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Chapter 1

General Introduction

1.1 Background

Undoubtedly the growing population causes an increasing human impact on
the environment. As a result, anthropogenic habitat change or destruction,
overexploitation, climate change, and bio-invasions influence ecosystem func-
tioning and cause the largest species mass extinction in the history of earth.
However, we are embedded in this web of life and therefore dependent on our
environment. Thus, any environmental change may cause critical economical
and social problems. Furthermore, there is a feed back of the web of life to
the abiotic environment and the influence of ecological systems, e.g. on the
atmospheric carbon dioxide or the albedo, may cause subsequent changes.
Thus, in the past decades, there has been an increasing concern about the
impact upon human dependency on the ecological environment. The under-
standing of the processes and the underlying dynamics is one of the most
pressing question faced by humanity (Levin , 1999).
The ecological environment is highly diverse and complex. Therefore under-
standing of its processes and dynamics is non-trivial. On large scales one can
find a multitude of different populations interacting in a complex web. The
population dynamics on such webs can be stationary, oscillatory or chaotic,
while the interactions can be cooperative, competitive or predative. The in-
teractions themselves are a result of the interplay between individuals and,
therefore, even the understanding and description of a single interaction be-
tween two species is typically not trivial. Finally, also on the individual level
the complex physiological and behavioural processes are often not fully un-
derstood and still object of ongoing research. The non-trivial nature of our
ecological environment on the one hand and the necessity to understand the
consequences of the environmental change, on the other hand, are motives
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6 CHAPTER 1. GENERAL INTRODUCTION

for an increasing scientific interest, at all scales of observation. Also, the un-
derstanding of the ecological environment on different levels of abstraction
will be the focus of that work.

1.2 Fundamental notions in Ecology

One-species population growth

Although the environmental problems strongly encouraged the research in
the last decades, the ambition to understand our ecological environment is
much older. One of the first known mathematical descriptions of a single pop-
ulation growth was recorded by Fibonacci (1202). In this theoretical work he
assumed for a idealised rabbit population, an increasing growth, which pro-
duces an increasing sequence of population numbers in time, today known
as “Fibonaccis numbers”. Later, in a comprehensive study about population
growth, Malthus, T.R. (1826) states a general exponential nature of popu-
lation growth, which corresponds to a doubling of the population number
in a finite time. Indeed, exponential growth is a good model for population
dynamics on short time scales. However eventually limiting factors set in
and cause a divergence from the exponential trajectory. To model saturation
effects, Verhulst (1838) extended the exponential growth model by a carry-
ing capacity, which is the number of individuals that a system can support.
This, so-called logistic equation, predicts exponential growth for sufficiently
small populations, but leads to an asymptotic convergence to a fixed carrying
capacity for larger populations. This basic model, is a good first-order ap-
proximation of many growth processes; a common, accepted standard model
in ecology; and often the first basic component in more complex models.

Horizontal species interaction - Competition

Explaining the dynamic, processes and consequences of species interactions is
one central goal in ecology and especially the competition between species for
resources or niches is a topic of ongoing scientific debates. Already Naegeli
(1874) and Grinnell (1904, 1917) described competing species and the possi-
bility of a competitive exclusion of species. To formalize species competition,
Volterra (1928) extended the logistic equation by species interaction terms
and showed mathematical the competitive exclusion of one species by an-
other. Gause (1934) provided evidence for a competitive exclusion of species
in experiments and stated that two similar species cannot indefinitely survive
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on just one limiting resource. A more general formulation of this observation
states, that the number of species that coexist indefinitely, cannot exceed
the number of niches in a system (Levin , 1970). This is one of the funda-
mental concepts in ecology: “The competitive-exclusion principle” (Hardin ,
1960). Even if the competitive-exclusion principle is one of the most striking
theorems in ecology, it is rarely observed in nature and many biological com-
munities seem to violate it. One famous example is the paradox of plankton
(Hutchinson , 1961). Typically in aquatic ecosystems a large number of dif-
ferent phytoplankton species coexist on a small number of available resources.
A significant amount of research was done to understand this phenomenon.
Several studies hypothesise, that for phytoplankton external factors, like se-
lective predation, spatial heterogeneity or environmental fluctuations, may
explain the paradox of plankton (Richerson et al. , 1970; Levins , 1979;
Sommer , 1985; Padisak et al. , 1993). Other authors hypothesised that
inherent system properties may allow a coexistence of more species than lim-
iting resources. In a theoretical investigation Armstrong & McGehee (1980)
were able to construct examples of two species coexisting on one resource.
Extending this approach, Huisman & Weissing (1999) showed, by standard
models of competitive exclusion, that competitive interactions which gener-
ate oscillations and chaos may allow the coexistence of many species on a
handful of resources. Nevertheless, even if this approach give possibility of
coexistence of more species then resources, and therefore a possible explana-
tion for the paradox of plankton, this mechanism has never been observed
in nature. Thus, despite intense research there is still no satisfactory and
broadly accepted solution to the paradox of plankton.

Specific characteristics of competition in aquatic ecosys-
tems

Environmental conditions are one major factor which decide the outcome of
species competition. In aquatic ecosystems commonly the environment ex-
hibits little variation on the horizontal axis, while one finds strong gradients
in the vertical direction. Especially growth limitation by light, supplied from
above, and nutrients, often supplied from below, are one fundamental mecha-
nism for the phytoplankton dynamics, governing the outcome of competition.
The growth limitation by light often leads to a phytoplankton maximum in
the upper layers of the water body. However, in nutrient poor waters, the
lack of nutrient in the upper layers, may force the phytoplankton distribution
towards deeper layers. The resulting, so-called deep chlorophyll maximum,
is a common phenomenon in aquatic ecosystems and has a strong impact
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on phytoplankton competition. Usually it is assumed, that the realisation
of either a deep or an upper chlorophyll maximum is solely determined by
the environmental conditions. However, recent field investigations (Venrick
, 1993; Holm-Hansen & Hewes , 2004) pointed out, that both patterns can
appear under similar conditions. Another component in aquatic ecosystems
with influence on species competition is a so called upper mixed layer. Here,
external mechanical forces, e.g. wind, impede the stratification of the wa-
ter body close to surface, which results in a highly mixed layer of a certain
depth. The spatial varying environment and its influence on phytoplankton
dynamics and competition were studied in a series of modelling investigations
(Huisman & Weissing , 1995, 1999; Klausmeier & Litchman , 2001; Diehl ,
2002; Fennel & Boss , 2003; Hodges & Rudnick , 2004; Huisman et al. , 2006).
Starting from these works one part of this thesis investigate the appearance
of upper or deep chlorophyll maxima under the influence of an upper mixed
layer and discuss their effects on phytoplankton competition.

Vertical species interaction - Predation

Beside competition, predation is certainly the most studied type of species
interaction. The corresponding notion of predator-prey cycles is among the
most fundamental phenomena in ecology. First mathematical description of
the predator-prey concept were proposed independently by Lodka (1925)
and Volterra (1926). Already these first basic modelling approaches showed
self-sustained population cycles. One striking example for such population
cycles is the Canadian hare-lynx cycle (Elton , 1942; Blasius et al. , 1999).
Here, the oscillations tends to follow a tight rhythm with a period of about
10 years for more than hundred years. Understanding and explaining the
causes of population cycles has been a central issue in ecology and over the
past decades an extensive list of possible mechanisms have been cataloged
(Berryman , 2002; Turchin , 2003). However, it is known that free-running
oscillations in biological systems may break down after certain time, and
besides the comprehensive theoretical study of predator-prey cycles, there
is no experimental or field study which provides evidence for self-sustained
predator-prey cycles for more than 20 cycles. In contrast to theoretical find-
ings, predator-prey cycles in nature or experiments are often masked by noise
and non-stationary dynamics and a distinction of predator-prey cycles from
noise induced fluctuations may be not trivial. Therefore, a part of this the-
sis focus on an experimental study of predator-prey cycles and a time series
analysis of the measured signals.
The notion of predator-prey cycles is related to another another fundamen-
tal concept in ecology, the so called paradox of enrichment. First noted
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by Huffaker et al. (1963); Rosenzweig (1971), it states, that enrichment
of available resources can have a destabilizing effect on population dynam-
ics (Gilpin , 1972; Rosenzweig , 1977; May , 1987; Abrams & Roth , 1994;
Rosenzweig , 1995). Thereby, steady states may becomes oscillatory and
further enrichment may cause a rapid increase of the cycle amplitudes un-
til extinction occurs (Cunningham & Nisbet , 1983; Pascual & Caswell ,
1997). Nevertheless, even though the paradox of enrichment is well studied
and understood in theory, there have bean few confirmations for “paradox”
behaviour in real systems (Luckinbill , 1974; Tilman & Wedin , 1991), and
a couple of experimental studies showed opposite results (McAllister et al.
, 1972; McCauley & Murdoch , 1990; Kirk , 1998). Thus, the paradox of
enrichment is another phenomena in ecology, which is well understood in
theory, but becomes contradict by observational findings.

Multi species systems - food webs

Competition or predation among two species are key factors for the under-
standing of ecological interactions and the research of such simplified systems
is an adequate and well established approach for the understanding of pop-
ulation dynamics. However, as species interact with a multitude of different
species and are embedded in a diverse and complex web of interactions, the
population dynamics in real food webs may differ from these findings. There-
fore, the investigation of multiple interacting species and in particular food
web stability is a major topic in population ecology. Ecological intuition
as well as the first theoretical approaches (McArthur , 1955; Elton , 1958)
predicted a high stability for complex webs, but since the seminal works of
Robert May (May , 1971, 1972), in which he showed, that large, densely
connected webs are in general unstable, there is an ongoing debate about the
food web diversity and stability (King & Pimm , 1983; Cohen & Newman ,
1985; McCann , 1998, 2000; Montoya et al. , 2002; Jansen & Kokkoris , 2003;
Kondoh , 2003; Emmerson & Raffaelli , 2004; Navarrete & Berlow , 2006).
To resolve this contradiction, it is necessary to find the special properties
of real food webs, which give them there unusual stability. Most of the re-
cent work on food web stability has focused on numerical modelling (Jansen
& Kokkoris , 2003; Kondoh , 2003; Jonsson et al. , 2006; Uchida et al. ,
2007; Garcia-Domingo & Saldaña , 2008). However, in these studies, numer-
ical constraints limits the size of the food webs, whereas real ecosystems are
commonly much larger and may therefore differ in its dynamics. Moreover,
also the number of possible realisations of different food webs is limited in
these approaches, which in turn strongly limits the parameter space that is
studied. Recently generalised modelling, a novel numerical approach for the
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analysis of the stability of families of non-linear rate equations resolve these
constraints (Gross & Feudel , 2006). To extend the recent findings and to
contribute to the understanding of the ecological environment on that scale
of abstraction, in this thesis the generalized modelling approach is used for
a comprehensive search for stability properties in food webs of different size
and structure.
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1.3 Survey of the included manuscripts

There are a couple of fundamental concepts provided from theoretical ecol-
ogy, with no or weak support from field studies or experimental results.
And despite intense research, there are still many open questions. To solve
these problems, further field observations or laboratory experiments are nec-
essary. As such measured signals often suffer from external perturbations
and background noise, methods of time series analysis are necessary for their
interpretation. These methods can thus provide additional insights into the
dynamics. Also, further theoretical research is necessary, to improve ecologi-
cal concepts and to close the gap between theory and observational findings.
On this account, the three papers, included in this thesis, contribute to the
understanding of population dynamics and species interaction on different
scales of abstraction with an experimental study, a time series analysis and
different theoretical investigations.

I. Long-term cyclic persistence and phase signature in
an experimental predator-prey community

The focus of this manuscript are long term predator-prey oscillations in an
experimental system. In order to study this predator-prey interactions for
a preferably long time chemostat experiments were initiated. For the anal-
ysis and evaluation of the measured signals we use well-established wavelet
methods. They provide time and scale decomposed information of the in-
herent cycles and provide insights into the correlation between the measured
signals. Furthermore, using the wavelet method we calculate phase differ-
ences between the measured signals and give a phase difference fingerprint of
our experimental predator-prey system. Finally, basic well established mod-
els are used to create surrogate predator-prey time series. This signals are
analysed with the same method, to provide phase difference fingerprints of
common predator-prey systems for a comparison with the measured signals.

Classification of the personal contribution:

The time series analysis of the measured time series was done by me.
The chemostat experiment were done in collaboration with Guntram Wei-
thoff, Bernd Blasius and Ursula Gaedke.
The discussion and classification of the results were done in collaboration
with Bernd Blasius, Guntram Weithoff, Gregor Fussman and Ursula Gaedke.
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II. Bistability in the Distribution and Composition of
Phytoplankton in a Water Column with Upper Mixed
Layer

In this manuscript we studied the influence of an upper mixed layer on the
phytoplankton distribution and competition. For this purpose, we implement
an advection-reaction-diffusion model, which simulates the phytoplankton
over a vertical water column under the influence of different mixing regimes
and two limiting resources: light and a nutrient, provided from above and be-
low respectively. One focus of that paper is the possibility and understanding
of such bistable distributions, introduced by an upper mixed layer. The bista-
bility will be shown in a single-species system and then further investigated in
a multi-species system. The second focus of this work is the understanding
of phytoplankton competition and coexistence under the given conditions.
For this purpose, we simulate an ensemble of different competition scenarios
of steady and oscillatory phytoplankton dynamics. Furthermore, we present
a novel graphical approach for deducing the competition outcome.

Classification of the personal contribution:

The analysis, evaluation, discussion and classification of the results were done
in collaboration with Alexey Ryabov and Bernd Blasius
The implementation of the model was done by Alexey Ryabov.

III. Importance of linking patterns and weak links for
food web stability.

This manuscript focus on the analysis of food web stability. For this purpose,
we use generalised modelling (Gross & Feudel , 2006), a novel numerical
approach for the analysis of stability in families of non-linear rate equations,
to analyse several billions instances of food webs of up to 50 species with non-
linear interactions. This ensemble of food web topologies is generated by the
niche model (Williams & Martinez , 2000), an algorithm which generates
random food webs. In this way, we explore the stability of food webs in a
large parameter space and analyse its dependence on topological properties
and model parameters.



1.3. SURVEY OF THE INCLUDED MANUSCRIPTS 13

Classification of the personal contribution:

The implementation and numerical analysis were done by me.
The theoretical analysis was done in collaboration with Thilo Gross
The discussion and classification of the results were done in collaboration
with Thilo Gross, Ulf Dieckmann and Simon Levin
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Long-term cyclic persistence and phase signature
in an experimental predator-prey community

Lars Rudolf, Guntram Weithoff, Ursula Gaedke, Gregor Fussmann
and Bernd Blasius

to be submitted

Predator-prey cycles have fascinated ecologists for long times and rank
among the most fundamental concepts in ecology. Not only are cycles
predicted by the simplest ecological models but they also allow preda-
tor and prey populations to coexist indefinitely, despite the exploita-
tive character of their interaction. While cycling populations never
become extinct in theory, it remains an open question for how long
cyclic dynamics can be self-sustained in simple, live communities. Field
or laboratory observations have been restricted to a few cycle periods
and experimental studies indicate that oscillations may be short-lived
in the absence of external stabilizing factors. Here we present chemo-
stat experiments with a prey, Monoraphidium minutum, and a preda-
tor, Brachionus calyciflorus in which population densities and life stage
characteristics were measured under constant environmental conditions.
We report a predator-prey time series of unprecedented length, with
sustained oscillations for more than 50 cycles. Multivariate wavelet
analysis of this and a second, slightly shorter time series reveal contin-
uous oscillations in all measured signals during the whole experimental
time. However the cycles undergo sudden shifts between two differ-
ent dynamic regimes: regularly oscillating episodes with a clear, nearly
constant, predator-prey phase lag are intersected by short time inter-
vals of cycles without any significant phase relationship. The mutual
phase differences between all measured time series can be compactly
encoded in a single polar phase histogram, providing a fingerprint for
the temporal succession of the community. Our results, which are sup-
ported by numerical simulations, establish the phase signature as a ro-
bust measure for identifying species interactions in dynamical systems
and demonstrate the potential for infinite coexistence of predator and
prey populations in a cyclic dynamic regime.

For a long time population biologists have been fascinated by the appearance
of regular cycles in animal populations where population numbers are not sta-
tionary but undergo recurrent changes from one cycle to the next. Oscillating
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population numbers are observed in a large range of communities in field data
(Turchin , 2003) and in the laboratory (McCauley et al. , 1999; Ellner et al.
, 2001; Fussmann et al. , 2000; Yoshida et al. , 2003). A survey of 700 long
term animal population time-series concluded that one-third of all investi-
gated time series shows cyclic dynamics (Kendall et al. , 1998). A prominent
example istthe Canadian hare-lynx cycle (Elton , 1942; Blasius et al. , 1999).
Understanding and explaining the causes of population cycles has been a cen-
tral issue in ecology and over the past decades an extensive list of possible
mechanisms have been cataloged (Berryman , 2002; Turchin , 2003). Cycles
may originate either from external, periodically changing factors or they may
be generated by delayed negative feedback related to the internal structure
of the system, such as age structure or maternal effects. However, the most
prominent mechanism for explaining cyclic dynamics is by “+/-” trophic in-
teractions between populations of exploiter and exploited organisms, as may
be realized, for example in the form of predator-prey, consumer-resource
or host-parasite relationships. A mechanistic underpinning is provided by
mathematical models, which give evidence that predator-prey systems are
inherently prone to generate oscillations. Based on this congruence between
field observations and ecological theory the notion of predator-prey cycles
ranges among the most fundamental concepts in ecology.
Surprisingly, however, when going to actual population surveys, it is not clear
how much of this is backed-up by direct observation of population processes.
The lack of knowledge is partially due to the enormous length of animal
population cycles, with periods of about ten years in North America and
three to four years in Northern Europe (Berryman , 2002; Turchin , 2003).
This clearly set strict limits on the number of observable cycles. The longest
recorded free-running predator-prey time series have a length of about ten
periods, whereas controlled manipulations have been restricted to short-term
experiments lasting just one or two cycles. As another difficulty, any specific
population of interest will be embedded in a complex environment of physical
and ecological interactions, which often obscure the dominant mechanism
which is driving the cycle.
To circumvent these problems, ecologists have resorted to laboratory investi-
gations, where long-running experiments can be realised under strictly con-
trolled conditions (Utida , 1957; Nichelson , 1957; McCauley et al. , 1999;
Fussmann et al. , 2000; Ellner et al. , 2001; Becks et al. , 2005). In a recent
study a complex plankton food web was cultured in a laboratory mesocosm
for prolonged times of more than eight years (Beninca et al. , 2008). In
these experiments intricate temporal structures, including chaotic dynamics,
where observed, which however makes it difficult to identify simple predator
prey signatures. In opposite, there has been a long tradition of experimental
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studies trying to realise long-lasting oscillations in simple communities. In a
seminal investigation by Utida (1957) population numbers of azuki been wee-
vil Callasobruchus chinensis and its larval parasite Heterospilus prosopidis
were recorded for a time span of about 20 cycles (Utida , 1957). However
it was found that oscillations could not be sustained for the whole dura-
tion of the experiment. Instead “with the progress of the experiment the
fluctuations diminished in violence and approached a relatively stable level
or steady state” (Utida , 1957). This observation is paradigmatic for many
other recent experimental studies, where it was observed that the cycles in
closed laboratory predator-prey systems are short-lived and the populations
reach extinction in experimental time scales (Nichelson , 1957; Holoyak &
Lawler , 1996; Ellner et al. , 2001).
All these findings suggest that predator-prey systems inherently are not ro-
bust and may need stabilization by external factors such as spatial exten-
sion, outside immigration or external environmental perturbations (Holoyak
& Lawler , 1996; Ellner et al. , 2001; McKane & Newman , 2005), and the
question arises as to how long cyclic behavior can be sustained in simple
predator-prey communities without the rhythm being re-initiated by the en-
vironment. To our knowledge such an upper limit of cycles, or any upper
bound for such a limit, is not known while, on the other hand, there is no
evidence, either from field observation or from experiment, that free running
predator-prey oscillations can persist for more than about ten cycles. Here
we report results about long-term experiments with an aquatic predator-prey
food chain. Following Fussmann et al. (2000) in our experiments planktonic
rotifers, Brachionus calyciflorus were cultured together with their prey, the
unicellular green algae, Monoraphidium minutum, in a chemostat under con-
stant environmental conditions. We report an exceptionally long predator-
prey time series where sustained oscillations were maintained for the whole
duration of the experiment (total number of measurements equals N = 373
days), lasting over 50 cycles and so five-fold extending the previously known
maximal oscillation duration (Fig.1a). The experiments were reproduced
with very similar results for a time span of > 20 cycles (see Fig.1 supple-
ment). Note that in contrast to other recent experiments, in our system the
oscillations could be maintained without spatial structure, immigration or
external signals.
Since the measured signals show large variability we apply phase analysis.
Phase analysis, to study predator-prey oscillations was introduced in Blasius
et al. (1999) and relies on the fact that the regulatory dependence between
state variables is often encoded in their phase relationship, while the ampli-
tudes may be highly erratic and uncorrelated. It was shown that the wavelet
method (Daubechies , 1992; Kaiser , 1994; Lau & Wen , 1995; Torrence &
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Figure 1: Analysis of the predator-prey time series. a.) Normalized time
series of the predator, Brachionus calyciflorus, (red) and the prey, Mono-
raphidium minutum, (green). b.) Phase portrait of the prey-predator time
series between days 90 and 135 (after smooth filtering). c.) Wavelet co-
herency (WCO) between the predator and prey signals, using a color coding
from 0 (blue) to maximum (red). Significant areas are enclosed by thin solid
line. The two horizontal lines indicate the frequency band [s1, s2] and cir-
cles show the instantaneous oscillation period s̃(t). Further indicated is the
cone of influence. d.) Global wavelet power spectrum P (s) for the predator
(red) and the prey (green). e.) Phase difference θ(t) between predator and
prey, significant relation between both signals is marked in red. f.) Circu-
lar distribution of the mutual phase difference to prey (indicated in green)
for the predator (red), the predator egg-ratio (blue) and the abundance of
egg bearing predators (black). For a better visualization we show the spline
curve and applied a smooth filtering. The solid vertical lines indicate the
time spans which are enlarged in Fig. 2.
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Compo , 1998) is an especially powerful tool for extracting optimally resolved
phase information from epidemiological and ecological time series (Grenfell
et all. , 2001; Cazelles et al. , 2008; Keitt , 2008) and allows to quantify
transient associations between two non-stationary time signals (Bandrivskyy
et al. , 2003; Maraun & Kurths , 2004; Cazelles et al. , 2008). Applying
wavelet analysis to our experimental time series (see methods) reveals contin-
uous oscillations for both signals, during the whole experimental time, with
a various amplitude and a slightly fluctuating frequency (Fig.5 supplement).
Note the sharp maximum of the global wavelet power spectrum with a period
length at T = 6.9 days in both experiments.
Even though the experiment was not perturbed by external influences the
observed time series undergo marked differences in character. Thus, despite
the persistent cyclic behaviour we are able to identify sharp transitions be-
tween time intervals of different dynamic regimes. For most of the time we
observe oscillations with a clear, nearly constant, phase relationship, where
the predator densities follow the prey availability with a phase lag of about
π/2, in accord to what should be expected for classical predator-prey systems.
In this regime, wavelet coherency confirms statistically significant coherent
oscillations between both signals in a frequency band around the main oscil-
lation frequency (Fig.1c). These times of regular oscillations are intersected
by regimes, where the well-defined phase relationship between the measured
signals is suddenly lost, only to be re-initiated shortly after without external
influence. This shift between alternating dynamic regimes is exemplified in
Fig.2 which shows an enlarged view on the signals in a typical time interval.
One can clearly distinguish three sections with different dynamic behaviour
(separated in the figure by vertical lines). The first time interval starting at
day 90 shows a clear predator-prey cycle with a regular period length and
a constant phase lag between prey and predator densities. These regular
cycles are also reflected in the counterclockwise motion in the prey-predator
phase plane (Fig.1b). However this regime of regular oscillations is suddenly
intersected by a more disturbed time interval (in the range from day 135-160)
where the dynamics becomes irregular. Even though the cycles do not break
down and both prey and predators continue to oscillate in abundance, the pe-
riod length becomes highly variable and the phase relationship between prey
and predator is lost (see also phase portraits in Fig.6 supplement). Neverthe-
less, without external intervention, driven solely by the inherent dynamics
of the system, the predator-prey signature is suddenly re-established around
day 160.
The predator-prey phase difference over time (Fig.1e) and its distribution
(Fig.1f) give further insight into the underlying dynamics. We find that in
the time spans where the oscillations in both signals are significantly corre-
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Figure 2: Enlarged view of the predator (red) and prey (green) time series
in a time interval of 100 days. Vertical solid lines indicate time spans with
different dynamic regimes: (day 90-135) clear predator-prey cylce with a
constant phase shift of θ = π/2, (day 135-160) out-of-phase oscillations, (day
160-190) spontaneous reinitiation of the regular phase-locked oscillations.

lated (marked as red, see methods), the phase difference between predator
and prey is locked to a value around π/2 (see Fig.1e). The complex order
parameter Eq.(7) has absolute value R = 0.93 and a mean phase θ̄ = 0.51π.
In contrast, during periods of no significant correlation (time spans of sig-
nificant correlation are interrupted from day 135 to day 160 and from day
220 to day 270) the phases slightly decouple. Repeating the analysis for the
measured density of egg-bearing predators and predator egg-ratio (i.e. the
average number of eggs per female which provides a measure for the fertil-
ity of the population), we find again cycles which are correlated to the prey
availability. The abundance of egg-bearing predators follows the prey cycles
with a phase difference of θ̄ = 0.17π (absolute value of complex order param-
eter R = 0.90), whereas the egg ratio precedes the prey signal, resulting in
a negative phase difference of about θ̄ = −0.14π (absolute value of complex
order parameter R = 0.90).

Using this approach the mutual phase differences between all measured time
series of our experimental community can be quantified and can be compactly
visualized in a polar phase histogram (Fig.1f), which easily allows to read-
off the temporal succession of the community during the cycle. The phase
distributions remain largely unchanged for different values of the wavelet pa-
rameter ω0 and for different wavelet functions. Further, as we find a similar
phase signature for a second, shorter, experimental time series (see Fig.1 sup-
plement), we assume the signature to be representative for our experimental
system. Note that in the shorter time series the predator-prey relationship
is hardly visible, whereas the phase fingerprint remains nearly unchanged
in both time series - a fact, which underlines the robustness of the finger-
print. While most of the phase differences agree very well to what should be
expected from ecological theory, phase relation may not be obvious at first
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glance. For example we find that the predator egg-ratio precedes the phase
of prey availability, which can only be understood by taking the predator life
cycle into account (see below). This demonstrates that the angular phase
histogram provides a characteristic fingerprint for the community structure
of a given system.
Numerical simulations (see Supplement) support the phase signature and
help to understand the origin for the counterintuitive phase distribution
of the egg-ratio. Simulation with a non-stage-structured model revealed a
consistent predator prey phase difference around 0.5π, however in contrast
to the experimental data no phase lag between prey density and egg-ratio
(Fig.3b). Simulations with a stage structured model reveal the impact of
juvenile predators, which are unable to bear eggs, on the phase difference
signature. Using the stage structured model we obtain a perfect agreement
between the phase signatures of experimental and simulated data (Fig.3c).
As the egg production is directly connected to food availability, one would
expect a fast reaction of the egg-ratio to changes in prey availability, which
would mean a small positive phase difference as they are found in the simu-
lations without stage-structure. However, juvenile predators, unable to pro-
duce eggs, can have an important impact as they lead to an early breakdown
of the egg-ratio maximum, caused by the multitude of non-egg-bearing ju-
veniles during the prey maximum, and, therefore a negative phase difference
between egg ratio and prey, in the range of −0.12π to 0 (see Fig.2 supple-
ment).
Nonstationary dynamics on larger time scales were obtained by long time
averaging of the wavelet coefficients, which reveals large fluctuations in the
period length and oscillation amplitude on a time scale of about 50 days.
These findings bear some similarity to the results by Utida (1957) who ob-
served that fluctuations were damped after some periods, but ”in the course
of many generation this damping occurs repeatedly” and ”After the popula-
tions passed through several tens of generations in a state of steady density,
relatively violent oscillations suddenly recurred and were damped in their
turn”. These results lead to a dynamic view of ecological cycles, exhibiting
different dynamic patterns at different time scales. Even though oscillations
persist over the full length of the experiment (50 cycles), at an intermediate
time scale of about 10 cycles the system undergoes sudden shifts between
regimes where the oscillations of predator and prey are strongly phase locked
and other, more perturbed, regimes where this phase-relationship is lost. Re-
markably, the transition between these dynamics seems to arise spontaneous
without external influence (self-sustained reorganization of the system). On
a smaller time scale in the order of the period length of the system we ob-
serve stochastic changes in the amplitude from one cycle to the next, even
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Figure 3: Comparison of laboratory and model phase signatures. Plotted
is the circular distribution of phase differences to the prey (green) for the
predator (red), predator egg-ratio (blue) and egg bearing predators (black).
(a) Experimental results. The predator follows the prey with a phase dif-
ference of π/2, egg bearing animals are slightly delayed to prey availability,
whereas predator egg ratio precedes prey abundance. (b) Simulations of a ba-
sic predator prey model reproduce quantitatively the time delay of predator
and egg bearing predator abundance to prey availability, but fail to repro-
duce the phase of the egg ratio. (c) A model including juvenile predator live
stages is able to reproduce the negative phase difference between egg-ratio
to prey availability.
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though the phase largely remains constant (Blasius et al. , 1999). Finally,
on a time scale smaller than the period length of the system the oscillations
are superimposed by stochastic perturbations.

We can only speculate about the origin of the sudden regime shifts in the
dynamics. Even though the experiments were carried out under strictly con-
stant conditions, we cannot exclude the possibility of small external pertur-
bation (e.g., shifts in room temperature or light intensity) or other influences
from maintenance, possibly even in a periodic (e.g. weekly) fashion, which
might interfere with the ecological dynamics. bIt is also possible that rapid
prey or predator evolution has influenced the ecological dynamics and con-
tributed to the observed regime shifts (Yoshida et al. , 2003, 2007). However,
we can think of no simple explanation how evolutionary change would lead
to the observed pattern where predator and prey repeatedly abandon defined
phase relationships and recur to them at later instances.

Our fast-reproducing algal-rotifer system allowed us to study community dy-
namics for more than 50 cycles. At the same time, we collected data on
the age-structure of the predator population which helped us to perform a
more revealing analysis of the dynamics than is possible for unstructured mi-
crobial populations. We showed that the experimental predator-prey cycles
become manifest as a regular phase-locked succession, a pattern we were able
to visualize as a community fingerprint. This allows to obtain valuable in-
sights into the factors underlying the origin of the oscillations. Our approach
clearly proofs the phase signature as a robust measure for identifying species
interactions, community structure, and the regulatory dependencies between
cyclic state variables in general.

Methods

Experiments.

A chemostat was set-up with a parthenogenetic, filter-feeding rotifer Bra-
chionus calyciflorus as the predator and the unicellular alga Monoraphidium
minutum as the prey under constant temperature (23◦C) and permanent il-
lumination. The chemostat vessel had a volume of 1.5 l and the experimental
volume was 0.8 l. The chemostat was incolulated from stock cultures with
M. minutum and after the algae had established, B. calyciflorus was added
on day 10. The chemostat had a constant inflow of sterile medium with a
rate of 0.55 per day using a peristaltic pump. The medium was a modified
WC-medium after Guillard & Lorenzen (1972) with a reduced nitrogen con-
tent of 80 µmol l−1 nitrate as the limiting resource. A subsample of 8 ml
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was taken daily to determine the abundance of both predator and prey. The
algae were analysed with an electronic particle counter (Schärfe, Reutlingen,
Germany), the animals were counted using an inverted microscope at 100-
fold magnification (TSO-Thalheim, Pulsnitz, Germany). For the animals,
the reproductive status was recorded i.e. the total number of subitaneous
eggs and the number of egg-bearing females. No mictic females or males were
observed throughout the experiment. The ratio of the total number of eggs
and the number of females is the egg ratio which is a measure of the repro-
ductive output of the population. The number of egg-bearing females is an
indicator for the resumption of reproduction after a period of food limitation
(the minimum of the prey abundance within a cycle).

Continuous wavelet transformation (CWT).

The wavelet transform W (s, t) is calculated as the convolution

W (s, t) =
1√
s

∫
dt′ x(t′) ψ∗

(
t′ − t

s

)
, (1)

(‘∗’ denotes the complex conjugate) of the signal x(t) with a localized wavelet
function ψ(τ) centered at time t and dilated by the factor s, here always
taken from 256 uniform steps on a logarithmic scale. After decomposing the
complex valued CWT into amplitude and phase W (s, t) = |W (s, t)| eiφ(s,t)

intuitively it can be understood as the extend |W (s, t)| to which the signal
x(t) at local time t resembles an oscillation with period length s and phase
φ(s, t).
We use the Morlet wavelet ψ(τ) = π−1/4eiω0τe−τ2/2 with ω0 = 6 so that the
scale parameter can simply be interpreted as the period length of the oscil-
lation (Torrence & Compo , 1998). Edge effects are minimized by applying
zero padding to the next highest integer power of two. We always indicate
the cone of influence, which marks the zone in the CWT which is effected
by edge effect (Cazelles et al. , 2008; Maraun & Kurths , 2004; Torrence &
Compo , 1998). Since the CWT, as a map from a one-dimensional signal
to a two-dimensional time-scale representation, does not produce any new
information, the wavelet coefficients are highly redundant, leading to the
appearance of smooth patterns, that may suggest structures which are just
coincidences. The width of the cone of influence provides a rough approx-
imation to the minimal extension of a feature at a given scale in order to
represent genuine cyclical behavior.
The local wavelet power spectrum (WPS) at time t and scale s is given as
WPS(s, t) = W (s, t) W ∗(s, t). The global wavelet powerspectrum, defined
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as the time average of the WPS

P (s) = 〈WPS(s, t)〉, (2)

and measures the averaged variance of the signal at scale s (Cazelles et al. ,
2008).

Bivariate wavelet analysis.

To quantify the statistical relationship between two nonstationary signals
x(t) and y(t), the wavelet cross spectrum (WCS) is defined as the product
of the corresponding wavelet transforms

WCSx,y(s, t) = W x(s, t) W y(s, t)∗. (3)

After decomposition into amplitude and phase WCS(s, t) = A(s, t) ei∆φ(s,t)

the phase describes the delay ∆φ(s, t) = φx(s, t) − φy(s, t) between the two
signals at time t and scale s, whereas the amplitude A(s, t) expresses the
covarying power of two processes.
The WCS is not specific because it exhibits high values when either a true
covariance exists or one of the spectra exhibits a high value. A scale and
time resolved measure for the interrelation between the two signals is given
by the normalized wavelet coherency (WCO)

WCO(s, t) =
| 〈WCS(s, t)〉 |

〈W x(s, t)〉1/2 〈W y(s, t)〉1/2
(4)

where “〈〉” denotes a smoothing operator in the scale-time plane (Torrence
& Compo , 1998; Maraun & Kurths , 2004; Cazelles et al. , 2008). Here,
smoothing in scale direction was obtained by averaging over a constant win-
dow of 0.5 octaves on a logarithmic scale. For smoothing in time direction we
used a scale-dependent window of size 6s+1, corresponding to three periods
in each direction (Maraun & Kurths , 2004).
Following Maraun & Kurths (2004), to assess the statistical significance, we
simulated 10000 realizations of two independent Gaussian white noise pro-
cesses, and assume two signals to be significant correlated, for such time and
frequency values, where the WCO-correlation coefficient is above a signifi-
cance level of 0.917 corresponding to a 95% critical value.

Phase signature of community succession.

Assume that two signals x(t) and y(t) oscillate with a common but non-
stationary period length s̃(t). Here we define s̃(t) as the scale at time t
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having the maximal wavelet cross spectrum over all scales in a prefixed band
[s1, s2] (Bandrivskyy et al. , 2003)

s̃(t) = maxs1<s<s2WCS(s, t). (5)

The upper and lower frequency band boarders s1 and s2 are taken according
to values where the wavelet power P (s) is reduced to a factor of 0.95. These
values s(t) define a line of the strongest co-oscillating components. Inserting
this line in the WCS we obtain the phase difference θ(t) between the two
signals at every time instance

θx,y(t) = φx(s̃(t), t) − φy(s̃(t), t). (6)

For statistical analysis only such values are taken into account which are
located inside the cone of influence and inside the statistically significant
areas in the WCO (indicated as red lines in Fig.1e).
The significance can be computed with the complex order parameter

Reiθ̄ =
1

N

∑
k

eiθk . (7)

Here the angle θ̄ indicates the mean phase difference between the two signals
and the absolute value 0 ≤ R ≤ 1 measures the strength of the peak. The
angular deviation of the distribution is defined as σ =

√
2(1 − R). To verify

if the distribution has a mean distribution can be verified with the Rayleigh
test. We calculate z = NR2, where N is the number of data points.

Simulation analysis.

Our model is given as a system of nonlinear differential equations (see sup-
plementary information for model equations and parameter values). The
model is based on a standard chemostat model (Fussmann et al. , 2000) and
describes the state variables: limiting nutrients, algal abundance and either
rotifer abundance or, as an extension, various rotifer life stages.
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Figure 1: Analysis of an equivalent shorter 178 days experimentally
measured time series.
Experiments have been carried out as in the longer experiment (see Fig.1
in main text). a, Normalized time series of the predator (red) and the prey
(green). b, Prey-predator phase portrait of a selected time interval with clear
oscillations. c, Wavelet coherency (WCO), with a color coding from 0 (blue)
to 1 (red). Significant areas are enclosed in thin solid lines. Further shown
is the cone of influence (thick solid line). d, Normalized mean of the wavelet
power spectrum (WPS) for the predator (red) and the prey (green). e,
Phase difference between predator and prey, significant relation between both
signals is marked red. f, Circular distribution of the mutual phase difference
to prey (indicated in green) for the predator (red), the predator egg-ratio
(blue) and the abundance of egg bearing predators (black). Complex order
parameters for the distributions of the phase to the prey density are: predator
(R = 0.87, θ̄ = 0.49π ± 0.16π), egg-ratio (R = 0.83, θ̄ = −0.08π ± 0.18π),
egg-bearing animals (R = 0.94, θ̄ = 0.27π±0.11π). For a better visualization
we show the spline curve and applied a smooth filtering. The findings are
comparable to that of the longer 373d time series, however as shorter time
series are more influenced by stochastic disturbances the phase difference
distributions are broader and more unclear.
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Figure 2: Simulated time series without noise reveal the influence
of juvenile predator life stages on the phase relationship between
the time series.
Plotted are the normalized densities (between 0 and 1) of the simulated time
series in the deterministic model without any stochastic influence.
Top: Simulation results in the basic model, without predator live stages.
While the predator and the egg bearing predators follow the prey signal with
a certain delay, the predator egg-ratio coincides with the prey signal.
Bottom: Simulation results in the extended model with 21 juvenile and one
adult predator life stage. While the predator and the egg bearing predators
follow the prey signal with a certain delay, the predator egg-ratio precedes
the prey signal.
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Figure 3: Phase analysis of stochastic simulation without predator
live stages.
Results are shown for the numerical simulations in the basic model without
predator live stages under the influence of stochasticity. Results were highly
robust against the type of noise which was implemented in the numerical sim-
ulations. Here we show results were additive white noise of strength

√
C and√

A was introduced into the equations for the algae and the adult predators,
respectively. Additionally measurement noise was simulated by multiplying
each simulated density by a random number drawn from a uniform distribu-
tion in the range [0.5, 1.5].
a, Simulated time series of the predator (red) and the prey (green) for 400
days. b, Wavelet coherency (WCO) between the predator and prey signals,
with a colour coding from 0 (blue) to maximum (red). Significant areas are
enclosed by thin solid line. The two horizontal lines indicate the frequency
band [s1, s2] and circles show the instantaneous oscillation period s̃(t). Fur-
ther indicated is the cone of influence. c, Normalized mean of the wavelet
power spectrum (WPS) for the predator (red) and the prey (green). d, Phase
difference between predator and prey, significant relation between both sig-
nals is marked red. e, Circular distribution of the mutual phase difference
to prey (indicated in green) for the predator (red), the predator egg-ratio
(blue) and the abundance of egg bearing predators (black). For a better
visualization we show the spline curve and applied a smooth filtering.
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Figure 4: Phase analysis of stochastic simulation with predator live
stages.
Wavelet analysis of numerical simulations in the extended model with 21
predator juvenile live stages under the influence of stochasticity. Noise was
introduced as in the previous figure. a, Simulated time series of the preda-
tor (red) and the prey (green) for 400 days. b, Wavelet coherency (WCO)
between the predator and prey signals, with a colour coding from 0 (blue)
to maximum (red). Significant areas are enclosed by thin solid line. The
two horizontal lines indicate the frequency band [s1, s2] and circles show the
instantaneous oscillation period s̃(t). Further indicated is the cone of influ-
ence. c, Normalized mean of the wavelet power spectrum (WPS) for the
predator (red) and the prey (green). d, Phase difference between predator
and prey, significant relation between both signals is marked red. e, Circu-
lar distribution of the mutual phase difference to prey (indicated in green)
for the predator (red), the predator egg-ratio (blue) and the abundance of
egg bearing predators (black). For a better visualization we show the spline
curve and applied a smooth filtering.



32 CHAPTER 2. ARTICLES

pe
rio

d 
le

ng
th

 (
d)

0 50 100 150 200 250 300 350

16
8

4
2

pe
rio

d 
le

ng
th

 (
d)

0 50 100 150 200 250 300 350

16
8

4
2

pe
rio

d 
le

ng
th

 (
d)

0 50 100 150 200 250 300 350

16
8

4
2

Figure 5: Additional wavelet plots of the long measured time series.
Plotted are the local wavelet power-spectrum (WPS) for the predator (top)
and prey (middle) signals in color-coding.
bottom: the corresponding wavelet cross-spectrum (WCS) between both
time series.
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Figure 6: Phase portraits in different dynamic regimes.
Plotted are the phase portraits in the prey-predator phase plane of the long
measured predator-prey, corresponding to the three time windows with dif-
ferent dynamic outcome in Fig. 2 (main text), showing a regular cycles (day
90-135); b disturbed cycles (day 135-160); c reorganized cycles (day 160-190).
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Simulation analysis

Numerical simulations of the experiment have been performed in a standard
chemostat model using two different model versions:

• the basic model consists of the state variables Nitrogen N , the con-
sumer Monraphidium minutum M and its predator Brachionus calyci-
florus B (in the basic model simulated without live stages)

dN

dt
= δ(Ni − N) − FM(N)M

dM

dt
= FM(N)M − 1

ε
FB(M)B − δM

dB

dt
= FB(M)B − (δ + m)B.

(1)

• the extended model additionally consists of L juvenile predator life
stages Ji (i = 1 . . . L) and one adult predator live stage A (so that
B = A +

∑L
i=1 Ji)

dN

dt
= δ(Ni − N) − FM(N)M

dM

dt
= FM(N)M − 1

ε
FB(M)(

L∑
i=1

Ji + A) − δM

dJ1

dt
= FB(M)A − (δ + m + a)J1

dJn

dt
= a βJn−1 − (δ + m + a)Jn

dA

dt
= a βJL − (δ + m)A .

(2)

In both model versions algal nutrient uptake and predation are modeled with
Monod functions

FM(N) =
rMN

KM + N
FB(M) =

rBM

KB + M
. (3)
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The number of egg bearing animals E was considered to be proportional to
the growth rate (in the basic model we set A = B)

E = FB(M) · A (4)

and the predator egg-ratio ρ was calculated as the ratio between egg bearing
animals and total predator density, yielding

ρ = FB(M) · A

B
. (5)
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Variables:

• N - nutrient (Nitrogen) (mol N l−1)

• M - prey (Monoraphidium m.) (mol N l−1)

• B - predator (Brachionus c.) (mol N l−1)

• A - adult predators (mol N l−1)

• Jn - predator in juvenile stage n (mol N l−1)

• E - egg bearing animals (mol N l−1)

• ρ - predator egg ratio

Parameters:

• a - transition rate between successive live stages (10 d−1)

• β - biomass ratio between two successive live stages (1.08)

• δ - flow rate (0.55 d−1)

• ε - predator assimilation efficiency (0.25)

• KB - half saturation constant predator growth (30 mol N l−1)

• KM - half saturation constant prey growth (4.3 mol N l−1)

• L - number of juvenile life stages (21 or 7)

• m - predator mortality (0.055 d−1)

• Ni - Nitrogen in inflow (80 mol N l−1)

• rB - maximum predator growth rate (2.25 d−1)

• rM - maximum prey growth rate (3.3 d−1)
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Bistability in the Distribution and Composition of
Phytoplankton in a Water Column with Upper
Mixed Layer

Alexei B. Ryabov, Lars Rudolf and Bernd Blasius

to be submitted

Limitation of phytoplankton growth by light and nutrients commonly
leads to either surface or deep chlorophyll maxima. Usually it is as-
sumed that the realization of these two configurations is determined by
the environmental conditions. However some recent field investigations
pointed out that both patterns can appear under similar conditions.
Here we analyze the influence of an upper mixed layer (UML) in an
advection-reaction-diffusion model for the growth of a phytoplankton
community in a vertical water column. The model predicts two alter-
native density configurations and may be bistable (realized configura-
tions depends on initial conditions) or metastable (transition between
solutions takes many years). In both regimes the system is very sensi-
tive to disturbances which can induce long-lasting shifts in the system’s
state. A system of two competing species exhibits bistability in the spa-
tial distribution and in the competition outcome. We present a novel
graphical approach for deducing the competition outcome. Moreover,
we identify a subtle competitive exclusion effect when oscillatory states
in the lower layers are replaced by steady solutions in the UML. Our
findings proof the UML to be a major factor controlling the spatial or-
ganization and species composition of the whole water column.

Introduction

The survival and competition of species in an heterogeneous environment
has been a fascinating question for many ecologists (see e.g. Holmes et al.
1994; Tilman and Kareiva 1997; Huisman et al. 1999c; Neuhauser 2001). In
many systems the spatial diversity of natural populations originates mainly
from some underlying abiotic heterogeneity of the environment. If growth
conditions vary between different locations then this spatial variation should
be reflected in the density distribution of natural populations. After the
seminal papers by Skellam (1951) and by Kierstead and Slobodkin (1953),
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the dynamics of such systems have often been analyzed in terms of favor-
able and unfavorable patches (see e.g. Okubo and Levin 2001; Cantrell and
Cosner 2001; Birch et al. 2007). This approach assumes that space can be
divided into regions of positive and negative net growth, between those the
organisms are transported by diffusion and advection. Although realistic in
many situations, these suggestions, however, do not hold in some resource-
consumer systems, in which the size, the form, and even the location of the
species habitat may vary, reflecting external and internal perturbations.
The dynamics of phytoplankton profiles in an incompletely mixed water col-
umn represents an important example of such systems (see e.g. Radach and
Maier-Reimer 1975; Jamart et al. 1977; Shigesada and Okubo 1981; Varela
et al. 1992; Klausmeier and Litchman 2001; Yoshiyama and Nakajima 2002;
Hodges and Rudnick 2004; Huisman et al. 2006; Beckmann and Hense 2007).
Growth of phytoplankton cells is usually limited by light, supplied from the
surface, and by nutrients, diffusing from the bottom. Thereby, the light lim-
itation leads to a surface phytoplankton maximum, whereas lower nutrient
concentrations at the bottom favors phytoplankton build-up in deeper lay-
ers (Venrick 1973, 1993). If the chlorophyll:biomass ratio does not change
with depth, this maxima coincide with deep chlorophyll maxima (DCM),
which are a widespread phenomenon and constitute one of the most striking
characteristics of nutrient poor waters in ocean ecosystems and freshwater
lakes (Steele and Yentsch 1960; Anderson 1969; Abbott et al. 1984; Cullen
1982; Holm-Hansen and Hewes 2004; Raven and Falkowski 1999; Tittel et al.
2003).
Moreover, most light limited species may have a positive production rate
close to the surface, whereas the higher nutrient requirements results in the
subsurface productivity (see e.g. Venrick 1993). This means that a produc-
tion layer is species specific. Furthermore, as the biomass of each species
shades light and consumes nutrients, this location will depend on the current
abundance of a phytoplankton species, on the invasion of another species,
etc. Even though this mobility of the favorable layer may lead to new types
of dynamics (Yoshiyama and Nakajima 2002; Huisman et al. 2006) and new
aspects of the species competition (Britton and Timm 1993), this problem
still has not received sufficient attention in the literature.
What is more, this topic has a great ecological importance, as phytoplankton
form the basis of aquatic food webs and provide an essential part of the
Earth’s oxygen. They are also the major component of the biological carbon
pump, a mechanism exporting the greenhouse gas CO2 into the oceans’ deep
layers (Falkowski et al. 2000). Climate models predict that the ongoing
global warming may result in the higher water stratification (Bopp et al.
2001; Sarmiento 2004), thereby affecting the main component of the ocean’s
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metabolism.
Theoretical models have been a useful approach to describe and understand
the dynamics of nutrient limited phytoplankton growth in constant and sea-
sonally driven environments (Huppert et al. 2002, 2004). The dynamics,
competition and structuring within a vertical water column have been inves-
tigated in a series of modeling investigations (Shigesada and Okubo 1981;
Huisman and Weissing 1995; Huisman et al. 1999c; Klausmeier and Litch-
man 2001; Diehl 2002; Hodges and Rudnick 2004; Huisman et al. 2006;
Beckmann and Hense 2007). It was shown that a given set of parameters
may lead to either a surface or a deep chlorophyll maximum, whereby the
location of the maximum is entirely determined by the environmental con-
ditions. These model results are in agreement with many field studies (e.g.,
Aristegui et al. 2003; Matondkar et al. 2005; Weston et al. 2005). However,
in a few recent investigations (Venrick 1993; Holm-Hansen and Hewes 2004),
either a maximum in the upper mixed layer (UML) or a maximum below it
were observed under almost the same conditions.
An upper mixed layer commonly occurs in oceans and lakes due to mechan-
ical perturbation of the surface waters (e.g., wind, waves, storms), and is
characterized by the strong turbulent mixing in contrast to the rather slow
diffusion transport in the deeper layers. The depths of a UML can vary from
10 m to 200 m or more (Deuser 1987; Venrick 1993; Law et al. 2000).
A UML is one of the major components influencing the aquatic environment
close to the surface. Firstly, it provides almost uniform distributions of re-
sources (with except of light) and biomass. Secondly, sinking phytoplankton
species require a sufficiently high diffusivity to prevent the population wash-
out from a favorable area, whereas a deep UML may result in the extinction
of light limited species (Huisman et al. 1999b). Nevertheless, previous theo-
retical approaches showed that a UML has vanishing effects on the dynamics
of phytoplankton if the self-shading of phytoplankton biomass (Fennel and
Boss 2003; Hodges and Rudnick 2004) or the heterogeneity of the nutrient
distribution (Huisman et al. 1999c) are negligible.
However, taking into account both the light and the nutrient heterogeneity,
Yoshiyama and Nakajima (2002, 2006) demonstrate that in a range of pa-
rameters the phytoplankton profiles exhibit bistability, characterized by the
placement of phytoplankton maxima in either the deep or the upper layers.
Thereby, depending on the initial conditions, the production layer may have
two different stable locations. This model however has some restrictions. In
particular, Yoshiyama and Nakajima (2002) assume that a water column is
divided into an infinitely mixed UML and poorly mixed lower layers, with
a very small diffusivity across the separating boundary layer (thermocline),
that leads to vertical phytoplankton patterns with a sharp edge at the ther-
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mocline. Moreover, the competition of species, possibility of the oscillatory
solutions and other important questions about the role of the UML still re-
main open.

To progress this investigation and to address these questions we propose a
mathematical model for the growth of a nutrient and light limited phyto-
plankton community in a vertical incompletely mixed water column with a
UML. We find that a UML ameliorates the growth conditions close to the
surface. Even though the spatial extension of the UML may be quite small
compared to the rest of the water body, this can have drastic effects because
organisms close to the surface occlude light and prevent growth in all deeper
layers. In this way the presence or absence of a UML turns out to be a major
factor controlling the vertical distribution and competition outcome in the
whole water column. Most notably, the spatial density profile can become
bistable with vertical maxima either close to the surface or in deep layers.
Further the UML can strongly modify the competition outcome between dif-
ferent phytoplankton species by providing a vertical niche for species which
are better adapted to the conditions close to the surface. Moreover, in this
section, we show that a light limited species can obtain a competitive advan-
tage if the diffusivity in the deep layers is reduced below a critical value. In
this case the species composition is determined by the dynamic state, and
the oscillatory states in the deep layers are displaced by steady solutions in
the UML. To analyze these effects, we present a graphical approach which
allows to deduce the competition outcome from the equilibrium pattern of
each species alone .

Model

The appearance of a vertical phytoplankton profile is a complex process
subjected to many factors, such as the availability of light and nutrients,
the concentration of carbon, temperature of water, upwelling, downwelling,
grazing, seasonal changes, etc. However, in many regions of the world’s
ocean only two factors are crucial. First, the reduction of the light intensity
with depth makes deep layers unfavorable for photosynthetic phytoplankton
species. Second, an opposing gradient of nutrients can often maintain the
positive net production rate only in deep subsurface layers.

It is evident that the phytoplankton profile is determined by resource dis-
tributions. However, the biomass consumes nutrients, shades light and is
remineralized back into a nutrient pool. Thereby the biomass, in turn, influ-
ences the resource profiles, and a favorable layer for phytoplankton appears
as a result of the consistent dynamics of all components.
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For simplicity, consider the dynamics of only one species in a vertical water
column of depth ZB (the multispecies model see in Supplementary Informa-
tion). Let P (z, t) denote the density of the species at time t and depth z.
Assume that there are only two limiting factors: the concentration of a nu-
trient, N(z, t) and the light intensity, I(z, t). Coupling of the nutrient and
the phytoplankton dynamics leads us to the system of two reaction-diffusion
equations (Radach and Maier-Reimer 1975; Jamart et al. 1977; Klausmeier
and Litchman 2001; Fennel and Boss 2003; Hodges and Rudnick 2004; Huis-
man et al. 2006; Beckmann and Hense 2007)

∂Pi

∂t
= growth − loss − sinking + mixing (1)

= µiPi − mPi − v
∂Pi

∂z
+

∂

∂z

[
Dz

∂Pi

∂z

]
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= −α
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∂z

[
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∂N
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]
where µ(N, I) is the local growth rate, m is the mortality rate, v is the phy-
toplankton sinking velocity, Dz is the depth dependent turbulent diffusivity,
α is the nutrient content of a phytoplankton cell, and ε is the phytoplankton
recycling coefficient.
Equations (1) and (2) are coupled by means of the growth rate µ(N, I) which
depends on the local resource availability and also controls the nutrient up-
take. Assuming that the limitation of growth follows the Michaelis-Mentel
kinetics (e.g. Turpin 1988) and both resources are essential (von Liebig’s law
of minimum), we obtain

µ(N, I) = µmax min

(
N

HN + N
,

I

HI + I

)
, (3)

where µmax is the maximum growth rate, HN and HI are the corresponding
half saturation constants. Varying HN and HI we can model, for instance, a
species which is better adapted for the light (a smaller HI) or for the nutrient
(a smaller HN) competition.
Light dissipates with depth as it is absorbed by the biomass, water, clay par-
ticles and many other absorbing substances. Assume that the light intensity
decreases exponentially according to Lamber-Beer’s law (see e.g. Shigesada
and Okubo 1981, Kirk 1994)

I(z) = Iin exp

[
−Kbgz − k

∫ z

0

n∑
i=1

Pi(ξ, t)dξ

]
, (4)
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where Iin is the incident light intensity, Kbg is the turbidity of the water
without biomass, and k is the light absorption coefficient a phytoplankton
cell.
To describe the water column stratification, we assume a high diffusivity,
DU , in the upper layer and a much smaller mixing, DD, in the layers below
the UML. A gradual transient from one area to another (see supplementary
information for the detailed description).
To specify the boundary conditions for equations (1) and (2), we assume that
the biomass and the nutrient cannot diffuse across the surface of the water
column, the bottom is also impenetrable for the biomass, and a supply in the
sediment maintains a constant nutrient concentration, NB, at the bottom.
In a deep incompletely mixed water column (see Table 1 for the parameters)
the diffusive time scale τD = (ZB − Zmix)

2/2DD ' 10 − 30 years is much
larger than the biological time scale τB = µ−1

0 ' 1 day. Thus the nutri-
ent dynamics (in the deep, free of the biomass layers) is a quasistationary
process in comparison with the development of phytoplankton profiles. To
minimize the influence of the biomass, we assumed initially a small concen-
tration of phytoplankton (P (z, 0) < 1 cell m−3), whereas for the nutrient
we used two different initial profiles, describing a nutrient saturated water
column (N(z, 0) = NB) and a nutrient poor upper layer (N(z, 0) = 0 if
z ≤ Zmix). Checking the stability of solutions, in each case we simulated
dynamics for 50,000 system days (approximately 130 years). Further details
of the model and of the numerical scheme are presented in the supplementary
informations.

The single species model

We first concentrate on the dynamics of a single species population and
describe the formation of a DCM in a water column without a UML. Suppose
that we start with an initially nutrient rich system (N(z, t) = NB). Thereby
the nutrient limitation is negligible and we observe the rapid formation of
a transient phytoplankton maximum close to the surface (Fig. 1A). This
phytoplankton profile P (z, t) is, however, not stable. With the depletion of
the nutrient in the surface layer the production layer, i.e. the layer where
µ(N, I) ≥ m, shifts downwards, until the systems reaches a stable equilibrium
(Fig. 1B), in which the upward flux of nutrient compensates the nutrient
consumption and the further sinking of the production layer is balanced by
the light limitation (Klausmeier and Litchman 2001).
Note that the spatio-temporal evolution of the concentration profile P (z, t)
depends on the growth conditions at all vertical positions. Due to self-shading
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Figure 1: Typical vertical phytoplankton profiles P (z) and the normalized
growth rate µ(N, I)/µmax in the single species model. Without a UML, a non-
stable phytoplankton maximum (A) evolves to the stable state (B). Under
the same conditions in a system with a UML, we observe two alternative
stable configurations: a phytoplankton profile with a maximum in the deep
layers (C) and with a maximum in the UML (D). Black and gray arrows
show the centers of biomass and net production, respectively.

and the water turbidity the light intensity I(z, t) is reduced in deeper layers
that increases the limitation by light in the deep layers. Contrarily, the nu-
trient concentration N(z, t) is close to zero within the bulk of phytoplankton
biomass and above it, and increases almost linearly with depth below the
phytoplankton peak (Fig. 1, see also Fig. 2 and Fig. 3 in the supplementary
information) for the resource distributions). This shaping of the spatial de-
pendence of the growth limiting factors self-consistently depends on the full
phytoplankton density profile P (z, t), a fact which makes the problem very
hard to understand without mathematical simulation.

A rough insight into the time evolution of P (z, t) can be gained by consid-
ering the centers of biomass Zm =

∫
zPdz/

∫
Pdz and of phytoplankton net

production Zg =
∫

zgPdz/
∫

gPdz (black and gray arrows in Fig. 1, respec-
tively), where g(z) is the net phytoplankton production rate which includes
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reproduction, mortality, sinking and diffusivity. In an incompletely mixed
water column without a UML the position of the center of mass, Zm, follows
that of Zg. Thereby the phytoplankton production around Zg shifts the mass
center Zm, changing the local nutrient consumption and the light absorption,
that in turn is able to shift the growth center Zg. In this feedback-loop, the
system finally reaches an equilibrium configuration where both centers coin-
cide, Zg = Zm, giving rise to a DCM (Fig. 1B).

Now suppose that there is a strong mixing in the upper layer. If the bulk
biomass is located sufficiently deep, then the mixing in the upper layer has
practically no effect and an identical DCM can persist (Fig. 1C) independent
of whether or not a UML is present. Here, we always assume that the depth of
the UML is smaller than the compensation depth (a depth at which µ(I) = m
in the absence of biomass, see e.g. Sverdrup 1953, Huisman et al. 1999b).

In contrast, if the phytoplankton biomass is initially located close to the
surface, it will be almost uniformly distributed within the UML. The position
of Zm is then fixed approximately in the middle of the UML and is almost
uncoupled from Zg (Fig. 1D). Therefore a gradual shift of the center of mass
into the deep layers is no longer possible and the transition to a DCM can
only take place if the light intensity below the UML is sufficiently large to
provide positive net growth in the deep layers – otherwise the phytoplankton
remains trapped in the UML. We denote this stable configuration of a nearly
uniform phytoplankton profile in the UML as an upper chlorophyll maximum
(UCM, note that all acronyms are listed in Table 2). Thereby, Figs. 1C and
1D show that with a UML, depending on the initial conditions, the system
can undergo two very different spatial configurations of either a deep or an
upper phytoplankton maximum.

Fig. 2 depicts the typical spatio-temporal evolution of the phytoplankton
density. Without a UML (Fig. 2A), an initial phytoplankton maximum at
the surface slowly moves downward until the distribution converges to a
stable DCM equilibrium. However, as is shown in Fig. 2B, DCM’s are not
necessarily stable states. Huisman et al. (2006) showed that at very small
diffusivity, DD, the sinking of biomass may destabilize the deep chlorophyll
maxima and the density profile shows sustained regular or chaotic oscillations
of biomass. Moreover, if the diffusivity is lower than the minimal diffusivity

Dmin =
v2

4(µ(NB, Iin) − m)
(5)

the sinking phytoplankton biomass cannot survive (Riley 1949; Shigesada
and Okubo 1981). As will be shown below, these factors can play a crucial
role in a system with an UML.
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Figure 2: Time evolution of phytoplankton density, P (z, t), in color-coding
(×107 cells m−3) for different values of DD and initial conditions, in a system
without a UML (A-B) and in the presence of a UML (C-H). Black lines
track the evolution of the center of biomass, Zm, white dashed lines show
the depth of the UML. (A) Gradual evolution of a DCM, DD = 0.3 cm2/s.
(B) Oscillations of the biomass for very small mixing, DD = 0.12 cm2/s.
Bistability: depending on the initial conditions a stable UCM (C) or a stable
DCM (D) is formed (value of DD as in A). For any initial conditions (E)
only a DCM is stable, DD = 0.2 cm2/s, or (F) only a UCM is stable, DD =
0.4 cm2/s, however the transient process may last a long time. Oscillations
of the biomass (G) are not affected by a UML, DD = 0.12 cm2/s, and (H)
induced by a UML, DD = 0.04 cm2/s.
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While only two types of globally attracting solutions (Figs. 2A and 2B) hold
for a system without a UML, in the presence of a UML the dynamics may
be bistable. Under the same parameters as in Fig. 2A, an initially nutrient
saturated water column gives rise to a stable UCM (Fig. 2C), whereas an
initially nutrient depleted water column leads to a DCM (Fig. 2D). In the
one species model, we observe bistability only in a certain parameter region in
which a DCM is not affected by the upper layer and a UCM contains enough
biomass to limit growth in the deep layers. The diffusivity DD is a suitable
bifurcation parameter as it controls the nutrient flux from the bottom and an
increase of DD rises the level of the DCM (Klausmeier and Litchman 2001).
Thus decreasing DD in comparison with Fig. 2C and 2D, we obtain a stable
or an oscillatory DCM (Figs. 2E and 2G, respectively), whereas for larger
values of DD only upper maxima are stable (Fig. 2F).
Consider the transition from an unstable upper maximum to a stable DCM
(Fig. 2E). Here the water column is initially nutrient saturated that gives rise
to a uniform phytoplankton profile in the UML. While, as mentioned above,
the center of biomass Zm is trapped inside the UML, with ongoing nutrient
depletion the phytoplankton density is slowly declining. This configuration
can be sustained for a long time, which has the order of the diffusive time
scale τB = (ZB −Zmix)

2/(2DD). For instance, in deep waters this transition
will last several years. However, as soon as the biomass in the UML is not
sufficient to shade light below it, the system undergoes a rapid transition to a
DCM. This transition occurs on the biological time scale τB = µ−1

0 and takes
approximately 10-50 days for the model in our parameter range. Obviously,
in a system with essential seasonal variability this transition will never be
reached. Similar dynamics with two very different time scales are observed in
Fig. 2F, where a DCM gradually moves upward until it reaches the bottom
of the UML, Zmix, and then the biomass rapidly shifts into the upper layer.
The further decrease of DD leads to the oscillatory deep maximum, which
might be not affected by the UML(Fig. 2F). What is more, the UML can
support these oscillations even if DD < Dmin (Fig. 2H). Now, in the absence
of biomass the nutrient can freely diffuse towards the UML, where the popu-
lation can outgrow sinking as soon as the nutrient concentration has reached
a critical level. However, if the biomass in the UML is not limited by light,
the depletion of the nutrient shifts the prodaction layer downwards into the
weakly mixed water, where the biomas slowly sinks, consuming the nutrient.
Finally the population declines because of the light limitation and a new
portion of the nutrient can reach the UML.
The stability of upper phytoplankton maxima depends also on the mixing
intensity in the UML, DU . Fig. 3 shows the position of the phytoplankton
center of mass, Zm, as a function of DU , for different values of the diffusivity
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in the deep layers, DD. With the increase of DU (with the development of
the UML) three scenarios are possible. If the center of biomass is located
within or slightly below the UML, then with the increase of DU it shifts
toward the UML center. In contrast, if the phytoplankton maximum settles
sufficiently deep, then it is not affected by the presence of the UML. For
intermediate parameters starting from some critical value of DU the system
becomes bistable. Note, that the further increase of DU does not yield any
qualitative changes.

Figure 3: The depth of the center of phytoplankton biomass, Zm, with the in-
crease of DU , for small to large values of the deep diffusivity DD: 0.15 cm2/s,
only DCM (dot-dash line); 0.45 cm2/s, bistability (solid lines); 0.6 cm2/s and
1.0 cm2/s, only UCM (dotted and dashed line, respectively). The thin dashed
line shows the depth of the UML, Zmix. NB = 30 mmol m−3.

To investigate the system behavior in a large range of parameters we per-
formed simulations for 900 pairs of (NB, Iin) and (NB, DD). The results are
presented in the stability diagrams Fig. 4A and 4B. As shown in Fig. 4A,
large values of Iin lead to a DCM and large NB to a UCM, while for inter-
mediate resource levels we observe a region with the bistable behavior. The
bistability range is reduced for smaller values of Iin or NB and disappears
at a critical point (Iin ≈ 350 µmol photons m−2 s−1 and NB ≈ 25 mmol/m3

in Fig. 4A). These results confirm the findings of Yoshiyama and Nakajima
(2002) and are presented here for a comparison with the two-species model.
Fig. 4B demonstrates the bistability range in the (NB, DD) coordinate plane,
where the bifurcation lines have an almost hyperbolic form. A UCM appears
for large values of DD and NB, whereas small values favor a DCM. Suffi-
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ciently small values of DD result in oscillatory DCM solutions (region II), in
accord to the results of Huisman et al. (2006). Note that this behavior can
still be observed at DD < Dmin.

Interestingly, outside the region of bistability for large values of DD, a smooth
transition from the deep to the surface maximum is possible. In this case
intermediate density profiles, with no clear separation between DCM and
UCM, appear and the phytoplankton biomass is located in both parts of the
water column (see Fig. 3 in supplementary information 2).

The range of stability of the upper maxima can be described by an analytical
criterion (see Eq. (8) in supplementary informations 2), which is derived from
the condition that the phytoplankton net production rate below the mixed
layer is not positive (dash-dotted line in Figs. 4A and 4B).

The two species model

So far we have considered the vertical distribution of a single phytoplankton
species. However, different mixing and inhomogeneous resource distribu-
tion lead to new aspects for the competition of species which are differently
adapted to the conditions at the surface or in the deep water. In this sec-
tion, we extend the model to contain two phytoplankton species which differ
in their respective half saturation constants HI and HN in Eq. (3). More
specifically, we consider the competition between a most light-limited species
(I-species) characterized by a low HN and a large HI value and so is forced to
live close to the light source, and a most nutrient-limited species (N -species)
with low HI and large HN that will usually do better in deep water. Note
that the results of the previous section hold for the N -species.

To avoid the influence of different growth, mortality, and consumption rates,
we keep the other species’ parameters (see Table 1 in supplementary informa-
tions) identical in both species. Thereby, in a chemostat these species would
have parallel consumption vectors (Tilman 1980, 1982; Huisman and Weiss-
ing 1995). This means that in a well mixed uniform environment the success
of one species or another depends only on the resource concentrations in the
absence of biomass. Furthermore, in the chemostat such species cannot co-
exist and the outcome of their competition cannot be bistable (Tilman 1980,
1982). In a well mixed water column, where the light intensity reduces with
depth, the competition of these species would be more complicated, however
the same result would still hold for sufficiently clear water column (Huisman
and Weissing 1995). Moreover, assuming only the light gradient in an incom-
pletely mixed water column, one can find only a narrow region of the species
coexistence (Huisman et al. 1999c). As is shown below, the presence of two
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Figure 4: Stability diagram in the presence of a UML, showing the region
of bistability for the N -species solely (top) and for competition between N -
and I-species (bottom) in the (NB, Iin) plane (left column) and the (NB, DD)
plane (right column). The dashed line in (B) and (D) separates the regions
of steady (above this line) and oscillatory (below it) DCM. The dash-dotted
lines in (A) and (B) indicate the analytic border of stability of a UCM, see
Eq. (8). Parameter values: (A) and (C): DD = 0.3 cm2/s; (B) and (D):
Iin = 600 µmol photons m−2 s−1.

opposing resource gradients and the variation of the diffusivity with depth
may drastically alter the outcome of competition, resulting in new regions of
competitive exclusion, bistability and coexistence.

Figs. 4C and 4D present the stability diagram of the bulk biomass of two com-
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Figure 5: Vertical cross section for NB = 20 mmol/m3 through the (NB, DD)
parameter plane of Figs. 4B and D. Plotted is the location of the center
of mass, Zm, of the I-species (triangles) and the N -species (circles) in the
system with a UML. (A) Monoculture of the I-species. (B) Monoculture of
the N -species. (C) Two species system. In (B) and (C) several dynamic
regimes (separated by vertical dotted lines) can be distinguished (see text).
The competition outcome in (C) : I – I-species wins, II – bistability: either
I-species wins or the species coexist due to oscillations, III – coexistence due
to oscillations, IV – N -species wins, V – bistability, VI – coexistence. In the
regimes of coexistence, the fraction of biomass is indicated by the intensity of
gray color. The roman numerals refer to the regions in Fig. 4D. Parameters
as in Fig. 4.

peting species. Basically, the overall shapes of the bifurcation lines remain
identical to those of the one-species model (Figs. 4A and 4B, respectively).
The most notable difference is that the bistability range has become much
wider and is extended toward the smaller nutrient concentrations. In con-
trast, the transition line to the upper maximum remains largely unchanged,
since it is mainly determined by the minimal depth of the deep maximum
at which it is not affected by the UML. For our set of parameters, the deep
maximum is always formed by the N -species (the upper maximum can be
formed by both species) and so this boundary does not change with addition
of the I-species.

New aspects arise for the small values of DD, at which the N -species alone
exhibits the oscillatory dynamics in the deep layers (Fig. 4B). The biomass of
I-species reduces the light intensity in the deep layers and the destabilization
occurs at higher values of DD (the bifurcation line is the dashed line in Fig. 4B
and 4D).
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Figure 6: Time evolution of phytoplankton density and the phytoplankton
density profiles in the two species model for different values of DD and initial
conditions in the presence of a UML. (A) and (B) different initial conditions
lead to an upper maximum and to the same species composition, DD =
0.8 cm2/s. (C) and (D) bistability, DD = 0.5 cm2/s. (E) and (F) N -species
always wins and forms a stable or an oscillatory deep maximum, DD =
0.2 cm2/s and 0.15 cm2/s, respectively. (G) and (H) bistability between
a stable UCM and an oscillatory DCM, DD = 0.10 cm2/s. (J) and (K)
stable UCMs, I-species always excludes N -species, DD = 0.05 cm2/s and
0.01 cm2/s, respectively. The roman numerals refer to the regions in Fig. 4D
and Fig. 5C.
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Furthermore, different location of the specific production layers and indirect
competition leads to a variety of patterns. First, if the nutrient concentra-
tion is low, we observe only an oscillatory or a stationary deep maximum
(region III and IV in Fig. 4D, respectively). Second, in addition to bistabil-
ity between two steady solutions (region V, Fig. 4D) we observe a new kind
of bistability, when either a stable upper maximum or an oscillatory deep
maximum of biomass appears (region II, Fig. 4D). Third, the further reduc-
tions of DD leads to a surprising result: a stable upper maximum formed
by I-species becomes a single possible attractor in the system and outcom-
petes the oscillatory DCMs independently on the initial conditions (region I).
Note that this transition occurs at DD > Dmin. Furthermore, I-species sur-
vives even if DD < Dmin provided that the nutrient concentration in the
upper layer is sufficiently high. Thus a strongly light limited species is able
to establish a steady population in the upper mixed layer, outcompeting a
less light limited species which, in the absence of the former, would form an
oscillatory maximum in the deep weakly mixed layers.
These transitions and the species composition can be visualized in more detail
by comparing the species locations in the single species and in the two species
models. Consider the location of the center of biomass as a function of the
deep diffusivity (Fig. 5). This plot adds the third dimension to the vertical
cross section through Figs. 4B and 4D at NB = 20 mmol/m3. While the bulk
of the I-species biomass is always located within the UML (Fig. 5A), the
monoculture of N -species exhibits four dynamical regimes (Fig. 5B). First,
for large values of DD we observe stable configurations with the maximum
in the upper mixed layer. Second, with decreasing values of DD a DCM
suddenly appears, resulting in a region of bistability between an upper and a
deep biomass maximum. Third, with the further reduction of DD bistability
is lost and we obtain a range in which only DCMs are possible. The following
reduction of DD shifts the maximum toward the deeper layers and for low
values of DD the steady DCM solutions are replaced by oscillatory deep
chlorophyll maxima (ODCM).
As is shown in Fig. 5C, the competition of two species leads to even more in-
tricate behavior. At the high end of the DD range both species are located in
the UML and can either coexist or the N -species will competitively exclude
another species if light is the only limiting factor. With the reduction of
DD, the N -species can form a DCM in the lower layers and we obtain a large
bistability range between a DCM solution of the N -species and a UCM of the
I-species. Thereby in this region, the bistability of phytoplankton profiles
originates from the bistability in the competition outcome. Following reduc-
tion of DD leads to competitive exclusion of the I-species and only stable
DCM solutions are found. However, then the DCM loses its stability. What
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is more, in this regime, the I-species obtains a time niche to establish a pop-
ulation in the UML, but the next rapid outburst of N -species will again lead
to the dominance of the N -species. A similar regime of the species succes-
sion when the DCM is not stationary was reported by Huisman et al. (2006),
here we only want to stress that the oscillatory dynamics occurs at a higher
value of DD in the presence of another species, shading light in the lower
layers. With the further reduction of DD, the period of the DCM oscillations
increases and the N -species cannot outcompete an established population of
the I-species in the upper layer. However, the oscillatory regime also can
appear. Thereby, we observe another kind of bistability between the com-
petitive exclusion of the N -species by the stationary upper maximum and
the coexistence due to oscillations. Finally at extremely low values of DD,
the I-species always wins the competition and only a steady UCM formed
by the I-species can be found. The detailed representation of the biomass
dynamics and phytoplankton profiles is found in Fig. 6.

Note that the dynamics of the two-species model without the UML (see
supplementary informations) is much simple. We do not observe any regions
of bistability, instead the I-species is either fully outcompeted or coexists
with the N -species.

Graphical approach for analysis of competition

outcome

As we have shown in the previous section, production layers of differently
adapted species are located at different depths. Therefor on the one hand,
the strength of interspecific competition is weaker, but on the other hand,
the competition becomes indirect, since the occurrence of the phytoplankton
biomass at a certain depth changes total resource distributions in the water
column. Furthermore, the intensive mixing in the UML is favorable for sink-
ing phytoplankton, and as mentioned above, the emergence of a UML can
alter the species composition, replacing, for instance, competitive exclusion
or coexistence by bistability. Note that, the strong mixing can also play a
negative role if the thermocline is located below the critical depth (Huisman
et al. 1999b). To obtain an insight into the mechanisms of competition in
such an environment, we suggest a graphical approach, which is based on the
well known graphical method developed by Tilman (1980, 1982).

In a well mixed system, all resources and the biomass are uniformly dis-
tributed. Thus the state of the system may be presented as a point in mul-
tidimensional resource space (Fig. 7A). The concentrations of resources in
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Figure 7: Zero net growth isoclines (dashed) and the system state curves
(solid lines with dotted tails) in equilibrium for an incompletely mixed water
column plotted for the monocultures of N - and I-species, black and gray
lines, respectively. (A) Differently mixed systems. (B) Competitive exclusion
(N -species wins) and (C) coexistence in the system without a UML. (D)
Bistability under the same parameters as (B) but in the system with a UML.
Due to diffusion the phytoplankton density is larger then zero everywhere in
the water column, the area containing 90% of the biomass is marked as a
thick line. Note the logarithmic scale of the axes.

the absence of biomass give the coordinates of the so-called supply point.
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As the biomass grows and takes up resources the state point moves from the
supply point along a consumption vector. The resource depletion stops when
the state point hits the zero net growth isocline, characterized by a balance
between growth and loss processes. These isoclines divide the resource plane
into areas of positive and negative local population net growth and mark
possible resource combinations in equilibrium, so that the species with the
least resource requirement survives. Using Eq. (3) we can find such values
N? and I? so that the specific growth rate equals the mortality

N∗ =
HN

µmax

m
− 1

, I∗ =
HI

µmax

m
− 1

. (6)

These values determine the location of the zero net growth isoclines (Fig. 7).
In a spatially-extended system, where the resource values change with depth
z, the competition outcome must be calculated for every vertical position.
Then the state of the system is represented as a curve in the resource space,
which is parametrically determined by the resource values (N(z), I(z)). In
this sense, the state point of a homogeneous system naturally extends to
a state curve in the resource space (Fig. 7A). A special case is given by
a well mixed water column (Huisman and Weissing 1995). In this system
the nutrients are uniformly distributed, whereas the light intensity decreases
exponentially with depth and the system state curve reduces to a line segment
{N = const, Iout ≤ I ≤ Iin}.
In general, however, the form of the curve is more complicated. To simplify
the discussion in the following we always focus on the system state curve
(SSC) in equilibrium. Fig. 7A shows the simulation outcome for the SSC in
an incompletely mixed water column. Note that we use logarithmic scale to
magnify the location of a SSC close to the zero net growth isoclines. The
inhomogeneity and diffusive mixing does not allow the SSC to settle at the
zero net growth isoclines, as would be the case for a uniform distribution of
the resources. Instead the SSC extends into the area of positive (favorable
patch) as well as into the area of negative population net growth (unfavorable
patch). As the species density in the unfavorable patch is usually very small
we indicate the range of SSCs which contains 90% of the biomass as a thick
line in Figs. 7A-D.
Consider competition in a two-species system. Fig. 7B illustrates an apparent
example of the competitive exclusion. The SSC of the N -species lies below
the null growth isocline of I-species, whereas the I-species SSC allows the
positive production of the N -species. Therefore the I-species will always be
excluded as it has higher resource requirement.
However, if the SSC of one species lies above the zero null growth isocline of
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its competitor, there is no unambiguous answer to the question “whether or
not the latter species can invade?”. On the one hand this species obtains a
favorable zone, where µ > m, and could invade in the limit of zero diffusivity
(and zero sinking). But on the other hand, if D > 0, it will invade only if
the patch and the growth rate are large enough to compensate for losses into
unfavorable layers (see e.g. Ryabov Blasius Review 2008). More precisely the
possibility of invasion will depend on the principle eigenvalues of a reaction-
diffusion equation, characterizing growth of the biomass (Cantrell and Cosner
2001), a problem which unfortunately may only be solved in some simple
cases. Therefore we find it more robust to analyze the intersection of the
SSCs rather than their placement with respect to the isoclines.
Fig. 7C demonstrates an example of coexistence. In this figure both curves
intersect in such a way, that the SSC of one species is below that of its com-
petitor in an essential part of its favorable range and vice versa. Therefore,
both species can coexist because both are superior competitors at different
depths. However, if the SSC of a species would lie above that of its competi-
tor then the former would be excluded because it requires higher resources.
Analysis of SSCs becomes a useful tool for understanding the role of a UML.
The intensive mixing in the upper layer changes the form of system state
curves and they can intersect in more intricate ways. Take for instance the
situation shown in Fig. 7D. Here we use the same set of parameters as in
Fig. 7B, but in the presence of a UML. In this case the main part of the I-
species biomass is located close to the surface, while the N -species still forms
a DCM. Hence the presence of the UML leaves the SSC of the N -species
unaffected while the SSC of the I-species becomes steeper and is shifted in
direction of smaller resource values (see also supplementary informations).
This fact improves the competing abilities of the I-species. On the one hand
the presence of the N -species completely prevents growth of the I-species
(as in the case without a UML). On the other hand now the SSC of the I-
species lies below the main part of the N -species’ SSC, this means that even
though the N -species can exist in the presence of the I-species, its fraction
should be very small and its influence of the total resource distribution is
negligible. Thus the outcome of competition is bistable and depends on
initial conditions.
Our investigations show that the analysis of a species’ SSC provides a pow-
erful tool for understanding the dynamical behavior and competition in a
multi-species system. Especially in the important case, when the spatial size
of the areas of positive net growth is equal for both species in monoculture,
it is possible to precisely predict the outcome of competition. However we
concede that, if the favorable patch sizes of the species are somewhat dif-
ferent, it may be difficult, or even impossible, to analyze the competition
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relying solely upon the SSC. Nevertheless, even in this case, if the SSC of a
species lies below the zero null growth isocline of the other, the results for
competitive exclusion and bistability will still hold true.
Now consider the role of the phytoplankton sinking. In a water column
where the diffusivity does not depend on depth, its is easy to show that the
washout from a water column can be interpreted as an additional mortality
rate. Substituting P = P̃ exp (−vz/2D) into Eq. (1), we obtain

∂P̃

∂t
= µP̃ −

(
m +

v2

2D

)
P̃ + Dz

∂2P̃

∂z2
.

Note that ∂tP̃ has the same sign as ∂tP , thereby both functions grow and
decline simultaneously. Introduce the new mortality

m′ = m +
v2

4D
, (7)

and substitute it in the expression for the limiting resource values (6). Since
m′ > m, the new limiting values I ′∗ and N ′∗ in the presence of sedimentation
should be larger. That results in the shift of the zero net growth isoclines to-
wards the higher values of resources. However, in a well mixed layer the term
v2/2D vanishes, leading to the lower resource requirements. Thus a UML
creates more favorable conditions for the sinking phytoplankton biomass.
Finally note that a UML has only one boundary with the unfavorable envi-
ronment below the euphotic zone. Whereas a deep production layer has two
such boundaries, as the diffusion upward and downward from it leads to the
additional losses due to either the light or the nutrient limitation. Thereby
the loss rate from the UML into the hostile environment is roughly two times
smaller than that in the deep layers. That also lowers the requirements for
resources in the UML.

Discussion

In this article we investigated the influence of an upper mixed layer on the
distribution and competition of phytoplankton species in a water column, in
which inverse resource gradients (of light and a nutrient) can limit growth of
the biomass. In this system the location of a production layer is not fixed,
rather it depends on initial and boundary conditions and on the stage of the
process. That, in the presence of differently mixed areas, leads to a plethora
of phenomena, including bistability of phytoplankton profiles, changes in the
competition outcome, and new critical conditions for survival of a phyto-
plankton population.
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While previous theoretical investigations have usually focused on either a
fully mixed or an incompletely mixed system, the presence of a UML re-
quires a combination of these approaches. Including both factors Yoshiyama
and Nakajima (2002, 2006) showed the existence of bistability in the spa-
tial distribution of a phytoplankton monoculture. Our work confirms and
extends this research on the following key points. Firstly, assuming a grad-
ual change of diffusivity with depth, our modelling approach integrates the
whole water column in a single framework. That, for example, allows us to
investigate the influence of mixing in both the upper and the lower layers.
Secondly, we analyze competition of species, differently adapted to the avail-
ability of nutrients and light. As we show, this has drastic effects because
the species composition strongly correlates with the spatial patterning. And
finally, our analysis includes the case of a stratified lower layer, which is im-
portant as some climate models predict the higher water stratification with
the increase of temperature caused by global warming (Bopp et al. 2001;
Sarmiento 2004).
Bistability of phytoplankton profiles in this system occurs due to the mobil-
ity of the production layer, which, in a range of parameters, can be steadily
located either within the UML or below it. Both the consumption of nutrient
and the self-shading of light are necessary conditions for this behavior. Since
the biomass obstructs the upward nutrient flow, it make the upper layer un-
favorable, provided that a deep maximum of phytoplankton has established.
The shading of light is an opposite mechanism, which prevents growth of the
biomass in the lower layers. The third necessary part is the strong mixing in
the upper layer, which decouples the locations of the production layer and
of the bulk biomass. That prevents drift of the population toward a deep
maximum, which would occur in a system without a UML.
Three important factors make a UML more favorable for sinking phytoplank-
ton species. Firstly, it has only one border with the unfavorable environment
below it. Therefore the losses to unfavorable layers are roughly two times
smaller than those in deep layers, where the unfavorable environment is lo-
cated below and above the production layer. Secondly, the strong mixing
in the upper layer always provides a sufficient propagation velocity, which
allows for the persistence of a sinking phytoplankton population. That in
particular can support a population of phytoplankton even if the diffusivity
in the lower layers vanishes. Thirdly, a UML promotes a nearly uniform
distribution of nutrients, that makes the nutrient consumption more efficient
and gives an additional competitive advantage for a species inhabiting the
UML. Finally note that a deep UML can also play a negative role, as it can
lead to the the extinction of species because of the light limitation (Huisman
et al. 1999b).
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In our investigation, the inclusion of a UML in the single species model allows
for the existence of three characteristic density profiles. If the nutrient is the
most limiting factor we observe deep biomass maxima, whereas the strong
light limitation leads to an upper maximum of biomass. The intermediate
resource values may result in the third possible distribution with an essential
part of the biomass above and below the thermocline. However, in the largest
part of the transient range we observe bistability between an upper and a deep
maximum, the emergence of those is determined by the initial distribution
of the nutrient.
Outside the bistability range the system possesses only one attractor. How-
ever, the transition from an unstable to a stable solution may take a long
time and includes two stages. During the first stage, the nutrient concentra-
tion reaches a level which allows for the formation of a stable biomass profile.
This stage occurs on the slow diffusive time scale and may, for instance, last
5-10 years in deep water. Then the unstable biomass profile transfers into
a stable one. The last stage develops on the relatively rapid biological time
scale and lasts approximately 10-50 days. Note that this effect is observed
only close to the bistability range.
Another important observation is the survival of a sinking phytoplankton
population even if the diffusivity in the deep layers cannot prevent the pop-
ulation washout. In the absence of phytoplankton in the deep layers, the
nutrient can diffuse upward into the UML, where the population can start to
grow as the nutrient concentration reaches a sufficient level. However if the
light limitation is not strong enough the biomass shifts into the deeper layers
where it cannot outgrow the sinking and ultimately declines being limited by
light. Then the cycle repeats. In this sense a strongly light limited species
obtains an unexpected competitive advantage as due to the light limitation
it is forced to occupy the UML and cannot shift into the deep layers. Note,
however, that its biomass might be very small as it will be limited by a weak
nutrient flow from the lower layers.
The effects of a UML are even more pronounced in a system that includes two
competing species which are differently adapted to the light and the nutrient
limitation. To analyze this situation we presented a graphical approach which
enables estimation of the competition outcome, based on the equilibrium
distribution of each species alone. Moreover, we found that in the range
of parameters where the two species can independently form an upper or a
deep maximum, the two species model demonstrates bistability both in the
spatial distribution and in the competition outcome. Therefore, compared to
the single-species model, the bistability range is considerably enlarged. Note
that the bistability in the competition outcome was induced by the UML,
in a homogeneously mixed water column we observed coexistence of these
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species.

Furthermore, we have identified an interesting competitive exclusion effect,
where a species can be outcompeted in dependence of its dynamical state.
This occurs for low values of deep diffusivity, when the DCM abundance of
the N -species becomes oscillatory, however the further reduction of diffusiv-
ity favors to the I-species occupying the UML. At the first glance this result
is counterintuitive, because usually a decrease of nutrient transport results in
an increased depth of the biomass maximum, that should make it even more
robust against a competitor in the UML. The replacement of the oscillatory
solutions can be understood by considering the mechanism underlying the
oscillations. If advection (sinking) is sufficiently strong, reduced mixing leads
to population washout from the patch of growth (Shigesada and Okubo 1981;
Speirs and Gurney 2001; Huisman et al. 2002b, 2006; Straube and Pikovsky
2007). This allows the nutrient to freely diffuse upward and at a certain mo-
ment provides conditions for exponential growth of the biomass. However,
if the mixing is weak the biomass sinks again and the cycle repeats. Now
suppose that another species is present in the UML. This species can shade
light, inhibiting the rapid outburst of the biomass in the lower layers. As
a consequence the (non-oscillatory) UCM configuration in the UML is able
to replace the oscillatory deep maximum. The importance of low values of
diffusivity, in connection with the expected stratification ongoing with future
climate change, was emphasized in (Huisman et al. 2006). In this sense our
findings are of utmost importance for helping to predict future changes in
global phytoplankton patterns.

We thank Thilo Gross for his advise and useful discussions. This study was
supported by German DFG (SFB 555) and German VW-Stiftung.
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Supplementary Information

Model details

The model parameters were chosen to describe clear ocean water (Huisman
et al. 2006) and can be found in Table 1.
To describe a UML we assume that the diffusivity Dz takes a large constant
value DU in the upper layer (with the depth of Zmix = 50 m), a much smaller
constant value DD in the deep layers, and gradually changes from DU to DD

in a transient layer (width around 10 m, see Fig. 1). The course of the
diffusivity can be written in terms of so-called Fermi function

Dz = DD +
DU − DD

1 + e(z−Zmix)/w
, (1)

where Zmix is the depth of a UML and the parameter w characterizes the
width of the transient layer. In all numerical experiments (with exception of
Fig. 3 main paper) we chose DU = 50 cm2/s, modeling well-mixed waters in
the UML, and DD = 0.1...1.0 cm2/s for the lower layers (Lewis et al. 1986;
Smyth et al. 2001; Finnigan et al. 2002).

Figure 1: Assumed course of diffusivity, Dz, as a function of depth z (see
equation (1)). Dashed line indicates the assumed depth Zmix of the UML.

We assumed impenetrable boundaries at the surface and at the bottom for
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the phytoplankton biomass(
viPi − Dz

∂Pi

∂z

)∣∣∣∣
z=0,ZB

= 0 , (2)

and an impenetrable surface and a constant nutrient concentration at the
bottom for the nutrient

∂N

∂z

∣∣∣∣
z=0

= 0, N(ZB) = NB . (3)

To avoid the influence of initial phytoplankton distributions we used a Gaus-
sian distribution of the biomass with the maximum 1 cell m−3 at 70 m depth.
Note that if the initial concentration is small then its specific from does not
play an important role, more important is the initial nutrient distribution.
Simulating bistability, we used two different initial conditions for the nutrient:
i) the “nutrient depleted surface”, where the initial concentration of nutri-
ent was exactly zero above 70 m depth and increased linearly below; ii) the
“nutrient saturated surface”, corresponding to initially uniformly distributed
nutrients in the water column.
The model was integrated using a backward difference method, based on the
finite volume scheme (Pham Thi et al. 2005). For the numerical solution we
have discretized all variables on a grid which consisted of 600 points. Dif-
fusion terms were approximated by the second order central discretization
scheme, the advection term was represented by the third-order upwind bi-
ased formula, integration was made via the trapezoidal rule. The resulting
system of ordinary differential equations was solved by the CVODE package
(http://www.netlib.org/ode). For model validation we have compared our
simulation results with already published results (Huisman et al. 2006) and
further verified that the results remain unchanged if we double the number
of points in the grid. Furthermore, in some limiting cases it was possible to
compare our simulation results with analytical solutions.
Considering only the diffusion process it is possible to estimate the relaxation
time of the system τrel . L2/(2D), where L is the characteristic size and D
is the minimal diffusivity. For L = 300 m and D = 0.5 cm2/s, we obtain
τrel ' 9, 000 days ' 25 years. To make sure that our solutions are steady, in
each case we simulated 50,000 system days, which corresponds to about 130
years.

Basic spatial configurations

Fig. 2 shows typical biomass and resource distributions when the single-
species system is bistable. The two alternative distributions of the phyto-
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UCM

DCM

A Phytoplankton B Light and nutrient C Limiting factors

Figure 2: (color online) Bistability in the single-species model with a UML.
(A) Alternative distributions of phytoplankton biomass, a DCM (solid line)
and a UCM (dashed line). (B) Corresponding distributions of the nutrient
(blue) and of the light intensity (red). (C) Limitation of growth by the
nutrient (blue) and light (red). Dotted black line at x = m/µmax in Fig.C
shows the level of the local zero net growth. The horizontal dash-dotted line
indicates the boundary of the UML. Parameters see in Table 1.

plankton biomass P (z) with either a deep or a surface maximum are plotted
in Fig. 2A. The corresponding distributions of the nutrient N(z) and light
I(z) are presented in Fig. 2B. Note that the nutrient concentration increases
linearly with depth below the phytoplankton maximum and is almost zero
above it. Fig. 2C shows the level of zero net growth (m/µmax) and the limi-
tations of the growth rate equation (3) by the nutrient and light, separately.
The production layer (i.e. the layer where both limitations are higher than
m/µmax) is located within the UML when the system demonstrates an upper
phytoplankton maximum and below it in the case of a DCM.

Outside the region of bistability a smooth transition from a deep to an upper
biomass maximum is possible (Fig. 3). In this transient regime we observe
another, intermediate, spatial configuration in which the production layer
extends from the UML to the deep layers and the phytoplankton biomass
is located in both parts of the water column. Note that in the absence of
self-shading of light only such transient patterns can be observed.
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Analytical derivations

Total phytoplankton biomass

We now aim for an analytical description of the growth of a species in the
single-species model in a steady equilibrium state, so the left parts of the
equations (1) and (2) are equal to zero, that is

µ(N, I)P − mP − v
∂P

∂z
+

∂

∂z

[
Dz

∂P

∂z

]
= 0 , (4)

−αµ(N, I)P + εαmP +
∂

∂z

[
Dz

∂N

∂z

]
= 0 . (5)

Integration of these equations, in view of (2) and (3), yields∫ ZB

0

µ(N, I)P (z)dz − mW = 0,

−α

∫ ZB

0

µ(N, I)P (z)dz + εαmW + D(ZB)Nz(ZB) = 0 .

Here, W denotes the total phytoplankton biomass in the water column

W =

∫ ZB

0

Pdz,

the notation Nz(ZB) is a shortcut for the nutrient flux at the bottom ∂N(z)
∂z

∣∣∣
z=ZB

Eliminating the integral
∫ ZB

0
µ(N, I)P (z)dz from these equations, we obtain

the total biomass

W =
DD

αm(1 − ε)
Nz(ZB) . (6)

This is a general relation between the phytoplankton biomass and the nutri-
ent flux, which can be interpreted as a conservation law in the system.
In the area free of the phytoplankton biomass, equation (5) gives

D(z)Nz(z) = const .

This equation corresponds to the stationary diffusion flow and the linear
distribution of nutrients below the phytoplankton maximum (Fig. 2B).
If the total phytoplankton biomass is located within the UML, we can neglect
with the remineralization occurring below the UML (the second term in
equation (5)). Therefore, the nutrient flow can be estimated as

D(z)Nz(z) = DD
NB − N∗

ZB − Zmix

,
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where N∗ is the concentration of the nutrient within the UML (see equation
(6)). Substituting this in equation (6), we obtain the total phytoplankton
biomass in the UML

W =
DD

αm(1 − ε)

NB − N∗

ZB − Zmix

. (7)

This estimation is in excellent agreement with the numerical results (Fig. 4
main paper) with exception of the region of high diffusivity DD and nutrient
concentration NB, in which the growth of phytoplankton biomass is limited
by light and does not depend on the nutrient concentration.

Border of the stability of a UCM

As mentioned in the text, a UCM is stable if the light intensity below a UML
is smaller than the critical light intensity I∗, see equation (6). Using equation
(4), we obtain

Iin exp

[
−KbgZmix − k

∫ Zmix

0

P (z)dz

]
< I∗ . (8)

If the total phytoplankton biomass is located in the upper mixed layer, then
equations (7) and (8) give the following criteria of stability of the upper
maximum

ln (Iin/I
∗) − KbgZmix <

DD(NB − N∗)k

αm(1 − ε)(ZB − Zmix)
. (9)

This line is shown in Fig. 4A and 4B in the main paper as the lower boundary
of the bistability range and is in a good agreement with the numerical sim-
ulations. One might argue that we should apply the correction (Eq.(7)) to
calculate the critical light intensity below the UML, as we did it considering
competition of species. The reason to use equation (7) without this correction
is the following. A new species can invade a system and change the resource
distribution only if its net growth rate is positive, thus we need this correc-
tion to estimate the outcome of competition. However, in the single-species
system an essential part of biomass is already located below the thermocline
just because of sinking from the UML. Being limited by light, this part can-
not also consume the nutrient. Whereas a higher light intensity increases
the nutrient consumption and can initiate a positive feed back, as the nu-
trient consumption in the lower layers will reduce the biomass in the UML,
improving the illumination of the lower layers. Thus the conditions when a
DCM replaces a UML in a single-species model are weaker, than those in a
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two species model. As a result the bistability range in the two-species model
is extended towards the lower resource values (Figs. 4B and 4D in the main
paper, respectively).

Slope of the system state curve

Integration of Eqs. (4) and (5) over z in the interval [0; z′] yields∫ z′

0

µ(N, I)P (z)dz − mW (z′) − vP (z′) + D(z′)Pz(z
′) = 0,

−α

∫ z′

0

µ(N, I)P (z)dz + εαmW (z′) + D(z′)Nz(z
′) = 0 .

where W (z′) =
∫ z′

0
P (z)dz denotes the total phytoplankton biomass above

depth z′. The integral
∫ z′

0
µ(N, I)P (z)dz can again be excluded from these

equations yielding

Nz(z
′) = α

[
m(1 − ε)W (z′)

D(z′)
− Pz(z

′) +
vP (z′)

D

]
.

Taking derivative of (4), we obtain

∂ ln I

∂z

∣∣∣∣
z=z′

= −Kbg − kP (z′) .

In equilibrium all partial derivatives can be changed to the ordinary ones.
Then the last two equations yield the following expression for the slope of
the system state curves

d ln I

dN

∣∣∣∣
z=z′

=
−Kbg − kP (z′)

α

[
m(1 − ε)W (z′)

D(z′)
− Pz(z

′) +
vP (z′)

D

] . (10)

Fig. 5 shows a typical view of the system state curve, when the phytoplankton
maximum is located in deep layers (DCM). This curve can be divided into
three parts. The fist one (above the phytoplankton biomass) is a vertical line
in the (N, I)-plane. It is clear from equation (10), that in the area where
P (z), Pz(z) and W (z) equal zero

d ln I

dN
→ −∞ .
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The lower part of the curve settles below the biomass, where P (z), Pz(z) are
zero and W (z) = W . In the semilog scale (Fig. 5B) this can be seen as a
limiting line with slope

d ln I

dN
= − KbgDD

m(1 − ε)W
.

The slope of the middle part of the system state curve depends on the distri-
bution of phytoplankton biomass and diffusivity. We are especially interested
to know how the intensity of mixing DD influences the species competitive
abilities. Here we restrict to the case when the mixed layer is much smaller
than the critical depth (Sverdrup 1953; Huisman et al. 1999b), in other
words, we neglect the water turbidity. Then, on the one hand, an increase
of the diffusivity D(z′) decreases the gradient of biomass Pz(z), therefore, it
decreases both terms in the denominator of Eq. (10) and the system state
curve becomes steeper. On the other hand the top left end of the curve
cannot deviate too much, because its coordinates are Iin, which cannot be
changed, and Nout, which can deviate only slightly, because it should be less
than or equal to N∗ (which is already very small). Therefore when the curve
becomes steeper only its lower part can move to the left in the direction
of smaller resource values – a fact which improves the species competitive
abilities (see Fig. 7D in the main paper). Note that an increase of the sink-
ing velocity leads to opposite effects, as it increases the denominator and,
thereby, increases resource requirements.

System without a UML

The competition outcome between the two species in the (NB, DD) coordi-
nate plane is presented more systematically in Fig. 6. In the system without
a UML (Fig. 6A) coexistence is possible only at sufficiently small values of
DD and NB, so that the I-species can use its advantage of low nutrient lim-
itation. Even in this region only a small fraction (< 10%) of the I-species
may coexist with the N -species. In the presence of a UML the competition
results are for better visualization divided into two plots, corresponding to
the maximum of phytoplankton density below the UML (Fig. 6B) and within
it (Fig. 6C). If the maximum of biomass is located below the UML (low val-
ues of NB and DD in Fig. 6B) the results are similar to the case without
UML, however, the persisting fraction of the I-species is larger (up to 30%)
since the UML improves its competing abilities. For larger values of NB and
DD (Fig. 6C) the system becomes bistable and the I-species can win and
form a UCM (compare to the border of the bistability range in Fig. 4C of
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the main paper). Further, the area where only the N -species wins becomes
smaller. Also an upper maximum of the I-species appears at low values of
DD instead of an oscillatory deep maximum (see previous section). Thus,
the presence of a UML changes the result of competition in such a way that
it is favoring the species within the UML.

Influence of the UML on the competition out-

come

Fig. 7 shows several sections of the three-dimensional parameter cube for
different values of DD. The fist column shows the position of the biomass and
the region of bistability, the last two columns present the species composition
below the UML (middle column) and within the UML (right column). In
general, the bistability range grows with decrease in the diffusivity and the
part of the upper maximum decreases. But if the diffusivity becomes very
small, then the system dramatically changes the behavior and only the upper
chlorophyll maximum can persist. Also note, that the N -species wins the
UML in the case of sufficiently large nutrient concentration within it, whereas
the I-species can survive in the mixed layer only in the bistability range. This
observation coincides with the field results (Venrick 1993), where N -species
were found in both layers, whereas I-species were only found in the upper
layer.
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Table 1: Parameter values and their meaning

Symbol Interpretation Units Value

Independent variables
t Time h -

z Depth m -

Dependent variables
P (z, t) Population density cells m−3

I(z, t) Light intensity µmol photons m−2 s−1

N(z, t) Nutrient concentration mmol nutrient m−3

Parameters
Iin Incident light intensity µmol photons m−2 s−1 600 (100 - 600)

Kbg Background turbidity m−1 0.045

k Absorption coefficient of a phytoplankton cell m2 cell−1 6×10−10

ZB Depth of the water column m 300

Zmix Depth of the upper mixed layer m 50

w Characteristic width of the thermocline m 1

DD Vertical turbulent diffusivity in the deep layers cm2 s−1 0.3 (0.1 - 1)

DU Turbulent diffusivity in the UML cm2 s−1 50

µmax Maximum specific growth rate h−1 0.04

HI Half-saturation constant of light limited µmol photons m−2 s−1 20; 98

growth for N - and I-species, respectively

HN Half-saturation constant of nutrient limited mmol nutrient m−3 0.0425; 0.015

growth for N - and I-species, respectively

m Specific loss rate h−1 0.01

α Nutrient content of phytoplankton mmol nutrient cell−1 1 ×10−9

ε Nutrient recycling coefficient dimensionless 0.5

v Sinking velocity m h−1 0.042

NB Nutrient concentration at ZB mmol nutrient m−3 50 (5-100)

Table 2: Acronyms

Symbol Interpretation

DCM Deep chlorophyll maximum

ODCM Oscillatory or chaotic

deep chlorophyll maximum

UCM Upper chlorophyll maximum

UML Upper mixed layer

SSC System state curve
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A Phytoplankton B Light and nutrient C Limiting factors

Figure 3: (color online) Intermediate spatial configuration. See Fig. 2 for
description. Parameters: NB = 16 mmol/m3, DD = 0.8 cm2/s
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Figure 4: Total phytoplankton biomass W as a function of the bottom nutri-
ent concentration NB for different values of the deep turbulent diffusivity DD.
Comparison of the results from equation (7) (solid lines) with the numerical
simulation (symbols).
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A B

Figure 5: Two different visualizations of the system state curve of the light
intensity versus the nutrient concentration, either on log-log scale (A) or
using a log-linear scale (B).
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Figure 6: Competition outcome of the two-species system. (A) species com-
position in system without UML. (B) and (C) similar in the presence of a
UML, however separated according to the contribution below the UML (B)
and within the UML (C).
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Importance of linking patterns and weak links for
food web stability

Thilo Gross, Lars Rudolf, Ulf Dieckmann and Simon A. Levin

submitted to Nature

Since the publication of Robert May’s seminal work (May , 1972) the
stability of ecological food webs is a topic of intense research and hot
debate (Cohen & Newman , 1985; King & Pimm , 1983; McCann , 2000,
1998; Montoya et al. , 2002; Emmerson & Raffaelli , 2004; Navarrete
& Berlow , 2006; Kondoh , 2003). Contrary to many field observations,
May showed that large, densely connected food webs are in general

unstable. The only way to reconcile May’s proof with observation is
to find the special properties that lend natural food webs their unusual
stability. It has been pointed out that the identification of such stabiliz-
ing network properties could have broad implications beyond the field
of ecology (May et al. , 2008). Most recent theoretical work focuses
on numerical models based on explicit rate equations (McCann , 1998;
Brose et al. , 2006). These and empirical studies (Neutel et al. , 2002,
2007) have revealed that weak trophic links may play an important role
for stability. However, in contrast to May’s abstract random matrix
model, numerical constraints limit most simulative studies to the inves-
tigation of relatively few instances (approx. 10000) of relatively small
food webs (approx. 10 species). Recently, generalized modeling, a novel
numerical approach for the analysis of stability in families of nonlinear
rate equations, has been proposed (Gross & Feudel , 2006). Here we
utilize this approach to study several billion instances of food webs of
up to 50 species with nonlinear interactions. While we find a stabilizing
effect of weak links in small food webs, this stabilization is absent in
larger webs. Instead, we identify a universal feature in the distribution
of links that is important for stability.

Generalized modeling (GM) is based on the insight that the computation
of steady states is in general much more difficult than the investigation of
the local dynamics around them. If a steady state is given, it is possible to
compute its stability from the corresponding Jacobian matrix, which requires
little information and can be done at low computational cost. Using the
approach of GM the Jacobian of an arbitrary steady state can be written
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as a function of a small number of bona fide parameters (Steuer et al. ,
2006) that capture the required information on the system and the steady
state. Thus, GM allows us to describe a system on an intermediate level of
abstraction; it offers better numerical performance than conventional models,
but more interpretability than random matrix models.
Like random matrix models, GMs focus on the local asymptotic stability of
steady states. Although food webs could in principle also persist in non-
steady states, the population densities should at least be stationary on the
scale of decades. Thus, we ask what features should be included in a model
to describe this stable stationarity.
The advantage of the GM approach is, that it can be applied simultaneously
to large families of similar systems. In Gross & Feudel (2006) the Jacobian
for steady states in a food web of arbitrary size and topology and with
arbitrary nonlinear predator-prey interactions has been derived. Effectively
this GM provides a parameterization of all possible steady states in a large
class of food webs. Thereby it allows us to ask in which types of webs stability
is likely.
The parameters identified by GM fall into two basic classes: Scale parame-
ters determine the topology and turnover of the biomass fluxes. Exponent
parameters measure the local nonlinearity of the functions in the model. For
mononomial functions the corresponding exponent parameter is the expo-
nent of the monomial. For instance, a linear function would correspond to a
parameter value of one, a quadratic functions to a value of two, and a square
root to a value of 0.5. However, we do not restrict the functional forms
in the model to monomials. For general functions, the exponent parameter
measure the sensitivity of a process to a variable and is closely related to the
curvature of the function in the steady state.
To reduce the number of parameters in the model, we assume that for all
species except top predators natural mortality can be neglected in compari-
son to predation. Moreover, we focus on the case of passive prey switching:
Predators preying on multiple species, consume each of them indiscrimi-
nately, without any preference. But, their diet depends on prey availability
as well as their ability to capture the prey.
Even with the simplifications described above the number of parameters in
the food web GM is still relatively high. This is a direct consequence of the
complexity of the problem (we parameterize every steady state in a large class
of food webs) and therefore cannot be avoided. Although we are thus faced
with having to explore a large parameter space, the numerical performance of
GM enables us to consider ensembles of a large number of randomly chosen
sample parameter sets. The realistic ranges from which the parameters have
to be chosen, are known from the GM and basic biological reasoning. Under
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these conditions well-founded statistical conclusions can be drawn.
In order to obtain credible results we restrict the investigation to realistic food
web topologies. These topologies are generated by the niche model (Williams
& Martinez , 2000), which is based on ecological reasoning regarding the
prey that can possibly be devoured by a given species of predators. We only
consider topologies that consist of a single connected component. Moreover,
double links, self links (cannibalism), and circular trophic relationships (e.g.
through parasitism) are avoided. The timescale of biomass turnover for the
species is chosen according to an allometric scaling relationship.
One notable difference between many random matrix models and the GM
lies in the diagonal entries of the Jacobian, which are particularly important
for stability. In many random matrix models these terms are assumed to be
-1 (for instance May (1972)). The negative diagonal entries mean, that with-
out interactions between the components, the system has to be stable. By
contrast, the GM shows that diagonal entries for all species except primary
producers and top predators should be positive under realistic conditions (see
supporting material).
To assess the dependence of the stability on basic parameters we generate a
sample of 108 food webs with 10 species each. In this sample the basic pa-
rameters are drawn randomly from a uniform distribution. We estimate the
impact of the individual parameters on stability by computing the correlation
between parameter values and the stability. The results of this sensitivity
analysis are shown in Fig. 1. The prey-dependence of the predation, γ, and
the exponent of closure, µ, correlate positively with stability. This corre-
sponds to the well known fact, that low saturation of predators (Brose et
al. , 2006) and nonlinear mortality of the top-predators promote stability.
By contrast, the sensitivity of primary production on the number of primary
producers, φ, and the sensitivity of predation on the density of the predator,
ψ, are negatively correlated with stability. This confirms that stability is in-
creased if primary production is strongly limited by external factors such as
nutrient availability, or if the predator-dependence of predation is reduced,
for instance in ratio-dependent predation. The total range of timescales tscale
as well as the total range of niche values nrange do not correlate with stability.
However, the average difference in the niche value of predator and prey, ndiff ,
has a stabilizing effect, confirming that time scale-separation in the individual
predator-prey interactions promotes stability (Brose et al. , 2006). Finally,
our analysis confirms that the number of links is negatively correlated with
stability. It thus shows that increasing connectivity in general corresponds
to decreasing stability.
Repeating the analysis described above for food webs of 20 species yields a
similar result (Fig. 1). The main difference is that the relative importance
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Figure 1: Correlation of food web parameters with stability. Shown is data
from 108 randomly generated food webs with 10 species (light grey) and 20
species (dark grey). Error bars are on the scale of the line width. High
sensitivity of predation to prey abundance γ, large scale separation between
predator and its prey ndiff , and high exponents of closure µ promote stabil-
ity. By contrast, high sensitivity of primary production to the number of
producers, φ, a large number of links, and a high sensitivity of predation to
the number of predators, ψ, have a destabilizing effect. The total range of
niche values, nrange, and the total range of time scales, tscale, spanned by the
food web have little effect on stability.



77

connectance

sp
ec

ie
s

0.1 0.2 0.3 0.4

10
20

30
40

50

Figure 2: Double-logarithmic histogram of the stability of niche model food
webs, depending on the number of species N and the connectance c. The
fraction of stable webs found in a bin is color coded. The shape of the surface
in the histogram is further highlighted by logarithmically spaced level lines.
The level lines follow the power law N = c−p, with p = 0.9.

of the total number of links is increased, which is reasonable for a larger
web. Also repeating the sensitivity analysis with pyramidal food webs yields
similar results (not shown). In the following we set the basic parameters to
realistic values (see methods) and focus on the topology.

Let us start by investigating the relationship between number of species, N ,
the number of links, L, and the stability in more detail. For this purpose we
measure the number of links in terms of the connectance C = L/(N(N −
1)), which is related to the fraction of potential links that are realized in a
given topology. We generate samples with random niche model topologies in
such a way that the number of species and the connectance forms a discrete
logarithmic lattice. From these samples we compute the density of stable
webs (the probability of randomly drawing a stable food web) for given values
of N and C. Figure 2 shows a double logarithmic plot in which the density
is color coded. In total the figure contains data from more than 5 billion
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webs. As expected the density of stable webs decreases with increasing N
and C. Note however, that iso-stability lines are almost perfectly straight,
corresponding to a power law with an exponent p = 0.9.
We have repeated the analysis described above several times with different
basic parameters. The scaling exponent p depends on the choices of param-
eters and is therefore not universal. However, we have obtained power-law
scaling in every case.
Having explored the basic relationship between connectance and stability,
let us now move on to the investigation of weak links. It has been criticized
that many competing definitions of weak links are used in the literature
(Berlow et al. , 2004). Since we can scale the biomass flux in the web
without changing the stability, weak links cannot be identified based on the
absolute biomass flux alone. What we mean by weak links is that certain
connections are much weaker than other comparable links. The notion of
weak links is therefore connected to the coefficient of variation (CV) of link
strength (Jansen & Kokkoris , 2003; Navarrete & Berlow , 2006). Moreover,
we have to take into account that the biomass flux in higher trophic levels
is much lower than in lower trophic levels because of allometric scaling. We
therefore have to normalize the biomass flux appropriately before computing
the CV. In the following we measure the presence of weak links as the CV of
all predative biomass fluxes normalized individually by the total growth rate
received by the respective predator. An alternative, prey-centric, measure is
to use the CV of the biomass fluxes normalized by the the total loss rate of
the respective prey.
To explore the impact of weak links, we generate a large ensemble of food
webs in which all link strength are drawn from a uniform distribution. In
Fig. 3 we plot the fraction of stable webs, that are generated in this way as
a function of observed CV in the webs.
In very small food webs (e.g. N = 5, not shown) there are large jumps of
stability as a function of CV. These jumps appear since a given web topology
can only yield CVs in a certain range; If we vary the CV new topologies be-
come available, which can have different stability properties. In small webs
the number of possible topologies is relatively small. Therefore, a notable
jump in the stability is observed as soon as the CV enters the range of a
new topology. By contrast, in larger webs the number of topologies is com-
binatorially large. Therefore the stability as a function of the CV becomes a
smooth curve approximately at N = 10.
In small and intermediate webs (N < 30) the stability of the web increases
with increasing CV (see Fig. 3), confirming the stabilizing effect of weak links
reported in the literature (e.g. McCann (1998)). However, in larger webs
with N > 30 species this relationship is reversed: now increasing the CV



79

coefficient of variation

de
ns

ity
 o

f s
ta

bl
e 

w
eb

s

0.0 1.2

0
1

10 species
20 species
25 species
30 species
40 species
50 species

10 species
20 species
25 species
30 species
40 species
50 species

10 species
20 species
25 species
30 species
40 species
50 species

10 species
20 species
25 species
30 species
40 species
50 species

10 species
20 species
25 species
30 species
40 species
50 species

10 species
20 species
25 species
30 species
40 species
50 species

Figure 3: Dependence of stability on the weak links. The density of weak
links is measured in terms of the coefficient of variation normalized to total
loss of the respective predator species. In small food webs an increasing link
variability corresponds to an increase in stability. However, in larger webs
the opposite is the case: increasing variability decreases the stability.
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decreases stability.
Repeating the study with the alternative prey-centric measure for weak links
proposed above yields a slightly different result. In this case the overall trend
is that high CV corresponds to low stability, regardless of web size. However,
in small webs there is a local stability maximum at intermediate CVs, so
that increasing the CV is stabilizing in a certain range. In larger webs this
maximum becomes less pronounced and eventually disappears. Therefore,
also with the alternative measure, we find that increasing link variability
decreases stability in large food webs.
The results presented above suggest that the specific topologies play a signifi-
cant role for the stability of food web. In principle the approach of GM could
be used for an exhaustive search for stabilizing properties, such as specific
patterns or motives. Since this search exceeds the scope of this Letter, let
us focus on one particular result: We investigate whether the effect of links
can depend on the position of a species in the food web. For this purpose
we generate an ensemble of food webs with fixed connectivity k = L/N . We
then take each individual web and assign a rank parameter p to each species
according to its trophic position. The parameter p is normalized to the in-
terval [0,1], so that the most basal species in a web always corresponds to
p = 0 while the most apical species corresponds to p = 1. For all species
with a given rank parameter we can then compute a) the correlation between
stability and the number of predators preying on the species, and b) the cor-
relation between stability and the number of prey species consumed by the
species. The results of this analysis are shown in Fig. 4.
Figure 4 A shows the effect of the number of predators on stability as a
function of the rank parameter. For species with low rank (p < 0.25) the
number of predators correlates negatively with stability, indicating that in-
creasing the number of predators preying on these species has generally an
destabilizing effect on the system. Likewise the correlation is negative for
species with high rank (p > 0.75). However, there is a large intermediate
region (0.25 < p < 0.75) in which the correlation is positive. This shows
that, for a given number of links, the stability is increased if predators prey
mainly on species of intermediate trophic position.
The correlation of stability with the the number of prey species is shown in
Fig. 4 B. For species with small rank parameters (p < 0.719) the number of
prey species correlates negatively with stability, while a positive correlation
is found for species with a high rank parameter (p > 0.719). This indicates
that, for a given number of links, it advantageous to have generalist predators
at the top of the food web and specialist predators below. Interestingly, the
rank parameter p = 0.719 at which the crossover from negative to positive
correlation takes place is independent of the number of species in the web or
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Figure 4: Effect of the distribution of links within the food web. a) The
correlation of the number of predators preying on a species with stability,
depending on the position of the species in the web (rank). Stability is en-
hanced if most species prey on intermediate consumers, characterized by rank
parameters around 0.5. The correlation of stability with the number of prey
species (b) shows that generalist predators preying on specialist enhance the
stability. Note that all curves intersect in one point of vanishing correlation
at a rank parameter of approx. 0.719 (c).
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the connectivity. In additional investigations (not shown) we have confirmed
that the location of the crossover point does not depend on the absolute
number of links or species or on details of the predator-prey interaction.
Based on these results we believe that the crossover point is a universal
feature.
In this paper we have investigated the impact of different parameters on
the asymptotic stability of steady states in food webs. While it was often
pointed out that food webs can persist in non-stationary states, there is
growing evidence that May’s stability-complexity relationship also holds for
non-stationary dynamics (Sinha & Sinha , 2005). In particular, population
cycles or external forcing are averaged out if we consider the food webs on
longer timescales. On these timescales the dynamics is effectively stationary.
In this paper we have specifically focused on the question, which properties
of natural food webs have to taken into account, to reproduce the astonishing
stability in large model food webs.
A likely, though controversial, explanation why real world food webs are
stable is that they have evolved for stability. However, this explanation
does not answer the question addressed in this paper; Even if food webs
have evolved for stability, one would still like to know what are the features
that have evolved in order to protect them and possibly utilize them in bio-
mimetic technical networks.
Our analysis shows that the presence of weak trophic links alone is only
stabilizing in relatively small food webs. In larger food webs increasing the
coefficient of variation of normalized link strength destabilizes the food web.
Instead, our results point to another topological feature: For a given number
of links it is advantageous if species with a high trophic position feed on many
different prey species, while intermediate consumers are fed upon by multiple
predators. This corresponds for instance to generalist top-predators preying
on intermediate specialist predators – a pattern that is obvious for instance
in the empirical data reported in Neutel et al. (2002, 2007). Moreover,
this insight is consistent with, but more general than, the stabilizing effect
of top-predators that couple several distinct energy channels (Rooney et all.
, 2006).
Our results have been obtained with a new method that allows us to base
our conclusions on a large ensemble of individual food webs. In the present
work this ensemble consisted of several billion individual webs. Using the
same framework it is possible to analyze the effect of many other mechanism
that have been proposed as explanations for stability, such as active prey
switching, cannibalism or the presence of trophic loops. In order to solve the
enigma of the stability of natural food webs further studies are clearly neces-
sary. We believe that the approach proposed here will continue to contribute
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to this ongoing effort.

Methods

Food web generation.

Following Williams & Martinez (2000), each species Si is assigned a niche
value ni, randomly drawn from an uniform distribution within the interval
[0,1]. A specie’s rate of biomass turnover αi is chosen according to the al-
lometric scaling relation αi = tscale

ni . A species Si consumes all species Sj

with a niche value nj ∈
[
ci − ri

2
, ci + ri

2

]
, where the feeding range ri is drawn

randomly from a beta distribution within an interval [0, ni] and the center
of the range ci is drawn uniformly from the interval

[
ri

2
, ni − ri

2

]
. All species

which don’t feed on another species are assumed to be primary producers.
In most computations we chose similar link strength lij with small variations
drawn from a Gaussian distribution. These variations are necessary to avoid
degenerate cases. The standard deviation of the distribution is 10% of the
mean links strength. Only in the investigation of weak links (Fig. 3) the link
strength is drawn from a uniform distribution with arbitrary range. Webs
that decompose into unconnected components are rejected.

Stability analysis.

We consider a food web as stable if all eigenvalues of the corresponding
Jacobian are smaller than −10−6. As shown by Gross & Feudel (2006), the
diagonal elements of a food web’s Jacobian can be written as

Ji,i = αi

[
ρ̃iφi + ρiψi − σ̃iµi − σi

(
N∑

m=1

βm,iλm,i [(γm − 1)χm,i + 1]

)]
(1)

and the non-diagonal elements as

Jj,i = αn

[
ρjγjχj,iλj,i − σj

(
βi,jψi +

N∑
m=1

βm,jλm,i(γm − 1)χm,i

)]
(2)

The parameter contained in these equations are given in Tab. 1

Correlation coefficients.

To asses the impact of the parameters on stability we compute the correla-
tion of the parameter values with stability in an ensemble of size N . The
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Table 1: List of model parameters
Parameter Interpretation Value Range
αi turnover rate of species i tscale

ni [0.008,1]
βi,j contribution of predation by i to loss rate of species j lij/

∑
k lkj [0,1]

γi nonlineatity of predation with respect to prey density 0.95 [0.5,1.5]
λi,j exponent of prey switching 1 (passive switching) -
µi exponent of closure 1 [1,2]
ni niche value of species i - [0,1]
ρi fraction of growth gained by predation 0 (producers) -

1 (consumers) -
ρ̃i fraction of growth gained by production 1 − ρi -
σi fraction of mortality by predation 0 (top predators) -

1 (others) -
σ̃i fraction of non-predative mortality 1 − σi -
tscale total time scale separation 0.008 [0,1]
φi nonlinearity of primary production 0.5 [0,1]
χi,j contribution of species i to the prey of j lij/

∑
k lik [0,1]

ψi nonlineatity of predation with respect to predator density 1 [0.5,1.5]

correlation coefficient is given by

cor =

∑Ns

n=1 X̄n − Ns
N

∑N
n=1 Xn

σXσS/N
(3)

where Xn and X̄n are the parameter values in the stable webs and in the
entire ensemble, respectively, and Ns is the number of stable webs. The
quantity σx denotes the standard deviation of the parameters and σs denotes
the standard deviation of the stability si, with si = 1 for stable and si = 0
for unstable webs.
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Supplementary Figure 1: Dependence of stability on the weak links.
The density of weak links is measured in terms of the coefficient of
variation normalized to total gain of the respective prey species. In large
webs, an increase in link variability always corresponds to an decrease in
stability, whereas in smaller webs one find a stability maximum at
intermediate coefficients.
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Supplementary Figure 2: Dependence of stability on the weak links.
Here density of weak links is measured in terms of energy flow between the
species. This measure gives a stability maximum for intermediate
coefficients, in all observed web sizes.
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Supplementary Figure 3: Dependence of stability on the weak links.
Here density of weak links is measured in terms of entries in the Jacobian
matrix. For this measure we find in according to common knowledge a
stabilizing effect of weak links.
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Supplementary Figure 4: Dependence of density of stable webs on the
ratio of species number and connectance rCN :

rCN =
1

Cs · N
(1)

where s is the slope of the stability isoclines (see Fig. 2 in the main part).
We find an asymptotic decline of stability in the low stability range,
whereas the ratio of stable webs becomes one for rCN = 1, which
corresponds to two species predator prey food web.



Chapter 3

General discussion

The results provided in this thesis contribute to the understanding of pop-
ulation dynamics and the underlying mechanisms. In particular species in-
teraction by predation and competition on different levels of abstraction are
studied. First, both types of interaction are investigated separately in ba-
sic systems, consisting of few species. Using such elementary systems we
are able to study non-stationary dynamics and provide an detailed insight
into the underlying mechanisms. Finally, we proceed to complex food webs,
consisting of up to 50 different species, linked by an multitude of species
interactions. To study a large ensemble of different food webs, on that level
of complexity, we focus on the study of fix points. As a result, we present
several different food web properties with a significant impact on stability.

Predator-prey cycles in experiment

In a first step, to close the gap between theory and field observations, we
have presented exceptionally long predator-prey oscillation in an experimen-
tal chemostat system (Chapter I). We show, in opposite to recent experi-
ments or field studies, that these predator-prey cycles can be maintained for
more than 50 cycles without spatial structure, immigration or external force.
Thereby, we confirm theoretical findings, which predict persistent cycles.
However, in contrast to theoretical predictions, we note a strong variability
in the observed dynamics and shifting cyclic regimes on short time scales.
The system undergoes sudden changes between periods where pronounced os-
cillations of predator and prey are strongly phase locked and periods where
this locking seems to be lost. The transition between these regimes arises
spontaneous and without external influence. The reasons for these sudden
regime shifts remain unlcear. As the experimental conditions were kept ho-
mogeneous, we assume that the observed variabilities in the dynamics are
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at least to some extend system inherent and therefore might be inherent in
other biological system, too. On that account, short time observations may
lead to wrong assumptions and we suggest that for any interpretation of ob-
servational results the length of the observation period needs to be taken
in account. In conclusion, we find for the measured time series, that the
predicted population dynamics from theory are barely applicable for exact
predictions, but describe average dynamics over a long period of time.

Analysis of ecological signals with common wavelet methods

For an detailed evaluation of recorded time series and to overcome the prob-
lems of background noise and system inherent variabilities in the dynamics,
we propose the application of wavelet methods for a data analysis (Chapter I).
We confirm, that these methods are a convenient approach to identify non-
stationary population dynamics in ecological time series as they approach
provide a time and frequency resolved measure of power and phase of popula-
tion cycles. Furthermore, interactions between different signals are revealed.
Most notably, a time resolved measure of the correlation between two non-
stationary signals allows to distinguish between time intervals of phase-locked
and non-phase-locked dynamics. For a clear classification of the species in-
teraction we have applied a correlation threshold which distinguishes regular
oscillations from irregular random patterns. We assume, that this correlation
coefficient could be used to detect a relation between two populations in more
complex systems. However this measure gives no information about the type
of interaction and to overcome that problem, we developed a method which
uses the phase information, provided by the wavelet method, to determine
species interactions by a phase difference signature.

Evaluation of species interaction by the phase difference signature

Specific species interactions commonly lead to a specific phase difference
between the interacting populations, and therefore, the phase difference sig-
nal in turn contain information about the type of interaction. Here we use
wavelet methods to extract such a phase difference signal and its distribu-
tion from two non-stationary time series (Chapter I). For the experimental
predator-prey time series we find a phase difference locked to a value around
0.5π. Repeating the analysis for a time series of egg-bearing predators and
predator egg-ratio, we find again cyclic dynamics which are correlated to the
prey availability. The abundance of egg-bearing predators follow the prey
cycles with a phase difference of 0.17π, whereas the egg ratio precedes the
prey signal, resulting in a negative phase difference of about −0.14π. For
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a classification of the experimental system we compare this phase difference
signature with results from different predator prey models. Thereby, we find
a typical phase difference signature for predator-prey cycles which varies only
marginally within the used systems and furthermore follows intuitive expec-
tations (Chapter I). Nevertheless, subtle differences in the signature allow an
estimation of the predator age structure. We find that the phase signature
of the experimental time series correspond to a signature of a predator-prey
system with a stage structured predator. As the phase signature is extremely
robust, this method also could give insight into larger systems, consisting of
more species. Furthermore, we assume that it could be able to detect other
types of species interactions. Here, a systematic evaluation of the method
with different model systems would be necessary.

Phytoplankton dynamics in an one-dimensional water column

For the study of interspecies competition we focus on the population dy-
namics in phytoplankton communities (Chapter II). We used a mathemati-
cal model to simulate nutrient and light limited phytoplankton growth over a
one-dimensional vertical water column. To understand the background mech-
anisms and dynamics in such a system, independent of competitive effects,
we performed a comprehensive research of a one species system. Recent the-
oretical investigations found in such systems two possible globally attracting
fixed points, depending on system parameters. First, if a strong limitation
by light keeps the phytoplankton biomass near the surface, one find a stable
phytoplankton maximum in the upper layers. Second, a shortage in nutri-
ent can lead to a deep phytoplankton maximum. However, in recent field
observations (Venrick , 1993; Holm-Hansen & Hewes , 2004), deep or upper
phytoplankton maxima were observed under similar environmental condi-
tions. We assume, that this contradiction between theory and observation,
could be caused by mechanisms in real ecosystems, which were not reflected
in the theory. In particular an upper mixed layer could be such a mechanism
(Chapter II). To mimic a realistic aquatic environment, we included a strong
mixing in the upper and weak mixing in the deep layers of the water body.
This one-dimensional inhomogeneous mixed system give rise to complex, non-
trivial dynamics. We find, that the turbulent mixing in the upper layer can
stabilise an initial upper phytoplankton maximum, even if the environmental
conditions would favour a phytoplankton maximum in the depth, which gives
rise to bistability between a deep and a upper phytoplankton maximum, in a
certain range of parameters. In summary the minor extension of the model
significantly changed the phytoplankton dynamics, and therefore may also
influence phytoplankton competition significantly.
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Competition in a phytoplankton community

In order to investigate the phytoplankton competition under the influence of
an upper mixed layer we extend the model system (see above) by a second
phytoplankton species, differently adapted to light and nutrient availability.
We find that with the increased number of phytoplankton species the range of
bistability between deep and upper chlorophyll maxima becomes considerably
larger, as differently adapted species can keep a stable maximum in different
parameter ranges (Chapter II). We show that the presence of different mix-
ing regimes and the inhomogeneous resource distribution over depth lead to
new phenomena in the competition of phytoplankton species, as the species
composition strongly correlates with the spatial patterning. The bistability
distributions over depth, generated by the upper mixed layer, is now also a
bistibility between different phytoplankton compositions. Therefore, the phy-
toplankton competition outcome becomes depend on initial conditions and
external disturbances, which may initiate a shift between the opposite stable
states. Moreover, we show that the presence of an upper mixed layer alter
the phytoplankton dynamics and strongly influence the interspecies compe-
tition in transient states. Finally, the upper mixed layer strongly increase
the range of species coexistence and therefore could be a mechanism which
give rise to additional niches in aquatic ecosystems. To obtain an insight into
the complex mechanisms of competition in such an environment, we present
a graphical approach, which can be seen as an extension of the graphical
method developed by Tilman (1980, 1982). Thereby, one can predict the
outcome of species competition depending on the import of resources into
the system, the nutrient uptake rates and growth kinetics of the involved
species (Chapter II). Using this approach, we show that, even in the two
species case, the competition outcome in the modelled system is non-trivial
and depends on a multitude of different factors.

Species in complex food webs

Although the investigation of species interactions in basic systems provides
insights into important mechanisms, the dynamics in large, complex systems
can be differ from these findings. Therefore, to understand the dynamics in
real ecosystems it is necessary to study systems with an equal level of com-
plexity. However, high complexity usually impedes a comprehensive study
and understanding of the systems functioning. Numerical constraints limit
simulative studies in the number of realised instances and the size of the web
under consideration. Furthermore, the relation between underlying mecha-
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nisms and observed dynamics may be hidden by the complexity of the system.
Therefore, we restrict our research of large food webs to the analysis of lo-
cal stability. Thereby, we are able to utilize generalized modelling, a novel
numerical approach for the analysis of stability in families of nonlinear rate
equations (Gross & Feudel , 2006), to study several billion instances of food
webs of up to 50 species with nonlinear interactions (Chapter III).
In agreement with preceding research (May , 1971, 1972), we find a low
density of stable webs in complex systems, consisting of many species and
species interactions, while smaller food webs are likely to be stable. To assess
the dependence of stability on the model parameters we applied a sensitivity
analysis and computed the correlation between parameter values and food
web stability. We find a high correlation of the exponent of closure, and the
prey-dependence of the predation, with stability, which corresponds to the
known fact, that low saturation of predators and nonlinear mortality of the
top-predators promote stability. By contrast, the sensitivity of primary pro-
duction on the number of primary producers, and the sensitivity of predation
on the density of predators, are negatively correlated with stability. These
findings confirm that stability is increased if primary production is strongly
limited by external factors such as nutrient availability, and if the predator-
dependence of predation is reduced, for instance in a ratio-dependent preda-
tion. Furthermore, we show that a high scale-separation between predator
and prey promotes stability. In summary, the sensitivity analysis reveals that
food web stability strongly depend on certain physiological parameters, and
thus strongly depend on the present species and species properties.
The findings of the sensitivity analysis are in agreement with common knowl-
edge or follow intuitive explanations and therefore reconfirm the efficiency of
the generalised modelling approach. In a second step, we used this method to
scrutinise the effect of weak species interactions which is commonly assumed
to be a stabilising. Here we used a normalised measure of the variation of
interspecies biomass fluxes (Chapter III) to analyse the correlation of weak
links with stability in a large ensemble of food webs with randomly dis-
tributed link strength. Thereby we confirmed a stabilising effect of weak
links for small webs with less than 25 species. However, we find a contrary
effect for large food webs consisting of more than 30 species. We show, de-
spite the stabilising effect of weak links for small food webs, that weak links
destabilise food webs, which are of a size, comparable to typical food webs
found in nature. Thereby, we show, that results given by the analysis of
small systems are not necessarily valid in larger systems.
By a comprehensive study of topological properties and their correlation to
food web stability we revealed that the effect of certain species interactions
can depend on the trophic position where it take place (Chapter III). We
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show that the number of consumed prey species is positively correlated with
stability for species in a high trophic position, but negatively correlated for
species in a low or intermediate trophic position. Furthermore, also the num-
bers of predators, preying on a species, is differently correlated with stability
in different trophic positions. We find for prey species in low as well as in
high trophic positions, that the number of different predators is negatively
correlated with stability, but by contrast, there is a stabilising effect if a high
number of predator species prey on intermediate prey species. These findings
indicate, that generalists at the top and specialists at the bottom of the food
web should favour food web stability, a pattern which in fact can be found
in empirical data (Neutel et al. , 2002, 2007).

In this thesis different approaches to study population dynamics were ap-
plied. First, predation was studied in an experimental system (Chapter I).
Here, one is able to observe real species interactions, but is restricted in the
number of realised instances and in the choice of the system. It was shown,
that, even in basic systems, the measured times series can differ from theo-
retical predictions. Therefore, experiments or field observations are essential
to prove hypotheses from theory. In the second part of this work, interspecies
competition was studied in a model system (Chapter II). Modelling allows to
compare different adjustable scenarios and to reveal underlying mechanisms.
However, numerical constraints limit the size and the complexity of the inves-
tigated systems. For an analysis of larger systems, the generalised modelling
approach was applied (Chapter III). Here, the investigation is restricted to
the analysis of local stability. It was shown, that findings can depend on the
size of the systems. Therefore, the study of large systems in theory is an
essential tool do understand large system in nature. In summary, each the
applied approaches provide an insight into population dynamics on a certain
scale of abstraction and complexity. For a comprehensive understanding of
the population dynamics in real ecosystems, it is necessary to study systems
on all this different scales of abstraction and finally, to bring these findings
into one comprehensive context.



Scientific summary

The subject of this thesis is the investigation of ecological systems and in
particular population dynamics and species interaction. It is structured in
three chapters. In the first two chapters, the two most important types of
species interaction, predation and competition, are studied separately. Fi-
nally, in chapter three we study species interactions in complex food webs.
First, the dynamics of two interacting predator and prey species are studied
in an experimental chemostat system. We provide a long-time measurement
of 50 persistent predator-prey cycles, which is a five-fold increase over the
previously known maximum number of oscillations. However, even though
the experiment was not perturbed by external influences the observed signals
undergo marked transitions in character. To reveal the underlying dynamics
we performed a comprehensive time series analysis on the basis of established
wavelet methods. We provide time resolved information on the frequency and
the amplitude of the cycles and the correlation between the signals. Further-
more, the phase differences between all measured time series are compactly
encoded in a single polar phase histogram, providing a fingerprint for the
temporal succession of the community. These results, which are supported
by numerical simulations, establish the phase signature as a robust mea-
sure for the identification of species interactions in dynamical systems and
demonstrate the potential for perpetual coexistence of predator and prey
populations in a cyclic dynamic regime.
Second, interspecies competition is studied by means of an advection-reaction-
diffusion model of a phytoplankton community in a vertical water column.
In extension to recent work, the model includes an upper mixed layer, a
common phenomenon in aquatic systems. We show that the presence of an
upper mixed layer can lead to bistability. Furthermore we show that that
mixed layer generally promotes phytoplankton coexistence, but can, in the
oscillatory regime, also lead to a subtle competitive exclusion phenomenon.
Finally, we present a novel graphical approach for deducing the competition
outcome in such a system.
In the third part of this thesis we use generalised modelling, a novel numer-
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ical approach for the analysis of the stability in families of nonlinear rate
equations, to study the stability of complex food webs. We generated real-
istic food web topologies by means of the niche model, which is based on
ecological reasoning regarding the prey that can possibly be devoured by a
given species of predators. Thereby, we were able to study several billion
instances of food webs of up to 50 species with nonlinear interactions. The
results confirm a negative correlation of food web complexity with stability.
Furthermore, we analyse the influence of topological properties and model
parameters on food web stability. Finally, we show that weak species inter-
actions have a destabilising effect on large food webs.
In summary this thesis studies population dynamics on different scales of
abstraction. It shows, advantages and problems of the applied approaches
and points to the necessity to combine these findings for an understanding
of real ecosystems.
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