also the case of discrete delays drawn randomly from a distribution for different
connections in the system, e.g. [82, 83]. Then the time delays throughout the sys-
tem are heterogeneous, and despite their individual discrete character, they are
called distributed delays. Due to the difficulties to unambiguously distinguish
the different delay models in the literature by just the two major classifications,
we define discrete delays for this thesis as follows. Systems of coupled phase os-
cillators that take into account one past time that is homogeneous throughout all
connections and constant in time, are called discrete delays. Note that discrete
delays are a simplified description; real time delays are usually not constant in
time, nor homogeneous throughout a system.

2.1.2. Distributed delays consider multiple past times

Delay models that fall under the category of distributed delays are manifold.
They all share the property that not only one discrete past time, but rather dif-
ferent past times or entire intervals of the past [67], are considered.

The number of different formulations of distributed delays is large; it reaches
from delay times τkl that are drawn from a distribution for each of the connec-
tions in a system individually [23, 26, 82], to formulations where an effective
information of the past x̄ is computed by a normalized integral [34, 36, 84–86]
over intervals of past states. The first formulation mentioned, describes hetero-
geneous interaction delays throughout the system, whereas the latter is mostly
used homogeneously throughout the system:

x̄(t)=
∫ b

a
ds g(s) x(t− s). (2.1)

Here g(s) is a so-called delay kernel, which weights the different past times, and
x(t− s) provides the history of the variable.

The references mentioned so far study systems with distributed delays, which
are abundant in many fields of engineering and natural sciences; e.g. in dynam-
ical systems [65, 84, 86], or in chemical reactions of coupled reaction-diffusion
systems [85]. Also the field of neuronal networks has made many contributions
[82, 83, 87–91] to systems coupled with distributed delays.
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Effects introduced by distributed delays are often compared to the case of a
discrete delay, with a value equal to the mean of the delay distribution, see e.g.
[92]. In systems of delay coupled Stuart-Landau oscillators it has been shown
[34] that amplitude death regions are increased in parameter space, if one uses
distributed delays in the coupling instead of discrete delays. As a threshold value
of the variance of the delay distribution is crossed, the amplitude death region
becomes unbounded and any mean value of the delay can lead to amplitude death
[34].

2.2. Coupled phase oscillators with discrete delay

In this section we introduce systems of coupled phase oscillators with a discrete
delay τ in the coupling function [68]:

θ̇k(t)=ω+ K
nk

N∑
l=1

dkl h (θl(t−τ)−θk(t)) , (2.2)

where θk(t), with k = 1,2, . . . , N, corresponds to the phases of the individual oscil-
lators at time t, N is the number of oscillators in the system, nk is the number
of connections that oscillator k has to other oscillators in the system, K is the
coupling strength that couples an oscillator to its neighbours, h is a 2π-periodic
coupling function, and ω is the intrinsic frequency of the identical oscillators.
The dkl are either one, if oscillator k is connected to oscillator l, or zero, if not.
These are the components of the connectivity matrix D, which contains the in-
formation about all connections between the oscillators in the system. The next
two sections introduce phase-locked solutions in such systems of coupled phase
oscillators with delay.

2.2.1. Phase locked steady states with no phase lags

One type of phase-locked solution to Eqs. (2.2) is the phase-locked steady state
with no phase lags, θk(t) =Ωt, characterized by a common phase and global fre-
quency Ω shared by all oscillators in the system. Steady states describe the long
term behavior of the system, when transient dynamics have died away [19]. The
ansatz made for this phase-locked solution:

θk(t)=Ωt, (2.3)
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considers linear growth of all phases with the global frequency Ω [68]. Ansatz
(2.3) is substituted into Eq. (2.2) in order to obtain the solution for Ω via a self-
consistent approach:

Ω=ω+K h (−Ωτ)
1

nk

N∑
l=1

dkl . (2.4)

The sum of entries l in the kth row of the connectivity matrix is given by nk ∀ k:

1
nk

N∑
l=1

dkl = 1 ∀ k. (2.5)

This leads to an implicit expression for Ω in the case of discrete delays:

Ω=ω+Kh(−Ωτ). (2.6)

This relation can be plotted parametrically in the Ω− τ plane by substituting
Ωτ≡ f [56]:

Ω=ω+Kh(− f ),

τ= f
ω+Kh(− f )

. (2.7)
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K

Figure 2.2.: Global frequency Ω plotted versus the mean of delay τ for a sinu-
soidal coupling function h. The plot shows three curves for different coupling
strengths K , intrinsic frequency ω = 0.223min−1, arbitrary number of oscilla-
tors N and connections nk. Dashed lines denote unstable solutions and solid
lines denote stable solutions as determined in Section 6.2.
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Figure 2.3.: Global frequency Ω plotted versus Ωτ for a sinusoidal coupling
function h. The plot shows three curves for different coupling strengths K , in-
trinsic frequency ω= 0.223min−1, arbitrary number of oscillators N and connec-
tions nk. Dashed lines denote unstable solutions and solid lines denote stable
solutions as determined in Section 6.2.

It is plotted for different coupling strengths K in Fig. 2.2. An effect introduced
by the delay is the multistability of steady states: there are multiple solutions
for the global frequency Ω for one value of the mean delay τ [68]. This can be
seen in Fig. 2.2 for sufficiently large τ.

With increasing coupling strength K , the deviation of the global frequency Ω
from the intrinsic frequency ω grows for all Ωτ 6= jπ ∀ j ∈ N0. The τ-intervals
with multiple solutions also grow as K increases, see Fig. 2.2. The relation
between Ω and the product of Ω times the mean τ is plotted in Fig. 2.3. This
unfolds the curve and we will later use this representation for other plots. We
will see that this is convenient since many expressions that are evaluated often
depend on Ωτ. In the remainder of this thesis we set K = 0.07min−1 and ω =
0.223min−1.
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Figure 2.4.: Snapshots of the phases in different m-twist steady state configu-
rations for N = 4 oscillators. The coloured circles mark the phases.

2.2.2. m-twist solutions: phase-locked steady states with
phase lags

Phase locked solutions with non-zero phase lags are introduced in this section
[35, 37, 38]. We consider these solutions only in 1D systems with periodic bound-
ary conditions and nearest neighbour interactions. The accordingly modified Eqs.
(2.2) then read:

θ̇k(t)=ω+ K
2

∑
l=k±1

h (θl(t−τ)−θk(t)) . (2.8)
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Figure 2.5.: Sketch of steady state phases for a system of N = 4 oscillators for
m = {0, 2} twist state with ∆ = {0, π} respectively in the left plot and m = {1, 3}
twist state with ∆= {

π
2 , 3π

2
}

respectively in the right plot.
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Figure 2.6.: Snapshots of the phases in different m-twist steady state configu-
rations for N = 5 oscillators. Note: m = 4 corresponds to m =−1.

In this system the steady state solutions are characterized by a global frequency
Ω shared by all oscillators in the system, and phase differences ±∆ between ad-
jacent neighbours. The phase difference ∆ is identical between all adjacent pairs
of oscillators. Hence the phases of the oscillators are evenly arranged in [0, 2π),
see Fig. 2.4 for a chain of N = 4, and Fig. 2.6 for a chain of N = 5 oscillators.
These solutions are also called m-twist or splay states [37, 93], related to the
multiples m of 2π accumulated when summing all phase differences ∆ between
the oscillators on the ring. The case m = 0 recovers the phase-locked solution
with zero phase lags. Hence, all oscillators share the same phase in steady state
and the phase differences are zero. For m = 1 the sum over the phase differ-
ences yields 2π. Since these phase differences are identical for all adjacent pairs
by definition, the oscillators arrange evenly spaced in the interval [0, 2π) – e.g. a
snapshot yields

{
θ1 = 2π, θ2 = π

2 , θ3 =π, θ4 = 3π
2

}
. In this configuration they evolve

with a common global frequency Ω in time, maintaining their mutual phase dif-
ferences.
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Following Wiley et al. [37], and Peruani et al. [38], these m-twist or splay state
solutions with m ∈ N0 are defined by:

θk(t)=Ωt+ 2πm
N

k. (2.9)

The phase lag between neighbouring oscillators is given by:

∆≡ 2πm
N

, (2.10)

according to the associated m-twist number. This integer m ∈ {0, 1, . . . , N −1}
denotes the winding number that determines how many multiples of 2π accu-
mulate, as one goes once trough the chain of oscillators, and sums up their phase
lags with respect to the next oscillator, see Figs. 2.7 and 2.5.

Summary

In this chapter we introduced the concept of synchronization in systems of cou-
pled phase oscillators, presented the coupling topologies that are considered in
this work, and gave an introduction to known effects of discrete and distributed
delays in such systems. Furthermore we introduced phase-locked solutions with
zero and non-zero phase lags in systems of coupled phase oscillators with delay
in the coupling function.

The next chapter introduces the vertebrate segmentation clock that plays an
important role in the developmental process of vertebrate segmentation. This

23



process has been successfully treated with a phase oscillator model with discrete
delays, the Delayed Coupling Theory of vertebrate segmentation [56].
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3. The Vertebrate Segmentation
Clock – What Provides the
Rhythm?

The aim of this chapter is to introduce an essential mechanism that we believe is
a core component to vertebrate segmentation, the vertebrate segmentation clock.
It is thought to provide the rhythm for the developmental process of vertebrate
segmentation. During this developmental process, vertebrates sequentially form
pairs of structures aligned on both sides of the elongating head to tail body axis

Figure 3.1.: The vertebrate body axis is segmented. (A-B) Lateral view of
a zebrafish embryo at two different stages of development. Time relative to
bud stage at about 10 hours past fertilization [94] (image courtesy of Christian
Schröter). (C) Segmented body axis of wild-type adult zebrafish. Adult zebrafish
body length varies from 2.5−4 cm [95] (image courtesy of A. Oates).
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[96], see Fig. 3.1. These structures, called somites, are blocks of mesodermal cells
[97, 98] and are the precursors of vertebrae, ribs and skeletal muscle. How these
periodic structures are formed reliably in a noisy environment is the subject of
intense research [32, 99–101]. For more detailed descriptions on the process of
vertebrate segmentation we refer the reader to the literature [56, 98, 102–105].

3.1. The clock and wavefront mechanism

There are different theoretical models and concepts [106] that aim to describe
how biological systems measure distances, achieve diversity from an undifferen-
tiated state, or self organize. Such models and concepts are for example mor-
phogen gradients [107, 108], reaction-diffusion systems [109, 110] and the clock
and wavefront mechanism [96, 102]. The clock and wavefront mechanism is cur-
rently favoured as the basis for theoretical description of somitogenesis [98, 111]
and well supported by experiments [112, 113].

In 1976 Cooke and Zeeman [96] proposed the clock and wavefront mechanism,
a general scheme that aims to describe how structure formation in developing
organisms can be achieved, without specifying the underlying biological and bio-
chemical details. They propose a clock, composed of unspecified cellular oscilla-
tors that show synchronized oscillations, and provide the timing for the regular
and periodic formation of each somite. Superimposed to these coherent oscilla-
tions, a wavefront sweeps through the tissue and arrests the oscillations in their
current state, leaving behind a frozen image of the state of oscillation at the time
of arrest. Assuming the wavefront moves through the tissue at constant speed
and direction, implies a well defined length l of the structures that are left be-
hind. It is given by the product of the period of oscillation T and the wavefront
speed v, i.e. l = vT.

Based on the concept of the clock and wavefront mechanism, various mod-
elling approaches on vertebrate segmentation [56, 114, 115] have been made.
In the next two sections we give a closer description on what we believe is the
unspecified cellular oscillator proposed by the clock and wavefront mechanism,
and how these oscillators communicate their states to organize the tissue level
coherent oscillations, that provide the period of the segmentation clock [98].
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3.2. Cyclic gene expression on the cellular and

the tissue level

In recent years experiments in chick [116, 117], zebrafish [118] and other or-
ganisms [119] have been carried out, identifying travelling waves of cyclic gene
expression on the tissue level, see Fig. 3.2. This is observed in the pre-somitic
mesoderm (PSM) of vertebrates, Figs. 3.1 and 3.3, a tissue located in the tail re-
gion of the growing embryo. With each newly formed somite the pattern of gene
expression repeats, i.e. the rhythm of cyclic gene expression on the tissue level
matches the rate of somite formation [98].

Cyclic gene expression has been observed by mRNA in situ hybridization [118,
120–122] and also in vivo, using yellow fluorescent protein (YFP)-based, real-
time fluorescence imaging systems [123–125]. The observed waves of cyclic gene
expression are independent from material transport. This is evident in dissection
experiments [116, 123], where surgically removed pieces of the PSM continue to
show cyclic gene expression patterns. However, the question is raised whether
cyclic gene expression exists autonomously also at the cellular level.

There is evidence that supports cyclic gene expression at the single cell level
[123, 126]. Time series of endogenous gene expression from in situ hybridization
experiments, in which single cells were dissociated from PSM tissue and fixed,
show variable gene expression levels [117]. Time-lapse images of cells that are
marked by a luciferase reporter that is under control of the Hes1 cyclic gene
promoter yield additional indications for sustained oscillations at single cell level
[123]. Period measurements in these and other experiments suggest that the
noise level in the individual oscillating cell is higher than at the tissue level
[32, 127].

Figure 3.2.: Dorsal view of the PSM of fixed embryos at similar stages of de-
velopment. mRNA expression levels made visible by in situ hybridization tech-
nique. (Image courtesy of Andrew Oates.)
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Figure 3.3.: Lateral view of a zebrafish embryo. Insets: uncoupled incoherent
(A) and coupled coherent (B) cellular oscillators in the PSM. (Image courtesy of
Christian Schröter.)

Different theoretical models that have been proposed to describe single cell ge-
netic oscillators suggest an auto-inhibitory feedback loop with a transcriptional
time delay [63, 64, 128, 129]. The idea is that protein products can bind to the
promoters of their own genes and inhibit further gene expression, and hence the
formation of new mRNA, see Fig. 3.4. The number of mRNA molecules of this
gene decreases due to degradation according to their half-lives. Consequently
the the number of gene products in the cell will drop, until it cannot continue to
suppress its own gene expression. Then the cycle starts over. The time delays
associated to transcription, translation and molecule trafficking, as new mRNA
copies are made and processed in the cell, play an important role for the period
[64] of this proposed biochemical oscillation in the cell.

gene

protein

cell nucleus

auto-
inhibition

transcription
& translation

Figure 3.4.: Sketch of a negative feedback loop in gene expression. Protein
products inhibit the transcription of their own gene.

28



Oscillations on the tissue level have the same period as the successive forma-
tion of the somites. This suggests that the period of oscillation at the tissue level
constitutes the clock period in vertebrate segmentation. These coherent tissue
level oscillations may be the result of synchronized periodic gene expression in
the cells of the PSM. If so, there must to be some kind of signalling pathway that
allows many individual oscillators to coordinate their expression levels. It has
been suggested that cells in the PSM of zebrafish embryos communicate their
states using the Delta-Notch signalling pathway [32, 99, 100], which requires
cell-cell contact to function [130, 131].

3.3. Coupling by Delta-Notch signalling

The intercellular Delta-Notch signalling pathway is highly conserved and present
in most multicellular organisms [130]. It allows cells to process external signals
and communicate cell state information to the cell membrane [131]. Contact
areas of adjacent cells allow for transactivation and cis-inhibition of Delta and
Notch proteins [132, 133]. Here transactivation denotes the interaction of Delta
and Notch proteins on the cell membrane of adjacent cells, that leads to the
cleavage of the Notch intracellular domain, see Fig. 3.5. The interaction of Delta

cell 1 cell 2

mRNA

cleavage

translation

Delta

Notch

transcription
DNA

regulation

interaction

Notch intracellular 
domain

Figure 3.5.: Delta-Notch intercellular signalling pathway. Delta protein shown
in blue and Notch protein in green.
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and Notch proteins located at the same cell membrane leads to the inhibition of
Notch and is called cis-inhibition. The interaction of Delta and Notch proteins at
the cell contact area of two cells leads to the cleavage of the Notch extracellular
domain and releases the intracellular domain to the signal receiving cell. This
domain can in turn fulfil regulatory tasks in the cell, see Fig. 3.5.

The coherent levels of gene expression observed on the tissue level in trav-
elling waves of gene expression suggest that there must be a mechanism that
coordinates the behaviour of individual cellular oscillators in vertebrate segmen-
tation. The Delta-Notch signalling pathway has been shown to be involved in the
local synchronization of oscillators across the PSM [113]. As Delta-Notch cou-
pling is lost, the patterns of travelling waves of gene expression show ‘salt and
pepper’ like expression patterns [32], indicating that synchrony between cellular
oscillators is lost [99, 118]. Mutations that lead to loss of function of the Delta-
Notch signalling pathway cause defective somite boundaries and the disruption
of somitogenesis [134–136]. Inhibition of the Delta-Notch pathway leads to grad-
ual disruption of somite formation, and eventually leading to defective somite
boundaries. This can be reversed when Delta-Notch signalling is re-established,
and recovers the formation of somites after a transient time [32].

3.4. The Delayed Coupling Theory

Different modelling approaches to vertebrate segmentation conducted in recent
years rely on the clock and wavefront mechanism [56, 96, 137, 138]. For example,
the Delayed Coupling Theory (DCT) of vertebrate segmentation [56], is based on
this mechanism, which considers the vertebrate segmentation clock to provide
the rhythm for the segmentation process [56]. In terms of the clock and wave-
front mechanism the wavefront is given by a globally acting frequency profile
that gradually slows down the oscillations until they arrest [56].

In Oates et. al. [98], the vertebrate segmentation clock is defined as a multi-
scale rhythmic pattern generator that yields the gene expression patterns at the
tissue level. The underlying processes are organized in a three tier model.

The first tier describes single cell genetic oscillations. It is based on the as-
sumption that the individual cells in the PSM contain autonomous genetic oscil-
lators [117, 123], which are capable of sustaining their oscillations even if sepa-
rated from the tissue [116]. The DCT models the patterns of cyclic gene expres-
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sion on the tissue level by a system of phase oscillators. The second tier describes
the local synchronization of single cell genetic oscillators. Experimental data
suggests that Delta-Notch signalling allows for locally synchronized patterns on
population level [99, 117], despite the dynamical noise acting upon the system
[56]. This intercellular communication is non-instantaneous, due to finite signal
transmission time in complex biochemical signalling pathways [32, 99–101]. In
the DCT discrete delays account for these communication delays in the coupling
function [56]. The third tier describes the arrest of the oscillations, when the
phase of the oscillators is converted into a stable spatial pattern. Experiments
have been conducted that suggest that the slowdown and arrest of the oscilla-
tions, and the gene expression patterns on the tissue level are under the control
of morphogen gradients [116, 119, 139], such as Fibroblast growth factors (FGF)
[140, 141] or Wnt signalling protein (Wnt) gradients [124, 142]. These build
from sources at the posterior end of the PSM [140, 142]. In the DCT this is ac-
counted for by a superimposed frequency profile, which slows down the intrinsic
frequencies as the oscillators move from the posterior to the anterior end of the
PSM. We omit this frequency profile in our description, and focus on the effects
of distributed delays in systems of coupled phase oscillators.

Experimental evidence [32] suggests that the coupling strength is weak com-
pared to other timescales present in the system [56]. Hence, the cyclic gene
expression patterns [118] on the tissue level can be represented by a system of
coupled phase oscillators, that takes into account the three tiers:

θ̇k(t)=ωk(t)+ εk(t)
na2

∑
l

sin[θl(t−τl(t))−θk(t)]+ζk(t). (3.1)

This set of k equations, with k = 1, 2, . . . , N, describes the time evolution of the
phases θk(t), given by their intrinsic frequencies ωk(t), and the coupling terms
over all neighbours l; these terms evaluate the phase differences for the differ-
ent connections. The phase information of oscillator l is delayed by a discrete
time τl(t), and dynamic noise ζk(t) is added to the equations. The prefactor con-
tains more system parameters, the lattice constant a, the number of neighbours
n of each oscillator, and the coupling strength εk(t). This model of coupled phase
oscillators with discrete delays in the coupling successfully predicts the depen-
dence of the length of the self-organized structures (somites) on the time delays
of intercellular communication. This was experimentally confirmed in [113].
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3.5. Discrete delay is an approximation – is it

sufficient?

Intercellular communication mediated by biochemical signalling pathways is not
instantaneous [67]. Cellular processes, such as transcription, translation and
molecule processing introduce time delays in this communication [56, 64]. De-
lays can introduce qualitatively new behaviour in systems of coupled phase os-
cillators [68] and cannot be neglected if they are long enough compared to other
timescales of the system [31]. However, fluctuations in processes like gene ex-
pression and the transport of macromolecules introduce a variability to such de-
lay times [67]. Discrete delays are an approximation, and a more realistic model
of the delay would use distributed delays [67], to account for the variability in bio-
chemical signalling pathways. Distributed delays consider different past times,
weighted according to a delay time distribution. The delay statistics could in
principle be obtained from the analysis of a stochastic model of the microscopic
dynamics involved in such biochemical signalling pathways [143], or measured
experimentally.

In the framework of the Delayed Coupling Theory of vertebrate segmentation
[56] we ask how the approximation with discrete time delays involved in intercel-
lular coupling compares to models with distributed delays in the coupling. There
is no experimental data available that can be used to tackle this question. Hence,
this work aims to conceptually understand the differences that distributed de-
lays in the coupling introduce. We use tools from dynamical systems theory to
analyze the stability of steady state solutions. Furthermore, we investigate the
linearized dynamics close to the steady state for discrete and distributed delays
in the coupling. For different values of the mean, the variance, and the skew-
ness of the delay time distribution, we determine how the system reacts to small
perturbations about its steady state.
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4. Outline of the Thesis

In the previous chapter we briefly introduced a model based on a system of cou-
pled phase oscillators with a discrete delay in the coupling, the Delayed Coupling
Theory of vertebrate segmentation [56]. We raised the question, whether the for-
mulation with discrete delays in the coupling of the oscillators is sufficient to
capture all effects introduced by delayed communication in noisy systems.

In order to answer this question, we introduce a model of phase oscillators
with distributed delays in the coupling, using the Delayed Coupling Theory of
vertebrate segmentation as a basis. We give a detailed explanation of the delay
formulation, and discuss different types of distributed delays.

From the viewpoint of dynamical systems, we ask how stability and linearized
dynamics close to the steady states of different phase-locked solutions are af-
fected by distributed delays in contrast to discrete delays.

In Part II of this thesis we present our results. Using the new formulation
of the system of delay coupled phase oscillators with distributed delays, which
we introduce and discuss in Chapter 5, we investigate phase-locked solutions in
such systems. In Chapter 6 we discuss the dependence of global frequency on
the mean delay, and present the results on the steady state stability of phase-
locked solutions with zero phase lags. We discuss the characteristic equation
and present a general result on the stability of the steady state of these solu-
tions. Chapter 7 presents the results on the transient dynamics of the model
equations in Chapter 5, as the system settles into steady state or reacts to small
perturbations about its steady state. In Chapter 8 we present the results on the
steady state stability of m-twist solutions in a system with distributed delays,
and the relation between the mean delay and the global frequency in steady
state. Chapter 9 contains first results on the transient dynamics of the model
equations in Chapter 5 with distributed delays, as the system settles into m-
twist steady state or reacts to small perturbations about this steady state. In
Chapter 10 we present the conclusions of this work and discuss open questions.
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Part II.

DISTRIBUTED DELAYS
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5. Setting the Stage for
Distributed Delays

5.1. Model equations with distributed delays

In this section we introduce a general model of phase oscillators that are coupled
with a delay, which accounts for the entire past of the neighbour:

θ̇k(t)=ωk +
K
nk

N∑
l=1

dkl h
(
−θk(t)−β+

∫ ∞

0
ds g(s)θl(t− s)

)
, (5.1)

where θk(t), with k = 1,2, . . . , N, corresponds to the phases of the individual os-
cillators at time t, N denotes the number of oscillators in the system, nk is the
number of connections that oscillator k has to other oscillators in the system,
K is the coupling strength that couples an oscillator to its neighbours, h is a
2π-periodic coupling function, β is a phase frustration parameter, g(s) denotes
the delay distribution and ωk the intrinsic frequency of oscillator k. The dkl are
either one, if oscillator k is connected to oscillator l, or zero, if not. This is how
the connection topology of the system is formulated and we define the connec-
tivity matrix D, whose components are the coefficients dkl , and which contains
the information about all connections between the oscillators in the system. The
phase frustration parameter β introduces a constant phase shift in the evalua-
tion of the phase differences in the coupling function h. This can lead to repulsive
coupling, e.g., for β= π with a sinusoidal coupling function. The effects of phase
frustration are being investigated in a separate work. Here, we focus on the ef-
fects of distributed delays in the coupling, setting β= 0 for the remainder of the
thesis.

This formulation of Eqs. (5.1) encompasses a large class of systems. One ex-
ample is the original Kuramoto model [1], which is recovered for a sinusoidal
coupling function h(θ)= sin(θ), with zero delay g(s)= δ(0), β= 0, mean field cou-
pling dkl = 1 ∀ k, l and nk = N ∀ k. Another example is the Delayed Coupling
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Theory of vertebrate segmentation [56]. It is recovered for a Dirac delta delay
distribution g(s) = δ(s−τ), sinusoidal coupling function, zero phase frustration
parameter β= 0, time dependent intrinsic frequencies ωk(t), and nearest neigh-
bour coupling topology, see Eqs. (3.1).

The delay distribution g(s) can be any probability density function defined for
non-negative delay times. It can be characterized by the mean delay τ, defined
as:

τ=
∫ ∞

0
ds g(s) s, (5.2)

and higher central moments [144], for example the variance σ2 and skewness γ:

σ2 =
∫ ∞

0
ds g(s) (s−τ)2, (5.3)

γ = 1
σ3

∫ ∞

0
ds g(s) (s−τ)3 . (5.4)

To characterize the effects of distributed delays we compare to the case of discrete
delays in the coupling. Discrete delays can be recovered by a shifted Dirac delta
delay distribution g(s)= δ(s−τ), where τ is the value of the discrete delays.

5.2. How we include distributed delays

In this study the distributed delays are given by an integral over all past times
[67] of the phase history of the oscillator l:

θ̃l(t)≡
∫ ∞

0
ds g(s)θl(t− s), (5.5)

where the different past times are weighted by a probability density g(s). The
value of the delayed phase θ̃l(t) represents a condensed information about the
past phases of oscillator l. The delay integral appears inside the coupling func-
tion h in the phase evolution Eqs. (5.1).

In intercellular communication processes, biochemical signalling pathways play
an important role [130]. They consist of many molecular processes such as tran-
scription, translation and molecule trafficking [145]. Completion times of these
processes are stochastic [146]. The resulting fluctuations can be described by de-
lay distributions g(s) that govern the statistics [147] of the underlying stochastic
process.

In general, the formulation of distributed delays, as shown in Eq. (5.5) and
throughout this study, describes systems in which the phase information that is
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Figure 5.1.: When many individual coupling processes with delay times sm

occur in parallel, the overall communication process can be described using the
probability distribution of the delay times.

evaluated by the coupling function consists of many individual signalling events
in parallel. We consider signals, originated at different past times, that reach
the receiver in an infinitesimal time window, see Fig. 5.1. Together these sig-
nalling events yield the delayed phase information of the sender. Statistics on
the waiting times for completing an individual signalling event are encoded by
the delay distribution. It provides the information of how likely it is to receive
a signalling event of a specific past time. We assume the delay is homogeneous
throughout the system of oscillators, i.e., the delay time statistics encoded by
g(s) are identical for each connection. Coupled systems that communicate their
states in this way can be described by the formulation of distributed delays with
the integral inside the coupling function. This formulation of distributed delays
is also used in neural networks, e.g. [88, 148, 149], where neurons have a mul-
titude of parallel connections [87] that introduce a distribution of propagation
delays for incoming signals.

Alternative representations of distributed delays could have the integral out-
side the coupling function h:

θ̇k(t)=ωk +
K
nk

N∑
l=1

dkl

∫ ∞

0
ds g(s) h (θl(t− s)−θk(t)) . (5.6)
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This corresponds to individually evaluated signalling events. These individual
events are summed and weighted after the evaluation of the event by the cou-
pling function. We do not employ this model of distributed delays here, because
we do not consider individually evaluated signalling events.

Systems that use heterogeneous interaction delays [82, 83] take into account
link-dependent interaction time delays [23, 26]:

θ̇k(t)=ωk +
K
N

N∑
l=1

h (θl(t−τkl)−θk(t)) , (5.7)

where discrete, time-independent delays τkl inherent to the connections between
the oscillators, are drawn of a distribution for each connection individually. Such
a description is different than the one considered in this work [compare Eqs.
(5.1)], because the distribution governing the different connection delays τkl , ac-
counts for the variability in delay times between different connections kl, rather
than the variable delay times possible within a connection.

5.3. Summary

In this chapter we introduced the model Eqs. (5.1) for a system of identical phase
oscillators that are coupled according to one, so far, unspecified coupling topology.
The coupling function includes a delay term, see Eq. (5.5), accounting for non-
instantaneous signal transduction and considering past states of the coupling
partner. This delay term returns an effective phase information of the phase
history of the coupling partner, consisting of weighted influences from different
past times. The weight with which these delay times enter the effective phase
information is given by a distribution which encodes the probability of their oc-
currence. Therefore we call this term distributed delays. Note however, that Eqs.
(5.1) are entirely deterministic.

This formulation of distributed delays is motivated by situations where many
individual signalling events reach the receiver in an infinitesimal time window,
each of them having originated at some delayed time in the past with a probabil-
ity given by the delay distribution, see Fig. 5.1.
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6. The Phase-Locked Steady
State Solution

We introduced the phase-locked solution with no phase lags in Subsection 2.2.1.
In steady state it is characterized by a global frequency Ω, with which all oscilla-
tors evolve in time, and a common phase shared by all oscillators in the system.
This solution is a special case of the phase-locked solution with phase lags, de-
noted by m-twist or splay state solution, with phase lags equal to zero (m = 0)
between all oscillators.

6.1. Global frequency of phase-locked steady

states

Here we make an analogy to the phase-locked steady state in a system with
discrete delay in the coupling was introduced in Subsection 2.2.1, in order to
obtain a similar relation for the case of distributed delays in the coupling in Eqs.
(5.1). The ansatz for the phase-locked solution is:

θk(t)=Ωt. (6.1)

This denotes linear growth of the phases with the global frequency Ω. We sub-
stitute this ansatz into Eqs. (5.1) with ωk =ω ∀ k, implying identical oscillators,
in order to obtain the solution for Ω by a self-consistent approach [68, 69]:

Ω=ω+ K
nk

N∑
l=1

dkl h
(
−Ωt+Ωt

∫ ∞

0
ds g(s) −Ω

∫ ∞

0
ds g(s) s

)
. (6.2)

Since the delay distribution g(s) is normalized, the left integral in the coupling
function yields 1. The right integral denotes the first moment of g(s) which we
defined in Eq. (5.2) and which yields after substituting:

Ω=ω+K h (−Ωτ)
1

nk

N∑
l=1

dkl . (6.3)
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The sum of entries l in the kth row of the connectivity matrix is given by nk ∀ k:

1
nk

N∑
l=1

dkl = 1 ∀ k. (6.4)

This leads to an implicit expression for Ω in the case of distributed delays:

Ω=ω+Kh(−Ωτ). (6.5)

Note that Eq. (6.5) only depends on the mean delay, and not on the particular
shape of the delay distribution g(s). It is also independent from the number of
oscillators in the system or the number of neighbours of each of them.

The global frequency Ω in the phase-locked steady state, where all oscillators
have synchronized to a common phase and global frequency, only depends on the
mean of the delay distribution. No higher moments, that characterize the shape
or symmetry of the distribution, are involved. Hence, the functional dependence
of the global frequency in steady state is identical for distributed and discrete
delays, if their mean value is chosen to be the same. The according plots to Eq.
(6.5) are given in Subsection 2.2.1 in Figs. 2.2 and 2.3.

6.2. Linear stability of the steady state

In general the linear stability of a solution to a dynamical system, e.g. Eqs. (5.1),
can be determined by linear stability analysis [19]. We ask how the synchronized
system in steady state responds to small perturbations. This is studied for lin-
earized dynamics and only valid close to the steady state. For unstable steady
states, the perturbation will grow because the system is not attracted back to the
steady state, whereas the perturbation will converge to zero eventually when the
steady state is stable. In cases where linear stability analysis is not sufficient to
decide whether a steady state is stable or not, higher order terms have to be
taken into account [19]. Following this idea and assuming identical oscillators,
ωk = ω ∀ k for the remainder of the thesis, we add a perturbation qk(t) to the
phase-locked solution:

θk(t)=Ωt+εqk(t), (6.6)

with ε¿ 1 and substitute this into Eqs. (5.1), which yields:

Ω+εq̇k(t)=ω+ K
nk

N∑
l=1

dklh
(
−Ωτ+ε

[
−qk(t)+

∫ ∞

0
ds g(s) ql(t− s)

])
, (6.7)
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where τ is the mean of the delay distribution as defined in Eq. (5.2). Taylor
expansion for ε¿ 1 leads to:

Ω+εq̇k(t)=ω

+ K
nk

N∑
l=1

dkl

(
h (−Ωτ)+εh′ (−Ωτ)

[
−qk(t)+

∫ ∞

0
ds g(s)ql(t− s)

])
+O

(
ε2) , (6.8)

with h′ being the first derivative of h with respect to its argument. Eq. (6.8)
can be separated in powers of ε to yield the equation for the global frequency in
zeroth order:

Ω=ω+Kh (−Ωτ) , (6.9)

and the linear dynamic equations for the evolution of the perturbation in first
order:

q̇k(t)= α

nk

N∑
l=1

dkl

[
−qk(t)+

∫ ∞

0
ds g(s)ql(t− s)

]
, (6.10)

where:
α≡ Kh′(−Ωτ). (6.11)

We are interested in whether the perturbation grows or decays as the system
evolves. For general linear dynamical systems the solutions are linear combina-
tions of exponentials [150, 151]. Hence, for the functional form of the perturba-
tion we introduce the ansatz:

qk(t)= ckeλt. (6.12)

The terms ck are the components of the perturbation mode associated to the
solutions λ ∈ C. These λ are obtained by substituting Eq. (6.12) into (6.10), for
which the result is shown in the next section.

6.3. Linear dynamics of the perturbation – the

characteristic equation

The characteristic equation describes the linear dynamics of the perturbation. It
can be derived from Eqs. (6.10) and (6.12). Substituting the description of the
perturbation into the dynamic equations yields:

ckλeλt = α

nk

N∑
l=1

dkl eλt
[
−ck + cl

∫ ∞

0
ds g(s) e−λs

]
. (6.13)
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The integral in Eq. (6.13) represents the Laplace transform ĝ(λ) of the delay
distribution [152, 153]:

ĝ(λ)=
∫ ∞

0
ds g(s) e−λs. (6.14)

Simplified, this set of equations reads:

ckλ= α

nk

N∑
l=1

dkl [cl ĝ(λ)− ck] . (6.15)

In order to find an expression for the λ for arbitrary delay distributions that fulfil
the normalization condition: ∫ ∞

0
ds g(s)= 1, (6.16)

Eq. (6.15) is rearranged in order to obtain:

(λ+α)ck =
α ĝ(λ)

nk

N∑
l=1

dkl cl , (6.17)

which under the condition

α 6= 0 (6.18)

can be further rearranged to yield:

nk

ĝ(λ)

(
λ

α
+1

)
ck =

N∑
l=1

dkl cl . (6.19)

Additionally only values of λ that ensure ĝ(λ) 6= 0 are allowed, otherwise physi-
cally not meaningful singularities can arise. If not stated otherwise, the number
of connections of each oscillator is set to nk = n ∀ k for the remainder of this work,
meaning that each oscillator in the system has the same number of connections
n:

n
ĝ(λ)

(
λ

α
+1

)
ck =

N∑
l=1

dkl cl . (6.20)

We use the last two Eqs. (6.20) and (6.18) to determine the λ. The sign of the real
part of λ determines the stability of the corresponding solution. In case of a neg-
ative real part, Re(λ)< 0, the perturbation decays exponentially and the solution
is called stable, whereas for positive real part, Re(λ)> 0, the perturbation grows
exponentially and is therefore called unstable [154]. A real part of λ equal to
zero corresponds to neutral stability and linearized dynamics are not sufficient
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to determine stability [19]. The value of the real part of λ contains the informa-
tion on how fast the associated perturbation modes decay or grow, depending on
the sign. Because λ can be a complex number the growth or decay of the per-
turbation can be oscillatory. The imaginary part of λ denotes the frequency of
oscillation of the perturbation growth or decay dynamics.

Stability of phase-locked solutions

We look at Eq. (6.20) which can be rewritten in matrix notation:

n
ĝ(λ)

(
λ

α
+1

)
~c =D~c, (6.21)

with ~c being the vectors defined by the components of the perturbation ck. We
define:

ζ≡ n
ĝ(λ)

(
λ

α
+1

)
, (6.22)

and substitute into Eq. (6.21):

ζ~c =D~c. (6.23)

This eigenvalue problem is solved for the matrix D that contains the connection
topology of the system of coupled phase oscillators given by Eqs. (5.1).

Earl and Strogatz [155] outline how to proceed to find a stability condition
for a class of connection topologies that will be defined below. The result holds
for phase-locked solutions in a system of phase oscillators coupled with discrete
delays. This corresponds to g(s)= δ(s−τ) in the notation of Eqs. (5.1). We extend
this result for arbitrary delay distributions g(s). In order to prove the stability
condition for such cases, we need a few prerequisites that will be given in the
following paragraphs.

Gerschgorin’s circle theorem [156–158], also see Appendix A.4, is used to find
an upper bound on the modulus of the eigenvalues of a square matrix. The
matrix elements can be complex. So called Gerschgorin disks are defined by
their center and radius in the complex plane. The center of each of the N Ger-
schgorin disks associated to a N × N matrix, is given by the lth diagonal entry
for l = 1, 2, . . . , N. The radius of the Gerschgorin disks is calculated as the sum
over the absolute value of each element of the lth row, with the diagonal entry
excluded [156]. Gerschgorin’s circle theorem states that the eigenvalues of such
matrices all lie within the Gerschgorin disks. This means that if the diagonal
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n=2 n=1 n=4 n=2

Figure 6.1.: These are examples of the class of connection topologies for which
the following result 6.3 on steady state stability holds. Left to right: all-to-all
connected system, ring topology with unidirectional connections, square lattice,
and randomly connected system. All these systems have in common, that each
oscillator has the same number of connections to other oscillators.

entries of the matrix are all zero, all Gerschgorin disks are centered at the ori-
gin, and the one that has the largest radius provides an upper bound on the
magnitudes of the eigenvalues.

We derive the stability condition for a class of coupling topologies character-
ized by the properties that each oscillator has the same number of connections
n to other oscillators, but is not coupled to itself. Hence, all Gerschgorin disks
are centered at the origin. Some examples of coupling topologies are shown in
Fig. 6.1. We exclude self coupling of the oscillators in this section to make use
of Gerschgorin’s circle theorem to find an upper bound on the modulus of the
eigenvalues. For the connectivity matrix D in Eq. (6.23), this implies that all
Gerschgorin disks are centered at the origin, since all diagonal entries are zero.
All radii are of equal length, since each oscillator couples to the same number of
oscillators in the system. Note that in Section 7.3 of this thesis, cases with self
coupling will be investigated without using Gerschgorin’s theorem.

Using Gerschgorin’s theorem, an upper bound on the modulus of the eigenval-
ues ζ is given by the number n of connections each oscillator has:

|ζ| ≤ ∑
l 6=k

|dkl | = n, (6.24)

and we conclude: |ζ|
n

≤ 1. (6.25)

This upper bound on the eigenvalues ζ of the connectivity matrix will be used
when we analyze Eq. (6.22).
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The absolute value of the Laplace transform | ĝ(λ)| is also bounded. With λ =
x+ i y, where x > 0 and for normalized delay distributions g(s) one finds:

| ĝ(λ)| =
∣∣∣∣∫ ∞

0
ds g(s) e−(x+i y)s

∣∣∣∣≤ ∫ ∞

0
ds g(s)

∣∣∣e−(x+i y)s
∣∣∣ , (6.26)

where we made use of the triangle inequality, and |g(s)| = g(s) since g(s)≥ 0 ∀ s.
Taking into account that for the phase related term

∣∣ei ys∣∣= 1 holds and:

∣∣e−xs∣∣ ∈ [0, 1] ∀ x ≥ 0,

we obtain:

| ĝ(λ)| =
∣∣∣∣∫ ∞

0
ds g(s) e−(x+i y)s

∣∣∣∣≤ ∫ ∞

0
ds g(s)

∣∣∣e−(x+i y)s
∣∣∣

=
∫ ∞

0
ds g(s)

∣∣e−xs∣∣︸ ︷︷ ︸
∀x≥0∈ [0,1]

∣∣∣ei ys
∣∣∣︸ ︷︷ ︸

1

≤ 1. (6.27)

Whereas ĝ(λ), ζ and λ can be complex, we define:

ĝ(λ) ≡ | ĝ(λ)| eiψ, (6.28)

ζ ≡ |ζ| eiξ, (6.29)

where ψ and ξ are angular coordinates in the complex plane. Rewriting Eq.
(6.22) using this notation, we obtain:

α | ĝ(λ)| eiψ |ζ|
n

eiξ = (x+ i y+α) , (6.30)

which can be divided into real and imaginary parts:

α | ĝ(λ)| |ζ|
n

cos(ψ+ξ) = x+α, (6.31)

α | ĝ(λ)| |ζ|
n

sin(ψ+ξ) = y. (6.32)

Squaring both equations and adding them yields:

α2 | ĝ(λ)|2
( |ζ|

n

)2
= (x+α)2 + y2. (6.33)
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Theorem on linear stability of phase-locked solutions

These are the equations and bounds we need to prove the result on steady state
stability for the phase-locked solutions of coupled phase oscillators, given that
there is no self coupling and each oscillator has the same number of connections,
as defined in the previous paragraph. We state the theorem on linear stability:

Proposition: For all λ that satisfy Eq. (6.22), x =Re(λ)< 0 holds if and only if

α≡ Kh′(−Ωτ)> 0.

Proof: (⇐) by contradiction: Suppose there exists an α> 0 such that
x =Re(λ)≥ 0

The contradiction can be seen by looking at Eq. (6.33) after division of both sides
of the equation by α2, which implies:

| ĝ(λ)|2
( |ζ|

n

)2
= 1+ (x2 + y2 +2 |α| |x|)

α2 . (6.34)

Since (|ζ| /n)2 ≤ 1 as shown in Eq. (6.25) and | ĝ(λ)| ≤ 1 ∀ x ≥ 0 as shown in Eq.
(6.27), the product on the left hand side of the above equation is smaller or equal
than 1. The case of equality to 1 implies x = y = 0, i.e. λ = x+ i y = 0. This cor-
responds to the eigenvector (1, 1, . . . , 1)T , which reflects the rotational symmetry
of the system. The system is neutrally stable under such a perturbation. For all
λ 6= 0, the right hand side of the equation will always be greater than 1. This
poses a contradiction and it follows that for α > 0 there are no solutions with
Re(λ)> 0. This means from α> 0 linear stability can always be deduced.

(⇒) contrapositive: if α< 0, suppose there exists at least one x =Re(λ)≥ 0

Here Eq. (6.31), with α=−|α| < 0, is analyzed and yields:

−|α| | ĝ(λ)| |ζ|
n

cos(ψ+ξ)= x−|α| . (6.35)

A case differentiation for the cosine term is necessary to cover all possible signs of
the left hand side. For the case of cos(ψ+ξ)≤ 0 we have cos(ψ+ξ)=− ∣∣cos(ψ+ξ)∣∣.
Rearranging the equation to find x yields:

x = |α|
(
1+| ĝ(λ)| |ζ|

n
∣∣cos(ψ+ξ)∣∣) , (6.36)
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and we see that x =Re(λ)> 0. The other case with cos(ψ+ξ)> 0:

x−|α| = −|α| | ĝ(λ)| |ζ|
n

∣∣cos(ψ+ξ)∣∣ , (6.37)

can be understood by plotting both sides of Eq. (6.35), as demonstrated in Fig.
6.2, where the left hand side is plotted in red, and the right hand side in blue.
In the limit of x approaching infinity we have: x →+∞⇒ | ĝ(λ)|→ 0, whereas for
the case of x approaching minus infinity: x → −∞ ⇒ | ĝ(λ)| → ∞ holds, see Eq.
(6.27). For x = 0 we find for 1-normalized delay distributions:

| ĝ(λ)| =
∣∣∣∣∫ ∞

0
ds g(s) e−i ys

∣∣∣∣≤ ∫ ∞

0
ds g(s)

∣∣∣e−i ys
∣∣∣︸ ︷︷ ︸

=1

= 1, (6.38)

and the right hand side of Eq. (6.37) can not be smaller than −|α|. Hence it can
be seen that for α< 0 there always exists a solution x ≥ 0, and hence the system
is linearly unstable.
This result shows, that the linear stability of the phase-locked steady state for
systems of coupled phase oscillators with identical intrinsic frequencies and with
distributed delays in the coupling, only depends on the mean τ of the delay dis-

0

0

x

-α

α

Figure 6.2.: The left and right hand side of Eq. (6.37) plotted as a function of
x in red (dashed) and blue (solid), respectively. The red dashed curve always
crosses the the y-axis at y=−|α| and the blues solid curve always crosses in the
interval [−|α| , 0). Since the blue curve approaches zero for x →∞, but crosses
the y-axis at values ≥ −|α|, there must always be an intersection of the two
curves for x ≥ 0, and hence a solution to Eq. (6.37).
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tribution:
Kh′(−Ωτ)> 0 ⇔ Re(λ)< 0. (6.39)

Higher moments, such as the variance or the skewness do not affect linear sta-
bility.

6.4. Summary and application to the Delayed

Coupling Theory

We have shown that the linear stability and the global frequency of the phase-
locked steady state with no phase lags is not altered by introducing delay distri-
butions, with variance greater than zero and a mean equal to the discrete delay.
In other words, the shape of the delay distribution does not affect the phase-
locked steady state with no phase lags which only depends on the mean delay.
Hence, we have extended the steady state stability condition for phase-locked so-
lutions with no phase lags in systems of coupled phase oscillators with discrete
delays obtained by Earl and Strogatz [155].

We conclude that in systems of coupled phase oscillators that obey the assump-
tions we made on the coupling topology, the utilisation of discrete delays are a
valid approximation to describe the steady state, if the discrete delay equals the
mean of the delay distribution. An example is the Delayed Coupling Theory of
vertebrate segmentation [56], introduced in Section 3.4. In this model discrete
delays are used to account for finite communication in the coupling of phase os-
cillators, and the dependence of the length of somites on the value of the time
delay is predicted.

However, transient dynamics close to steady state might depend on the de-
lay distribution. The nonlinear equation that relates the eigenvalues ζ of the
connectivity matrix with the dependence on the Laplace transform of the delay
distribution:

ζ j ≡ n
ĝ(λ j)

(
λ j

α
+1

)
with j = 1, 2, . . . , N, (6.40)

suggests that for different ĝ(λ) the real and imaginary parts of λ change, while
the sign of the real part is independent of ĝ(λ). We therefore hypothesize, that
perturbation modes can decay or grow with different rates for delay distributions
with different variance and skewness. However, for any given set of solutions
λ, we know that the first λ whose real part becomes greater than zero always
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crosses the imaginary axis for the same mean delay τ, independent of the delay
formulation.

For example the gamma distribution, see Appendix A.2:

gΓ(s; a,b)= sa−1 e−
s
b

baΓ(a)
, (6.41)

with shape parameter a and scale parameter b, has a mean given by τ= a b. The
Laplace transform reads:

ĝΓ(λ)= (1+bλ)−a. (6.42)

Substituted into Eq. (6.40) this yields:

ζ j

n
≡ (

1+bλ j
)a

(
λ j

α
+1

)
. (6.43)

The shape parameter a of the delay distribution determines the order of the
polynomial that has to be solved, and therefore the number of solutions λ. The
linear dynamics close to the steady state will be discussed in detail in the next
chapter. Later we will propose how this transient dynamics could be observed
experimentally in zebrafish embryonic cells.
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7. Dynamics Close to the
Phase-Locked Steady State

In the last chapter we have shown that the stability of the phase-locked steady
states, in systems with equal connectivity degree for each oscillator, only depends
on the first moment of the delay distribution, but not on its shape.

We now address the question of whether linearized dynamics close to the
steady state of the system are also independent of the shape of the delay dis-
tribution. To analyze the dynamics, a small perturbation is added to the steady
state solution. This pushes the system slightly off the steady state; linearized dy-
namic equations can be used to analyze the response to such a perturbation. The
synchronization order parameter r(t), as defined in Eq. (1.3), is used to quan-
tify the perturbation to the steady state and the perturbation decay rate when
relaxing back to steady state.

7.1. The response to small perturbations

The response of a dynamical system subjected to a small perturbation about its
steady state can be investigated by looking at the linearized dynamics [19, 154],
given here by Eq. (6.10). The steady state stability of the phase-locked solution
in the previous chapter was determined by the sign of Re(λ) of the perturbation
Eq. (6.12). Similarly we determine how the perturbation modes in the system
decay or grow. This is given by the real and imaginary parts of λ.

The inverse of the real part of λ is the characteristic timescale of the decay or
growth of the associated perturbation mode [19]. This means for stable solutions,
that the largest Re(λ)< 0 describes the decay rate of the slowest relaxation mode
in the system, before the steady state is reached. Sufficiently close to the steady
state this perturbation mode is the only one that can be observed, because all
others will have already decayed. In the case that Im(λ) 6= 0 the decay of the
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associated perturbation mode takes place in an oscillatory manner [19], with the
frequency given by the imaginary part y= Im(λ).

In order to determine the resynchronization properties and decay rates, the
characteristic Eq. (6.21) has to be solved for the connectivity topology of the
given system. In the present chapter the mean field and the nearest neighbour
coupling topologies are treated. Those were introduced in Section 1.5.

7.2. Relation between order parameter and

perturbation modes

Since the measure of the system’s synchrony is given by the order parameter
r(t), introduced in Section 1.4, but the perturbation decays with rates given by
x = Re(λ), and frequency y = Im(λ), a relation between the two measures has to
be derived. This will be used to compare analytic solutions obtained for λ to time
series of the order parameter measured in simulation. We use Eq. (6.6):

θk(t)=Ωt+εqk(t),

for the perturbed phase-locked solution with no phase lags. It describes the time
evolution of the phases of the oscillators, when subject to a small perturbation
εqk(t). Substituting this into Eq. (1.3):

r(t)eiΞ(t) ≡ 1
N

N∑
k=1

eiθk(t),

for the synchronization order parameter r(t) yields:

r(t)eiΞ(t) = 1
N

N∑
k=1

ei(Ωt+εqk(t)), (7.1)

that means:

r(t)ei(Ξ(t)−Ωt) = 1
N

N∑
k=1

eiεqk(t). (7.2)

We seek the modulus of the order parameter, r(t). Squaring both sides eliminates
the phases:

r(t)2 = 1
N2

{(
N∑

k=1
cos(εqk(t))

)2

+
(

N∑
k=1

sin(εqk(t))

)2}
, (7.3)
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and since ε¿ 1, we can expand the sine and cosine terms to first order in ε. Then
we evaluate the squares:

r(t)2 = 1
N2

{
N2 −Nε2

N∑
k=1

q2
k(t)+ ε4

4

(
N∑

k=1
q2

k(t)

)2

+ε2

(
N∑

k=1
qk(t)

)2}
. (7.4)

Dropping all orders of ε greater than 2 yields:

r(t)2 = 1− ε2

N

N∑
k=1

q2
k(t)+ ε2

N2

(
N∑

k=1
qk(t)

)2

+O(ε3). (7.5)

The functional form of the perturbation is given by:

εqk(t)= 1
2

(
ckeλt + c.c.

)
= ext

(
cRe

k cos(yt)− cIm
k sin(yt)

)
, (7.6)

where c.c. denotes the complex conjugate, λ= x+ i y and ck = cRe
k + i cIm

k . The ck

are the components of the eigenvector of the characteristic equation.
In this chapter we assume the components of the eigenvectors to be purely real

and set cIm
k = 0:

εqk(t)= extck cos(yt), (7.7)

which is true for the mean field coupling case, and as well for nearest neighbour
interaction in a system of N = 2 oscillators; both cases will be treated in the next
sections. However, note that in nearest neighbour coupled systems with N ≥ 3,
this relation has to be derived accounting for complex eigenvector components.
This will be explained in more detail in Section 7.4.

The functional form of the perturbation as given in Eq. (7.7) is substituted into
Eq. (7.5):

r(t)2 = 1−cos2(yt) e2xt

(
1
N

N∑
k=1

c2
k +

1
N2

{
N∑

k=1
ck

}2)
︸ ︷︷ ︸

≡w

. (7.8)

The last term in Eq. (7.8), defined as w, contains sums over the components
of the eigenvectors associated to the perturbation modes. These amplitudes of
perturbation are all small by definition:

r(t)= [
1−cos2(yt) e2xtw

] 1
2 ≈ 1− 1

2
cos2(yt) e2xtw. (7.9)

With this expression we have derived the desired relation between order param-
eter r(t) and the solutions λ. Whereas we use plots where log[1− r(t)] is plotted
versus t, e.g. in Fig. 7.5, the expression is rearranged to yield:

log[1− r(t)]= 2xt+ log
[
cos2(yt)

]+ log
[

1
2

w
]

, (7.10)
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with the w-term depending on the initial setup of the perturbation.

7.3. Perturbation dynamics in mean-field

coupled systems

In this section we investigate the resynchronization dynamics of a system of cou-
pled phase oscillators with delays for the case of “all to all” coupling. In this case,
we will show that dynamics close to the steady state are equivalent in systems
with discrete and distributed delays. The latter delay type is realized with a
gamma distribution delay kernel.

The resynchronization properties, given by the real and imaginary part of λ,
can be obtained by solving Eq. (6.21). We do this in two steps; first calculating
the eigenvalues ζ of the connectivity matrix D:

ζ~c =D~c, (7.11)

and in the second step we determine the solutions λ of the characteristic equation
for the Laplace transform ĝ(λ) of the given delay distribution:

ζ= n
ĝ(λ)

(
λ

α
+1

)
. (7.12)

With this procedure one first takes into account the connectivity in the system,
and then considers the influence of the delay distribution. At the end it has to be
checked whether the solutions λ fulfil the conditions:

ĝ(λ) 6= 0 ∀ λ,

α 6= 0, (7.13)

obtained during the derivation of the characteristic equation, see Eqs. (6.17-
6.18). Hence, only values of λ that ensure ĝ(λ) 6= 0 are allowed, otherwise physi-
cally not meaningful singularities can arise.

The N ×N connectivity matrix in the case of mean field coupling is given by:

DMF =


1 1 . . . 1
1 1 . . . 1
...

... . . . ...
1 1 . . . 1

 , (7.14)
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for which the corresponding eigenvalues ζ are given by:

ζ1 = 0 with multiplicity N −1 (7.15)

ζ2 = N with multiplicity 1. (7.16)

Note that the constraint of no self-coupling was only considered for the results
in the last chapter, but does not apply for the calculation carried out here. The
eigenvalues ζ j, j = 1,2 of D are substituted into Eq. (7.11):

ζ j ck =
N∑

l=1
cl , (7.17)

in order to obtain conditions for the corresponding eigenvectors:

ζ1 : 0 =
N∑

l=1
cl , (7.18)

ζ2 : N ck =
N∑

l=1
cl . (7.19)

Eq. (7.18) states that the sum over the components cl , of the N −1 eigenvectors
corresponding to the eigenvalue ζ1 = 0, with multiplicity N −1, must add up to
zero. The other Eq. (7.19) holds for the single eigenvector, related to ζ2 = N with
multiplicity 1, and is solved for cl = 1 ∀ l. Since there is only one eigenvector
associated to ζ2 = N, and we found a valid solution to Eq. (7.19), this must
be the eigenvector. The perturbation associated with this eigenvector shifts the
phases of all oscillators in the system by the same value. This means that the
phase differences, which drive the synchronization dynamics, do not change. The
system is invariant under such a uniform phase shift of all oscillators, see [69]
and [3].

Now that we know the eigenvalues ζ and the associated eigenvectors ~c we
return to Eq. (6.15). For mean field coupling we have n = N and dkl = 1 ∀ k, l,
which leads to the characteristic equation:

λ ck =−α ck +
α ĝ(λ)

N

N∑
l=1

cl . (7.20)

This implies that for the eigenvector ~c1 related to ζ1 as given in Eq. (7.18):

λ1 ck =−α ck, (7.21)
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holds and
λ1 =−α, (7.22)

is the only solution regardless of the delay distribution. This solution λ1 = −α
must be present for any choice of distribution. It is independent of the Laplace
transform of the delay distribution, see Eqs. (7.18) and (7.20).

For the eigenvector ~c2 related to ζ2 in Eq. (7.19) one finds:

λ2 =α ( ĝ(λ2)−1) , (7.23)

which depends on the Laplace transform of the delay distribution. However
the solutions given by Eq. (7.23) are associated to the eigenvector ~c2, which
changes each oscillator’s phase equally. Furthermore we want to understand
how these results are obtained for different delay distributions from the charac-
teristic equation.

Dirac delta and gamma distribution delay kernel

We now obtain results for explicit choices of distributed delays. This is achieved
by formulating a discrete delay in terms of distributed delays [67], described by
a shifted Dirac delta delay kernel:

gδ(s)= δ(s−τ), (7.24)

with the corresponding Laplace transform:

ĝδ(λ)=
∫ ∞

0
ds gδ(s) e−λs = e−λτ. (7.25)

In this section, the case of distributed delays is realized with the gamma distri-
bution, introduced in Eq. (A.27) with parameters a and b:

gΓ(s; a,b)= sa−1 e−
s
b

baΓ(a)
. (7.26)

Its Laplace transform, compare to subsection A.2, reads:

ĝΓ(λ)=
∫ ∞

0
ds gΓ(s) e−λs = (1+bλ)−a, (7.27)

which depends on both parameters a and b. This leads to two distinct character-
istic equations for the case of discrete delays and the case of distributed delays:

discrete: Neλ jτ

(
λ j

α
+1

)
= ζ j, (7.28)

gamma: N
(
1+λ j ib

)a
(
λ j i

α
+1

)
= ζ j, (7.29)
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where j = 1, 2, . . . , N and i = 1, 2, . . . , a. Note that with the ζ j from mean-field
coupling, the number of oscillators N does not play a role in Eq. (7.29). The λ

are solely determined by α= K h′(−Ωτ) and the shape and scale parameters a, b
of the delay distribution. We start by solving Eq. (7.28) for the case of discrete
delays. This can be done using the Lambert W-function denoted by W , with
W eW = x, see [159–162] and Appendix A.5:

λ j =−α+ 1
τ

W
(
ζ jατ

N
eατ

)
, (7.30)

yielding two real valued solutions λ j for j = 1,2:

λ1 = 0, (7.31)

λ2 = −α. (7.32)

Here we made use of the properties W(0)= 0 and W(ατeατ)=ατ, see [153]. These
solutions are plotted in dependence of the mean delay in Fig. 7.1. The solution
λ1 = 0 corresponds to neutral stability of the phase variable and is associated to
the eigenvector that shifts the phases of all oscillators by the same value. The
other solution λ2 = −α describes the linear dynamics of the perturbation mode
with the eigenvector whose components sum up to zero.

For the case of the gamma distribution described by Eq. (7.29), expressions
that can be solved analytically are obtained for exponents a = 1,2 of the gamma
distribution. This leads to polynomials in λ of order two or three, respectively.
We consider the case a = 1, which corresponds to an exponential distribution.
This choice of the parameter a of the gamma distribution represents the case
for which the width and asymmetry of the distribution are most distinct from a
discrete delay. The variance of the gamma distribution is given by σ2

Γ = ab2 and
the skewness by γΓ = 2p

a . Hence for a = 1 (which implies b = τ since the first
moment of the gamma distribution is τ≡µΓ = ab) we find:

N
(
1+λ j iτ

)(λ j i

α
+1

)
= ζ j. (7.33)

This implies four different solutions λ ji because we have a quadratic equation
and two values of ζ:

λ11 = −α,

λ12 = −1
τ

,

λ21 = 0,

λ22 = −
(
1
τ
+α

)
.
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Because Eq. (7.12) is only valid if the conditions given in Eq. (7.13) are fulfilled,
each of the above λ has to satisfy these conditions. The λ ji are substituted into
Eq. (7.13):

ĝ(λ11) = (1−τα)−1,

ĝ(λ12) = not defined,

ĝ(λ21) = 1,

ĝ(λ22) = (−τα)−1,

and we find that λ12 is not a valid solution with ĝ(λ12) undefined and only:

λ11 = −α, (7.34)

λ21 = 0, (7.35)

λ22 = −
(
1
τ
+α

)
, (7.36)

are solutions of the characteristic equation. Because τ ≥ 0, λ11 is larger than
λ22 for all τ, λ11 governs the dynamics close to steady state. The eigenvector
associated to λ22 rotates all phases in the system the same phase value and does
not affect the dynamics.

Discussion

Comparing the values of λ for discrete and distributed delays, reveals that there
are no differences in how the system approaches the phase-locked steady state
with no phase lags, see Fig. 7.1. The largest non-zero real part of the solutions
is given by Re(λ) = −α, and the imaginary parts are zero in both cases. With
this in mind, Fig. 7.1 holds for both discrete and distributed delays. It shows
the rate at which the last perturbation mode present in the system decays for
stable solutions with Re(λ) < 0, or how fast the system in the unstable case es-
capes the phase-locked solution with Re(λ) > 0. We simulated 50 realizations of
Eqs. (5.1) with N = 20 mean-field coupled phase oscillators, coupling strength
K = 0.07min−1, identical intrinsic frequencies ω = 0.223min−1, at different val-
ues of discrete τ, and with sinusoidal coupling. These values of K ,ω are repre-
sentative and were used for the DCT in [56]. The oscillators were set to identical
initial phases, which we randomly perturbed, such that a random initial order
parameter in an interval of r(t) ∈ [0.99, 0.999] was realized. The initial phase
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Figure 7.1.: 2 Re(λ) plotted versus τ for discrete and distributed delays, as
obtained by solving Eqs. (7.28-7.29). The solid blue line corresponds to the
perturbation decay of stable solutions, whereas the dashed red line above zero
denotes the perturbation growth of unstable solutions. This is plotted for N =
20 mean-field coupled phase oscillators with coupling strength K = 0.07min−1,
identical intrinsic frequencies ω= 0.223min−1 and sinusoidal coupling function.
The markers represent the average of 50 resynchronization rates obtained by
simulations with random initial conditions. The brown dots, green squares,
yellow triangles and magenta diamond markers denote the different states in
the multistable regime for the given values of τ.

history, necessary for delay systems, was given by evolving the uncoupled os-
cillators with an intrinsic frequency equal to the global frequency of the closest
phase-locked steady state. Then the relation between the order parameter and
the λ, given in Eq. (7.10), is used to compare the slope of log[1− r(t)] versus
t with the analytically obtained results. We then placed markers for the mean
slope over these realizations in Fig. 7.1. The associated error bars are so small
that they cannot be seen in the plot and are therefore omitted.

We conclude, that for mean field coupling the phase-locked steady state and
the resynchronization dynamics close to steady state are independent of mo-
ments higher than the first moment of the delay distribution. In other words,

61



the shape of the delay distribution has no effects on linear stability, nor on resyn-
chronization dynamics in systems of mean field coupled phase oscillators.

7.4. Nearest neighbour coupling with periodic

boundary conditions

1

2

3 4

5

K
τ

Figure 7.2.: Schematic of N = 5 oscillators coupled bidirectionally via nearest
neighbour interaction in 1D with periodic boundary conditions and time delays.

In the last section for mean-field coupling, no differences in resynchronization
dynamics were found, comparing discrete and distributed delays. In this section,
nearest neighbour coupling on a 1D ring (periodic boundary conditions) will be
investigated. For such a connection topology, the N ×N matrix D reads:

D=



0 1 0 . . . . . . . . . 0 1
1 0 1 0 . . . . . . 0 0
0 1 0 1 0 . . . 0 0
... . . . . . . . . . ...
... . . . . . . . . . ...
0 0 0 . . . 1 0 1 0
0 0 0 . . . . . . 1 0 1
1 0 0 . . . . . . . . . 1 0


, (7.37)

with zeros in the main diagonal, since there is no self coupling, and two entries
with 1 indicating the connection to the two nearest neighbours in each row. The
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eigenvalues of such a matrix can be found using the solutions to the N-th cyclo-
tomic polynomial, namely the roots of unity, see Appendix A.6 and [163, 164], as
given by:

wk
j = exp

(
i
2π j k

N

)
where j = 1,2, . . . , N, (7.38)

which we use to construct the eigenvectors~c as a basis:

~c j = (w1
j , w2

j , . . . , wN
j )T . (7.39)

Note that these components are complex variables, and that eigenvectors associ-
ated to systems with N ≥ 3 can have complex components. The eigenvectors are
only purely real if 2k/N ∈ N ∀ k = 1, 2, . . . , N. This implies real eigenvectors in a
system of N = 2 oscillators. Since wN = w0 = 1 and w−1 = wN−1, we find from the
evaluation of:

D~c =


wN +w2

w+w3

...
wN−1 +w

=
(
w+wN−1

)
︸ ︷︷ ︸

=ζ j


w1

w2

...
wN

 , (7.40)

that a term
(
w+wN−1) can be separated, which must be the eigenvalues ζ j of

the matrix D for N oscillators on a ring. Eq. (7.38) and wN = w0 = 1 implies:

ζ j = 2cos
(
2π j
N

)
, j = 1, 2 . . . , N. (7.41)

Note that one eigenvalue ζ1 = 2 exists independently of N. This always relates
to the solution λ = 0 of the characteristic Eq. (6.22), and corresponds to the
perturbation mode that shifts all oscillators by the same phase. The system is
neutrally stable to this mode.

As in the previous case of mean-field coupling we compare discrete delays de-
scribed by the delay distribution gδ(s) in Eq. (7.24) to distributed delays, de-
scribed by the gamma distribution gΓ(s) in Eq. (7.26). The corresponding Laplace
transforms are given by Eq. (7.25) for the discrete case, and by Eq. (7.27) for the
gamma distribution. We use these expressions to write down the characteristic
equations for the two delay cases:

discrete: 2eλ jτ

(
λ j

α
+1

)
= ζ j, (7.42)

gamma: 2
(
1+λ j ib

)a
(
λ j i

α
+1

)
= ζ j, (7.43)
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where j = 1, 2, . . . , N and i = 1, 2, . . . , a. Differences in the characteristic equa-
tions presented here for the case of nearest neighbour coupling are two-fold as
compared to the mean field coupling case. Firstly, n = 2 instead of n = N, be-
cause each oscillator couples only to the two nearest neighbours. Furthermore,
the eigenvalues ζ j are different. In the case of an arbitrary number N of oscil-
lators in the system, Eq. (7.41) is used to determine the eigenvalues ζ j. The
characteristic equations for λ j are then given by Eq. (7.42) and Eq. (7.43). Note
that Eqs. (7.42-7.43) hold for arbitrary 2π-periodic coupling functions h. The
derivative h′ of the coupling function h appears in the parameter α= K h′(−Ωτ),
defined in Eq. (6.11).

A system of two oscillators

We discuss the simple case of N = 2 coupled oscillators with the associated con-
nectivity matrix:

DN=2 =
(
0 1
1 0

)
, (7.44)

where the eigenvalues ζ j given by Eq. (7.41) for j = 1, 2 are:

ζ1 = −2, (7.45)

ζ2 = 2. (7.46)

Note that the eigenvectors corresponding to these eigenvalues have real compo-
nents, ~c1 = (−1, 1)T and ~c2 = (1, 1)T , see Eq. (7.38). The eigenvalues are sub-
stituted into Eq. (7.42) for discrete delay, that written in terms of the Lambert
W-function W reads:

λ j =−α+ 1
τ

W
(
ζ jατ

2
eατ

)
. (7.47)

For ζ2 = 2 we use the property of the Lambert W-function that W (ατeατ) = ατ

[159], which provides one solution for Eq. (7.47):

λ1 = 0. (7.48)

With the other eigenvalue, ζ1 =−2, substituted into the argument of the Lambert
W-function, the solution is given by:

λ2 =−α+ 1
τ

W
(−ατeατ

)
. (7.49)

These solutions for discrete delay are plotted in Fig. 7.3 with dashed lines.
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The solutions λ ji to the characteristic Eq. (7.43) for distributed delays de-
scribed by a gamma distribution, with shape parameter a = 1 and scale parame-
ter b = τ in a system of N = 2 oscillators, are given by:

λ ji =−1
2

(
1
τ
+α

)
±

√
1
4

(
1
τ
+α

)2
− α

τ

(
1− ζ j

2

)
, (7.50)

where j, i ∈ [1, 2]. Substituting in the eigenvalue ζ2 gives:

λ21 = −
(
1
τ
+α

)
, (7.51)

λ22 = 0. (7.52)

Similarly, ζ1 yields for i = 1, 2:

λ1i =−1
2

(
1
τ
+α

)
±

√
1
4

(
1
τ
+α

)2
− 2α

τ
. (7.53)

These results are obtained using the characteristic Eqs. (7.42-7.43), which rely
on the conditions given in Eq. (7.13). Hence, these solutions are only valid if they
fulfil these conditions.

Finally we compare the response to small perturbations between discrete and
distributed delays with sinusoidal coupling function. The response to these per-
turbations is given by the solution with the largest real part, corresponding to
the slowest relaxing perturbation mode for Re(λ) < 0, and the fastest diverging
mode for Re(λ)> 0. The parameters ω and K are chosen according to the Delayed
Coupling Theory of vertebrate segmentation [56]. The results are plotted in Figs.
7.3 and 7.4, and discussed in the next paragraph.

Discussion

As shown in Section 6.2, discrete and distributed delays change stability at the
same values ofΩτ, where the lines in Fig. 7.3 cross Re(λ)= 0. However, these fig-
ures show that there are differences in resynchronization and desynchronization
dynamics between the case with discrete and distributed delays in the coupling.
In unstable intervals of Ωτ [Re(λ) > 0], the real part of λ for distributed delays
in the coupling is larger than in the case of discrete delays. Hence, in systems
with distributed delays in the coupling, the synchronized steady state is left with
larger perturbation growth rate as compared to discrete delays in these regions.
Intervals ofΩτ with stable solutions [Re(λ)< 0] show different behavior. In these
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Figure 7.3.: Re(λ) plotted versus Ωτ for the λ with the largest real part.
Plots show results for N = 2 coupled oscillators with intrinsic frequencies
ω = 0.223min−1, coupling strength K = 0.07min−1, nearest neighbour interac-
tion, and sinusoidal coupling function.

regions there are intervals, where distributed delays resynchronize faster than
discrete delays, but also intervals where we find exactly the opposite behaviour.
This will be investigated more closely in the next subsections.

The imaginary part associated with the λ with the largest real part, denotes
the frequency of oscillation of the perturbation decay [19]. Hence, in intervals
of Ωτ where the solutions λ have a non-zero imaginary part, the perturbation
decays in an oscillatory manner, see Fig. 7.4.

These results for Re(λ) and Im(λ) can be compared with simulation results.
We simulated systems of N = 2 oscillators coupled with discrete or distributed
delays for Ωτ= 5.6 and obtained the time evolution of the order parameter r(t).
Initially the systems were set to steady state and a small random perturbation
was added to each phase, such that the initial order parameter was in the inter-
val [0.99, 0.999]. Then we let each oscillator in the system evolve uncoupled with
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Figure 7.4.: Im(λ) plotted versus Ωτ for the λ with the largest real part.
Plots show results for N = 2 coupled oscillators with intrinsic frequencies
ω = 0.223min−1, coupling strength K = 0.07min−1, nearest neighbour interac-
tion, and sinusoidal coupling function.
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Figure 7.5.: log[1− r(t)] vs. t from simulation plotted with predictions from
theory for the largest Re(λ), see Figs. 7.3-7.4, for discrete (A) and distributed
delays (B). Plots show results for N = 2 oscillators with ω = 0.223min−1, K =
0.07min−1, Ωτ= 5.6, nearest neighbour interactions, and sinusoidal coupling.

67



the frequency Ω of the steady state to generate the necessary phase history for
delay systems. A simple Euler forward iteration method was implemented, and
an iteration step-size of dt = 0.005min was used. We iterated the system until
the steady state was reached. The order parameter was measured and logarith-
mically plotted as 1− r(t) versus t. These simulation results are plotted in Fig.
7.5 for discrete (A) and distributed (B) delays with solid lines. The dashed lines
in Fig. 7.5 show the analytically predicted time evolution of the order parameter
Eq. (7.10), with decay rates and frequencies from Figs. 7.3 and 7.4 at Ωτ = 5.6,
which are in nice agreement with the simulation results.

We will now investigate the coupling function more closely to understand the
differences in transient dynamics between discrete and distributed delays.

Separating the argument of the coupling function into the contribution
of the mean delay and that of the perturbation

Here we take a closer look at the sinusoidal coupling function, for which the
results on the dynamics close to the steady state, shown in Figs. 7.3 and 7.4, were
obtained. The phase differences that are evaluated by the coupling function have
two distinct sources; the incoherence of a system which is not in steady state and
the communication delay. If the system of oscillators is close to the steady state,
the phases and frequencies of the different oscillators in the system are close to
each other, and the instantaneous phase differences are expected to be small. We
write for the coupling term h:

h = sin
(
−θk(t)+

∫ ∞

0
ds g(s)θl(t− s)

)
, (7.54)

and for the perturbed phase-locked solution given in Eq. (6.6):

θk(t)=Ωt+εqk(t), (7.55)

where ε¿ 1. This is substituted into the coupling term:

h = sin
(
−Ωt−εqk(t)+

∫ ∞

0
ds g(s) [Ωt−Ωs+εql(t− s)]

)
, (7.56)

and yields after evaluation of the perturbation related and delay related terms:

h = sin
(
−Ωτ+ε

[
−qk(t)+

∫ ∞

0
ds g(s) ql(t− s)

])
. (7.57)
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We define:
ε̂= ε

[
−qk(t)+

∫ ∞

0
ds g(s) ql(t− s)

]
, (7.58)

and use the trigonometric relation sin( f + g)= sin( f )cos(g)+sin(g)cos( f ):

h = sin(ε̂)cos(Ωτ)−sin(Ωτ)cos(ε̂) . (7.59)

The term ε̂ denotes the difference of perturbations entering the coupling function,
composed of the present perturbation on oscillator k, and a weighted sum over
the past perturbations on oscillator l.

Approximation of the coupling function inside stable regimes

We concentrate on values of Ωτ, in small intervals around multiple integers of
2π, i.e. around the centers of stable regions:

Ωτ≈ 2π j with j ∈N. (7.60)

These correspond to values of Ωτ for which the mean delay τ is approximately
equal to multiples of the period of oscillation, and therefore the sine and cosine
term in Eq. (7.59) yield:

sin(Ωτ)≈ 0 and cos(Ωτ)≈ 1. (7.61)
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Figure 7.6.: Plots show decay of perturbations on oscillator l for discrete and
distributed delays with decay rates and frequencies for a system of N = 2 oscilla-
tors, and parameters K = 0.07min−1, Ωτ= 2π and ω= 0.223min−1. The yellow
square denotes q(t−τ) for discrete delay.
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K = 0.07min−1, and ω = 0.223min−1. This corresponds to Figs. 7.3-7.4. Re(λ)
for discrete and distributed delays is plotted for comparison.

This implies that only an odd function remains of Eq. (7.59), after substituting
Eqs. (7.61), such that the coupling is attractive:

h ≈ sin
(
ε

[
−qk(t)+

∫ ∞

0
ds g(s) ql(t− s)

])
. (7.62)

Note that the effect of the mean delay is accounted for in this approximation via
Eqs. (7.61).

We now compare the argument ε̂ of the sine term in Eq. (7.62), which is dif-
ferent for different delay distributions. For a discrete delay, with gδ(s)= δ(s−τ),
the perturbation at one past time is taken into account, while in the case of
distributed delays with a non-zero variance the perturbations of the entire past
interval governed by the delay integral are summed up and weighted according
to the delay distribution, see sketches in Fig. 7.6. We investigate the pertur-
bations −qk(t)+∫ ∞

0 ds g(s) ql(t− s), substitute qk(t) = ck exp(λt) with ck ≡ 1, and
define:

discrete delays: f1 = eλ1t
(
eλ1τ−1

)
, (7.63)

distributed delays: f2 = eλ2t ( ĝ(λ2)−1) , (7.64)
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where ĝ(λ2)= (1+λ2τ)−1 is the Laplace transform of the gamma distribution, and
the λ1,2 ∈ C are given in Figs. 7.3-7.4 for the different τ. We calculate ∆( f2, f1)=
f2 − f1 in order to see whether the hypothesis holds true, that distributed delays
also account for the perturbations around the mean delay, and hence result in
larger ε̂ compared to discrete delays. The result is plotted in Fig. 7.7. We confirm
that ∆( f2, f1) > 0 in stable regions where the distributed delay, here given by a
gamma distribution with a = 1 and b = τ, resynchronizes faster than the discrete
delay case with the same mean delay.

Hence, in the case of discrete delays, the sine function evaluates a smaller ε̂,
which results in weaker coupling and smaller |Re(λ)|, as compared to distributed
delays, see Fig. 7.3. The coupling with distributed delays takes into account
perturbations on the phase of oscillator l at different past times around the mean
delay τ, resulting in larger ε̂. Hence, coupling is stronger and resynchronization
is faster, i.e. larger |Re(λ)|, compared to discrete delays, see Fig. 7.3.

Approximation of the coupling function close to changes in stability

In addition to integer multiples of 2π, we investigate values of Ωτ in small inter-
vals around odd multiples of π/2:

Ωτ≈ (2 j+1)
π

2
with j ∈N, (7.65)

for which the cosine and sine terms in Eq. (7.59) are:

cos(Ωτ)≈ 0 and sin(Ωτ)≈ 1. (7.66)

Such states correspond to situations where the system is close to where stability
of the solution changes between stable and unstable. In Eq. (7.59) only an even
function of the expansion remains after substituting Eqs. (7.66):

h ≈−cos
(
ε

[
−qk(t)+

∫ ∞

0
ds g(s) ql(t− s)

])
. (7.67)

The effect of the mean delay is accounted for via Eqs. (7.66). Depending on which
side of Ωτ = (2 j+1) π2 with j ∈ N this expression is evaluated, corresponding to
unstable or stable, the coupling function will drive the phases apart or force them
towards resynchronization. We concentrate on the stable regimes.

We find that ∆( f2, f1) < 0 close to the Ωτ as given in Eq. (7.65), see Fig. 7.7.
Therefore we conclude that the normalized sum over the perturbations picked
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up by distributed delays is smaller than the perturbation at discrete delay τ, and
hence the coupling with discrete delays resynchronizes faster than that with
distributed delays.

Note that in the entire unstable regimes of Ωτ where Re(λ) < 0 we find that
∆( f2, f1)> 0, and coupling with distributed delays leads to faster desynchroniza-
tion compared to discrete delays.

Discrete delay is a limit case of gamma distributed delay

A closer look at the limit of a → ∞ for the Laplace transform of the gamma
distribution shows that:

lim
a→∞

(
1+ τλ

a

)−a
= e−λτ, (7.68)

which represents the approach to the discrete case by changing the shape pa-
rameter a of the gamma distribution. Since τ = ab in the above limit, b has to
vanish in order to keep the mean τ constant, which implies for the variance σ2
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Figure 7.8.: Re(λ) plotted versusΩτ for different values of a = {1, 2, 3, 5, 10, 50}
of the gamma distribution. This is for a system of N = 2 oscillators with nearest
neighbour interaction, periodic boundary conditions, intrinsic frequencies ω =
0.223min−1, coupling strength K = 0.07min−1, and sinusoidal coupling. The
right plot is a zoom of the second stable branch of the left plot.
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and skewness γΓ of the gamma distribution:

a → ∞, b → 0,

τ = ab = const.,

σ2
Γ = τb → 0,

γΓ = 2p
a

→ 0. (7.69)

From this we see that in the limit a →∞, b → 0, where the case of distributed
delays approaches the discrete delay case with identical mean delay, the variance
and the skewness of the delay distribution tend to zero. In Fig. 7.8 we show Re(λ)
plotted versus Ωτ for different values of a of the gamma distribution.

Our hypothesis, following the subsections on the approximation of the coupling
function, is that increasing the variance and the skewness of the delay distribu-
tion will speed up resynchronization for systems of coupled phase oscillators, if
the values of Ωτ are close to integer multiples of 2π as given in Eq. (7.60). For
values of Ωτ close to odd multiples of π/2, we expect that an increasing variance
and skewness will slow down resynchronization in such systems.

7.4.1. How variance and skewness influence synchrony
dynamics

In order to investigate the influence of the variance and skewness on resynchro-
nization and desynchronization properties close to the phase-locked solution in-
dependently, we use the two step delay distribution that is introduced in Ap-
pendix A.1, and given by Eqs. (A.1–A.2):

g(s)= aΠ
(

s− (m̄−0.5b)
b

)
+dΠ

(
s− (m̄+0.5c)

c

)
. (7.70)

Here Π(x)=Θ(x+0.5)−Θ(x−0.5) denotes the boxcar function, and Θ is the Heav-
iside function. The parameters a, b, c, d are the heights and widths of the two
step functions. The Laplace transform associated to this distribution is:

ĝ(λ)= e−mλ

2λ

{
1
b

[
ebλ−1

]
+ 1

c

[
1− e−cλ

]}
. (7.71)

The equation that has to be solved to determine these resynchronization prop-
erties is obtained by substituting the Laplace transform of the delay distribution
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Figure 7.9.: Real part of the perturbation decay [Re(λ)< 0] or growth

[Re(λ)> 0] plotted against Ωτ for different values of the standard deviation
and a fixed value of the skewness γ = 0.92 of the two step delay distribution.
The dashed black line shows the discrete delay case, whereas the coloured
lines denote the different standard deviations σ. N = 2 coupled oscillators with
nearest neighbour interaction, periodic boundary conditions, ω = 0.223min−1,
K = 0.07min−1 and sinusoidal coupling. With increasing standard deviation the
curves move further away from the discrete delay case – also see Fig. 7.10.

Eq. (7.71) into the characteristic Eq. (6.22), which yields the characteristic equa-
tion:

4λ j

e−m̄λ j

(
λ j

α
+1

){
1
b

[
ebλ j −1

]
+ 1

c

[
1− e−cλ j

]}−1
= ζ j, (7.72)

where j = 1, 2. We solve this equation numerically for the λ j, using the trust-
region dogleg algorithm, implemented in the fsolve function in Matlab, see [165,
166]. First we provide an overview and produce a plot analogous to Fig. 7.3
for the gamma distribution, but for the two step delay distribution. In order to
accomplish this, we have to calculate the values of b, c and m̄ of the two step
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Figure 7.10.: Zooms of the second stable branch in Fig. 7.9. The insets show
the resynchronization behaviour in dependence of the mean delay; from discrete
delays synchronizing fastest, to distributed delays synchronizing fastest, and
back.

delay distribution for each triple of τ, σ, γ in order to solve the characteristic Eq.
(7.72). This is described in Appendix A.1 where the two step delay distribution is
introduced. We choose a fixed pair of (σ, γ) and calculate the corresponding pair
(b, c). Then, for each value of τ, we determine the corresponding value of m̄, and
solve Eq. (7.72) for the given triple of m̄, b, c for all ζ j, which yields the λ j.

Since negative delay times are undefined, we demand that the delay distribu-
tion does not expand to negative arguments. Therefore (m̄− b) ≥ 0, see Fig. A.1,
has to be fulfilled. For larger variance this leads to minimal mean delays τ that
can be realized for the chosen pair of (σ, γ), and the corresponding pair (b, c).
Hence, the curves in Fig. 7.9 for distributed delays with different standard devi-
ations σ start off at different values Ωτ.

Recall, that the dynamics of the slowest relaxing perturbation mode in stable
systems is dominated by the eigenvalue λ j with the largest real part that is
smaller than zero. This real part is determined according to Eq. (7.72), and
plotted in Fig. 7.9 for a fixed value of γ = 0.92 and different variances. The
imaginary part denotes the frequency of oscillation of the perturbation decay
dynamics and is plotted in Fig. 7.11.
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Figure 7.11.: Im(λ) corresponding to the real parts shown in Fig. 7.9, plot-
ted versus Ωτ for different values of the σ, and fixed skewness γ = 0.92 of the
two step delay distribution. The right plot shows a zoom of the second stable
branch. The imaginary part denotes for the frequency of oscillation with which
the perturbation decays.

Discussion

The differences between the delay formulations are most prominent for small
values of Ωτ. In Fig. 7.9 one can observe that with increasing values of Ωτ the
differences between discrete and distributed delays become smaller. We also ob-
serve that the difference between discrete delays, denoted by the dashed black
line, compared to distributed delays increases with increasing variance. The
value of the skewness γ= 0.92 is fixed. There are intervals of Ωτ, where discrete
delays resynchronize faster, and regions where distributed delays resynchronize
faster, compared to its counterpart. We found a qualitatively similar result be-
fore in the case of distributed delays governed by the gamma distribution, shown
in Fig. 7.3. In unstable regions the phase-locked steady state desynchronizes
fastest, for any corresponding value of Ωτ, when coupling involves distributed
delays. The result on the steady state stability in Chapter 6, showing the inde-
pendence of the stability of the phase-locked solutions on higher moments of the
delay distribution but the first, is again confirmed. Independently of the variance
and skewness, Re(λ) crosses zero at the same values of Ωτ.

The imaginary parts associated to the real parts shown in Fig. 7.9 are plotted
in Fig. 7.11. We find that oscillatory behaviour can only be observed in stable
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regions of the phase-locked solution, whereas in unstable regions the imaginary
parts are zero for both delay cases. This can be explained by overshooting of the
phases of the oscillators while trying to synchronize to those of their neighbours.
The idea is that two oscillators that couple and have adjusted their phases almost
entirely still see a phase difference due to the communication delay. This causes
an overshooting as they try to synchronize to a common phase, since the com-
munication delay does not change as the phases adjust. The overshooting does
not occur in unstable regions of the phase-locked solution, where the oscillators
repel each other due to the repulsive character of the coupling function.

We observe that in the first stable branch in Fig. 7.11 only distributed delays
exhibit oscillatory behaviour, but discrete delays do not. This suggests that there
is a critical delay value τc for the discrete delay case, below which no oscillatory
behaviour is triggered. The case of distributed delays however expands due to
the non-zero variance to delay values larger than τc, even if the mean of the
distribution is smaller than τc.

In general it can be seen, that with increasing standard deviation the curves
for distributed delays move further away from the case of discrete delays. As we
have already observed for the real parts in Fig. 7.10, there are intervals within
the stable regimes, where discrete delays have associated the smallest frequency
during resynchronization, and other intervals where we find the opposite be-
haviour. This change takes place for values larger than Ωτ≈ 5, where the order
is reversed. However, this is not a dominant effect, and for most values Ωτ in
stable regimes Im(λ) for discrete delays is the smallest. Hence, with increasing
variance of distributed delays the perturbation decay frequency Im(λ) becomes
smaller compared to the discrete delay case.

We now investigate the individual influences of the variance and the skewness
of the delay distribution on resynchronization dynamics.

Influence of the variance on synchrony dynamics for fixed skewness

Here we choose fixed values of Ωτ and plot Re(λ) as a function of the standard
deviation σ of the two step delay distribution. This corresponds to a vertical cut
through the curves in Fig. 7.10 at these fixed Ωτ, which is illustrated for three
cases by the orange dotted verticals in both panels.

Those intersections are plotted at Ωτ = {5.61, 5.12, 5.57} for three different
fixed values of the skewness γ = {0.3, 0.6, 0.92}, which acts as an parameter.
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Figure 7.12.: Re(λ) and Im(λ) as a function of the standard deviation of the
two step delay distribution. There are three curves for different fixed values
of γ = {0.3, 0.6, 0.92}. This is at Ωτ = 5.61, which means Ω = 0.2669min−1 and
τ= 21min. The black dash dotted line is plotted for comparison to the value of
the discrete delay, which has standard deviation zero.

These values are chosen because they represent three different dependencies
of the resynchronization properties in dependence of the variance. These plots
are shown in Figs. 7.12, 7.13 and 7.14, correspondingly.

In Fig. 7.12 where Ωτ = 5.61 (Ω = 0.2669min−1, τ = 21min), we observe that
the resynchronization rate |Re(λ)| for small values of the standard deviation σ is
comparable between discrete and distributed delays, independently of the skew-
ness γ. With increasing σ however, distributed delays allow faster resynchro-
nization compared to the case of discrete delays. The absolute value of Re(λ)
increases, as σ increases. For values of the standard deviation above σ= 12 the
increase in synchronization rate saturates and a minimum in Re(λ) is reached.
We look at this minimum in more detail in Fig. 7.14. The growth of synchroniza-
tion rate with increasing standard deviation σ is further enhanced by increasing
the skewness γ, shown by the three different curves with red circle, blue triangle
and yellow star markers. This effect is observed for sufficiently large σ. The
imaginary part exhibits similar behaviour, and we can see that the frequency of
perturbation decay becomes smaller, as the standard deviation σ increases. Here
the effect of the skewness seems to be negligible.

The case Ωτ= 5.12 (Ω= 0.2873min−1, τ= 17.82min) is shown in Fig. 7.13. We
plotted the behaviour of the real and imaginary parts of λ for the same three
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Figure 7.13.: Re(λ) and Im(λ) as a function of the standard deviation of the
two step delay distribution. There are three curves for different fixed values of
γ= {0.3, 0.6, 0.92}. This is at Ωτ= 5.12 for a system with Ω= 0.2873min−1 and
τ = 17.8min. The black dash dotted line is plotted for comparison to the value
of the discrete delay, which has standard deviation zero.

different fixed values of γ as before in Fig. 7.12. In the left plot we see that in
this case the real part Re(λ) of distributed delays has smaller absolute values
compared to discrete delays given by the black dashed line. For small values
of σ, Re(λ) is similar for discrete and distributed delays. As the variance is
increased for this value of Ωτ, the moduli of Re(λ) for distributed delays become
smaller. For all values of σ, discrete delays resynchronize fastest for thisΩτ, and
the difference between discrete and distributed delays grows as the standard
deviation σ increases. Comparison of the plots for the different values of the
skewness show that the skewness has no noticeable effect. On the right hand
side in Fig. 7.13 we plotted the imaginary part of λ. We find that the frequency
of oscillation decreases with increasing variance, and depends only very weakly
on the value of the skewness.

The findings related to Figs. 7.12 and 7.13 agree with the hypothesis we put
forward, that increasing the variance and the skewness of the delay distribu-
tion will speed up resynchronization for systems of coupled phase oscillators, if
the values of Ωτ are close to integer multiples of 2π. Indeed there is a region
around values of Ωτ being multiples of 2π, where increasing the standard devia-
tion of the delay distribution results in increased resynchronization rate |Re(λ)|,
when comparing distributed and discrete delays as was shown in Fig. 7.12. For
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Figure 7.14.: Re(λ) and Im(λ) as a function of the standard deviation of the
two step delay distribution. There are three curves for different fixed values of
γ= {0.3, 0.6, 0.92}. This is at Ωτ= 5.57 for a system with Ω= 0.2688min−1 and
τ = 20.7min. The black dash dotted line is plotted for comparison to the value
of the discrete delay, which has standard deviation zero.

sufficiently large values of the standard deviation, the skewness γ also affects
resynchronization dynamics. It increases |Re(λ)| which implies faster resynchro-
nization for larger values of the skewness. However the effect of the standard
deviation is much larger. If one goes further away from these values of Ωτ and
approaches the ones close to odd multiples of π/2, given by Eq. (7.65), the above
observed behaviour reverses and the discrete delay case resynchronizes fastest
as shown in Fig. 7.13. In these intervals the skewness has almost no effect on
resynchronization dynamics.

We now take a closer to look at the interval of Ωτ where the transition be-
tween the different behaviours takes place. We look at Fig. 7.10, which contains
a zoom of Fig. 7.9 with insets magnifying the regions where the influence of
distributed delays reverses. One can see the region of Ωτ close to Ωτ = 5.25
where the order of the curves changes the first time (left plot). In the region
at approximately Ωτ = 7.65 it changes back to the initial ordering of the curves
(right plot). Hence, systems coupled with distributed delays change their be-
haviour from synchronizing slower than the discrete delay case for values Ωτ
roughly smaller than Ωτ= 5.25, to synchronizing faster than the discrete delay,
for larger values of Ωτ. This changes back to slower synchronization with dis-
tributed delays at about Ωτ= 7.65 on this stable branch. However, since not all
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all curves cross at the same value of Ωτ in this region where the resynchroniza-
tion behaviour changes, one finds a minimum in the curve for the largest Re(λ).
We show this in Fig. 7.14. This means that there is a pair of

(
σ≈ 12, γ≈ 0.9

)
for

which resynchronization rate |Re(λ)| has a maximum in the region of Ωτ≈ 5.35.

Influence of the skewness on synchrony dynamics for fixed values of the
variance

Now we look at the influence that the skewness has on resynchronization dynam-
ics for fixed values of the variance. We will first show plots similar to Fig. 7.9 for
a system of two oscillators on a ring with identical intrinsic frequencies and dis-
tributed delays in the coupling. Here these plots show curves for fixed standard
deviation σ = 10, and different values of the skewness. The black dashed line
denotes the discrete delay case and the coloured lines the different values of the
skewness γ. An overview for Re(λ) and Im(λ) as a function of Ωτ, for different
skewness, is plotted in Fig. 7.15. Comparing these plots to the previous ones in
Fig. 7.9, one can see that changing the skewness has a much smaller effect than
changing the variance. The curves for the different values of γ almost cover each
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Figure 7.15.: Re(λ) and Im(λ) plotted versus Ωτ. The dashed black line rep-
resents the discrete delay case, the coloured lines denote for distributed delays.
The standard deviation is fixed to σ = 10, and different values of the skew-
ness γ = {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} are plotted. This is for a system of
N = 2 oscillators with nearest neighbour interaction, periodic boundary condi-
tions, ω= 0.223min−1, K = 0.07min−1 and sinusoidal coupling.
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Figure 7.16.: Zooms of Fig. 7.15 highlighting a region where Re(λ) < 0, here
the second stable branch.

other. The skewness ranges from values of γ= 0.2 up to 0.9 which is roughly the
maximum skewness that can be realized with this two step delay distribution,
see Appendix A.1. We also added a zoom of the second stable branch for each plot
in Fig. 7.15. These are shown in Fig. 7.16.

At fixed Ωτ= 5.61 we make a cut as sketched by the orange dotted vertical in
the left plot of Fig. 7.16. Then we plot the resynchronization rate given by |Re(λ)|
as a function of the skewness γ of the two step delay distribution for three dif-
ferent values of the standard deviation σ= [3, 10, 14]. These plots are shown in
Fig. 7.17 for the real and imaginary parts of λ. We see that for small standard
deviation σ as given by the red dotted line with circles, the skewness has almost
no influence on resynchronization dynamics, and the resynchronization rate re-
mains roughly constant as the skewness grows. For larger values of σ as given
by the blue dashed curve with triangle markers, and the dark yellow curve with
star markers, we observe that the skewness influences resynchronization prop-
erties. In these cases |Re(λ)| grows with increasing skewness γ. The frequency of
oscillation, given by Im(λ), as the system approaches the steady state is shown
in the right plot in Fig. 7.17. It depends very weakly on the skewness γ. For
small values of the standard deviation σ it is independent of the skewness γ.
At larger values of the standard deviation σ = {10, 14} one can observe a small
influence. We conclude that the skewness γ has an influence on the resynchro-
nization dynamics at these values of Ωτ close to multiples of 2π. In this region
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Figure 7.17.: Re(λ) and Im(λ) as a function of the skewness of the two
step delay distribution. There are three curves for different fixed values of
σ = {3, 10, 14}. This is at Ωτ = 5.61, sketched by the orange dotted line in Fig.
7.16, for a system with Ω = 0.2669min−1 and τ = 21min. The black dash dot-
ted line is plotted for comparison to the value of the discrete delay, which has
standard deviation zero.

we find that increasing the skewness γ of the two step distribution for a fixed
value of the standard deviation σ increases the resynchronization rate |Re(λ)|.
This is most pronounced for large values of the standard deviation. Compared to
the influence that the standard deviation σ has, the influence of the skewness γ
is much smaller.

7.4.2. The dependence of synchrony dynamics on the
number of oscillators

The results on the differences in the linear response to small perturbations for
discrete versus distributed delays in the coupling were obtained in systems of two
phase oscillators with nearest neighbour coupling. We restricted our analysis
to this most simple case to better understand the mechanism and effects that
can be observed when replacing discrete with distributed delays in the coupling.
Here we discuss and compare the largest real part of λ for system with different
numbers of oscillators N. The characteristic equations for systems with discrete
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delays and distributed delays with a gamma distribution are:

discrete: 2eλ jτ

(
λ j

α
+1

)
= ζ j, (7.73)

gamma: 2
(
1+λ j ib

)a
(
λ j i

α
+1

)
= ζ j, (7.74)

where j = 1, 2, . . . , N and i = 1, 2, . . . , a, subject to the conditions:

ĝ(λ) 6= 0 ∀ λ,

α 6= 0. (7.75)

The ζ j, j = 1, 2, . . . , N in Eqs. (7.73-7.74) are the eigenvalues of the coupling
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π

Figure 7.18.: All Re(λ), associated to the different perturbation modes, plotted
vs. Ωτ for N = 20 oscillators. This is for a system with coupling strength K =
0.07min−1, intrinsic frequency ω = 0.223min−1, nearest neighbour interaction
and sinusoidal coupling. The delay distribution is a gamma distribution with
a = 1 and b = τ.

matrix, obtained during the derivation, see Eqs. (6.17-6.18), of these charac-
teristic equations, obtained by solving the eigenvalue problem ζ~c = D~c. These
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eigenvalues are given by ζ j = 2cos(2π j/N) for nearest neighbour coupling on a
1D ring. With each new oscillator that is added to the system a new eigenvalue
ζ j emerges. This implies that new perturbation modes become possible. In the
original 2-oscillator system there was only one perturbation mode that affects the
synchrony in the system. This perturbation mode is given when the two oscilla-
tors in the system are perturbed by a small phase with different sign, shifting
their phases towards or away from each other. Hence, this perturbation mode
is related to nearest neighbours and constitutes the perturbation mode with the
shortest wavelength in the system. When new oscillators are added, new pertur-
bation modes with correspondingly longer wavelengths can exist in the system.

We plotted all solutions λ for a system of N = 20 phase oscillators coupled with
discrete and distributed delays in Fig. 7.18. For each new oscillator that was
added to the system, new solutions λ emerged for discrete and distributed de-
lays. Their corresponding real parts move closer to zero in both, unstable and
stable branches, and the difference between coupling with discrete opposed to
coupling with distributed delays becomes smaller, see Fig. 7.18. Hence, for a
growing number N of oscillators in the system, the solution with the largest real
part dominating the dynamics close to steady state, changes in stable intervals
of Ωτ, but does not in unstable intervals of Ωτ. The difference in response to
small perturbations in stable regimes of Ωτ is most pronounced for perturbation
modes with short wavelengths, compared between discrete and distributed de-
lays in the coupling. This is shown again in Fig. 7.19 where we plot the largest
Re(λ) versus Ωτ for N = 2, 3, 4, 10, 100, 1000 oscillators. All plots show the same
range of Ωτ. As the number of oscillators grows, all additional Re(λ) < 0 move
towards zero, because long wavelength perturbation modes are added to the sys-
tem, and nearest neighbour interaction counteracts these long wavelength modes
less effectively. These are long-lived, and remain in the system when all other
perturbation modes have already decayed. In the stable regimes with Re(λ) > 0,
however, the perturbation modes with the shortest wavelengths grow first, and
hence the linear dynamics are governed by these modes.

In summary, a qualitative explanation for these observations can be given in
terms of the wavelengths associated to the perturbation modes in the system.
The strictly local interactions in systems with nearest neighbour coupling re-
spond most effectively to perturbation modes with short wavelength. In Fig.
7.18 this becomes obvious when looking at the resynchronization rates for the
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Figure 7.19.: Largest Re(λ) plotted vs. Ωτ for different N. This is for a sys-
tem with coupling strength K = 0.07min−1, intrinsic frequency ω= 0.223min−1,
nearest neighbour interaction and sinusoidal coupling. The delay distribution
is a gamma distribution with a = 1 and b = τ.
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response to the different perturbation modes in the system. With each new os-
cillator added to the 1D chain, the wavelengths of the associated perturbation
modes become longer and decay more slowly. The short ranged interactions are
least effective in counteracting these long wavelength perturbation modes.
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7.5. Synchrony dynamics in systems with

arbitrary coupling topologies

Thus far we have focused on the stability of the phase-locked steady state and
on the resynchronization dynamics close to the steady state. The characteristic
equation associated to the system, as given by Eq. (6.21), was used to determine
linear stability and resynchronization or desynchronization rates. The results
were plotted as Re(λ) versus Ωτ to show the stability given by the sign of Re(λ)
and the resynchronization or desynchronization rate given by the value of Re(λ),
see e.g. Fig. 7.3. Plots that show Im(λ) plotted versus Ωτ depict the frequency of
the dynamics close to steady state, see Fig. 7.4. These results hold for coupling
topologies that are characterized by an equal number of connections for each
oscillator in the system.

What can we learn for phase-locked systems with an arbitrary number of con-
nections for each oscillator? We return to the characteristic Eq. (6.19):

1
ĝ(λ)

(
λ

α
+1

)
ck =

1
nk

N∑
l=1

dkl cl , (7.76)

where nk denotes the number of connections of each oscillator independently. We
define d∗

kl ≡ dkl /nk, which gives

1
ĝ(λ)

(
λ

α
+1

)
ck =

N∑
l=1

d∗
kl cl , (7.77)

i.e.

ζ∗~c =D∗~c, (7.78)

where:

ζ∗ ≡ 1
ĝ(λ)

(
λ

α
+1

)
. (7.79)

This description governs all coupling topologies, where each oscillator can have a
different number of connections nk, but the total coupling strength is conserved
for each oscillator. Hence, the right hand side of Eq. (7.79) only contains the
influence of the delay distribution g(s), given by its Laplace transform ĝ(λ), and
the left hand side contains all variables related to the coupling topology. These
are the eigenvalues ζ∗j , j = 1, 2, . . . , N, of the coupling matrix D∗.
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Coupling matrices with real eigenvalues

For coupling topologies with bidirectional coupling between pairs of oscillators
and d∗

kl ∈ R, the resulting coupling matrices are Hermitian. For Hermitian ma-
trices the spectrum of eigenvalues is purely real [144]. We now look at plots
similar to Fig. 7.3, but add a new dimension that accounts for different values of
Re(ζ∗j ) in a given interval. This yields Figs. 7.20-7.21, where the stability given

Figure 7.20.: Reδ (λ) and ReΓ (λ) plotted versus Re(ζ∗j ) and Ωτ. This is for a
system of N = 10 oscillators with identical intrinsic frequencies ω= 0.224min−1

and coupling strength K = 0.07min−1. The delay kernel g(s) for the lower plot
is a gamma distribution with scale parameter b = τ and shape parameter a = 1.
The upper plot shows the discrete delay with a Dirac delta delay kernel. Black
lines mark the intersections of the surface with the zero plane.
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Figure 7.21.: Difference of Reδ (λ) (discrete) and ReΓ (λ) (distributed) plot-
ted versus Re(ζ∗j ) and Ωτ. This is plotted for a system of N = 10 oscilla-
tors with identical intrinsic frequencies ω = 0.223min−1 and coupling strength
K = 0.07min−1. Compare with single plots in Fig. 7.20.

by Re(λ) is plotted versusΩτ and Re(ζ∗j ). The surface above theΩτ−Re(ζ∗j ) plane
shows the re- and desynchronization rates for all coupling topologies governed by
the eigenvalues Re(ζ∗j ).

We remember from Chapter 6, that for coupling topologies where each oscil-
lator has the same number of neighbours, stability does not change when com-
paring discrete and distributed delays. The stability depends only on the mean
of the delay distribution. Using plots as described above for discrete and dis-
tributed delays, can give an idea whether the result on the steady state stability
in Chapter 6 also holds for other coupling topologies. That is especially inter-
esting for coupling topologies, that do not fall into the category as the ones for
which this result holds. Note that it may not be possible to realize every Re(ζ∗j ),
because an associated coupling topology might not exist.
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This is shown in Fig. 7.20. We dropped the index j from the notation, since
only the λ j with the largest Re(λ j) is plotted. It can be observed that there are
differences in resynchronization and desynchronization rates for discrete and
distributed delays. One can also see this, when moving from negative values
of Re(ζ∗) towards positive values, the stability can change from stable to un-
stable for fixed values of Ωτ. For different (unspecified) coupling topologies the
differences in Re(λ) between discrete and distributed delays have different mag-
nitudes. Plotting Reδ(λ)−ReΓ(λ) versus Ωτ and Re(ζ∗) in Fig. 7.21, that can be
seen more easily. There are large differences close to Re(ζ∗)= 0 and as one moves
to larger values of |Re (ζ∗)|. Note, that the information on stability itself is lost
in this plot and not represented by the sign of Reδ(λ)−ReΓ(λ).

Coupling matrices with complex eigenvalues

Coupling topologies that also include unidirectional connections are not described
by Hermitian matrices, because they are not symmetric [144]. In Fig. 7.22 we
choose a fixed value of Ωτ = 5.61 and plot Re(λ) versus ζ∗ ∈ C for discrete on
the left, and for distributed delays on the right hand side. Given the result in

Figure 7.22.: Reδ/Γ (λ) plotted versus Re(ζ∗) and Im(ζ∗) for discrete (δ) and
distributed (Γ) delays. The largest Re(λ) is plotted and the intersection curve
with the zero plane where Re(λ) = 0 is marked by a black dashed line. The sys-
tem has identical oscillators with intrinsic frequency ω = 0.224min−1 for fixed
Ωτ= 5.61 (Ω= 0.2669min−1, τ= 21min). The delay kernel g(s) for the right plot
is a gamma distribution with scale parameter b = τ and shape parameter a = 1.
The left plot which shows the discrete delay has a Dirac delta delay kernel.
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Figure 7.23.: Contour plot of Re(λ) in the Re(ζ∗) - Im(ζ∗) plane. The values
of Re(λ) are given by the colourbar. Those plots correspond to Fig. 7.22. The
black, dashed curve shows where Re(λ) = 0, and hence stability changes. The
dots denote the ζ∗ associated to mean-field coupling, and the squares the ζ∗ for
nearest neighbour coupling.

Chapter 6, we know that for this choice of Ωτ, the steady state is stable for all
coupling topologies where each oscillator has the same number of connections.
This means, all eigenvalues ζ∗, associated to these topologies, have to lie in re-
gions of the Re(ζ∗)− Im (ζ∗) plane, where the largest Re(λ) is smaller than zero.

With mean field coupling we find for a system of N oscillators, that the eigen-
values ζ∗ of the topology matrix are given by 1 and 0, independent of the number
of oscillators. For nearest neighbour coupling the N eigenvalues of the topology,
divided by nk = 2∀ k, all lie on a line between −1 and 1. They are given by:

ζ∗j =
ζ j

2
= cos

(
2π j
N

)
, j = 1, 2, . . . , N. (7.80)

We have plotted the associated ζ∗ for nearest neighbour coupling (nk = 2), shown
by the black squares, and the mean field case (nk = N), denoted by black dots for
a system of N = 10 oscillators into Fig. 7.23. As expected, all ζ∗ lie at positions in
the Re(ζ∗)− Im(ζ∗)-plane where Re(λ) < 0. If the round-shaped region in the left
plot of Fig. 7.23 for discrete delay is the only region with solely negative values
Reδ(λ), then all values of ζ/nk for coupling topologies included by the result in
Chapter 6 have to lie in this region. Since ReΓ(λ) takes on different values, and
cuts the zero plane at different lines (except for Im(ζ∗) ≈ 0 and Re(ζ∗) =−1), we
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know that coupling topologies whose associated ζ∗ lie outside the region where
Reδ(λ) < 0 but ReΓ(λ) > 0, have different stability. We conclude that there could
exist coupling topologies for which the stability of the steady state is different
for discrete and distributed delays. We will encounter such a case in the next
chapter for phase-locked solutions with non-zero phase lags on a ring topology.

7.6. Summary

The dynamics of systems close to steady state were investigated in Chapter 7. We
considered different coupling topologies, such as mean field (global) and nearest
neighbour (local) interactions. In the previous chapter we had shown that the
stability and global frequency of the steady state only depends on the mean de-
lay. This is true for all connection topologies characterized by an equal number
of connections for each oscillator. Here we have shown, that the synchrony dy-
namics in systems with nearest neighbour interactions and gamma distributed
delays are different from those with discrete delays, as shown in Figs. 7.3-7.4.
Close to steady state the linearized dynamics, driven by the coupling function,
are controlled by the phase differences introduced by the mean delay and by
the perturbation. If the mean delay is equal to integer multiples of the period
of oscillation, the according contribution to the phase difference is not seen by
2π-periodic coupling functions. Hence in such cases, the evaluation of the in-
stantaneous phase differences due to the perturbation, which are small close to
steady state, yields weak resynchronization in the case of coupling with discrete
delays. Distributed delays however, also consider phase differences associated
to the perturbation at times around the mean delay time. Therefore the effec-
tive phase differences evaluated are larger, and resynchronization is stronger, as
shown in Fig. 7.7.

Values of the mean delay withΩτ close to odd multiples of π/2 induce large phase
differences in the coupling function. These are averaged out by distributed de-
lays that also take into account the delay times around the mean delay which
are associated to smaller, delay related, phase differences.

These findings do not hold for all coupling topologies. We found that the linear
dynamics in mean-field coupled systems of phase oscillators are independent of
the shape of the delay distribution. Hence in this case, distributed delays with
a mean equal to the discrete delay yields the same resynchronization properties,
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see Fig. 7.1.
In Subsection 7.4.1 we quantified the influences of the shape of the delay

distribution on synchrony dynamics. In a system of N = 2 identical oscillators
with ω= 0.223min−1, K = 0.07min−1, coupled via nearest neighbour interaction,
we showed how synchrony dynamics depends on the variance and skewness of
the delay distribution. We observed increasingly different dynamic responses to
small perturbations as the variance and skewness were increased.

The role of number of oscillators in the system was addressed in Subsection
7.4.2. With an increasing number of oscillators on a 1D chain more perturbation
modes with increasing wavelengths become possible. Short ranged interactions
are least effective counteracting these long wavelength perturbation modes. We
found that the differences in resynchronization rates between coupling with dis-
crete and distributed delays decreased as the wavelength of the perturbation
modes increased.

In Section 7.5 we looked at systems of coupled phase oscillators with arbitrary
coupling topologies and different delay formulations. For phase-locked solutions,
in systems whose characteristic equation is of the type of Eq. (7.79), we treated
the eigenvalues of the connectivity matrix as a parameter. This allowed us to
get a broad overview on stability properties, especially for more complex cou-
pling topologies, where the eigenvalues of the connectivity matrix are hard to
determine, or change in time. Time-dependent coupling topologies, e.g. [13, 38],
correspond to series of points ζ∗(t) which are the eigenvalues associated to the
topology. Hence the resynchronization properties are then given by the Re(λ)
associated to that series of points ζ∗(t). For fixed values of Ωτ we also found the
regions in parameter space Re(ζ∗)− Im(ζ∗) where stable phase-locked solutions
are possible: the regions in the Re(ζ∗)− Im(ζ∗)-plane where Re(λ) < 0. These
regions were compared for the two delay formulations, see Figs. 7.22 and 7.23.
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8. The m-twist Steady State
Solution on a Ring

In this chapter we focus on solutions on rings of oscillators where all oscillators
synchronize to a global frequency Ω but keep a constant phase lag to their near-
est neighbours, denoted by ±∆. We refer to such solutions as m-twist solutions
[37, 38] or splay states [93, 167]. In biological systems these solutions have been
studied in many different situations, reaching from developmental processes to
systems of Physarum plasmodial slime mold [38, 168, 169].

We study a ring topology, equivalent to a 1D chain of oscillators with periodic
boundary conditions. For this topology we obtain results for the global frequency
and linear stability [35, 37] of these solutions. The oscillators couple only to their
nearest neighbours:

θ̇k(t)=ω+ K
2

∑
l=k±1

h
(
−θk(t)+

∫ ∞

0
ds g(s)θk−l(t− s)

)
, (8.1)

θk(t) denotes the phase of oscillator k at time t, k = 1, 2, . . . , N numbers the os-
cillators in the system, g(s) is the normalized delay distribution, h is an arbi-
trary 2π periodic coupling function, K denotes the coupling strength and ω is the
intrinsic frequency of each oscillator. We restrict our attention to a simplified
situation where all oscillators have a common intrinsic frequency ω.

8.1. Global frequency of m-twist steady states

We obtain the global frequency Ω, for the m-twist steady states of Eq. (8.1), from
Eq. (2.9) and Eq. (8.1):

Ω=ω+ K
2

∑
l=k±1

h (−Ωτ+∆ l) , (8.2)

where:
∆= 2πm

N
. (8.3)

95



For a sinusoidal coupling function h we obtain:

Ω=ω+ K
2

[sin(−Ωτ+∆)+sin(−Ωτ−∆)] , (8.4)

which can be simplified with the trigonometric relation sin(g± f )= cos( f )sin(g)±
cos(g)sin( f ), see [144]. The global frequency of the m-twist steady state with si-
nusoidal coupling is thus given by:

Ω=ω−K sin(Ωτ)cos(∆) . (8.5)

Hence for sinusoidal coupling, the frequency of the m-twist solution with ∆ = 0
is recovered in the limit m

N → 0, and of course for m = 0. This result matches the
finding in [35].

With respect to the system discussed in Chapters 6 and 7, with m = 0, there are
now regimes of m

N in Eq. (8.3) for m ≥ 1, for which the coupling becomes repulsive.
This is the case for 1

4 < m
N < 3

4 , since such values of m
N result in cos(∆) < 0. For

example, ∆ = π realized by m = N/2, makes the coupling repulsive [35]. Note,
that this can only be realized for even numbers N of oscillators in the system,
since m ∈ N0.

Discussion

Plots of Ω versus Ωτ obtained from Eq. (8.5) with m = 0, 1, 2 for discrete and
distributed delays are given in Fig. 8.1. The dashed lines denote the unstable
regimes of the solution and the solid lines the stable branches. We discuss the
stability analysis in the next section.

We find that the global frequency depends on the value of m. For a system
of N = 5 oscillators, the cases with m = {3, 4} are not explicitly shown in Fig.
8.1, since they are identical to the cases with m = {2, 1}, respectively. The case
m = 4 yields the same result as m = 1. Only the signs of ∆ change with respect
to their two nearest neighbours. This is absorbed by the coupling function and
the reflection symmetry ω → −ω, θk → −θk of the system. For m = 3 and m = 2
we find, that in both cases cos(∆) ≈ −0.809. Hence, they have the same global
frequencies. We do not plot m = 5 since it is clear by looking at Eq. (8.3), that all
oscillators are separated by ∆= 2π from their nearest neighbours. This however
is not seen by the 2π periodic coupling function and yields the same result as
m = 0.
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We plotted both, discrete and distributed delays, in independent plots because
steady state stability is altered between the delay formulations for m = 1, 2. The
differences in stability can be seen, when comparing the points where solid lines
change to dashed lines and vice versa. For m = 0 there is no difference in stability
between discrete and distributed delays as predicted. The result on the steady
state stability in section 6.3 shows that the phase-locked solution with no phase
lags obeys the same stability condition for discrete and distributed delays. In the
next section we show how stability can be determined for m-twist solutions on a
ring. Then we compare the impact of the different delay types.

8.2. Linear stability of m-twist steady states

The stability of the m-twist solution is determined by means of linear stability
analysis. We ask how the system at its steady state responds to a small perturba-
tion. This is studied for linearized dynamics, which are valid close to the steady
state [19]. For unstable steady states the perturbation will grow; in the case that
steady states are stable, the perturbation will converge to zero with a perturba-
tion decay rate given by Re(λ). Following this idea, we add a perturbation qk(t)
to the phases of the m-twist solution:

θk(t)=Ωt+∆k+εqk(t), (8.6)

with ε¿ 1 and substitute that back into Eq. (8.1):

Ω+εq̇k(t)=ω+ K
2

∑
l=k±1

h
(
−Ωτ+∆l+ε

[
−qk(t)+

∫ ∞

0
ds g(s)ql(t− s)

])
, (8.7)

where τ is the mean of the delay distribution, given by its first moment. Here
∆(k+ l)−∆k =∆l. Taylor expansion for ε¿ 1 leads to:

Ω+εq̇k(t)=ω+ K
2

∑
l=k±1

h (−Ωτ+∆l)+

K
2

∑
l=k±1

(
εh′ (−Ωτ+∆l)

[
−qk(t)+

∫ ∞

0
ds g(s)ql(t− s)

])
+O

(
ε2) , (8.8)

with h′ being the first derivative of h with respect to its argument. Equation (8.8)
can be separated in powers of ε to yield the equation for the global frequency in
steady state:

ε0 : Ω=ω+ K
2

∑
l=k±1

h (−Ωτ+∆l) , (8.9)
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Figure 8.1.: Ω plotted versus Ωτ for sinusoidal coupling. Each plot shows
three curves for different m-twist states m = {0,1,2}. The system parameters
are ω = 0.223min−1, K = 0.07min−1, N = 5 oscillators and nearest neighbour
coupling with periodic boundary conditions. The distributed delay kernel is the
gamma distribution with parameters a = 1 and b = τ. Solid lines denote stable,
discontinuous lines unstable m-twist solutions.

and the dynamic equations for the time evolution of the perturbation:

ε1 : q̇k(t)= K
2

∑
l=k±1

(
εh′ (−Ωτ+∆l)

[
−qk(t)+

∫ ∞

0
ds g(s)ql(t− s)

])
. (8.10)

We proceed our analysis with a sinusoidal coupling function h, use the following
trigonometric relations [144]:

sin(g± f ) = cos( f )sin(g)±cos(g)sin( f ) , (8.11)

cos(g± f ) = cos(g)cos( f )∓sin(g)sin( f ) , (8.12)

and confirm the global frequency Ω as previously determined in Eq. (8.5):

Ω=ω−K sin(Ωτ)cos(∆) , (8.13)

consistent with Eq. (8.5). Next we introduce a perturbation of the form qk(t) =
ckeλt in Eq. (8.10), that then reads:

ckλ = K
2

∑
l=k±1

cos(−Ωτ+∆l)
[
−ck +

∫ ∞

0
ds g(s) cl e−λs

]
(8.14)

= K
2

{cos(Ωτ−∆) [ck+1 ĝ(λ)− ck]+cos(Ωτ+∆) [ck−1 ĝ(λ)− ck]} ,
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where ĝ(λ) denotes the Laplace transform of g(s):

ĝ(λ)=
∫ ∞

0
ds g(s) e−λs.

Defining:

A = cos(Ωτ−∆) ,

B = cos(Ωτ+∆) , (8.15)

and comparing Eq. (8.11) and Eq. (8.12) yields:

A+B = 2cos(Ωτ)cos(∆) ,

A−B = 2sin(Ωτ)sin(∆) . (8.16)

The characteristic equation

After rearranging and applying the latter definitions, Eq. (8.14) implies:

ckλ= K
2

{ ĝ(λ) [Ack+1 +Bck−1]− ck (A+B) } , (8.17)

which can be further rewritten using ~c = (c1, c2, . . . , cN)T . It contains the com-
ponents associated to the different perturbation modes. Note that further rear-
rangement of the equation:

(2λ+K (A+B)) ck = K ĝ(λ) [Ack+1 +Bck−1] , (8.18)

allows only λ for which ĝ(λ) is well defined and:

ĝ(λ) 6= 0. (8.19)

In matrix notation the characteristic equation then reads:(
2λ+K(A+B)

K ĝ(λ)

)
~c =D~c, (8.20)

where D is the connectivity matrix for a system of N oscillators:

D=



0 A 0 . . . . . . . . . 0 B
B 0 A 0 . . . . . . 0 0
0 B 0 A 0 . . . 0 0
... . . . . . . . . . ...
... . . . . . . . . . ...
0 0 0 . . . B 0 A 0
0 0 0 . . . . . . B 0 A
A 0 0 . . . . . . . . . B 0


. (8.21)

99



The eigenvalues of this matrix can be found using the solutions to the N-th cy-
clotomic polynomial, see Appendix A.6 and [163, 164], which are the N roots of
unity as given by:

wk
j = exp

(
i
2π j k

N

)
where j = 1,2, . . . , N. (8.22)

We use them to construct the eigenvectors~c:

~c j = (w1
j , w2

j , . . . , wN
j )T , (8.23)

with wN = w0 = 1 and w−1 = wN−1. see Eq. (8.22). We find from the evaluation of
the right hand side of Eq. (8.20):

D~c =


Aw2 +BwN

Aw3 +Bw
...

Aw+BwN−1

=
(
Aw+BwN−1

)
︸ ︷︷ ︸

=ζ j


w1

w2

...
wN

 , (8.24)

that a term Aw+BwN−1 can be separated of each component of the vector D~c,
which must be the eigenvalues ζ j of the matrix D for N oscillators on a ring.
Simplifying the term for the eigenvalues using wN−1 = wN , w−1 = wN−1, yields
an expression for the complex eigenvalues ζ j:

ζ j = (A+B)cos
(
2π j
N

)
+ i (A−B)sin

(
2π j
N

)
, j = 1, 2, . . . , N. (8.25)

With the definitions in Eq. (8.16), one finds that these eigenvalues are purely
real for Ωτ = πn, n ∈ N and purely imaginary for Ωτ = π

2 (2n+ 1), n ∈ N. One
can also see that for m = N

4 (2n+1), with n ∈ N the real part Re(ζ j) = 0 and for
m = N

2 n, n ∈N the imaginary part Im(ζ j)= 0.
Given the solution for the ζ j given by Eq. (8.25), the characteristic equations

for discrete delays and distributed delays with a gamma distribution, can be
written as:

discrete: eλ jτ

(2λ j +K(A+B)
K

)
= ζ j, (8.26)

gamma:
(
1+λ j ib

)a
(2λ j i +K(A+B)

K

)
= ζ j, (8.27)

where j = 1, 2, . . . , N, and i = 0, 1, . . . , a. We substituted the delay dependent
Laplace transforms given by Eq. (7.27) and Eq. (7.25). The gamma distribu-
tion has the parameters a = 1 and b = τ for all examples that are treated in this
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Figure 8.2.: Largest Re(λ) plotted versus Ωτ for sinusoidal coupling.
Three plots for different m-twist states m = {0,1,2}, intrinsic frequency ω =
0.223min−1, coupling strength K = 0.07min−1, N = 5 oscillators and nearest
neighbour coupling with periodic boundary conditions. The curves are obtained,
solving Eq. (8.26-8.27). The distributed delay kernel is the gamma distribution
with parameters a = 1 and b = τ. Note the different stability boundaries of the
two delay cases, see zoom in Fig. 8.3

chapter. This constitutes the case of an exponential distribution. These expres-
sions can be analyzed to determine the solutions λ. Parameter choices satisfying
Re

(
λ j

)< 0 ∀ j, are stable with the global frequency given by Eq. (8.13). If there
is a Re

(
λ j

) > 0 the solution is unstable, since at least one perturbation mode
grows exponentially close to steady state.

We solve Eqs. (8.26) and (8.27), using the trust-region dogleg algorithm, im-
plemented in the fsolve function in Matlab, see [165, 166]. Then we plotted the
results for N = 5 oscillators and m = {0, 1, 2} in Fig. 8.2, and a zoom of the second
stable branch, with Re(λ)< 0, for m = 1 in Fig. 8.3.
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Figure 8.3.: Zoom of Fig. 8.2, for m = 1, second stable branch. The curves for
distributed delays show an extended stable interval of Ωτ compared to discrete
delay.

Discussion

The plots in Fig. 8.2 compare the stable and unstable regions with discrete and
distributed delays, for m-twist steady states with different values m. Positive
values of Re(λ) denote unstable regimes. Perturbations grow in these regions
as the system evolves. The unstable mode grows exponentially in time with a
growth rate given by the value of Re(λ). Negative values depict stable parameter
regimes of Ωτ. The last perturbation mode that is present in the system decays
exponentially with a decay constant given by Re(λ). That information was used
in Fig. 8.1, which shows the global frequencies Ω in dependence of Ωτ to mark
stable and unstable solutions. One can see that the stability of m-twist steady
states on a 1D-ring depends on the winding number m [35], and also changes
for different formulations of the delay, if m > 0. The stable regions are larger for
distributed delays with a gamma distribution, compared to the case of discrete
delays. These results show that the findings on the stability of phase-locked
solutions with no phase lags in Chapter 6, Section 6.3, do not extend to m-twist
steady states with m 6= 0.
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8.3. Summary

In this chapter we investigated the stability of m-twist steady states and the lin-
earized dynamics close to these steady states in systems of delay coupled phase
oscillators. We found that by introducing distributed delays with non-zero vari-
ance the intervals of Ωτ that govern stable m-twist steady states are enlarged
compared to discrete delays for all m 6= 0. This is shown in Figs. 8.2-9.1. A previ-
ous result [35] on m-twist steady states reported that finite discrete time delays
allow stable m-twist steady states in certain ranges ofΩτ that do not allow stable
solutions in systems without delay. Hence, they have found that discrete delays
can expand the range and stability of possible phase-locked patterns. These sta-
ble regions seem to be increased even further by distributed delays with non-zero
variance for m-twist solutions with m 6= 0. In order to determine the dependence
of the stable regimes on the variance of the delay distribution, simulations with
the two-step delay distribution such as in Chapter 6 presented could be per-
formed.
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9. Dynamics Approaching the
m-twist Steady States

In the previous chapter we have discussed the expression for the global frequency
of the general m-twist solution [35] and the characteristic equation that deter-
mines the linear stability of steady state solutions. We found that for m > 0 linear
stability of the m-twist steady states is affected by distributed delays.

In this chapter we derive the relation between the order parameter and the
perturbation decay and growth rates. We are interested in the dynamics, as the
system approaches the m-twist steady states. Finally, we compare the analyti-
cally obtained results with simulations.

9.1. Relation between order parameter and

perturbation modes

The measure of the system’s synchrony is given by the order parameter r(t), but
the perturbation decay rates are given by x = Re(λ) and y = Im(λ). A relation
between r(t) and λ is derived in order to compare analytically obtained solutions
λ, and measured order parameters from simulation. We proceed similarly as in
Section 7.2, but with Eq. (8.6):

θk(t)=Ωt+∆k+εqk(t),

for the perturbed m-twist solution that describes the time evolution of the phases
of the oscillators. Combined with Eq. (1.3), this gives:

r(t)eiΞ(t) ≡ 1
N

N∑
k=1

eiθk(t),

for the synchronization order parameter r(t). That means:

r(t)eiΞ(t) = 1
N

N∑
k=1

ei(Ωt+∆k+εqk(t)). (9.1)
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Rearranging equation Eq. (9.1) yields:

r(t)ei(Ξ(t)−Ωt) = 1
N

N∑
k=1

[cos(∆k+εqk(t))+ isin(∆k+εqk(t))] . (9.2)

We are interested in the modulus of the order parameter r(t). Squaring the last
equation eliminates the phases:

r(t)2 = 1
N2

{(
N∑

k=1
cos(∆k+εqk(t))

)2

+
(

N∑
k=1

sin(∆k+εqk(t))

)2}
, (9.3)

and since ε¿ 1, we expand the sine and cosine terms to second order in ε:

cos(∆k+εqk(t)) = cos(∆k)−εqk(t)sin(∆k)− ε2

2
qk(t)cos(∆k)+O

(
ε3) ,

sin(∆k+εqk(t)) = sin(∆k)+εqk(t)cos(∆k)− ε2

2
qk(t)cos(∆k)+O

(
ε3) . (9.4)

These expressions are substituted into Eq. (9.3). The sum over the zero order
term in each expansion is zero inside both squared brackets, meaning

∑N
k=1 sin(∆k)=

0 and
∑N

k=1 cos(∆k) = 0, see [163, 164], and Appendix A.6. Hence, there are two
terms left in the squared brackets, one with order ε and the other with ε2. Drop-
ping terms of order ε2 and higher yields:

r(t)2 = 1
N2

{(
N∑

k=1
εqk(t)sin(∆k)

)2

+
(

N∑
k=1

εqk(t)cos(∆k)

)2}
. (9.5)

The time-dependent perturbation is then given by:

εqk(t)= 1
2

(
ckeλt + c∗keλ

∗t
)
= ext

[
cRe

k cos(yt)− cIm
k sin(yt)

]
, (9.6)

where λ= x+ i y and ck = cRe
k + icIm

k . Here x denotes the perturbation decay rate
and y the frequency of oscillation of the decay process. We use Eq. (8.22) to
substitute the terms cRe

k and cIm
k in Eq. (9.6), which is then substituted into Eq.

(9.5):

r(t)2 = e2xt

N2

{(
N∑

k=1

[
cos

(
2πk
N

)
cos(yt)−sin

(
2πk
N

)
sin(yt)

]
sin(∆k)

)2}
+

e2xt

N2

{(
N∑

k=1

[
cos

(
2πk
N

)
cos(yt)−sin

(
2πk
N

)
sin(yt)

]
cos(∆k)

)2}
. (9.7)
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For m = 1, such that ∆k = 2πk
N , we evaluate the product inside the squared braces:

r(t)2 = e2xt

N2

{(
N∑

k=1

[
sin

(
2πk
N

)
cos

(
2πk
N

)
cos(yt)−sin2

(
2πk
N

)
sin(yt)

])2}
+

e2xt

N2

{(
N∑

k=1

[
cos2

(
2πk
N

)
cos(yt)−cos

(
2πk
N

)
sin

(
2πk
N

)
sin(yt)

])2}
. (9.8)

We use the trigonometric relations taken from [144]:

cos( f )sin( f ) = 1
2

sin(2 f ), (9.9)

sin2( f ) = 1
2

(1−cos(2 f )) , (9.10)

cos2( f ) = 1
2

(1+cos(2 f )) , (9.11)

to rewrite the terms in Eq. (9.8). Noting that:

N∑
k=1

cos
(
4πk
N

)
= 0, (9.12)

N∑
k=1

sin
(
4πk
N

)
= 0. (9.13)

Eq. (9.8) can be drastically simplified to obtain:

log[r(t)]= xt+ log(2). (9.14)

This is the desired relation between order parameter r(t) and the λ for the slow-
est decaying perturbation mode. We use Eq. (9.14) to compare analytically ob-
tained results for λ, e.g. Fig. 8.2, with simulations of the system that yield the
time series r(t).

Comparison to simulation results

In the last chapter we found that the stability of the m-twist steady state and
the dynamics close to steady state for m > 0 are altered by distributed delays
represented using a gamma distribution, as compared to discrete delays. Here
we compare to simulation results with a sinusoidal coupling function. The ini-
tial phase history necessary for the simulation of delay systems was given by
evolving the uncoupled oscillators with an intrinsic frequency equal to the global
frequency of the 1-twist steady state.
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Figure 9.1.: Re(λ) and Im(λ) versus Ωτ for discrete and distributed delays.
The distributed delay kernel is the gamma distribution with parameters a = 1
and b = τ. The inset shows the analytically obtained values of Re(λ) at Ωτ= 4.1
(τ = 21.09min, Ω = 0.1944). This is for sinusoidal coupling, ω = 0.223min−1,
K = 0.07min−1, N = 3 oscillators and nearest neighbour coupling with periodic
boundary conditions.

We simulate a system of N = 3 oscillators with a mean communication delay
of τ= 21.09min, at Ωτ= 4.1. These parameters are chosen, because at this value
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Figure 9.2.: log[r(t)] plotted versus t for N = 3 identical oscillators. The fit-
ted dashed curves in red have slope (1.714±0.043)×10−3 (left) and −(4.038±
0.132)×10−3 (right). Here K = 0.07min−1, ω= 0.223min−1, τ= 21.09min, with
sinusoidal coupling function and m = 1 twist. The distributed delay kernel is
the gamma distribution with parameters a = 1 and b = τ.
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of the mean delay the analytically obtained solution for the case with discrete
delays is unstable, while the case with distributed delays is stable. The corre-
sponding interval of Ωτ is shown in the left plot of Fig. 9.1, which shows the
analytically obtained curves for Re(λ) in dependence of Ωτ. These were obtained
using the trust-region dogleg algorithm, implemented in the fsolve function in
Matlab, see [165, 166].

The order parameter was measured in simulation, and plotted logarithmically
versus time in Fig. 9.2 for both delay cases. It can be seen that for discrete delays
the order parameter grows exponentially, as expected for an unstable solution.
In the case of distributed delays the perturbation decays exponentially, hence
the solution is stable. This confirms the analytically obtained results on linear
stability at this value of Ωτ. We also measured the slopes of the curves and
compared to value of Re(λ), obtained analytically from the characteristic Eqs.
(8.26) and (8.27). The slopes of the fitted curves confirm the results at Ωτ = 4.1
shown in Fig. 9.2.

9.2. Summary

This last chapter addressed resynchronization dynamics in response to a small
perturbation about m-twist steady states. Looking at Fig. 8.2, we observe that
the resynchronization rate |Re(λ)| depends on the value of Ωτ, and is different
comparing discrete and distributed delays. There are intervals of Ωτ where cou-
pling with distributed delays leads to faster resynchronization or desynchroniza-
tion and also intervals where exactly the opposite can be observed. This could be
explained with similar reasoning as in Chapter 7, where we separated the phase
differences seen by the coupling function into real existing phase differences and
those introduced by the mean delay. In this case however, there is an additional
influence of the fixed phase difference ∆ between the oscillators that has to be
taken into account. The intervals of Ωτ in which coupling with distributed de-
lays resynchronizes faster than with discrete delays are not conserved, since the
stable and unstable regimes shift to other values ofΩτ for m-twist solutions with
m ≥ 1.
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10. Conclusions and Outlook

In this thesis we studied the effects of distributed delays in systems of coupled
phase oscillators. We focused on the linear stability of the steady states. In addi-
tion, the transient dynamics close to the steady states of phase-locked solutions
with and without phase lags were investigated. For our analysis we used tools
from dynamical systems theory [19, 154], including characteristic equations ob-
tained linearising around the steady states of the system. These dynamic equa-
tions were then employed to ask how such systems react to small perturbations
when close to the steady state.

In Chapters 1 and 2 we presented a short introduction on synchronization
phenomena in systems of coupled phase oscillators. Some historical examples
of synchronization and the first explanation attempts [4, 16] were summarised
to make the reader familiar with the topic. Phase-locked solutions were intro-
duced, where all oscillators synchronize to a global frequency and share the same
phase. Another type of solution also sharing a common global frequency in steady
state was introduced, having specific non-zero phase relations between neigh-
bouring oscillators. We discussed two major coupling topologies, the mean-field
approximation for global interactions between the oscillators, and local interac-
tions mediated by nearest neighbour coupling. Such interactions, which include
the exchange of signals between different parts in the system, require time to be
completed. This is what we call a time delay in communication processes. If time
delays in the system are of the order of the timescales that govern the dynamics,
they can lead to qualitatively new behavior and cannot be neglected [68]. We
compared different types of time delays in the coupling, distinguishing between
the influence of one discrete past time and entire intervals of the past.

In Chapter 3 we introduced the vertebrate segmentation clock, that provides
the rhythm for the formation of somites, which set the template for segmented
structures in growing vertebrates [98]. The clock and wavefront mechanism of
vertebrate segmentation [96] proposes temporal oscillations that are arrested
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and thereby translated into spatial patterns by a travelling wavefront. We dis-
cussed experimental evidence for different parts of this clock [99, 116, 117, 140,
142] and its biochemical functionality.

There are experiments [123, 126] that suggest the existence of an auto-inhibitory
feedback loop with time delays in the expression of certain genes, leading to
cyclic gene expression [63]. On the tissue level, patterns of locally synchronized
gene expression levels have been observed [116]. The locally acting Delta-Notch
signalling pathway [130] has been shown to be involved in coupling individual
oscillations [32, 99, 101], and therefore leading to locally synchronized regions.

Finally we introduced the Delayed Coupling Theory of vertebrate segmenta-
tion [56]. It is based on the concept of the clock and wavefront mechanism. This
model of delay coupled phase oscillators with discrete delays in the coupling suc-
cessfully predicted the dependence of the length of somites on the time delays of
intercellular communication [113]. Motivated by this model, we asked whether
the approximation of discrete delays in the coupling captures all effects of the
delayed signalling in the tissue. In order to investigate this, we formulated a
model of coupled phase oscillators with distributed delays in the coupling. We
ask what effects are introduced when considering the entire past of the neigh-
bours, as compared to discrete delays homogeneous and constant in time.

In Chapter 4 we present an outline on how the remainder of the thesis is
organised.

In Chapter 5 we introduced a model of coupled phase oscillators with dis-
tributed delays in the coupling. Details were given on how distributed delays
are formulated, as compared to other types of interaction delays.

In Chapter 6 we show that the global frequency of the phase-locked steady
state only depends on the mean of the delay distribution. It is given by Eq. (6.5)
which is the same as for discrete delay, if the mean of the delay distribution
equals the discrete delay. We also obtain an important result on the linear sta-
bility of the phase-locked steady state with no phase lags. The result is valid for
a large class of coupling topologies; we only demand the number of connections to
neighbours to be equal for all oscillators in the system. For such systems we can
extend the linear stability condition for systems with discrete delays, obtained
by Earl and Strogatz [155], to systems with distributed delays. We show that the
stability condition only depends on the mean of the delay distribution, but not on
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higher moments associated to the shape or symmetry of the distribution. Hence,
if the mean of the delay distribution equals the value of the discrete delay, the
steady state stability condition given in Eq. (6.39) is not altered by coupling with
distributed delays.

With regard to the Delayed Coupling Theory of vertebrate segmentation [56],
we conclude that the approximation with discrete delays in the coupling yields
the same results for steady state properties of the system, as compared to dis-
tributed delays in the coupling. Hence in systems of coupled phase oscillators
with an equal number of connections for each oscillator, steady state results do
not depend on the shape of the delay distribution, and a formulation with dis-
crete delay is sufficient.

In Chapter 7 we investigated the linear dynamics close to steady state in re-
sponse to a small perturbation. We asked whether the synchronization dynamics
are affected by using distributed delays instead of discrete delays in the coupling.
We found that the linear dynamics in response to small perturbations can de-
pend on the shape of the delay distribution, but not necessarily for all coupling
topologies. In mean-field coupled systems, for example, there are no differences
between the two models of the delay, see Fig. 7.1. For systems of oscillators
with nearest neighbour sinusoidal coupling we find that the resynchronization
dynamics depend on the shape of the delay distribution, see e.g. Figs. 7.3 and
7.19. Hence we conclude that, depending on the coupling topology, there can
be different dynamic response to small perturbations when using coupling with
distributed delays, as compared to discrete delays.

The phase differences evaluated by the coupling function consist of the in-
stantaneous phase difference present in the system, and an additional phase
difference introduced by the coupling delay. In a system close to a stable steady
state, the instantaneous phase differences are small, and the coupling strength
depends strongly on the phase difference imposed by the delay. For discrete de-
lays, the delay induced phase difference has no effects when close to multiples of
2π, because the coupling function is 2π-periodic. Hence the coupling is weak due
to the small instantaneous phase difference present in the system. Distributed
delays however also consider values around that 2π-multiple mean delay value,
and therefore couple more strongly. This results in faster resynchronization.
Close to odd multiples of π/2 this behavior is reversed, since the delay induced
phase difference has its maximum and results in strong coupling with discrete
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delay. Distributed delays in turn also consider times around these odd multiples
of π/2 and hence couple less strongly.

In the remainder of this chapter we quantified the influence of the variance
and skewness of a two-step delay distribution on resynchronization dynamics for
different values of the mean. The two-step delay distribution was introduced
in Appendix A.1. We found that for fixed values of the skewness, an increasing
variance favours the differences in resynchronization rates between discrete and
distributed delays, as shown in Figs. 7.12-7.14. The impact on synchrony dy-
namics changing the skewness for fixed values of the variance is much smaller,
see Fig. 7.17.

In Chapter 8 we investigated the linear stability of the steady states of phase-
locked solutions with non-zero phase lags, so-called m-twists or splay states
[37, 93]. We considered a one-dimensional system of phase oscillators with near-
est neighbour interaction and periodic boundary conditions. Previous results for
these m-twist solutions showed that discrete delay expands the range and sta-
bility of possible phase-locked solutions with m 6= 0 [35]. Our results show that
coupling with distributed delays can lead to an additional increase of stable re-
gions.

In Chapter 9 we addressed the resynchronization dynamics of m-twists. We
derived a relation between the Kuramoto order parameter and the perturbation
decay and growth rates in Eq. (9.14). This relation was then used to test the
results in Fig. 9.2. Systems of N = 3 oscillators with discrete and distributed
delays in the coupling were simulated, sharing the same mean delay value τ,
and the order parameter time evolution was recorded. We plotted the time series
data from simulation and fitted these curves using Eq. (9.14). The slope of per-
turbation decay for distributed delays matched the analytically obtained value,
within the error of the linear least square fit. Also the predicted perturbation
growth in the case of coupling with discrete delays was confirmed. See Fig. 9.2
for these results.

Outlook

In the last paragraphs we recapitulated the results on steady state stability and
the differences in linear dynamic response to small perturbations in systems of
coupled phase oscillators with discrete and distributed delays in the coupling.
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The steady state stability does not depend on the shape of the delay distribution
for synchronized phase-locked solutions, nor on the dimension. This holds in sys-
tems with arbitrary coupling topologies with the constraint that each oscillator
couples to the same number of other oscillators in the system. Hence, all steady
state results in systems of delay coupled phase oscillators with an equal number
of connections for each oscillator, are sufficiently described by the discrete delay
approximation.

For m-twist or splay state solutions in these systems we found that for all
m 6= 0 the stability of the steady state is dependent on the shape of the delay dis-
tribution. This could be relevant for systems of delay coupled oscillators where
such solutions are observed; for example in apical area oscillations during dor-
sal closure in the fruit fly Drosophila melanogaster [170, 171] or in the circadian
clock for the left and right suprachiasmatic nuclei [172]. Antiphase oscillations
of endothelium and smooth muscle [Ca2+]i in vasomotion of rat mesenteric small
arteries have been reported in [173]. Such oscillations are abundant and have
been observed in neuronal [174, 175], mechanical [176], chemical [177], and su-
perconducting systems [178]. Anti-phase oscillations constitute a special case of
the splay state or m-twist solutions, namely the case of m = N/2 where N denotes
the number of oscillators in the system. The analysis on the linear dynamics in
response to small perturbation for the m-twist or splay state solutions has not
been completed. An analysis more in depth of the qualitative and quantitative
dependence of the m-twist steady state stability and response to small perturba-
tions on the shape of the delay distribution should be conducted.

The results on the linear dynamic response to small perturbations in Chapter
7 for phase-locked solutions without phase lags suggest that distributed delays
in nearest neighbour coupling can enhance the ability to react to small pertur-
bations when the mean delay is close to a multiple of the uncoupled oscillator’s
period.

Current experimental work suggests that cells taken from zebrafish embryos
might soon allow to conduct in vitro experiments where individual cells can be
brought into contact, and anti-phase or in-phase synchronized states of cyclic
gene expression might be observable. If the mean delay time for Delta-Notch
coupling could be changed in these cells, such that the mean delay value is
altered and the respective state becomes unstable, data on desynchronization
rates could be obtained and compared to the two modelling approaches with
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discrete and distributed delays. In combination with a molecular model of the
Delta-Notch signalling pathway that connects to experimental accessible data,
the model with distributed delays in the coupling could describe the dynamic re-
sponse more realistically, if data on statistics of the time delays involved in the
signalling process is accessible.

We have not assessed, whether the observed results in Chapter 7 are present
in 2D or 3D. All calculations and simulations were carried out in 1D systems.
Simulation of the dynamics of many phase oscillators with distributed delays in
the coupling, for systems with D > 1 is computationally expensive. The convo-
lution of the delay distribution and the phase history of the coupled neighbour
has to be conducted for all oscillators in the system individually. The question
whether the effects on the linear dynamical response to small perturbations are
present in higher dimensional systems is nevertheless interesting, since not all
systems of coupled phase oscillators can be described by one-dimensional chains.
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Part III.

APPENDICES
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A.

A.1. Distribution composed of two adjacent

boxcar functions

Here a delay distribution is introduced for which the second and third central
moments can be changed independently for a constant first moment. I.e., the
variance and the skewness can be changed independently for a fixed value of
the mean of the delay distribution. With a, b, c, d, m̄ ∈ R+, we define the delay

4 5 6 7 8
0

0.25

0.5

ms

g(s)

A A21

a

b c

d

Figure A.1.: Sketch of the two step delay distribution. A1 and A2 are the
areas of the two steps, b and c denote for the widths, a and d for the heights of
the steps and m̄ is the median of the two step delay distribution. Each step is
normalized to A1 = A2 = 0.5.
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distribution which is shown in Fig. A.1 by:

g(s)=


a ∀ (m̄−b)≤ s ≤ m̄

d ∀ m̄ < s ≤ (m̄+ c)

0 elsewhere,

(A.1)

which can be expressed in terms of boxcar functions Π [179, 180]:

g(s)= aΠ
(

s− (m̄−0.5b)
b

)
+dΠ

(
s− (m̄+0.5c)

c

)
, (A.2)

where Π(x) = H(x+0.5)−H(x−0.5), and H denotes the Heaviside function. We
refer to g(s) as the two step delay distribution. For the areas A1 and A2 of the
two boxcar functions we demand that:

A1 = A2 = 0.5,

A1 = ab,

A2 = cd, (A.3)

such that

a = 0.5
b

d = 0.5
c

. (A.4)

We will now derive the mean τ, variance σ2 and skewness γ for this delay distri-
bution. The first moment or mean of the delay distribution is given by:

τ =
∫ m̄

m̄−b
ds sa+

∫ m̄+c

m̄
ds s d, (A.5)

i.e.
τ = m̄− 1

4
(b− c) . (A.6)

By definition the variance is given by:

σ2 =
∫ m̄

m̄−b
dsa (s−τ)2 +

∫ m̄+c

m̄
ds d (s−τ)2 , (A.7)

and with the relations given in Eq. (A.4) yields:

σ2 = (m̄−τ)2 − 1
2

(m̄−τ) [b− c]+ 1
6

[
b2 + c2] . (A.8)
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Eq. (A.6) and Eq. (A.8) imply:

σ2 = 1
48

(
5b2 +6bc+5c2) . (A.9)

The third moment of the delay distribution, the skewness, is a measure of the
symmetry of the shape of the distribution; this is defined as:

γ = 1
σ3

(∫ m̄

m̄−b
dsa (s−τ)3 +

∫ m̄+c

m̄
ds d (s−τ)3

)
, (A.10)

which evaluated and given in terms of b, c, m̄ and τ reads:

γ = 1
8σ3

([
b3 − c3]+4(m̄−τ)

[
b2 + c2]+6(m̄−τ)2 [b− c]+8(m̄−τ)3) . (A.11)

Plugging Eq. (A.6) in for the terms (m̄−τ) yields in this case the skewness in
dependence of c,b and σ:

γ = 1
32σ3

(
c3 −bc2 +b2c−b3) . (A.12)

Our goal is to calculate the parameters b, c, m̄ for any given set of γ, σ, τ where
m̄ is given by τ, b, c:

m̄ = τ+ 1
4

(b− c) , (A.13)

and we can use Eqs. (A.9) and (A.12) to calculate c, b. First we introduce the
substitution:

α= b+ c and β= b− c, (A.14)

and calculate the relation:(
α2β+β3)= 2b3 −2b2c+2bc2 −2c3. (A.15)

With this relation we can rewrite Eq. (A.12) in terms of α, β:

32γσ3 =−1
2

(
α2β+β3) . (A.16)

Expressing Eq. (A.12) also in terms of α, β yields:

48σ2 = 4α2 +β2. (A.17)

Now Eq. (A.17) can be rearranged for α and substituted into Eq. (A.16) which
results in a third order polynomial in β:

3
4
β3 +12σ2β+64γσ3 = 0, (A.18)
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that is used to determine the β. With Eq. (A.17) α can be calculated using the β
and σ. Parameters b, c are obtained by re-substitution:

b = α+β
2

and c = α−β
2

. (A.19)

This means that we can calculate b and c by solving the third order polynomial
in β given by Eq. (A.18), the second order polynomial in α given by Eq. (A.17)
and resubstituting according to Eq. (A.19) for any given pair of (σ, γ). Note that
the skewness of this delay distribution has an upper bound γmax, see Fig. A.2.
Furthermore, note that not every possible triplet (τ, σ, γ) can be realized, even if
γ< γmax, if the distribution is only defined for non-negative values. Only triplets
of (τ, σ, γ) for which m̄− b ≥ 0 is fulfilled exist in this case. This is important to
us, because negative delay times do not exist.

The Laplace transform ĝ(λ) [181] of g(s), used in Chapter 6, is defined as:

ĝ(λ)=
∫ ∞

0
ds g(s) e−λs. (A.20)
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b(σ), γ=0.9
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Figure A.2.: The left plot shows the dependence of the width b and c on the
skewness γ of the two step delay distribution for three different fixed standard
deviations σ. The maximum skewness γ, for which b and c are both positive and
have imaginary part equal to zero, that can be realized is γmax ≈ 0.92. On the
right side the figure shows the dependence of the width b and c on the standard
deviation σ for three different fixed values of the skewness γ. With increasing
skewness the difference in the width of the two steps increases and so does the
hight since the two are connected via the constant area of each of the steps.
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This is obtained by rewriting Eq. (A.2) in terms of Heaviside functions H, using
the relation [182]:

Π

(
t− X

Y

)
= H (t− X +0.5Y )−H (t− X −0.5Y ) , (A.21)

which applied to Eq. (A.2) yields:

g(s)= a [H (s− m̄−b)−H (s− m̄)]+d [H (s− m̄)−H (s− m̄− c)] . (A.22)

The Laplace transform of a shifted Heaviside function [183, 184] is given by:

L [H (t− r)]= 1
λ

e−rλ. (A.23)

Using the linearity property of the Laplace operator [152] we find:

L [af (s)+dk(s)]= aL [ f (s)]+dL [k(s)]= a f̂ (λ)+dk̂(λ). (A.24)

We use this property given in the above equation and the expression of Laplace
transform for shifted Heaviside functions as given by Eq. (A.23) to obtain the
Laplace transform of Eq. (A.22):

ĝ(λ)= e−m̄λ

2λ

{
1
b

[
ebλ−1

]
+ 1

c

[
1− e−cλ

]}
. (A.25)

Approximation to determine the maximum skewness

We expect a maximum skewness for b → 0 and finite c or vice versa due to the
symmetry of the distribution. In this limit Eqs. (A.9) and (A.12) for the variance
and skewness of the two step delay distribution read:

σ̃ ≈ ±c

√
5

48
,

γmax ≈ c3

32σ̃3 .

Now if we plug the first into the second equation we get:

γmax ≈± 1
32

(
48
5

) 3
2 =±0.929516, (A.26)

which is the maximum value for the skewness that we had found plotting b and
c versus the skewness – see Fig. A.2. In the case of c → 0 and finite b one obtains
the same result. We choose the solution with the plus sign for the approximation
of the maximum value of the skewness.
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A.2. The gamma distribution

The gamma distribution is a continuous probability distribution supported on
[0, ∞) with two parameters: a > 0, the so-called shape parameter, and b > 0,
the scale parameter [144]. For integer a the gamma distribution represents the
waiting time distribution [185] for a chain of a Poisson processes, each with rate
1/b, to complete. The distribution is given by the following equation:

gΓ(s; a,b)= sa−1 e−
s
b

baΓ(a)
, (A.27)

where Γ(a) denotes the Gamma function evaluated at a. The mean τΓ of the
distribution [186] is given by its two parameters:

τΓ = ab, (A.28)

which also determine the variance:

σ2
Γ = ab2. (A.29)

0 10 20 30 40
0

0.4

s

g(s)

a=1 b=10 τ=10

a=10 b=1 τ=10
a=100 b=0.1 τ=10

Figure A.3.: Gamma distribution g(s) plotted versus s for 3 different pairs of
parameters a and b, such that the mean τ is constant.
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The skewness γΓ, a measure of the symmetry of the distribution about its mean,
is given by:

γΓ = 2p
a

, (A.30)

and only depends on the shape parameter a. With a = 1 the distribution is expo-
nential with exponent −1/b. As can be seen by looking at the last equation, the
skewness is maximal for the exponential case a = 1, which implies γΓ = 2, and
becomes small for large values of a. This means that the gamma distribution
becomes more symmetric as a increases – see Fig. A.3.

The Laplace transform ĝΓ(λ) of the gamma distribution depends on the two
distribution parameters and reads [152, 153]:

ĝΓ(λ)= (1+bλ)−a. (A.31)

A.3. Distribution composed of two Dirac delta

peaks

Here we present another delay distribution for which the second and third cen-
tral moments can be changed independently while the first moment is kept con-
stant. It means that the variance and the skewness can be changed indepen-
dently for a fixed value of the mean of the delay distribution. We define the delay
distribution shown in Fig. A.4 by:

g(s)= 1
1+a

[aδ (s− m̄)+δ (s− (m̄+b))] , (A.32)

where a > 0 is a real parameter that changes the hight of the first peak and
b > 0 ∈ R changes the distance of the second peak with respect to the first one.
The real parameter m̄ denotes the position of the first delta peak with hight a,
whereas m̄+b marks the position of the second delta peak with hight 1. For this
delay distribution the mean τ, variance σ2 and skewness γ are calculated in this
section. The mean of the delay distribution is defined by:

τ=
∫ ∞

0
ds g(s) s, (A.33)

and substituting Eq. (A.32) for g(s) yields:

τ = m̄+ b
a+1

. (A.34)
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Figure A.4.

The variance is given by the second central moment about the mean of the delay
distribution:

σ2 =
∫ ∞

0
ds g(s) (s−τ)2, (A.35)

which yields after substituting Eqs. (A.32) and (A.34):

σ2 = ab2

(a+1)2 . (A.36)

The third central moment, the so-called skewness of the distribution is given by:

γ= 1
σ3

∫ ∞

0
ds g(s) (s−τ)3 = a(m̄−τ)3 + (m̄+b−τ)3

σ3(a+1)
. (A.37)

For all b > 0 this can be further simplified:

γ = a−1p
a

, (A.38)

i.e. the skewness is independent of b and only depends on the hight of the first
peak.

The Laplace transform of this delay distribution is given by:

ĝ(λ)= e−λm̄

a+1

(
a+ e−λb

)
, (A.39)

and depends on all parameters of the distribution.
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A.4. Gerschgorin’s circle theorem

Gerschgorin’s circle theorem may be used to bound the spectrum of eigenvalues
of complex N ×N matrices.

Let D = {dkl} be a complex N ×N matrix and define
∑

l 6=k |dkl | ≡ rk. So called
Gerschgorin discs are then defined by dkk, the diagonal entry of D, which de-
notes the center and rk the radius. We introduce ~c = {cl} for l = 1, 2, . . . , N the
eigenvector corresponding to the eigenvalue ζ. We omit the zero vector, such that
|ck| > 0. The theorem [156] states that:

All eigenvalues ζ of D lie within the at least one of the Gerschgorin discs.

Proof: ζ~c =D~c written in terms of the components:

(ζ−dkk)ck =
∑
l 6=k

dkl cl hence, |ζ−dkk| ≤
∑
l 6=k

|dkl |
|cl |
|ck|

. (A.40)

If the largest component of~c is ck, then these last ratios are ≤ 1, and ζ lies in the
kth circle: |ζ−dkk| ≤ rk.

For matrices with solely zeros in the main diagonal dkk = 0 holds, and all cir-
cles are centered at zero. In that case all solutions ζ satisfy |ζ| ≤ rk, following
Gerschgorin’s theorem.

A.5. The Lambert W function

The Lambert W function [187], also referred to as the omega function, is a set of
functions which are the inverse relation of:

f (w)= wew (A.41)

where w =W(z) with w, z ∈ C and the defining equation for W(z) is:

W(z)eW(z) = z. (A.42)

A.6. Roots of unity

In Section (9.1) we used for the approximation of the relation between the order
parameter and λ that:

N∑
k=1

ei∆k = 0, (A.43)
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where ei∆N = 1 and ei∆ 6= 1. Here by definition ∆= 2πm
N . The first condition holds

because m ∈ N+. The second condition holds for m 6= 0 and if m
N 6∈ N ∀ m, N,

which is always fulfilled since m < N in our case. The case of m = 0 has to be
excluded and yields a different result, namely:

N∑
k=1

(1)k = N, (A.44)

which recovers the expression that was obtained for the relation of the order
parameter and the λ’s for the phase-locked state in Section 7.2.

For m = 0, 1, . . . , N −1 all ei∆ are the nth roots of unity– see [163] and [164].
These are the solution to the polynomial:

xn −1= 0, (A.45)

where n ∈ N and we defined x ≡ ei∆. With x 6= 1 and xN = 1, Eq. (A.45) factorizes
and we get:

(x−1)(xn−1 + xn−2 +·· ·+ x1 +1)= 0, (A.46)

for which the first bracket cannot be zero since x 6= 1 by definition, and therefore:

(xn−1 + xn−2 +·· ·+ x1 +1)≡
n−1∑
k=0

xk = 0. (A.47)

Since ei∆N = 1, we find for Eq. (A.43):

N∑
k=1

ei∆k ≡ ei∆N −1+
N−1∑
k=0

ei∆k = 0. (A.48)
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B. Simulation methods

The programs for simulating systems of coupled phase oscillators with discrete
and distributed delays are written in the C++ programming language. The GNU-
Scientific Library (GSL) [188] was used to implement spline-interpolation and
integration functions to perform the delay integrals. All simulations of Eqs. (5.1)
have been carried out using Heun’s method [189] or an Euler method [190, 191]
with a step-length of dt = 0.005. For simulations with distributed delays and
gamma function kernel, a cut-off for the tail of the distribution at finite de-
lay was defined. This was chosen such that the resulting error was negligible.
Random numbers for setting random initial conditions were generated using the
Mersenne-Twister random number generator [192, 193].
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