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Abstract

The subject of this thesis is the generation of spatial temporal structures in living cells.

Specifically, we studied the Min-system in the bacteriumEscherichia coli. It consists of

the MinC, the MinD, and the MinE proteins, which play an important role in the correct

selection of the cell division site. The Min-proteins oscillate between the two cell poles

and thereby prevent division at these locations. In this way, E. coli divides at the center,

producing two daughter cells of equal size, providing them with the complete genetic pat-

rimony.

Our goal is to perform a quantitative study, both theoretical and experimental, in order

to reveal the mechanism underlying the Min-oscillations.

Experimentally, we characterize the Min-system, measuring the temporal period of the

oscillations as a function of the cell length, the time-averaged protein distributions, and the

in vivo Min-protein mobility by means of different fluorescence microscopy techniques.

Theoretically, we discuss a deterministic description based on the exchange of Min-

proteins between the cytoplasm and the cytoplasmic membrane and on the aggregation

current induced by the interaction between membrane-boundproteins. Oscillatory solu-

tions appear via a dynamic instability of the homogenous protein distributions. Moreover,

we perform stochastic simulations based on a microscopic description, whereby the prob-

ability for each event is calculated according to the corresponding probability in the mas-

ter equation. Starting from this microscopic description,we derive Langevin equations

for the fluctuating protein densities which correspond to the deterministic equations in the

limit of vanishing noise. Stochastic simulations justify this deterministic model, showing

that oscillations are resistant to the perturbations induced by the stochastic reactions and

diffusion. Predictions and assumptions of our theoreticalmodel are compatible with our

experimental findings.

Altogether, these results enable us to propose further experiments in order to quan-

titatively compare the different models proposed so far andto test our model with even

higher precision. They also point to the necessity of performing such an analysis through

single cell measurements.
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. . . ; das tägliche Streben entspringt keinem Vorsatz oder Programm, sondern einem

unmittelbaren Befürfnis1 .

Albert Einstein

1“ . . . ; daily research, doesn’t arise from a project or a program, but from an immediate demand”.Motive

des Forschens, Ansprache gehalten am26 April 1918, in derDeutschen Physikalischen Gesellschaftzu Max

Plancks sechzigstem Geburstag [1]
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Chapter 1

Introduction

A famous remark by the biologist Franco̧is Jacob asserts: “the dream of every cell is to

become two cells” [2]1. Fulfilling that dream requires a long list of molecular building

blocks, spatial regulatory mechanisms, and the energy necessary to carry out the cell divi-

sion process. The subject of this thesis concerns one of the spatial regulatory mechanisms

in the bacteriumEscherichia coli.

Why does a cell need regulatory mechanisms for division? In most prokaryotic and

eukaryotic species, cell division takes place through the formation of a cell wall (plant

cells, yeast, and prokaryotic cells) or a contractile ring (animal cells), and the consequent

creation of two daughter cells. After chromosome replication and segregation, correct

placement of the division site is crucial for the transmission of genetic information from

parental to progeny cells. To achieve this goal, both eukaryotic and prokaryotic cells have

developed extremely reliable division site selection mechanisms2.

Spatial and temporal oscillations of the Min-proteins3 in E. coli provide one of these

mechanisms that permit the bacterium to identify the properlocation of the division site.

1Also quoted in [3] p. 20.
2For a review of spatial control of division-site placement in bacteria and eukaryotes see [4,5]
3A remark about notations. A fully functional cell line, or strain, found in the wild is called a wild type

(wt). If a mutant cell is found that is missing a particular function or showing a new characteristic, the gene

carrying the mutation is named in relation to that function or characteristic. For example, amingene is one

encoding a protein required for correct placement of the division plane. A cell with such a defect (min−)

makes the division plane, but in about50% of all divisions the cell wall grows close to one of the two poles

giving rise to mini-cells. From here the prefix “min”. Usually the first gene of this type to be identified is

calledminA (in italics), the second is calledminB, and so on throughout the alphabet. When the protein

encoded by the gene is identified, it is called MinA (capitalized and in Roman type).
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Figure 1.1: a) Schematic representation ofE. coli during the division process. The division plane

is determined by the location of the Z-ring, a structure built from FtsZ-filaments. A mechanism

called “nucleoid occlusion” restricts the formation of theZ-ring to a region void of DNA. After

duplication and segregation of the chromosome, three possible locations of ring formation remain:

at the cell center and close to the two cell poles. The Min-system selects the center so that each

daughter cell receives the complete genetic patrimony. b) and c) FtsZ-GFP (GFP stands for Green

Fluorescence Protein, see chapter one) localizes to inter-nucleoid regions. Individual cells of

JM109/pZG stained with 4,6-diamidino-2-phenylindole (DAPI; blue fluorescence), viewed for

DAPI fluorescence only (top part), GFP fluorescence only (second part from top), and DAPI +

GFP (lower two parts, composite images, with lowest part darkened to improve the visualization

of the inter-nucleoid space). Bar= 1µm. b) and c) Taken from [6].

Like all prokaryotic cells,E. coli has no nucleus and, due to the spatial distribution of the

chromosomes for the daughter cells to either side of the cell, precise spatially symmetric

division is essential (see figure 1.1). In this study, we investigate possible mechanisms

underlying the Min-oscillations by means of experiments, mathematical modeling, and

numerical simulations.

Over the last fifteen years, the discovery of cytoskeletal4 proteins in prokaryotic cells

changed the old view of bacteria as simple containers of enzymes [9–11]. The absence of

4The cytoskeleton is a subcellular structure in the cytoplasm built from protein filaments. It gives the

cell its shape, the capacity for direct movement, organizesthe intracellular transport, and plays an important

role during cell division [7,8]. Its components are actin filaments, microtubules, and intermediate filaments

(IFs).



3

a cytoskeletal structure was once believed to be a decisive distinction between prokary-

otes and eukaryotes. However, work in the past years has shown that bacteria actually

possess a full complement of cytoskeletal proteins including actin, tubulin, and interme-

diate filament protein homologoues [9–19].

Elements of the division machinery inE. coli have been identified as a part of the

bacterial cytoskeleton. FtsZ, the first protein to assembleat the future division site [20],

is supposed to share a common ancestor with tubulin, the component of microtubules in

eukaryotic cells. The two proteins have a modest homology oftheir sequences but a very

similar three-dimensional structure [21]. MinD belongs toa large and functionally diverse

family of ATPases proteins that have a conserved deviant Walker A motif and dimerize

in an ATP-dependent manner [22–24]. These proteins have recently been suggested to be

part of a new family of cytoskeletal proteins which are required for the spatial regulation

of chromosome partitioning and cell division [25] and have no known direct counterpart

in the cytoplasm of eukaryotes. In addition, proteins of theMreB family, present in a wide

range of rod-shaped bacteria, includingE. coli, are actin homologoues regulating the cell

shape [26]. Finally, crescentin (CreS), an IF protein that localizes toCaulobacter’s inner

curvature and regulates the cell shape, resembles IFs in animal cells [17].

Bacteria are simpler than eukaryotic cells and can in some cases be studied more eas-

ily. Their study can offer the opportunity to discover basiccellular mechanisms common

to eukaryotic and prokaryotic cells, which have been preserved during evolution [9]. For

instance, the Min-system was also found to determine the division site in plant cell chloro-

plasts [27], which are believed to have originated from photosynthetic bacteria. Homol-

ogoues of MinD, MinE and FtsZ proteins were identified in the nuclear genome ofAra-

bidopsis. In particular, the importance of the MinDArabidopsishomologue (AtMinD1)

in plastid division was corroborated by the phenotype obtained when the AtMinD1 ex-

pression was altered [28]. Overexpression of AtMinD1 inhibits the chloroplast division

as overexpression of MinD inhibits the growth of the Z-ring in E. coli. In addition, the

reduction of AtMinD1 concentration gives rise to heterogeneity in chloroplast size, that

is reminiscent of mini-cells formation inE. coli. This suggests a functional conservation

between theArabidopsisAtMinD1 and theE. coli MinD.

Moreover, proteins homologous toE. coli Min-proteins are present in many other

bacteria [4], with cases of the conservation of the functionbetween species. An example

is shown by the ability of MinD (MinDNg) and MinE (MinENg) proteins fromNeisseria

gonorrhoeaeto function as the usual Min-proteins when they are introduced intoE. coli.

MinD (MinDNg) and MinE (MinENg) also cause a division block when overexpressed

in Neisseria gonorrhoeae, but it is not yet known whether the proteins oscillate within the

cell. In B. subtilis, MinCD proteins prevent septation near the poles as they do in E. coli,
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but remain in position at both poles without showing oscillations.

The study of bacteria is also important in its own right; in fact, bacteria are practically

everywhere, and understanding how they work is useful in different fields from clinical

treatment of infectious diseases to the production of energy.

Besides its biological relevance, the Min-system is an extraordinary example of how

quantitative modeling may lead to new insight into the mechanism of self-organization in

cells [29]. Because of the low number of Min-proteins, it is also an appropriate system

to study stochastic effects in spatially extended systems.It is surprising that, despite

the fluctuations in the number of involved molecules, most cellular events are precisely

regulated, as is, in our case, the positioning of the division plane.

Other proteins not related to the cell division process showspatial-temporal patterns

in bacteria. Examples are Par-B waves [30], and pole to pole oscillation of FrzS, a protein

required for direct motility inMyxoccocus xanthus[31]. In general, oscillations occur in

many biological conditions [32–36]. Spatiotemporal patterns appear spontaneously in a

wide range of physical, chemical, and biological systems when they are driven sufficiently

far from thermodynamic equilibrium. From a theoretical point of view they can be de-

scribed in terms of a dynamic instability, a property of the system by which a spatially

uniform state loses stability and passes into a non-uniformstate, for example as a conse-

quence of local fluctuations [37]. The first description of pattern formation in biological

systems using this approach was introduced by Turing in 1952[38].

In a broader context, our work may be seen as a paradigm of the physical approach to

living systems. Traditionally, physics and biology developed different approaches for the

study of inanimate and living systems. Galileo’s study of motion is a prototypical exam-

ple of the physics approach. He found mechanics neglecting friction, although friction is

a crucial ingredient of everyday life. As a consequence, when a theoretical physicist tries

to understand how a system like anE. coli cell works, he looks for universal laws, and his

model should contain the minimum in possible ingredients, hopefully the key ingredients

of the system. This means that, at the very least, the model must make predictions that

can be experimentally tested. On the other hand, a biologistof the past century sought

to understand the realE. coli, not a hypothetical one. His approach was much more de-

scriptive. Understanding the system means to describe the system in all possible details5,

which makes quantitative predictions difficult.

5This is an oversimplification of the real situation. In fact,the desire to study biological problems

using tools from other sciences has alway been present, and different approaches in the last century were

used by biologists, such as theholistic one, where biological systems are described in their wholeness, or

the reductionisticone, where the system is characterized in all single components. Interested readers are

invited to consult the book of B.O. Kupper [39], or the historical account of E. Mayr [40]



5

In the last twenty years, the situation has drastically changed. Technological advances,

for example in fluorescence microscopy techniques or microscopic manipulation of sin-

gle molecules as DNA [41], have revolutionized our views of biological systems. This

new situation opened the door to developing biology as a quantitative, predictive science.

Theoretical physicists were attracted to this possibilityand started to apply methods from

the statistical physics of systems out of the thermodynamicequilibrium and non-linear

dynamics to study biological systems. For a long time, only results for small devia-

tions from the equilibrium were available in statistical physics [42]. Perhaps it is not

by chance that new theoretical results have recently appeared in this field, in particular

concerning fluctuation theorems and dynamical phase transition far from the equilibrium,

just when technological advances allow for a comparison with experiments in living sys-

tems [43, 44]. Moreover, people from different fields and with different backgrounds as

biologists, chemists, engineers, mathematicians, and physicists organized meetings and

began to collaborate, looking for a new common approach to living systems. Due to the

complexity of biological systems, finding general principles is a difficult task. Neverthe-

less, using the words of Uri Alon6, we believe that biological system contain an inherent

simplicity: “Although cells evolved to function and did notevolve to be comprehensible,

simplifying principles make biological design understandable to us” [45].

We hope that by bringing the physics approach to biology new unexpected results

and applications in biotechnology and medicine can be found. As Eric Siggia writes

on his Lab Web Page “Nowadays, physics applied to cell biology is less reductionist

than biochemistry. The challenge for the theorist is to deduce novel and quantitative

conclusions from less than full chemical detail. The opportunities for doing so are when

physics contributes to the experimental design rather thanbeing added at the end to fit

curves”. This is the approach we followed in this thesis. In particular, we focus on the

following issues: theoretical study of the Min-protein dynamics, by i) deterministic, and

ii) stochastic descriptions; iii) experimental characterization of the Min-system and test

of the predictions of our theoretical model by means of different fluorescence microscopy

techniques.

The road map of this thesis is as follows7: The first chapter is devoted to experimen-

tal results. First the typical characteristics of the Min oscillations, observed by means

of video-rate fluorescence microscopy, will be shown. Then,the measure of the values

of Min-protein mobility, obtained by means of FluorescenceCorrelation Spectroscopy

(FCS). In the second chapter, a deterministic theoretical model is introduced, and predic-

6“Simplicity in Biology”, course at the summer school on: “Physics of cellular objects”, Cargèse 2006.
7For didactic reasons the order in which the different topicswill be introduced does not follow the

chronological order in which the work was carried out.
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tions of the model are compared with the experimental findings of the first chapter. In the

third chapter, stochastic effects on the Min-system will bestudied. Finally, the results and

possible future perspectives will be discussed.



Chapter 2

Experimental characterization of the

Min-system

“With four parameters I can fit an elephant, and with five I can make him

wiggle his trunk”

John von Neumann (as cited by Enrico Fermi)

Introduction

The Min-system has been characterized by intensive biochemical and genetic studies. In

this introduction, the principal results of these studies will be reported, and the goal and

the motivations of our experimental work, the results of which will be presented in the

rest of the chapter, will be given.

Biochemistry and genetics of the Min-system. E. coli is a rod-shaped bacterium

that lives in our intestine1. It is 2 − 6µm length and1 − 1.5µm in diameter. The cell,

which weighs only 1 picogram, is about70% water. Some strains are flagellated and

motile; others are non-flagellated and non-motile. The chromosome ofE. coli consists

of a single double-stranded chain of DNA about 700 times longer than the body of the

cell. There are 4,639,221 base pairs specifying 4,288 genes, most of which encode

proteins. The functions of only approximately60% of these proteins are known. Their

total number in each cell is on average∼ 4 × 106. WhenE. coli grows, it first becomes

longer and then divides in the middle. In a sense it is immortal2 because the mother cell

1The following general information aboutE. coli are taken from “Motility Behavior of Bacteria” by

Howard Berg in http://www.physicstoday.org/pt/jan00/berg.htlm.
2This statement may be too strong, see [46] about aging and death in E. coli
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is replaced by two daughters essentially identical to the mother. The molecules of DNA

in the members of a given set of descendants are identical except for mutations which

occur spontaneously for a given gene at the rate of about10−7 per generation.

When it is grown in a rich medium (such as salts plus a mixture of amino acids),

and held at the temperature of the human intestine (37 ◦C), E. coli can synthesize and

replicate everything it needs to make a new copy of itself in about 20 minutes. The

division plane is determined by the location of the Z-ring [47, 48]. This structure is built

from FtsZ-filaments and forms on the inner bacterial membrane. The Z-ring recruits

additional proteins, leading to the formation of a divisionmachinery capable of carrying

out cell division. In wt cells, the Z-ring assembles at mid-cell and is in residence for

at least half the cell cycle before there is a visible invagination. During septation, the

Z-ring contracts at the leading edge of the invagination. Using Fluorescence Recovery

After Photobleaching3 (FRAP) with FtsZ-GFP it was demonstrated that the Z-ring is a

highly dynamic structure that undergoes remodeling [49], and more recently it was shown

that its half-life is approximately9s [50]. Finally, it was demonstrated by Fluorescence

Resonance Energy Transfer (FRET) that protofilaments turn over with the same dynamics

in vitro [51]. In turn, the position of the Z-ring is first of all determined by the distribution

of the nuclear material inside the cell. A mechanism termed “nucleoid occlusion” restricts

the formation of the ring to regions void of DNA [52–54]. So far this mechanism is

poorly understood. After duplication and segregation of the chromosome4, three possible

locations of ring formation remain: at the cell center and close to the two cell poles. The

selection of the center as the correct division site is achieved by the Min-system [57,58].

The deletion of any of the Min proteins results in division septa forming close to one

of the two cell poles in approximately 50% of all divisions. In these cases, DNA-free

mini-cells are formed [59], which led to the name Min-system.

The Min-system consists of three proteins, MinC, MinD, and MinE, whose molecular

weights are25kD, 30kD, and10kD, respectively. Out of these, MinC induces the de-

polymerization of FtsZ-filaments and thus inhibits the formation of the Z-ring [60]. The

distribution of MinC on the membrane changes periodically with time in such a way that

in one half of the cycle, MinC accumulates at one pole while itaccumulates at the op-

posite pole in the second half of the cycle [61, 62]. Formation of the Z-ring is thereby

suppressed at the cell poles.

The oscillations of MinC require the presence of both, MinD and MinE, which them-

selves also oscillate [63,64]. In fact, MinC binds to MinD and follows its dynamics [65].

3See appendix B for a short introduction to this technique
4Also the mechanism underlying chromosome segregation in bacteria is still elusive. Recent studies

suggest that is a spontaneous process directly related to the cell length [55,56].
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Figure 2.1: Oscillations of GFP-MinD inE. coli. Fluorescence images of GFP-MinD in three cell

at subsequent time points separated by20s. Scale bar:1µm.

Figure 2.1 shows an example of GFP-MinD protein oscillations. Remarkably, MinC is

not necessary to generate oscillations, as MinD and MinE oscillate also in the absence of

MinC [63]. In vitro experiments have shown that the ATPase MinD has a high affinity

for the inner bacterial membrane when bound to ATP [66]. For concentrations of MinD

exceeding a critical value, filamentous MinD aggregates areformed on phospholipid vesi-

cles [66, 67]. The formation of MinD aggregates on vesicles leads to the formation of

membrane tubes of a diameter of 50-100nm [66]. Around these tubes, MinD is wound

in form of a helix with a pitch of about6nm, the linear extension of the MinD molecule.

As for MinE, it associates with the membrane only in the presence of MinD. There it

stimulates hydrolysis of the ATP bound to MinD, which eventually drives the protein off

the membrane [66].

Thesein vitro results are compatible with the behavior of MinD and MinEin vivo. In

MinD depleted cells, it was observed that MinE is dispersed in the cytosol, while MinD

is homogeneously distributed on the cytoplasmic membrane if MinE is absent [63].In

vivo, the helices formed by MinD on the cytoplasmic membrane havea pitch of a few

hundrednm [68]. The significance of the helical structures for the oscillation mechanism

is still not understood. During the relocation of MinD from one cell half to the other, not

all of the MinD seem to switch. We can speculate that the ones remaining might be used

to reassemble the new helix in the next cycle. As MinE is recruited to the membrane by

MinD, its arrangement follows the helical MinD pattern. Finally, the oscillatory behavior

does not depend on the synthesis and degradation of the Min-proteins [63]. A schematic

representation of the MinD/MinE oscillations is presentedin figure 2.2.
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Figure 2.2: Schematic representation of MinD/MinE oscillations inE. coli. Three successive time

instances are illustrated. MinD forms a membrane-bound helix in one half of the cell; MinE is

associated with this structure, predominantly towards thecenter. (a) MinE stimulated detachment

of MinDE from the membrane, setting free the cell center for division. (b) MinD and MinE diffuse

in the cytosol, and, driven by the dynamical instability, MinD/MinE form a helix at the opposite

end of the cell, (c) and the process repeats. Taken from [29].

Goal and motivation of our experimental work. Theoretical studies have provided

strong evidence that the pole-to-pole oscillations are formed by the self-organization of

MinD and MinE [29]. All mechanisms proposed so far rely essentially in one way or

another on the formation of aggregates of membrane-bound MinD. Such aggregates were

observed in vitro and in vivo [66, 68]. We will analyze in detail these mechanisms in

chapter two. They can roughly be divided into two classes. Incooperative attachment

models (CAM), MinD-aggregates are formed through collective effects during binding to

the cytoplasmic membrane [69–75]. In aggregation current models (ACM), aggregates

are formed after the proteins have bound to the membrane [76,77]. In figure 2.3 a

schematic representation of the two mechanisms is shown. CAM as well as ACM

can capture the qualitative features of the Min-oscillations, and there is experimental

evidence for both processes inE. coli. A study of MinD attachment to phospholipid

vesicles in the presence of ATPγS, a non-hydrolyzable ATP analogue, suggests a two-step

mechanism for the formation of aggregates of membrane-bound MinD first involving the

binding of MinD to the membrane and subsequent aggregation [66]. In yeast two-hybrid

assays MinD-MinD interactions were observed to be strongerif both proteins were
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Figure 2.3: Schematic representation of (a) aggregation current model (ACM) and (b) cooperative

attachment model (CAM).

membrane-bound than if at least one partner was cytosolic [78]. On the other hand, the

concentration-dependence of MinD binding to phospholipidmembranes deviates from

Langumir isotherm [79,80]. Furthermore, the amount of MinDbinding to liposomes as a

function of the MinD-concentration in the surrounding could be fitted by a Hill equation

with a Hill coefficient of 2 [80].

In order to reveal whether either cooperative attachment oraggregation currents are

dominant inE. coli, a quantitative comparison of the models with experiments is nec-

essary. This requires to examine assumptions and specific predictions of the theoretical

models, and to determine the model parameters by measurements.

To this end, in the first part of this chapter, fluorescence video-rate microscopy and

Laser scanning Confocal Microscopy (LSCM) will be used to measure the space and time

dependence of the protein distribution, the time-averagedprotein distributions, and the

temporal period of the oscillations as a function of the celllength. These observations

will be compared with theoretical predictions in the secondchapter. In the second part

of this chapter, the results of measurements of the Min protein mobilities in vivo using

Fluorescence Correlation Spectroscopy (FCS) will be shown. We have analyzed the data

assuming that either aggregation currents or cooperative attachment is dominant and, thus,

obtained key parameters of the various models.
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Figure 2.4: Fluorescence intensityI normalized by the maximum valueImax of GFP-MinD pro-

teins inE. coli as a function of the time. The decay of the maxima values during the oscillation

is due to photobleaching. A schematic representation of thecell is shown in the upper right side.

The yellow area shows, form the top, the point from which the fluorescence intensity light was

collected.

0 20 40 60 80 100 T[s]
0

1

2

3

4

|DFT|

Figure 2.5: Histogram of oscillation period measured for GFP-MinD in a singleE. coli cell from

the fluorescence intensity signal in figure 2.4. The total time for the measurements was approx-

imately half an hour.# is the number of periods measured. In the upper right side thediscrete

Fourier transform (DFT) of the fluorescence intensity signal in figure 2.4 is shown.
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2.1 Min-oscillations

2.1.1 General aspects

To follow the temporal evolution of the Min protein concentration we used Min proteins

tagged with GFP, a fluorescent protein cloned from the jellyfishAequorea victoria. GFP

has aβ-barrel shape that contains an amino-acid triplet (Ser-Tyr-Gly) which undergoes a

chemical rearrangement to form a fluorophore. When proteinsfused to GFP are expressed

in cells, they often retain the original protein function, and therefore can be used as a

fluorescent tag to study protein localization. See appendixA for more information.

From a physical point of view, the two principal characteristics of the Min-oscillations

are the temporal and spatial period. Concerning the temporal period, values of about one

minute were found [61, 63]. These values agree with our measurements that range from

40s to 120s, see figure 2.14. An example of a long record of GFP-MinD oscillations is

shown in figure 2.4. Figure 2.5 shows the corresponding histogram of the period and its

(discrete) Fourier transform (DFT). The peaks in the histogram and in the DFT are proof

0s

0s

0s 15s 30s 45s 60s0s

0s

0s

a)

b)

c)

20s 40s 60s 80s

25s 100s75s50s

Figure 2.6: Sequences of fluorescence images of GFP-MinD in three differentE. coli cells. Start-

ing from the left, the images for each cell at subsequent timepoints are separated by (a)15s, (b)

20s (c) and25s, and show patterns with one, two and four stripes respectively. The cell lengths

are approximately (a)5µm, (b)12µm, and (c)20µm. Scale bar:2µm.
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that the spatio-temporal dynamics of the Min-proteins, really correspond to an oscillatory

process. In bacteria of a length that exceeds a certain threshold, a striped oscillatory

pattern appears, where the number of stripes increases withincreasing cell length. This

observation is indicative of an intrinsic spatial wave-length of the oscillations. Typical

spatial wave-length values range from1.5µm to 5µm. In figure 2.6, examples of three

cells with one, two and four stripes respectively, are shown.

The spatial distribution of MinE is more complex than the oneof MinD. The analysis

of fluorescence images of MinE-GFP show clear accumulationsof MinE as displayed

in figure 2.7, termed MinE-rings [81]. It was shown, that the ring is not stationary, but

oscillates [64]. More recently, using deconvolution techniques, MinE was found to be

arranged in a helix with accumulation for the one stripe pattern case close to the cell center

and, although weaker, at the cell poles [68]. It was suggested that the helical arrangement

of MinE is induced by the helical arrangement of MinD and thatthe accumulation of

MinE occurs at the ends of the MinD helix [68]. In cells mutantfor MinE, oscillations

were observed in the absence of a MinE-ring [82]. In that case, the temporal period is

larger than in non-mutant cells. Still, this experiment clearly shows that the MinE-ring is

not necessary for the oscillations.

We analyzed hundreds of videos, and the majority of them showed that MinD oscilla-

tory pattern correspond to a standing wave, see figure 2.8. Nevertheless, in approximately

ten cases we found traveling waves, i.e. protein translocation along the cell from the

one side to the opposite side. Figure 2.9 shows an example of MinD travelling waves.

Contrary to [74] we didn’t observe switching between standing and traveling vawes.

Figure 2.7: Fluorescence image of MinE-GFP. Three MinE rings (indicated by the arrows) are

clearly visible. Other MinE structures are visible, they belong to a distorted rings at the end of the

depolymerization process. Scale bar:2µm.
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Figure 2.8: An example of a standing wave of GFP-MinD. a) Fluorescence images in a cell at

subsequent time points separated by 9s. Scale bar: 1µm. The cell length is≈ 6.6µm. b) Fluo-

rescence intensity I in arbitrary units obtained from a linescan of the fluorescence signals in a).

Yellow lines in a) indicate the area considered for the line scan, and in each point of the x axis

the intensity value was obtained by averaging the fluorescence signal in the transversal direction

to these lines.
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Figure 2.9: An example of a traveling wave of GFP-MinD. a) Fluorescence images in a cell at

subsequent time points separated by 15s. Scale bar: 2µm. The cell length is≈ 8.5µm. b)

Fluorescence intensity I in arbitrary units obtained from aline scan of the fluorescence signals in

a). Yellow lines in a) indicate the area considered for the line scan, and in each point of the x axis

the intensity value was obtained by averaging the fluorescence signal in the transversal direction

to these lines.
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2.1.2 Time-averaged distributions

Figure 2.10 shows the time-averaged MinD distribution. It has a pronounced minimum

in the middle of the cell. This minimum suggests a possible mechanism for selecting the

division site. The MinC proteins spend most of the time at thecell poles and therefore

preclude the FtsZ ring from growing there, leaving the middle of the cell as the only

possible division site. In figure 2.11 it is also shown how theminimum in the cell center

is preserved during many oscillations. However, for other cells examined, the minimum

of the time-averaged fluorescence intensity was much more shallow or even absent, see

figure 2.12. On the one hand, this might reflect deviations in the total protein density

in individual bacteria from the average total protein density in a bacterial colony. On

the other hand, considering different cells of different lengths, we have found that, at

least qualitatively, the value of the minimum decreases with the system length up to the

point when the oscillation pattern acquires a new stripe, corresponding to a cell length of

≈ 2.5 − 3.5µm, see, for instance, the red curve in figure 2.12. It would be interesting to

verify this point in a single cell experiment. In longer cells the two maxima at the poles

0 Lc

0

0.1

0.2

0.3

0.4

0.5

I

a)

e)

b) c) d)

f)

x

0s 20s 40s 60s

Figure 2.10: Oscillations of GFP-MinD inE. coli. a-d) Fluorescence images of GFP-MinD in a

cell at subsequent time points separated by 20s. e) Time-average of all frames during one oscil-

lation period. Two subsequent frames are separated by 1s. f)Fluorescence intensity I obtained

from a line scan of the fluorescence signal in (e). The background signal was subtracted from the

total signal which was then rescaled with the maximum intensity during the oscillation. The slight

asymmetry is due to bleaching during the observation period. Scale bar: 1µm. The cell length is

Lc = 2.8µm.
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Figure 2.11: a) Time-average of all frames during one oscillation period. Two subsequent frames

are separated by 2s. b) Time-average of all frames during tenoscillation period. c) Up (red)

curve: time-average of all frames during one oscillation period obtained from a line scan of the

fluorescence signal in (a). Down (black) curve: time-average of all frames during ten oscillation

periods, obtained from a line scan of the fluorescence signalin (b). The background signal was

subtracted from the total signal which was then rescaled with the maximum intensity during the

oscillation. The slight asymmetry and likely also the decreasing of the intensity value at the poles

are due to bleaching during the observation time. The cell length isLc = 5.2µm.

x/L
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Figure 2.12: Time-average of all frames of fluorescence images GFP-MinD during one oscillation

period for different cells. Starting from the top the cell length is 2.4µm, 2.6µm, 2.9µm, 3.4µm,

6.6µm, respectively for the black, red, green, blue, orange dots. In the vertical axis the fluorescence

intensity is reported, with the same unity as in figure 2.10(f), but the curves are shifted, one with

respect to the other, to avoid over-positions.
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Figure 2.13: Oscillations of MinE-GFP inE. coli. a-d) Fluorescence images of MinE-GFP in a cell

at subsequent time points separated by 50s. e) Time-averageof all frames during one oscillation

period. Two subsequent frames are separated by 2s. f) Fluorescence intensity I obtained from a

line scan of the fluorescence signal in (e). The background signal was subtracted from the total

signal which was then rescaled with the maximum intensity during the oscillation. The slight

asymmetry is due to bleaching during the observation period. Scale bar: 2µm. The cell length is

Lc = 5µm. The steps are due to the finite resolution of the fluorescence intensity detector.

move toward the middle. This might indicate a coupling between the cell length and the

assembly of the Z-ring. Finally, in figure 2.13, the time-averaged MinE distribution is

reported with a maximum in the center. This maximum reflects the presence of the MinE

ring.

2.1.3 Oscillation period as a function of the cell length

We measured the temporal period of the oscillations inE. coli containing GFP-MinD

as a function of the cell length, see figure 2.14. The periods fall in the range of 50s to

120s, even for bacteria of 15µm in length. Measurements were carried out with video-

rate-microscopy. Because of photobleaching, this method allows for recording only a few

periods in each single cell. Consequently, in figure 2.14, every point corresponds to a

different cell. In order to minimize the error in the cell length, we considered only cells

with their complete body in focus. The data indicate large variations in the oscillation

period for cells of approximately the same length.

To investigate the origin of these variations, the oscillation in a single cell was

recorded for approximately30min with LSCM. In comparison to video-rates-microscopy,

LSCM allows for measuring the oscillation period by collecting the fluorescent light from
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Figure 2.14: Oscillation period measured for GFP-MinD inE. coli as a function of the cell length.

Black dots: oscillation pattern as in figure 2.6(top), red crosses: oscillation pattern as in fig-

ure 2.6(middle), green and blue dots: oscillation pattern with three and four stripes, respectively.

Error bars are of about the size of the symbols.

a smaller volume of the cell. Together with the small power ofthe exciting laser this

allows for significantly lower photobleaching. In this way,extensive recording of the

oscillations of up to45min is possible, see figure 2.4.

We considered the distribution for the values of the period for some cells, keeping

the temperature constant at22◦C. Under these conditions the cell grows very slowly. In

figure 2.5, a typical histogram of the oscillation period is shown. The little asymmetry

in the distribution and the secondary peak in the DFT may be anindication that the cell

had grown a little, but here the important information is that the standard deviation (SD)

of this distribution is smaller than the variation of the periods at approximately the same

length in cell population, figure 2.14.

Therefore, fluctuations in the period of the single cell can only partially account for

the spread in figure 2.14. The main contribution is likely to be due to different protein

concentrations in different cells. In fact, experimental observations [63] indicate that the

period increases with the MinD concentration and decreaseswith the MinE concentration;

in addition we expect every cell to have a different protein concentration [83,84].

We performed the same measurement at37◦C, allowing for the growth by someµm

in length within30min as shown in figure 2.15(b). In figure 2.15(a) a measurement of

the period as a function of time in a single cell at37◦C is shown. In order to reduce

the effects of photobleaching, the measurement was stoppedafter 25min and restarted

approximately7min later, but at that point the signal was much noisier, and the error

in the value for the oscillation period was higher. In addition, due to photobleaching, it
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Figure 2.15: a) Oscillation period measured for GFP-MinD ina singleE. coli cell. As error bars,

not shown, we can consider the SD in figure 2.5 of approximately 10s in the first part up to25s

and a greater error in the second part. i) Bright field images of the same cell at different moments

in time. Starting from the top the first image shows a dashed line corresponding to a cell length of

4µm.

was possible to check on the spatial pattern only at the beginning of the measurement

and the cell length in the dark field at some moments in time. Therefore, we were not

able to ascertain if the cell acquired a new stripe or not, andfurther measurements will be

necessary.

2.2 Measurement of Min-protein mobility

The are several non invasive techniques based on fluorescence spectroscopy that can be

used for measurements in living cells; for a general reviewssee [85, 86]. Three of them

were used for measurements of protein mobility in bacteria.Direct measurements of the

displacement of individual proteins were employed to determine the mobility of mem-

brane proteins inCaulobacter crescentus[87]. FRAP, where the fluorescent proteins

present in a defined region are bleached and the recovery of the fluorescence is mon-

itored, was used to measure the diffusion constants of cytoplasmic proteins [88]. The

third method, FCS, exploits the fluctuations in the fluorescence intensity emanating from

an illuminated region with respect to the mean signal in order to assess dynamic prop-

erties [89]. It was used to measure the dynamics of CheY involved in chemotaxis [90]

and transcription activity at the RNA level [91, 92]. We haveused FCS to measure the

mobility of MinD and MinE tagged to GFP. As a control we also measured the mobility
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Figure 2.16: The actual confocal FCS setup applied to Min proteins mobility measurements. See

”Optical Setup” in appendix A for details.

of the Enhanced Green Fluorescent Protein (EGFP). The experimental setup is shown in

figure 2.16. For a short introduction to FRAP and FCS see appendix B.

2.2.1 Quasi-steady states during oscillations

The analysis of fluorescence fluctuations requires a well-defined average state. Seem-

ingly, this is not the case for the Min-system which oscillates with a period of approxi-

matively80s. However, there are regions in the bacteria in which the fluorescence signal

is quasi-stationary for approximatively 10s. In figure 2.17(b), we present the fluores-

cence intensity in a confocal volume positioned in one cell half. There are phases of high

and low constant fluorescence as well as phases of strongly varying fluorescence. Re-

spectively, these phases reflect the dwelling of MinD in one cell half for a large fraction

of a half-period as well as the comparatively rapid transition to the opposite cell half.

Figure 2.17 (c) displays the fluorescence intensity along the bacterial long axis for six

different times separated by 2s. The intensity variations during this period are less then

5%. The fluorescence profiles in cross-sections perpendicularto the long axis also show

only moderate fluctuations, figure 2.17(d) and (e). The form of the mean profiles in the

low- and high-intensity regions differ significantly: while the profile in the low-intensity

region is uni-modal, it is bi-modal in the high intensity region. This results from a low

fraction of membrane-bound MinD in the low intensity regionand a high fraction in the
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Figure 2.17: Quasi steady states. a) GFP-MinD fluorescence in E. coli at different phases of the

oscillation cycle. Scale bar:1µm. b) Fluorescence intensity in a confocal volume located in

one cell-half as a function of time. Oscillations with a period of 60s are clearly seen. Around

states of maximal and minimal intensity, time-intervals ofroughly constant fluorescence intensity

can be detected. c,d,e) Fluorescence intensity along the long axis (c) and the cross-sections (d,

e) indicated in (a) for six different times separated by 2s each. The curves vary around a quasi-

stationary mean profile. The differences in the cross-section profiles (d) and (e) reflect the different

fractions of membrane-bound proteins in the low- and high-intensity phases in a cell half.
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high-intensity region [63]. The fluorescence profiles for different times then indicate that

the respective amounts of cytoplasmic and membrane-bound MinD are quasi-stationary

within the 10s shown.

2.2.2 Diffusion constants and residence times

EGFP. We first measured the autocorrelation of the fluorescence fluctuations of EGFP

in living E. coli, see appendix A ”Materials and Methods”. A typical autocorrelation

curve is depicted in figure 2.18(a). From a fit of the correlation curve expected for a

single diffusing species in two dimensions, equation (A.0.1) with F = 1, see appendix

A, an apparent diffusion constant ofD1 = 12.9 ± 2.3µm2/s is obtained. There are two

sources contributing to the error in the value of the diffusion constant. First, a system-

atic error results from uncertainties in determining the size of the detection volume. The

size of the detection volume is needed for transforming the relaxation time that can be

extracted from the correlation curve into a diffusion constant. The value of this error

was estimated to be15%. Secondly, the fit is of finite accuracy due to noise present in

the experimental correlation curve (around10%). For the curve in figure 2.18(a), the fit

quality is reasonable withχ2 = 1.6. In view of the measurements on MinD and MinE,

further models were used for analyzing the correlation curves. Fitting the data to the au-

tocorrelationGdiff expected for two independent populations of diffusing particles, equa-

tion (A.0.1) whereF is now a fit parameter, the fit quality was significantly improved,

χ2 = 1.1. For the curve in figure 2.18(a), the apparent diffusion constant of the fast com-

ponent isD1 = 17.7± 3.6µm2/s. Furthermore, we considered the case of the molecules

switching between a mobile and an immobile state,Gex equation (A.0.3) (appendix A).

For the diffusion constant in the mobile state, we foundD = 14.8 ± 2.8µm2/s with

χ2 = 1.1. Previous reports suggest deviations from normal diffusion of EGFP in vivo or

crowded in vitro environments [93–97]. The mean-square displacement of a diffusing

particle in three dimensions in a continuous and isotropic medium is usually given by

〈r2(t)〉 = 6Dt. The derivation of this expression is based on the Fick’s law, which is

an established phenomenological law for diffusion in isotropic fluids. On the other hand,

in a crowded and complex media as in the cytoplasm there is no physical reason why

the Fick’s law should apply and one might expect the mean-square displacement to obey

a power law〈r2(t)〉 = 6Γtα, where the transport coefficientΓ, is a constant that does

not depend on time. Microscopically the origin of the anomalous diffusion can be un-

derstood with the following simple argument. If〈r2(t)〉 is much bigger or much smaller

of a characteristic (square) length scaleξ2 corresponding to the obstacles or the different

constituents of the medium where the protein diffuse, we areexpecting normal diffusion,
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Figure 2.18: Diffusion coefficients of EGFP inE. coli measured by Fluorescence Correlation

Spectroscopy. a) Typical autocorrelationG(τ) for EGFP (black circles) and non-linear least square

fits of correlation curves expected for different processes. Green: diffusion, equation (A.0.1) with

F = 1, givesD = 12.9 ± 2.3µm2

s with χ2 = 1.6. Pink: anomalous diffusion, equation (A.0.2),

yieldsα = 0.83 ± 0.01 andΓ = 4.7 ± 0.75µmα

s with χ2 = 1.1. Blue (the blue curve is hidden

behind the yellow curve): two independent diffusing populations, equation (A.0.1), yieldsD1 =

17.7 ± 3.6µm2

s , D2 = 0.3 ± 0.2µm2

s , andF = 0.96 ± 0.01 with χ2 = 1.1. Yellow: exchange

between a diffusing and an immobile state, equation (A.0.3), yieldsD = 14.8 ± 2.8µm2

s , τ1 =

2.3 ± 1.0s, andF = 0.97 ± 0.004 with χ2 = 1.1 No significant autofluorescence of cells was

detected, but there was a non-correlated background of 8 kHzfrom the medium. b) Histogram

of anomalous exponents obtained from 1021 measurements. Solid line: normal distribution with

meanα = 0.88 and varianceσ2
α = 0.09 c) Histogram of diffusion coefficients obtained from

fitting Gdiff to the same curves as in (b). Solid line: log-normal distribution with geometric mean

D = 17.9+4.3
−3.4

µm2

s . In (b) and (c) only fits withχ2 < 1.2 were considered.
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but when〈r2(t)〉 ≈ ξ2, diffusion can be anomalous. We therefore considered anoma-

lous diffusion of EGFP, where the mean square displacementsgrow as a power law in

time with an exponentα < 1. Whereas two-dimensional membrane diffusion has been

clearly shown to be anomalous [98–100], in our knowledges inthe cytoplasm anomalous

protein diffusion has not been conclusively demonstrate. Fitting the correlationGa we

obtained an anomalous exponent ofα = 0.83± 0.01 and an anomalous transport coeffi-

cientΓ = 4.7 ± 0.75µm2/sα with χ2 = 1.1 As can be seen in figure 2.18(a), the three

different fits are barely distinguishable.

A histogram of the diffusion constant obtained by fittingGdiff to 1021 curves is pre-

sented in figure 2.18(c). The histogram is well described by alognormal distribution5

with a geometric mean ofD = 17.9+4.3
−3.4

µm2

s
. Within the accuracy of our measurements,

different cells give the same value for the EGFP diffusion constant. Figure 2.19 shows

an example of diffusion constant values in single cell. The SD is of the some order as in

measurements in different cells. An hand-selection of curves (see figure 2.20), as is often

done in FCS measurements, reduced the1σ-confidence interval but did not change the

geometric mean, For the data shown in figure 2.20 we checked the individual correlation

curve for unusually big spikes of intensity and/or inaccurate baselines, and we discharged

it if necessary. The fraction of the fast component wasF = 0.96 ± 0.03 indicating that

5 Whereas Gaussian distributions describe processes that are a sum of random variables with finite

mean and variance, lognormal distributions characterize processes with severalmultiplicativestochastic

steps [101].
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Figure 2.19: Diffusion coefficient of EGFP in a single cell. Each of the31 points correspond to

one single measurement in the same focal volume. The data were fitted with the autocorrelation

curveGdiff . Error bars have been calculated from∆D = D(2∆ω/ω + ∆τ/τ). The red dashed

line is the mean value corresponding toD = 17.1µm2

s with SD = 2.7µm2/s.
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Figure 2.20: Hand-selected data for EGFP. Histogram of the fast diffusion coefficient assuming

two diffusing species, for 482 correlation curves in 19 BL21(DE3)pLys cells, hand-selected be-

tween 1021 curves in 22 cells. Only fits withχ2 < 1.2 were considered. a) Original scale. b)

Logarithmic scale.Dmed = 18.7+3.9
−3.1

µm2

s is the median value and# is the number of correlation

curves measured. Cyran areas, from the median to both sides,correspond to one SD. Dashed line:

fit with normal distribution with meanD1 = 18.6µm2/s, and varianceσ2
D = 0.18 in dimension-

less unit.# is the number of hand-selected curves.

most of the dynamics results from diffusion. We arrived at the same conclusion using

Gex for the data analysis, see tables 2.1 and 2.2. Figure 2.18(b)presents a histogram

of anomalous exponents from analyzing the same curves usingGa. The mean value is

α = 0.88± 0.1

Adding a His-tag to EGFP were reported to strongly alter its dynamical properties [88]

giving rise to a broad distribution of the diffusion values.We examinedHis6-EGFP

expressed in the same strain as was used for the measurement of EGFP mobility. Using

eitherGdiff or Gex, we found a decrease in the diffusion constant of approximatively 20%

and a slightly broader distribution compared to EGFP. Basedon the anomalous diffusion

model, we found a slightly reduced value for the anomalous mobility, Γ = 5.6+5.7
−2.8

µm2

s

α
,

while the anomalous exponent remained the same,α = 0.88 ± 0.1 The six histidine

residues inserted at the N terminus of the EGFP protein couldalterate the interaction

of the protein with the environment and explain in part the lowering of the diffusion

constant value.

GFP-MinD. MinD-mobility was measured in the strain JS964. For the FCS anal-

ysis of the MinD-mobility, only fluorescence curves taken from regions in quasi-steady

state were considered. Every individual measurement lasted 5s. A typical autocorrelation

curve is shown in figure 2.21(a). From the graph it is obvious that two distinct time-scales

are present. For the laser power used, the bleaching time forimmobilized molecules
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Figure 2.21: Correlation analysis of MinD mobility - two independent diffusing species. a) Typical

autocorrelation curve for GFP-MinD in a region of quasi-steady state (black circles) and non-linear

least square fits of different expected correlation curves.Green and pink: diffusion and anomalous

diffusion, respectively. Essential features of the experimental curve are missed (χ2 = 5.6 and1.8,

respectively). Blue (the blue curve is partially hidden behind the yellow curve): two independent

diffusing populations, equation (A.0.1), yieldsD1 = 19.8 ± 4.3µm2

s , D2 = 0.11 ± 0.02µm2

s ,

andF = 0.74 ± 0.01 with χ2 = 1.1. Yellow: exchange between a diffusing and an immobile

state, yieldsD = 15.7 ± 3.1µm2

s , τ1 = 302 ± 25ms, andF = 0.83 ± 0.004 with χ2 = 1.18 b)

Apparent diffusion constantsD1 andD2 for 10 curves admitting a good fit (χ2 < 1.4) among 30

subsequent measurements on a single cell. The mean values are D1 = 16.4 ± 2µm2

s (mean±SD)

andD2 = 0.1 ± 0.09µm2

s (mean±SD). c) Fluorescence intensity and fast fraction for the same

measurements as in (b). The fast fraction is higher for low intensities. d,e) Histograms of the

diffusion constants. Only curves with quasi-steady fluorescence intensity and a fit quality ofχ2 <

1.5 were retained. Solid lines: log-normal distributions withgeometric meansD1 = 17.0+3.0
−2.5

µm2

s

andD2 = 0.17+0.14
−0.08

µm2

s .



28 Chapter 2. Experimental characterization of the Min-system

was on the order of seconds (data not shown). Furthermore, the correlation curves were

largely independent of the excitation intensity (data not shown). We therefore concluded

that the second time scale is not due to bleaching of immobilized molecules but due

to further dynamical processes in addition to cytosolic diffusion. The existence of two

MinD populations - on the one hand dissolved in the cytosol, on the other hand bound

to the membrane - suggests two obvious candidate processes leading to the additional

time-scale visible in the correlation curves. The second relaxation time may for one be

due to the diffusion of MinD on the membrane. For the other it may result from the

exchange of MinD between the membrane and the cytosol.

We analyzed the measured correlation curves using the two different models sepa-

rately. Of course, the two processes are not mutually exclusive. It would thus be desirable

to analyze the correlation curve using a model that accountsfor diffusion and for binding

and unbinding. However, the expected correlation curve differs only in small amounts

from the curves for either of the two alternatives separately, and the accuracy of our mea-

surements does not allow for distinguishing between them.

We will first present the results assuming two states of different mobility. Fig-

ure 2.21(b) displays the results for the two diffusion constants obtained from a fit ofGdiff ,

equation (A.0.1), to different correlation curves measured for a single cell. We interpret

the faster diffusion constant to represent the mobility of cytosolic MinD. It is of the same

order as the diffusion constant of EGFP, see table 2.1. The smaller diffusion constant

is interpreted as corresponding to membrane-bound MinD. This is supported by the esti-

mated value of the fraction of the fast component: In agreement with the measurements of

the cross-sections, figures 2.17(d) and (e), the fraction offast moving proteins is larger in
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Figure 2.22: Apparent diffusion constantsD1 for a) 9, and b) 12 hand-selected curves admitting a

good fit (χ2 < 1.3) among 30 subsequent measurements on a single cell. The meanvalues (±SD)

are a)D1 = 15.0 ± 0.65µm2

s and b)D1 = 18.2± 0.5µm2

s .
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the low-intensity regions than in the high-intensity regions, see figure 2.17(c). The stan-

dard deviation of the mean is smaller than the estimated error of a single measurement,

showing that the quality of our results is not limited by the variations within a cell. See

also figure 2.22 for the fast diffusion constant from hand-selected measurements within

one cell.

Histograms of fast and slow diffusion constants summarizing series of measurements

on different cells are shown in figure 2.21(d) and (e). Both histograms are well described

by a log-normal distribution. The geometric mean value for the fast diffusion constant

is D1 = 17.0+3.0
−2.5

µm2

s
. For the slow diffusion constant we foundD2 = 0.17+0.14

−0.08
µm2

s
.

This value is one order of magnitude higher than the diffusion constant measured for the

membrane-bound histidine kinase PleC measured by single protein trackingC. crescen-

tus [87]. On the other hand, using FRAP, a similar value has been obtained in [102]

for integral plasma membrane proteins (TatA) fused with GFP, 0.13± 0.03µm2s−1. The

authors of this work measured also the diffusion constant for the TorA-GFP on the cyto-

plasm. They found a value of9.0± 2.1µm2s−1. In this case because for the cytoplasmic

TorA-GFP the bleaching time was of the same order of the fluorescence recovering time

they bleach the cell with very high laser power level for only0.5s and considered elon-

gatedE. coli cells in order to observe the recovery of the bleach coming from regions of

the cell far from the bleached area. This value is similar to the one found in [88] using the

same technique and both of them are different from the value we found. The difference
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Figure 2.23: Histogram of the fast diffusion constant assuming two independent diffusing species,

for 214 hand-selected correlation curves between 1207 curves in 38 JS964 cells. Only curves

with quasi-steady fluorescence intensity and a fit quality ofχ2 < 1.3 were retained. The mean

value (±SD) is D1 = 18.2 ± 3.0µm2

s . # is the number of hand-selected curves. Notice that

here the original sample of curves is smaller in respect to the automatic selection based only on

convergence of the fit algorithm and quality of the fit.
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is on the order of the SD in our measurements, therefore we think is not significative.

Nevertheless we notice that different cell strains was usedin the different experiments,

that FRAP and FCS use different approximations in the data analysis and that FCS is

in principle a less invasive technique when compared with FRAP which usually need to

send laser light a quite hight intensity level. Even betweenEGFP and MinD-GFP there is

a factor of two in size is not surprising they turn out have a very similar diffusion constant.

In fact a factor of two in size correspond to a factor of0.85 in the diffusion constant, i.e.

based only in size considerations we are expecting for EGFP adiffusion constant equal to

0.85 times the diffusion constant of GFP-MinD. This value is wellinside one SD from the

actual value we found. Figure 2.23 shows the histogram of thefast diffusion constant for

hand-selected curves. No correlation could be detected between the values of the fast and

slow diffusion constants (data not shown). Separating the curves into those of low and

high average intensity does not reveal significant differences between the respective fast

and slow diffusion constants, see table 2.1. The fractionF = 0.81±0.1 of the fast diffus-

ing component, however, is larger in the low-intensity regions than in the high-intensity

regions, whereF = 0.71 ± 0.10. The difference in the fractions is more pronounced

when averaging over several measurements on a single cell than when averaging over

measurements on different cells, figure 2.21(c). This presumably reflects different protein

concentration in different cells.

The same data was analyzed based on the exchange of MinD between a mobile (cy-

tosolic) state and an immobile (membrane-bound) state. As suggested by the cross-section

profiles, figure 2.17(e) and (f), we assumed the average fraction of mobile molecules to

be constant during one measurement. In that case, the residence timesτ1 andτ2 of MinD

in the mobile and immobile states, respectively, are related to the fractionF of mobile

molecules byF = τ1/(τ1 + τ2). The results obtained from analyzing the same curves as

in figures 2.21(b) and (c) are displayed in figures 2.24(a) and(b). The diffusion constants

are in the same range as the values of the fast diffusion constant obtained above. The

same holds for the value of the mobile fraction. The histograms of the diffusion constant

and the residence time in the mobile state are presented in figures 2.24(c) and (d). The

differences in the values for low- and high-intensity regions are not significant, although

the residence times seem to be larger in the low-intensity regions, see table 2.1.

We repeated the measurement using a different strain (WM1255). The average

cytosolic diffusion constants are smaller in this strain, while the average residence

time is somewhat larger, see tables 2.1 and 2.2. In view of thebroadness of the

distributions, however, the differences are not significant. Due to the small number

of good curves, a separation between regions of low and high intensity was not performed.
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Figure 2.24: Correlation analysis of MinD mobility - exchange between diffusing and immo-

bile state. a) Apparent diffusion constants and residence times in the mobile state for the

same 30 subsequent measurements on a single cell as in figure 2.21b,c. The mean values are

D = 15.0 ± 1.9µm2

s andτ1 = 783 ± 651ms (mean±SD). b) Fluorescence intensity and mobile

fraction for the same measurements as in (a). The mobile fraction is higher for low intensities.

c,d) Histograms of the diffusion constants and residence times obtained from the same 2017 mea-

surements as in figure 2.21(d) and (e). Solid lines: log-normal distributions with geometric means

D̄1 = 14.4+2.6
−2.2

µm2

s andτ1 = 322+422
−183ms.
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Figure 2.25: Correlation analysis of MinE. a) Quasi-steadystate of the MinE distribution along a

cell’s long axis. Five curves separated each by 3s are variedaround a mean profile. An accumu-

lation of MinE close to the cell center, commonly know as MinEring, can clearly be recognized.

It moves slowly to one cell pole. The cell length is approximately 10µm. b,c) lines: log-normal

distributions with geometric meansD1 = 11.2+2.9
−2.3

µm2

s andD2 = 0.20+0.23
−0.11

µm2

s . d,e) Histograms

of the diffusion constants and residence times obtained from the same measurements as in (b,c) as-

suming exchange between a diffusing and an immobile state. Solid lines: log-normal distributions

with geometric meansD = 9.3+2.3
−1.9

µm2

s andτ1 = 396+888
−274ms.
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Figure 2.26: Fluorescence images of two strains ofE. coli. a) Strain BL21 expressing His6-EGFP.

b) Strain BL21 , wild-typeE. coli. c) Strain BL21 , wild-typeE. coli in dark field. Scale bar: 1µm.

MinE-GFP. For measuring the mobility of MinE we employed the same strategy as

for MinD. An example of a quasi-steady state of the MinE distribution is shown in fig-

ure 2.25(a). As for MinD, two distinct relaxation times can be detected in the correlation

curves. These curves were analyzed using the same models as for MinD. The histograms

of the two different diffusion constants and of the diffusion constant and the residence

time in the mobile state, respectively, are presented in figure 2.25(b) and (e). As before,

the histograms are well described by log-normal distributions. Assuming two independent

populations with different mobilities, we findD1 = 11.2+2.9
−2.3

µm2

s
andD2 = 0.20+0.23

−0.11
µm2

s
.

The fraction of the faster diffusion population isF = 0.79 ± 0.10. Assuming the other

model, we obtainD = 9.3+2.3
−1.9

µm2

s
andτ = 396+888

−274ms. The mobile fraction is in this

caseF = 0.86± 0.09 Separating the curves into those from a low-intensity and those of

a high-intensity phase, no significant differences betweenthe values of the diffusion con-

stants or the residence times in the different phases can be detected, see tables 2.1 and 2.2.

Controls. To ascertain that we observed only EGFP and not cellular autofluores-

cence we imagedE. coli strains BL21 expressing His6-EGFP, figure 2.26(a), BL21 wt

figure 2.26(b) and JS964 figure 2.26(c) under identical circumstances. In figure 2.26(b),

the low autofluorescence ofE. coli is shown. Figure 2.26(a) shows the homogenous

distribution of cytoplasmic EGFP. Similar checks, not shown, were carried out for the

other strains.
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Ntot Nsel D1 (µm2

s
) D2 (µm2

s
) F N

EGFPa 1021 17.9+4.3
−3.4 0.220.51

0.16 0.96+0.03
−0.03 652

His6-EGFPb 555 14.9+3.7
−3.0 0.140.53

0.11 0.96+0.04
−0.04 214

GFP-MinDc 2017 438 17.0+3.0
−2.5 0.17+0.14

−0.08 0.77+0.11
−0.11 181

GFP-MinDc l.i. 191 16.7+3.1
−2.6 0.18+0.16

−0.08 0.81+0.10
−0.10 105

GFP-MinDc h.i. 247 17.4+2.6
−2.3 0.15+0.11

−0.06 0.71+0.10
−0.10 76

GFP-MinDd 738 102 14.3+2.9
−2.4 0.16+0.18

−0.08 0.82+0.08
−0.08 50

MinE-GFPe 1807 528 11.2+2.9
−2.3 0.20+0.23

−0.11 0.79+0.10
−0.10 307

MinE-GFPe l.i. 310 11.4+2.8
−2.3 0.21+0.25

−0.11 0.82+0.09
−0.09 198

MinE-GFPe h.i. 218 10.9+3.1
−2.4 0.20+0.20

−0.10 0.75+0.11
−0.11 109

Table 2.1: Mobility of EGFP, His6-EGFP, GFP-MinD, MinE-GFP -two diffusion model.
For the Min proteins, curves from low-intensity phases (l.i.) and high-intensity (h.i.)
phases were analyzed separately.Ntot: total number of correlation curves analyzed.D1,
D2: diffusion constants for two independent populations,F : fraction of the faster/mobile
population,N : number of curves allowing for a sufficiently good fit. Valueswere only
considered from curves where the fit produced aχ2 < 1.5 (for EGFPχ2 < 1.3) and where
the intensity was constant. Displayed are the mean values and the1σ confidence interval.
For EGFP, the values ofD1 are well described by a log-normal distribution, while the
values ofD2 vary too strongly as that, or any other, a distribution couldbe identified.
For the Min proteins, the values ofD1, D2, are well described by a log-normal distri-
bution. For all strains, the values ofF follow a normal distribution.aBL21(DE3)pLys,
bBL21(DE3)pLys,cJS964,dWM1255,eWM1079.
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Ntot Nsel D (µm2

s
) τ1 (ms) F N

EGFPa 1021 17.9+4.4
−3.6 11007150

953 0.97−0.04
+0.04 690

His6-EGFPb 555 15.0+5.7
−4.1 187012200

1620 0.97+0.05
−0.05 220

GFP-MinDc 2017 438 14.4+2.6
−2.2 322+422

−183 0.79+0.11
−0.11 217

GFP-MinDc l.i. 191 14.7+3.0
−2.5 464+643

−274 0.86+0.08
−0.08 104

GFP-MinDc h.i. 247 14.1+2.2
−1.9 230+209

−110 0.73+0.10
−0.10 113

GFP-MinDd 738 102 12.4+1.8
−1.6 522+721

−303 0.84+0.07
−0.07 43

MinE-GFPe 1807 528 9.3+2.3
−1.9 396+888

−274 0.86−0.09
+0.09 350

MinE-GFPe l.i. 310 9.6+2.5
−2.0 478+1105

−334 0.88−0.08
+0.08 223

MinE-GFPe h.i. 218 8.8+1.9
−1.5 285+542

−187 0.81−0.09
+0.09 127

Table 2.2: Mobility of EGFP, His6-EGFP, GFP-MinD, MinE-GFP -exchange model.
D, τ1: diffusion constant and residence time in the mobile state for proteins switching
between a mobile and an immobile state,F : fraction of the faster/mobile population,N :
number of curves allowing for a sufficiently good fit. Values were only considered from
curves where the fit produced aχ2 < 1.5 (for EGFPχ2 < 1.3) and where the intensity
was constant. Displayed are the mean values and the1σ confidence interval. For EGFP,
the values ofD are well described by a log-normal distribution, while the valuesτ1 vary
too strongly as that, or any other, a distribution could be identified. For the Min proteins,
the values ofD, andτ1 are well described by a log-normal distribution. For all strains, the
values ofF follow a normal distribution.aBL21(DE3)pLys,bBL21(DE3)pLys,cJS964,
dWM1255,eWM1079.
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2.3 Discussion

Here, we analyze and give an interpretation of the FCS data, while the implications of

these measurements and of the video-rate-microscopy studyfor understanding the Min-

oscillations will be discussed in the final chapter.

The possibility to apply FCS relies on the existence of quasi-stationary steady states

in some regions of the bacterium for time intervals of at least 10s, see figures 2.17(c) and

(f) and 2.25(a) and (b). Our correlation data clearly show the existence of more than one

relaxation time, which can satisfactorily be explained by assuming for both, MinD and

MinE, two states of different mobility. This is compatible with the current view that MinD

and MinE are exchanged between the cytosol and the membrane.We interpret the faster

component as resulting from the dynamics of cytosolic proteins. The second time-scale

could result from the mobility of proteins in the membrane-bound state or from transitions

between the cytoplasm and the membrane.

The measured correlation curves do not allow for to determining simultaneously all

parameters associated with these processes. Therefore, weanalyzed the data assuming

that there are either no transitions between the cytosolic and the membrane-bound states

or that membrane-bound proteins are immobile. The latter assumption is appropriate if the

relaxation time resulting from diffusion of membrane-bound MinD or MinE is larger than

the maximal time interval for which we recorded correlationcurves. The same applies

to the first assumption of negligible transitions between the two states. The differences

in the corresponding correlation curves, see appendix A equations (A.0.1) and (A.0.2),

are too small to be detected in our setup. Correspondingly, we found that all in all both

models fit equally well to the data, even though for individual curves there can be sig-

nificant differences in the fit quality. Another situation inwhich an analysis based on

these reduced models is appropriate occurs when the relaxation times corresponding to

the diffusion of membrane proteins and their transition between membrane and cytoplasm

are similar. In that case, our analysis gives the values for both, the diffusion constant of

membrane-bound proteins as well as the transition rate.

Using either the two correlation curves,Gdiff or Gex, for analyzing the experimental

data, we found values around16µm2/s and10µm2/s for the respective cytosolic diffu-

sion constants of GFP-MinD and MinE-GFP, where the latter quickly form dimers. The

difference in these values confirms the findings of reference[88] that the diffusion con-

stant is also determined by other factors than geometry, too. In fact, based on size alone, a

MinE-GFP dimer of approximatively twice the size of GFP-MinD should have a diffusion

constant of approximatively 13µm2/s.

The values for the diffusion constants of membrane-bound proteins are approxima-
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tively two order of magnitude smaller than the cytosolic constants and about one order of

magnitude larger than the diffusion constant for mobile PleC in Caulobacter[87]. How-

ever, PleC is a transmembrane protein, whereas MinD binds tothe polar heads of the

lipids forming the membrane. Contrary to the cytosolic diffusion constant, the diffusion

constants of membrane-bound MinE and MinD are the same. Thisis compatible with the

MinE being bound to MinD on the membrane.

Comparing the different values measured in high- and low-intensity phases, respec-

tively, we find that the fraction of cytosolic proteins is always larger in the low-intensity

phases. Note, that FCS possibly overestimates the fractionof cytosolic proteins. In

fact, membrane-bound MinD was reported to form helices [68], and if MinD in the

helices is immobilized, it does not contribute to the fluctuations around the average

intensity and can thus not be detected by FCS. Note also that the differences in the

cytosolic fraction are present in individual cells, see figure 2.21(c) and 2.24(b). From the

differences between the cytosolic fractions in the low- andhigh-intensity regions, one

might expect also differences in the cytosolic residence time of MinE which requires

MinD as a substrate to locate on the membrane. Assuming a cooperative attachment

mechanism underlying the Min-oscillations, one might expect the same for the residence

time of cytosolic MinD. While the mean values we measured follow this expectation,

the differences are not significant in view of the error bars.We conclude that from our

data only a small effect of membrane-bound proteins on the attachment rates of cytosolic

proteins can be deduced.
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Chapter 3

Deterministic analysis of the
Min-oscillations

Introduction

In this chapter a theoretical study of the Min-oscillationswill be performed. Previous

investigations suggest that the periodic translocation ofthe Min proteins can be attributed

to a collective effect of many interacting molecules resulting from a dynamic instability.

In chapter one we divided all of the proposed models in two classes: CAM [69–75]

and ACM [76, 77]. Central to all of the mechanisms is the attachment of MinD to

the cytoplasmic membrane, recruitment of MinE to the membrane by MinD, and the

dissociation of MinD from the membrane induced by MinE. Now,let us examine the

deterministic models in more detail.

Aggregation current models. The essence of aggregation models is the formation

of MinD-aggregates on the membrane by a two-step process: MinD first binds to the

membrane and then aggregates, see figure 3.1. This characteristic distinguishes this

mechanism from reaction-diffusion systems where the instability of the stationary

homogeneous distribution that gives rise to oscillations is driven by the reactions. Here,

the instability is driven by the aggregation current of MinD. MinD first binds to the

membrane, then recruits MinE. However, the protein number is conserved.

Cooperative attachment models.The principal difference with AC models is that

membrane-associated MinD aggregates are assumed to form ina one-step process where

MinD form the cytosol binds directly to membrane-bound MinD. The first model of this

kind was proposed by Meinhardt and deBoer [69]. The mechanism they considered be-

longs to the class of classical reaction-diffusion systemswith short-range activation and
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long-range inhibition, where the inhibition is due to substrate depletion. Both, MinD and

MinE, attach cooperatively to the membrane. In addition, MinE binds to the membrane

only in presence of membrane-bound MinD and the attachment rate depends on the con-

centration of membrane-bound MinD and MinE; it is maximal for a finite value of the

MinD concentration and decays to zero for large concentrations of both membrane-bound

MinD and MinE. The synthesis and degradation of the Min proteins plays an essential

role. In particular, MinD and MinE are destroyed upon unbinding from the membrane.

Howard and coworkers [70], assume that MinD and MinE form complexes in the cy-

toplasm which then bind to the membrane. Membrane-binding is hampered by MinE

present on the membrane. This mechanism does not fall into the class of classical

reaction-diffusion systems as MinD and MinE protein numbers are conserved. Denot-

ing the protein densities of cytoplasmic MinD and MinE as well as of MinD and MinE

attached to the membrane byCD, CE, cd, andce, respectively, the dynamic equation are

∂tcD = DD∂2
xcD −

ωDcD

1 + µece
+ ωdececd (3.0.1)

∂tcE = DE∂2
xcE − ωDcDcE +

ωece

1 + µDcD
(3.0.2)

∂tcd =
ωDcD

1 + µece
− ωdececd (3.0.3)

∂tce = ωdecDcE −
ωece

1 + µDcD

(3.0.4)

whereωD describes the spontaneous rate of MinD binding to the membrane,ωDEcD the

rate of MinE recruitment to the membrane by cytoplasmic MinD, ωdece the rate of MinE

induced dissociation of MinD, and finallyωe is the spontaneous rate of MinE release from

the membrane. Spontaneous dissociation of MinD from the membrane and spontaneous

association of MinE with the membrane were neglected in agreement with experiments.

The parametersµe andµD describe suppression of MinD binding to the membrane due

to membrane-bound MinE and suppression of MinE unbinding from the membrane due

to cytoplasmic MinD. A similar model based on a combination of geometric effects and

reaction-diffusion dynamics, was applied to study proteinlocalization inBacillus sub-

tilis [103].

In the model proposed by Huang et al. [71] the CA characteristic has remarkable

consequences. Firstly, it is essential to describe the Min dynamics in a three-dimensional

geometry to obtain striped oscillatory patterns in long cells. Secondly, a finite ADP to

ATP exchange rate for cytosolic MinD is a key ingredient. Theone dimensional version
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of the equations is the following:

∂tcDD = DD∂2
xcDD − ωDT cDD + ωdecde, (3.0.5)

∂tcDT = DD∂2
xcDT − ωDT cDD − [ωD + µdD(cd + cde)]cDT , (3.0.6)

∂tcE = DE∂2
xcE + ωdecdecE, (3.0.7)

∂tcd = −ωEcdcE + [ωD + µdD(cd + cde)]cDT , (3.0.8)

∂tcde = ωdecde − ωEcdcE . (3.0.9)

Here,cDD andcDT denote the cytosolic distributions of MinD bound to ADP and to ATP,

respectively. FurthermoreωD is the rate of spontaneous binding of MinD-ATP to the

membrane,µdD describes the modification of this rate due to the presence ofMinD on the

membrane, whileωDT describes the rate of exchange of ADP to ATP in cytosolic MinD.

As transport is purely diffusive, the instability leading to the oscillations is in this case

essentially of the same kind as in the other reaction diffusion systems [69, 70]. These

equations were also analyzed in a spherical geometry [104].

A first attempt to introduce the polymerization mechanism inthe model was carried

out by Drew et al. [72]. They made the following assumptions:(i) initial MinD

attachment to the membrane can only occur at or near the pole;(ii) membrane-bound

MinD recruits cytoplasmic MinD to form polymers, extendingfrom the polar binding

site to mid-cell; (iii) MinE has a higher binding affinity forterminal MinD units of the

polymers than to internal units. In contrast to all previousmodels, here, a polar zone

formation is initiated specifically at nucleation sites at the cell pole. On the other hand,

the existence of stripes in long cells where the division is blocked, suggests that the polar

location in normal cells is not the result of a membrane property unique to the ends of the

cell.

In this chapter an AC model, conceptually similar to the model introduced by

Kruse [76] is being considered. In [76] the aggregation of membrane-bound MinD was

formulated in terms of a kinetic hopping model. Here, we willuse a phenomenological

description which allows for a quantitative comparison with experimental results. The

chapter is organized as follows: First, we will describe theequations governing the dy-

namics of the protein distributions in the cytosol and on themembrane. We then analyze

the system in the limiting case of homogenous cytosolic protein distributions and dis-

cuss the oscillatory solutions. The dependence of the temporal oscillation period on the

system length is then compared to experimental data. Afterwards we discuss possible
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MinD
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Figure 3.1: Schematic representation of the dynamics of MinD and MinE. a) Exchange of MinD

and MinE between the cytosol and the membrane. 1) MinD undergoes a conformational change

upon binding ATP, 2) ATP-bound MinD binds to the membrane, 3)MinE binds to membrane-

bound MinD, and 4) MinE-induced ATP hydrolysis leads to detachment of MinDE-complexes

from the membrane. b) Interaction of membrane-bound proteins leads to the formation of MinD

aggregates.

mechanisms underlying the formation of the MinE-ring. Finally, our results in relation

to the other proposed mechanisms as well as implications forpossible future experiments

will be discussed.

3.1 Dynamic equations

As mentioned in chapter one, the periodic changes in the distributions of the Min proteins

require the presence of MinD and MinE but not of MinC. Therefore, in the following

we will focus on the dynamics of MinD and MinE. Motivated by experimental obser-

vations, the dynamics of the Min proteins is assumed to be driven by four properties of

the Min proteins [76]: (i) a high affinity of ATP-bound MinD for the membrane; (ii) a

high affinity of MinE for membrane-bound MinD; (iii) a MinE-induced increase of the

ATP hydrolysis-rate by MinD which leads to the detachment ofMinDE-complexes from

the membrane; and (iv) interactions between membrane-bound proteins. The last prop-

erty accounts for the formation of MinD aggregates on the membrane which is likely to

result from self-assembly of membrane-bound MinD [66, 68].In addition, proteins are

transported by diffusion. A schematic representation of the Min dynamics is given in

figure 3.1.

Formally, the dynamics is given in terms of the concentrations of cytosolic MinD and
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MinE, cD andcE
1, as well as the concentrations of membrane-bound MinD and MinDE-

complexes,cd andcde. In the direction perpendicular to the long axis of the bacterium,

diffusion homogenizes the cytosolic distributions on timescales that are short when com-

pared to the temporal oscillation period. Assuming in addition that MinD aggregates into

a linear structure on the membrane, the dynamical equationsfor the protein densities in

the cell can thus be reduced so that they depend only on the position x along the long axis

of the bacterium, see appendix C. Explicitly,

∂tcD = −ωD(cmax − cd − cde)cD + ωdecde + DD∂2
xcD (3.1.1)

∂tcE = ωdecde − ωEcdcE + DE∂2
xcE (3.1.2)

∂tcd = ωD(cmax − cd − cde)cD − ωEcdcE − ∂xjd (3.1.3)

∂tcde = −ωdecde + ωEcdcE − ∂xjde (3.1.4)

The properties (i)-(iii) lead to an exchange of MinD and MinEbetween the cytosol and

the membrane. The corresponding reactions are described asfirst- and second-order pro-

cesses. The density of available binding sites for MinD on the membrane is given by

cmax − cd − cde, wherecmax is the maximal possible value for the protein density on the

membrane, andωD(cmax − cd − cde) is the binding rate of MinD to the membrane. The

binding rate of MinE to membrane-bound MinD isωEcd, whileωde is the detachment rate

of MinDE complexes from the membrane. That complexes are assumed to consist of one

MinD and one MinE molecule.DD andDE are the respective diffusion constants for

cytosolic MinD and MinE, and the interactions of membrane-bound proteins are captured

by the currentsjd andjde. Note that in these equations the re-binding of ATP to MinD af-

ter detachment from the membrane is assumed to occur on a sufficiently short time-scale

so that it does not need to be incorporated explicitly. The effect of a finite ATP exchange

rate will be discussed below.

The current of membrane-bound MinD has a diffusive part and apart due to the inter-

action between MinD proteins. In order to capture generic effects of the interaction, the

current of membrane-bound MinD is taken to be of the Cahn-Hilliard form. Explicitly,

jd = −Dd∂xcd + cd(cmax− cd− cde)[k1∂xcd +k2∂
3
xcd + k̄1∂xcde + k̄2∂

3
xcde]. (3.1.5)

In this expression,Dd is the diffusion constant of the MinD proteins on the membrane and

the coefficientsk1 andk2 are phenomenological parameters that describe the interaction

between MinD molecules. Possible modifications of this interaction due to the presence

1MinE forms dimers [105] andcE is actually the distribution of MinE dimers. In the following, the term
“MinE molecules” will refer to these dimers.
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of MinE are taken into account by the parametersk̄1 andk̄2 that describe the interaction

between MinD and MinDE-complexes. Note that for an attractive interactionk1 > 0,

while k1 < 0 in the opposite case. Stability on small length scales requiresk2 ≥ 0. The

current of MinDE complexes has the same form, but for simplicity will be omitted in the

following.

Finally, the boundary conditions need to be specified. Experiments have shown that

oscillations are independent of protein synthesis [63], and therefore apparently do not

directly rely on the regulation of gene expression. Therefore, we impose zero flux at the

boundaries so that the total protein numbers

∫ L/2

−L/2

dx (cD + cd + cde) ≡ LD (3.1.6)

∫ L/2

−L/2

dx (cE + cde) ≡ LE (3.1.7)

are conserved. Here,L denotes the length of the system andLD andLE are the total

numbers of MinD and MinE molecules in the system, respectively.

3.2 Homogenous cytosolic distributions

We now analyze the dynamic equations (3.1.1)-(3.1.4) in thelimiting case of homogenous

cytosolic MinD and MinE distributions, i.e.,cD(x, t) = cD(t) andcE(x, t) = cE(t). This

corresponds to the case where the timestdiff needed for MinD and MinE to diffuse along

the whole length of the bacterium, equal toL2/DD andL2/DE respectively for MinD

and MinE, are short as compared to all other relevant time-scales involved. According to

the measured values for the diffusion constants,tdiff ranges from0.1s for cells1µm long,

to 1s for cells10µm long. Considering the residence time values shown in the previous

chapter, the cytosolic distribution can be considered homogenous for cell lengths of2µm

or less.

In this case, the dynamics of the cytosolic distributions isdescribed by ordinary dif-

ferential equations

d

dt
cD = −ωD(cmax −D + cD)cD + ωde(E − cE) (3.2.1)

d

dt
cE = −ωE(D − E − cD + cE)cE + ωde(E − cE) . (3.2.2)

Here, the distributions of membrane-bound MinD and MinDE were eliminated using

equations (3.1.6) and (3.1.7).
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Figure 3.2: Linear stability of the homogenous state. a) Real (Re, solid line) and imaginary

part (Im, dashed line) of the eigenvalues of the linear operator describing the dynamics of small

perturbations around the homogenous state as a function of the wave numberq. Modes with

wave numbers between 1µm−1 and 2.2µm−1 are oscillatory and unstable. b) Stability of the

homogenous state as a function of the average total MinD and MinE densitiesD andE . The

solid line indicates a line of oscillatory instabilities while the dashed lines indicate stationary

instabilities. The values of the parameters areωD = 4 · 10−5µms−1, ωE = 3 · 10−4µms−1,

ωde = 0.04s−1, Dd = 0.06µm2s−1, cmax = 1000µm−1, k1 = 1.5 · 10−6µm4s−1, k2 = 1.8 ·
10−7µm6s−1, k̄1 = −1.2 · 10−6µm4s−1, k̄2 = 1.2 · 10−10µm6s−1. In (a)D = 900µm−1 and

E = 350µm−1.

Under the conditions0 ≤ cD ≤ D and0 ≤ cE ≤ E , the above equations have one

and only one fixed point. This point is always stable and, asymptotically, the cytosolic

distributions will approach the corresponding stationaryvaluesCD andCE, respectively.

In this limit, the dynamics of the Min proteins is described by two partial differential

equations for the distributions of the proteins bound to themembrane:

∂tcd = ωDCD(cmax − cd − cde)− ωECEcd − ∂xjd (3.2.3)

∂tcde = −ωdecde + ωECEcd . (3.2.4)

Note that the reaction terms in these equations are linear and describe relaxation to a

stationary value; only the current contains non-linearities and can generate an instability.

This feature distinguishes this system from classical reaction-diffusion systems, where

transport is due to diffusion and where instabilities are created by the reaction terms.

The homogenous statecd(x) = D−E −CD +CE andcde(x) = E −CE is a stationary

state of the dynamic equations (3.2.3) and (3.2.4). It is stable, unlessk1 exceeds a critical

valuek1,c. The results of a linear stability analysis for a supercritical value ofk1 are shown

in figure 3.2(a). The stability region of the homogenous state as a function of the total

MinD and MinE concentrations,D andE , is shown in figure 3.2(b). At the instability

an inhomogeneous stationary state appears if the detachment rate of MinDE complexes
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Figure 3.3: Oscillatory solutions of the dynamic equations(3.2.3) and (3.2.4). a,b) Space-time

plots of the total MinD and MinDE distributions on the membrane, c̄d + c̄de = (cd + cde)/cmax

andc̄de = cde/cmax, respectively, for system sizeL0 = 2µm. Both distributions show pole-to-pole

oscillations with a temporal period of about 80s. c) The total MinD and the MinDE distribution

averaged over one temporal period shown in (a) and (b),〈c̄d + c̄de〉 and〈c̄de〉. Both distributions

display a clear minimum atx = L0/2. d) Space-time plot of the total MinD distribution on the

membrane,̄cd + c̄de for system size2L0. The pattern has doubled as compared to the pattern in

the system of lengthL0. Parameters arek1 = 2.1 · 10−6µm4s−1, k2 = 2.5 · 10−7µm6s−1, and the

remaining values as in figure 3.2(a).
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from the membrane is above a certain critical value,ωde > ωde,c. In the opposite case, an

oscillatory state appears. Oscillatory instabilities only occur if the protein density on the

membrane cannot exceed a maximal valuecmax. For an oscillatory instability the unstable

mode is of the form

cd ∝ cos(Ωct) cos(qcx) (3.2.5)

cde ∝ cos(Ωct + φ) cos(qcx) (3.2.6)

This standing wave reflects the qualitative features of the observed Min-oscillations. The

wave numberqc = nπ/L, wheren is a natural number, and the frequencyΩc of the critical

mode depend on the system parameters. For instance, we find

q4
c =

(ωDCD + ωde + ωECE)

Cd(cmax − Cd − Cde)k2

, (3.2.7)

and if k̄1 = k̄2 = 0

Ω2
c = ωDωECDCE − ω2

de (3.2.8)

A linear stability analysis in term of microscopic parameters associated with the phe-

nomenological parametersk1 andk2 and for the non-homogenous cytosolic case is given

in appendix D.

The oscillatory patterns can be obtained from the numericalintegration of the dynamic

equations (3.2.3) and (3.2.4) (see appendix E for a remark about the numerical stability

criterion valid for the these equations). A typical exampleis shown in figures 3.3(a)

and (b). For some time the total MinD-distributioncd + cde is localized in the one half

and then switches to the other. In this process, the transition time is very short when

compared to the dwell time in the one half. This is in agreement with the experimental

observations shown in chapter one, in particular with the presence of the quasi-steady

state. The MinE distribution shows a similar behavior, but the transition between the two

halves is less rapid. The time-averaged distribution of both, MinD and MinE shows a

minimum in the center and increases towards the system boundaries, see figure 3.3(c).

The parameters were chosen so that the temporal period is about 80s, which is similar to

the values observed in experiments with fluorescently labelled MinD, see figure 2.10. The

figure also displays the time-averaged MinD-distribution with a minimum in the center.

In the model, the transition of MinD from the one half to the other can be understood

as follows. If MinD is localized in the one half, MinE will bind and drive MinD off the



48 Chapter 3. Deterministic description of the Min oscillations

T(s)

L(µm)0

40

60

80

100

2 4 6 8

Figure 3.4: Oscillation period of solutions to the equations (3.2.3) and (3.2.4) as a function of the

system length. Black dots: oscillation pattern as in figure 3.3(a), red crosses: oscillation pattern as

in figure 3.3(b), green and blue dots: oscillation pattern with three and four stripes, respectively.

For the system length where the oscillation pattern changes, the period shows a discontinuity. The

parameters values are as in figure 3.3(a).

membrane. Although the distribution of cytosolic MinD is homogenous, MinD preferen-

tially binds in the other half because there are more available binding sites. The resulting

inhomogeneity of membrane-bound MinD is then amplified by MinD aggregation. As a

consequence of the homogenous distribution of cytosolic MinE, the spatial dependence

of the attachment rate of MinE follows the profile of membrane-bound MinD, and the

distribution of MinDE complexes is similar to the one of MinDon the membrane, see

figure 3.3(a) and (b). In particular, the positions of the maxima of cde are linked to the

position of the maxima ofcd. In the example given in figures 3.3(a) and (b), the maxima

are always located at the boundariesx = 0 andx = L.

As the system size is increased, the patterns change and the striped patterns forcd and

cde appear, see figure 3.3(d). This reflects the finite wave numberof the critical mode.

In addition to changes in the oscillation pattern, the temporal period also changes as the

system size is varied. It increases monotonically with the system size but at certain sizes

jumps back towards a lower value, see figure 3.4. The discontinuities occur for the system

sizes where the oscillatory pattern acquires a new “stripe”. For the parameter values used

here, a new stripe appears for a system size of 3µm. In the case displayed in figure 2.10(f),

the minimum at the center is more pronounced than for the theoretical calculation: while

experimentally the minimum is at about 50% of the maximum, itis at about 70% in the
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Figure 3.5: Oscillatory solutions of the dynamic equations(3.2.3) and (3.2.4). The total MinD

distribution averaged over one temporal period,〈c̄d + c̄de〉, for different lengths. The black, red,

green and blue lines correspond to cell length of1.4µm, 1.6µm, 2.0µm and2.6µm respectively.

The orange dashed curve corresponds to a cell length of2.8µm, just before the system acquires a

new stripe. Parameters arek1 = 2.1 · 10−6µm4s−1, k2 = 2.5 · 10−7µm6s−1, and the remaining

values are as in figure 3.2(a).

numerics. However, as is shown in figure 2.12, for other cellsexamined, the minimum is

much shallower or even absent. This might reflect deviationsin the total protein density

in individual bacteria from the average total protein density in a bacterial colony. In

particular, in the numerics, see figure 3.5, the value of the minimum decreases with the

system length up to the point at which the oscillation pattern acquires a new stripe. This

behavior is consistent with the experimental data shown in in figure 2.12. It would be

interesting to test this dependence of the average MinD distribution on the cell length in

single cells.

When increasing the cell length, the oscillation periods found for the dynamic equa-

tions (3.2.3) and (3.2.4), see figure 3.4, span the same rangeas the experimentally ob-

served ones, shown in figure 2.14. Furthermore, experimentally we observed striped os-

cillation patterns only for bacteria longer than 3µm, however, there is no sharp transition

length in which the pattern changes. This behavior, as has been described in section 2.1.3,

could be due to variations in the protein densities between different bacteria, and the con-

sequent variation of the oscillation period [63], and thus reflect the individuality of the

cells. It could also be a noise effect due to the low protein number which gives rise to

fluctuations in the oscillation period in each single cell. An experimental verification

would require the measurement of the protein concentrationin an individual cell together
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Figure 3.6: a) Oscillation period in the model as a function of the average total MinD concentration

D. The period initially increases and then decreases slightly with D. b) The same as (a) but for

the average total MinE concentrationE . The period decreases with the amount of MinE. The

parameters values are as in figure 3.3(a), the system length is2µm.

with the temporal period and the cell length.

In the model, the temporal oscillation period also depends on the total MinD and

MinE concentrations,D andE , see figure 3.6(a) and (b). It increases monotonically with

the amount of MinD until it starts to descend slightly. As a function of the number of

MinE molecules, the period decreases.

3.3 The MinE-ring

In the one-dimensional description presented above, MinE-rings correspond to the max-

ima in the MinDE distribution. In the examples given so far, such maxima only occur at

the system boundaries. For system lengths close to the valueat which the pattern acquires

a new stripe, maxima can be detected closer to the system’s center. However, this is un-

likely to be the mechanism for MinE-ring formation inE. coli, because no dependence

of the existence of the ring on the cell size was reported. Furthermore, as argued above,

in the limit of homogenous cytosolic MinD- and MinE-distributions, the maxima in the

MinDE-distribution were induced by the maxima in the MinD-distribution. MinD-rings

were not observed experimentally, though.

There are at least three other possible mechanisms that may,in principle, account for

the observed accumulation of MinE at the ends of the MinD helix. In the first mech-

anism, the diffusion length of cytosolic MinE,lE = (DE/ωEcmax)
1/2 , is shorter than

half of the cell length. In this case, cytosolic MinE will predominantly attach before it

has reached the opposite cell pole, which might lead to an accumulation close to the cell
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center. This seems to be the mechanism of MinE-ring formation in the models proposed

in [70,71]. Accordingly, the ring vanished in [71] when the attachment rate of MinE was

reduced, leading to an increase oflE. To test whether this mechanism is supported by the

equations (3.1.1)-(3.1.4), we studied the system for finitevalues ofDD andDE. In this

case the cytosolic distributionscD andcE were not homogenous, and all four equations

had to be solved simultaneously. For the parameter values considered above, the oscil-

lation patterns do not change significantly as long as the diffusion constantsDD andDE

are larger than 0.1µm2/s and no maxima ofcde independent of maxima ofcd were found.

The diffusion lengthlE is also influenced by the value ofωE. ForDD = DE = 2.5µm2/s,

the values for diffusion in the cytosol used in CA models, andvalues ofωE smaller than

3.2 · 10−4µm/s the same behavior was found. Still larger values ofωE destroy the oscilla-

tions. Note that by assumption the one-dimensional description is only appropriate if the

diffusion lengthlE is larger than the cell diameter, i.e.,lE ≥ 1µm. We concluded that this

mechanism is not supported by the dynamic equations presented above and can be tested

only in a three-dimensional description.

Two other mechanisms of minE-ring formation are suggested by studies of kinesin-

subfamily Kin13 members [106, 107]. These proteins induce the depolymerization of

microtubules. In this process they accumulate at both ends of the microtubule. As MinE

might act on MinD filaments in much the same way, accumulationof MinE could follow

from a similar mechanism as accumulation of the Kin13-kinesins. The latter could be a

consequence of a higher affinity of the microtubule end for binding the motor. Related

ideas for the binding of MinE to MinD were proposed in [69] andalso in [76]. In the

present description, additional terms as the special functional form for the attachment of

MinE to the the membrane-bound MinD used in [76], can give a MinE-ring. The anal-

ogy with Kin13-kinesins offers still another explanation for the accumulation of MinE,

namely a dynamic accumulation due to processive depolymerization [108]. The present

framework for studying the dynamics of Min-proteins is not suitable for studying these

effects as filaments are not explicitly incorporated.

3.4 Discussion

A phenomenological description of the dynamics of MinD and MinE in E. coli has been

presented. The description is based on the binding of MinD tothe cytosolic membrane,

recruitment of MinE to the membrane by membrane-bound MinD,MinE-induced detach-

ment of MinD, as well as an interaction between molecules bound to the membrane. For a

sufficiently strong attraction between membrane-bound MinD-molecules, these processes

generate pole-to-pole oscillations of the Min-proteins. The phenomenological form of the
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current for membrane-bound MinD used in the present work captures generic features of

the protein interaction and does not refer to a specific microscopic mechanism. It allows

for a quantitative comparison between the oscillatory solutions of the dynamic equations

and experimental findings. In agreement with the latter, oscillations with a temporal pe-

riod from 40s to 120s can be obtained. This value is essentially determined by the de-

tachment rateωde of MinDE-complexes. For the parameter values given in the text, the

oscillatory pattern acquires a second stripe for a system size of 3µm, which agrees well

with the smallest bacterial length for which period doubling is seen in figure 2.14. This

length is essentially determined by the ratio of the parametersk1 andk2.

Our analysis of the dynamic equations (3.1.1)-(3.1.4) was focused on the case of ho-

mogenous cytosolic distributions of MinD and MinE,cD andcE. The solutions in this

limit are very similar to the solutions of the full equationsif the diffusion constants of

both MinD and MinE have the measured value of approximatively 15µm2/s. This implies

that the approximation of constantcD andcE is appropriate and provides a reduced set of

equations that is more convenient to study than the four equations of the full system. An

implication of our analysis is that the number of available binding sites might need to be

limited in order to produce oscillations.

Other mechanisms that were suggested for the Min-oscillations agree in the essential

assumptions with the one studied here, namely the ability ofATP-dependent binding of

MinD to the membrane, the recruitment of MinE to the membraneby MinD, and the

release of MinD from the membrane driven by MinE. The proposed mechanisms dif-

fer, however, in essential points. Meinhardt and deBoer suggested that protein synthesis

might be an essential element [69], which is not supported byexperiments where the syn-

thesis of proteins was interrupted and the oscillations still continued [63]. Howard et al.

assumed that MinD and MinE form complexes in the cytosol and bind together to the

membrane [70]. They found an exponential increase of the temporal period of the oscil-

lations with the system length with a period of 1000s for a system of length 7µm. This

is qualitatively different from the behavior reported for the mechanism examined in our

study, see figure 3.4(a). The experimental data presented infigure 3.4(b) show oscillation

periods that do not exceed 120s for bacteria of a length of up to 10µm. However, more

experiments are needed in particular for obtaining simultaneously values for the protein

densities and the oscillation period of individual bacteria.

The system studied by Huang et al. differs from the one studied here in the way that

MinD-aggregates are formed on the membrane [71]. In their description, MinD aggrega-

tion follows a one-step process: attachment to the membraneoccurs with a higher rate at

locations where MinD is already bound. This characterizes the models that we define as

cooperative attachment models. In contrast, we considereda two step-process, namely,
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cytosolic MinD binds first to the membrane and only then self-assembles into a filament,

corresponding to an aggregation current model. This difference might at first sight seem

minor. However, it leads to striking differences in the behavior of the models. First of

all, in assuming a one-step process for MinD aggregation, a three-dimensional geometry

as well as a finite ATP-exchange rate is required to generate striped oscillation patterns in

long systems. Secondly, in the model by Huang et al. there areno oscillatory solutions at

all for homogenous cytosolic distributions. Moreover, in contrast to the model by Huang

et al., MinE-rings were not found to form in the model studiedhere.

In chapter five the differences between the two classes of models ACM and CAM will

be further discussed and, suggesting new experiments, the implications of our measure-

ments concerning the possibility of quantitatively discerning between different models

will be also considered.

Fluctuations due to the moderate number of Min-molecules might also play an impor-

tant role. This point will be addressed in the next chapter.
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Chapter 4

Stochastic description of the
Min-oscillations

In that Empire, the Art of Cartography attained such Perfection that the map

of a single Province occupied the entirety of a City, and the map of the Em-

pire, the entirety of a Province. In time, those Unconscionable Maps no

longer satisfied, and Cartographers Guilds struck a Map of the Empire whose

size was that of the Empire, and which coincided point for point with it. The

following Generations, who were not so fond of the Study of Cartography as

their Forebears had been, saw that that a vast Map was Useless, and not with-

out some Pitilessness was it that they delivered it up to the Inclemencies of

the Sun and Winters. In the Deserts of the West, still today, there are Tattered

Ruins of the Map, inhabited by Animals and Beggars; in all theLand there is

no other Relic of the Disciplines of Geography.

Jorge Luis Borges and Adolfo Bioy Cesares, “On Exactitude inScience”1

Introduction

In this chapter our theoretical investigations on the oscillatory Min-system will be ex-

tended on the effects of fluctuations. Because the number of involved Min molecules in

each bacterium is rather small, only a few thousand [109, 110], stochastic fluctuations

are expected to be significant [83, 111]. Unfortunately, there are only measurements of

protein numbers averaged over a population of cells [110]. As a consequence, assum-

ing an average length of the cell, only an approximate estimation of 700 MinE/µm and

1English translated version from J. L. Borges,Collected Fictions, A. Hurley, trans., Penguin, New York
(1999).
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Figure 4.1: MinD oscillations. (a) Fluorescence intensityI of MinD-GFP measured by LSCM,

rescaled by the maximum valueImax during the oscillations (in a confocal volume corresponding

to the yellow area in the sketch), as a function of the time. b)Stochastic simulations of MinD

concentration on the membrane, as explained in the tex,n̄d + n̄de = (nd + nde)/nmax at site

i = 1, 2, as function of the time.

1000 MinD/µm is possible, corresponding to a concentration of approximately1µM. Fig-

ure 4.1 clearly shows fluctuations in the oscillatory fluorescence intensity signal due to

the low number of proteins. All of the FCS measurements we performed (see section 2.2)

were only possible because of the presence of such fluctuations.

The effects of noise were studied for some spatially extended patterns,e.g.Ca++ dis-

tributions [112–116]. Inside the cells, mostly models without spatial degrees of freedom

were considered [117–119]. Only recently, first attempts tostudy the influence of fluctu-

ations on the Min-oscillations were undertaken [74, 75, 120–122]. All these studies were

carried out in the context of CA models. A stochastic study was carried out also for a

different bacterial system, namely Soj proteins inBacillus subtilis[123].

Howard and Rutenberg [120] considered a stochastic model ofdiscrete particles mov-

ing in a one-dimensional lattice. The occupancy at sitei is n
{i}
j , with j = D, d, E, e rep-

resenting cytoplasmic MinD, membrane MinD, cytoplasmic MinE, and membrane MinE,

respectively. Given the size of a lattice site∆x, in a time∆t, particles hop to the neigh-

boring sites with probabilitiesDj∆t/(∆x)2. The transformation of cytosolic particles

into membrane bound particles and vice versa occurs in the same time interval with prob-
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abilities given by

PD→d = ω̃D∆t/(1 + µ̃en
{i}
e ), (4.0.1)

Pd→D = ω̃den
{i}
e ∆t, (4.0.2)

PE→e = ω̃DEn
{i}
D ∆t, (4.0.3)

Pe→E = ω̃e∆t/(1 + µ̃Dn
{i}
D ). (4.0.4)

Numerical simulations of this model show pole-to-pole oscillations for particle num-

bers in which the corresponding continuum model [70] does not oscillate. Particularly

interesting is the result at low protein concentrations, where fluctuations induce and sus-

tain oscillatory patterns.

A one-dimensional stochastic model incorporating membrane polymerization of

MinD, was considered by Tostevin and Howard [74]. In this context, they also stud-

ied Min oscillations during the division process, simulating a closing septum through its

effects on the cytosolic diffusion constant. In agreement with reports of oscillations in

constricting cells [61, 63], and with our observation of unaffected oscillations during di-

vision2, they found that oscillations cut off sharply at some time during the closing of the

septum and then the daughter cells show independent oscillations. They also found that

the fraction of Min-proteins in the daughter cells vary widely, from 50% − 50% up to

85% − 15% of the total from the parent cell. In the most extreme cases, due to the low

protein number, oscillations were not supported in one of the daughter cells. However,

wt3 cells without pole-to-pole oscillations have not been reported so far.

Pavin et al. [73] considered a 3-D stochastic extention of the model proposed by

Huanget al. Their model generated pole-to-pole oscillations of the membrane-associated

MinD proteins, MinE ring, as well as filaments of the membrane-bound MinD proteins.

To this end they considered four different rates for the detachment process of MinDE:ATP

complexes, depending on many bonds a MinD:ATP formed with its MinD:ATP neighbors.

In particular, in order to generate oscillations, the rate corresponding in the case of four

bound ones has to be significantly small when compared with the others.

Different stochastic versions of the model introduced in [71] were considered in [75,

121,122].

Kerr et al. [75] made stochastic simulations in three spatial dimensions of the model

introduced by Huanget al. [71], using MCELL, a Monte Carlo modeling program for

cellular microphysiology [124]. In contrast to Howard and Rutenberg [120] they found

2Figure 2.7 is one single frame of a video showing such behavior in a long cell, just before the birth of
a minicell (right down). Oscillation started immediately in the new-born cell.

3Of course to be observed cells have to express GFP fused proteins.
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that fluctuations destroy oscillations in the range of values of the protein numbers where

the deterministic version of the model still shows oscillations.

Finally, Fange and Elf [122] considered3−D stochastic reaction-diffusion kinetics

of the Min proteins for all documented mutant phenotypes andcompared the results to

the corresponding deterministic mean-field description. They found thatwt andftsZ−

cells are well described by the mean-field model but that a stochastic model is necessary

to reproduce the characteristics of the spherical (rodA−) and phospathedylethanolamide-

deficient (PE−) phenotypes4. In particular, for spherical cells, the mean-field model is

bi-stable and the system can get trapped in a non-oscillatory state, however, when the

intrinsic noise is considered, the experimental behavior emerges.

In the vast and growing literature covering noise in physical and, more recently, bi-

ological systems, words such asnoise, external noise, internal noise, fluctuations, have

been applied to processes of different origin. In order to avoid misunderstandings, we will

specify here our use of these words. We differentiate between three different sources of

noise: (i) instrumental, (ii) external noise, (iii) internal noise (of course, a larger classifi-

cation is possible [125]).

Instrumental noise is the noise intrinsically associated with the measurement proce-

dure.

External noise depends on how the system interacts with the rest of the world. An

idealization of a physical system, needed for modeling, takes place through the precise

identification of its boundaries, and every system is coupled with whatever there is outside

these boundaries. In mathematical modeling, this type of noise is usually introduced by

simply adding noise to the deterministic equations. For thespecific case of the Min-

system, sources of external noise can, for example, be the intracellular environment or the

gene expression of proteins [44] that give rise to fluctuations in the protein numbers.

Internal noise, which is the kind of noise we focus on in this work, does not have an

external origin. By internal noise we refer to the molecularcomposition of real phys-

ical systems that are otherwise described by coarse grainedequations. The associated

macrovariables, which are protein densities in the deterministic equations, represent a

sort of averaging over an underlying microscopic description. Consequently, intrinsic

fluctuations of molecular origin are associated with each macrovariable.

There are several approaches to studying intrinsic fluctuations. In traditional statistical

physics, fluctuations are of thermal origin, giving rise to small departures from a mean

value. They go to zero as one approaches the thermodynamic limit. Near equilibrium, the

Onsager theory can be used, and the fluctuation-dissipationrelation, which connects the

strength of the fluctuations to the magnitude of associated dissipative parameters, is valid.

4MinD is localized in tight clusters which randomly appear and disappear at a minute timescale [80].
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Far from equilibrium, these tools are not available. Instead, the system can be described

by the probability of being in a certain state. The dynamics of the probability distribution

is given by the master equation [126]. A direct integration of the master equation is, in

general, impossible, and different methods of analysis have to be developed,e.g. the so

called Gillespie method5 [128]. Nevertheless, most of these methods, including Gillespie

method, do not work when space is taken into account6.

Here, we perform computer simulations of a particle based description, where the

probability for each event is calculated according to the corresponding probability in the

master equation. Stochastic simulations are compared withdeterministic simulations and

experimental data from LSCM. We compare, numerically and experimentally, the contri-

bution to the large spreading of the values of the period at a fixed length that result from

cell to cell variability with the contribution resulting from the internal noise in single

cells. In the last five years, the importance of going from cell population measurements to

single cell measurements has become more and more obvious, for instance in the context

of gene regulation [44]. The final goal, in our case, is to expose the true dependence of

the oscillation period as a function of the length of a singlecell as opposed to the cell

population measurement in figure 2.14.

A general aspect that we want to emphasize is the ability of nonlinear systems to sus-

tain organized behavior even in the presence of a substantial amount of fluctuations [115].

In this context, noise need not only be a nuisance that destroys the desired behavior of a

system, but might lead to a behavior that is absent in the deterministic limit. An example

for the Min-system are “fluctuation driven instabilities” that were found for the model

introduced in [120].

Finally, in order to bridge the gap between our microscopic description and the de-

terministic one used in chapter two, Langevin equations (LEs) for the fluctuating protein

densities will be derived through coarse graining of the microscopic master equation. The

deterministic limit of these LEs corresponds to equations (3.2.3) and (3.2.4).

In the last 20 years, we have seen a growing interest in stochastic phenomena in the

context of nonlinear dynamics and instabilities away from equilibrium. A LE describes

microscopic stochastic dynamics in terms of a deterministic and a noise part. This de-

scription was studied in the last decade under different circumstances, from the kinetic

5The Gillespie method was previously introduced in the context of the Ising spin system by Bortzet
al. [127].

6The Gillespie method automatically sets up the time step, generating directly the time when each single
event occurs. The application of this method to spatially extended systems requires modifications which
does not make it an advantageous method in that case (François Nédélec “Microtubule functions: Three
examples of modeling using simulations” course at summer school “Physics of Cellular Objects”, Cargèse
2006).
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theory of adsorbates [129–141] to the study of the exchange market [142] and turbulent

cascades [143]. However, to our knowledge, there are no applications of that approach to

spatially extended biological systems. In the kinetic theory of adsorbates, lateral interac-

tions between adsorbed molecules play a key role in determining the process of pattern

formation at nanoscales on metal surfaces similar to the role played by the interaction

between MinD proteins in our model.

4.1 Analysis of the master equation

Here, we introduce a particle-based description of the Min-protein dynamics based on

the same processes used in the deterministic description. The fluctuation effects are fully

incorporated into the model by discrete particles. The starting point is a1-D micro-

scopic lattice model with lattice lengthl0, N total number of sites andΩ sites per unit

length. Each site can either be empty or occupied by a single protein MinD or a complex

MinDE, i.e. the multiple occupation of a site is not permitted. The master equation for the

multidimensional distributionp({nd,1, . . . , nd,N}, {nde,1, . . . , nde,N}, t), which gives the

probability of findingnd,1, . . . , nd,N andnde,1, . . . , nde,N proteins MinD or MinDE, re-

spectively, in the boxes positioned atx1, . . . , xN at the timet is given in equation (F.0.5).

We first carried out lattice simulations where the probability of each event is calculated

according to the corresponding probability in this master equation. Since such a single

site description is numerically too expensive, the latticewas soon after coarsely grained,

i. e, the entire lattice was divided inm boxes. Moreover, due to the finite resolution of

the instruments, coarse graining allowed for a better comparison with the experimental

data. This situation correspond to the master equation for the multidimensional distribu-

tionP (nd,1 . . . nd,m, nde,1 . . . nde,m, t) shown in equation (F.0.11) (appendix F). Now, each

box can be occupied by a maximum numbernmax of proteins and has a lengthlb much

smaller than the characteristic length of the spatial patterns which appear. This length

characterizes the resolution of our system. Complete diffusional mixing is assumed to

take place inside each box so that single proteins cannot be distinguished inside a box.

We define the rates̃ωD,E = ωD,Ecmax, whereωD,E are the parameters introduced in equa-

tions (3.2.3) and (3.2.4), and to simplify the notations in the following the “tilde” will be
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dropped. For each boxj the probabilityP of attachment in a time step∆t is given by

PD→d = ∆t ωD

(
ND

m

)(
1− nd,j + nde,j

nmax

)
(4.1.1)

PE→de = ∆t ωE

(
NE

m

)
nd,j

nmax
(4.1.2)

for MinD and MinE respectively, and

Pde→E+D = ∆t ωdende,j (4.1.3)

for the detachment process of MinDE. The variablesnd,j andnde,j, are, respectively, the

number of MinD and MinDE proteins in each boxj. The parametersND andNE are

the total numbers of cytosolic MinD and MinE proteins, respectively. Their values are

updated at every time step. At each time step, the probabilities of a transition between the

neighboring boxes of the MinD proteins,P (j → j ± 1), are proportional to the number

nd,j of proteins in thejth box and to the fraction1 − (nd,j±1 + nde,j±1)/nmax of empty

sites in the neighboring box. Moreover, it depends on the interaction between membrane-

bound proteins, and according to the Metropolis dynamics wewrite:

Pj→j±1 =

(
Dd ∆t

l2b

)
nd,j

(
1− nd,j±1 + nde,j±1

nmax

)
Ij→j±1 (4.1.4)

where

Ij→j±1 =





1 if ∆Ej < 0

exp
(−∆Ej

kBT

)
if ∆Ej > 0,

(4.1.5)

with ∆Ej = Vj±1 − Vj . The potentialV (x), describes the interaction between Min-

proteins on the membrane. Concerning the shape ofVj, we chose a square hole potential:

V (j) = −
[

Rd∑

j=−Rd

g̃dnd,j −
Rde∑

j=−Rde

g̃dende,j

]
(4.1.6)

whereRd andRde are the number of boxes over which the sum is taken and which corre-

spond to the interaction ranges,rd ≃ l0 × Rd andrde ≃ l0 × Rde. The parameters̃gd and

g̃de are the ”coarsely grained” (renormalized) interaction strengths:

g̃d ≃
gd

2
∑Rd

j=−Rd
nmax

; g̃de ≃
gde

2
∑Rde

j=−Rde
nmax

(4.1.7)
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We controlled that for a fixed interaction range and strength, different shapes forVj would

lead to similar results.

4.1.1 Simulations

In our stochastic simulations, we use a time step∆t = 1/(PmaxωE), wherePmax is the

maximum possible value for the sum of all probabilities, typically, ∆t = 5× 10−5s. The

box length islb = 0.033µm, so that60 boxes model a2µm bacterium. The number of sites

in each box isnmax = 33, corresponding tocmax ≃ 1000/µm. We useDd = 0.15µm2s−1,

gd = 30kBT , gde = −20kBT , rd = 800nm, rde = 22nm ωD = 0.04s−1, ωE = 0.3s−1,

andωde = 0.04s−1. For each boxj the probability for each possible event is calculated

at every time step∆t and then the occupancies for all boxes are simultaneously updated.

We recorded the number of particles in each box, after a number s of time steps such

that ∆t × s ≫ τd, whereτd = l2b/Dd is the mixing time due to pure diffusion on the

membrane. The value used forDd is the same we found experimentally (see table 2.1).

An estimation ofcmax, gd, gde, rd andrde is given in appendix H, the values ofrd and

rde will be also discussed in section 4.3, and the values of the rate ωD, ωE andωde are

compatible with the residence times we found experimentally (see table 2.2).

4.1.2 Macroscopic limit

Numerically, the macroscopic limit can be approached in thestochastic simulations by

appropriate rescaling some of the parameters. Keeping the value ofm fixed we considered

the macroscopic limit by sendingnmax andNp to∞, whereNp is the average total Min-

protein density. Then we considered the new rescaled quantitiesñmax andÑp

ñmax = nmax × pγ (4.1.8)

Ñp = Np × pδ (4.1.9)

We found numerically that by choosingγ andδ equal to 1 the deterministic limit is

recovered with good approximation. In figure 4.2 the space-time plots for the total MinD

concentrations for four different values ofp are shown. We want to point out that this is

not the macroscopic mathematical limit (see section 4.2.2)where the box sizelb goes to

zero, difficult to obtain numerically. Its consistency is supported by the simulations.
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Figure 4.2: Macroscopic limit of microscopic simulations.Space-time plots of the total MinD and

MinDE distributions on the membrane, for system sizeL0 = 2µm, and for different values of the

rescaling parameter:p = 1, p = 5, p = 10, andp = 20. For all values ofp, the distributions

show pole-to-pole oscillations with a temporal period of approx. 70s. Increasingp the particle

distribution approaches the continuum limit.
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Figure 4.3: Simulations. Local MinD concentration as function of time. Full red lines: stochastic

dynamics,n̄d = nd/nmax at sitei = 1. Dashed lines: deterministic dynamics with equivalent

parameters,̄cd(0) = cd(0)/cmax. (a)D = 360µm−1 andE = 134µm−1, (b) D = 945µm−1 and

E = 368µm−1. D/E ≃ 2.6 in both cases. System length2µm.

4.1.3 Fluctuation-driven instability

To study the effects of stochasticity in our model, we changed the average total protein

concentrationNp keeping fixed all other parameters. Figure 4.3 compares the determin-

istic with the stochastic case, at low and high values ofNp. At low values, in the deter-

ministic case (starting from a perturbation of the homogeneous steady state) the protein

concentrations rapidly decay to the homogeneous state, whereas regular oscillations con-

tinue for the stochastic model, figure 4.3(a). The opposite happened at high total protein

concentration, figure 4.3(b). To investigate this issue in more detail, we reported the os-

cillation period as function ofNp = D + E , the average total MinD concentrationD, and

the average total MinE concentrationE . The value of the period was calculated by con-

sidering the discrete Fourier transform (DFT) as a functionof the period and by taking the

value corresponding to the maximum of the DFT as the value of the period. For the error

of the period, we considered the width at half height of the DFT. The DFT was performed

in a time interval of20min. We checked that much longer intervals shift the value of

the period only by a small fraction of the error. Figure 4.4 shows the oscillation period

as a function ofNp. The stochasticity shifts the regime of oscillations to lower values

and reduces the range of the values ofNp supporting oscillations. In the stochastic case,

oscillations continue to very low concentrations,Np ≃ 400µm −1, and stop around the

middle of the deterministic range. The qualitative behavior is maintained, i.e. the period

decreases with the amount of the total Min-protein average concentration in both cases,

stochastic and deterministic.
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Figure 4.4: Dependence of the oscillation periodT on the average total Min concentrationNp.

Red dots stochastic simulations, black dots deterministicsimulations. I) Region of the values

of the average total Min concentrationNp where oscillations are possible only in the stochastic

case. II) Region of oscillatory solutions for both cases, deterministic and stochastic. III) Region

of oscillatory solution only in the deterministic case. IV)Region where oscillatory solutions are

not possible. Error bar for the stochastic case are calculated taking the width at half heigh of the

discrete Fourier transform (DFT) performed in a time interval of 20min. The system length is

2µm.
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Figure 4.5: Standard deviation of the period,∆T . as a function of the average total Min-protein

densityNp. System length2µm.
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Figure 4.6: Dependence of the oscillation periodT on the average total MinE concentration

E . Red dots stochastic simulations, black dots deterministic simulations. I) Region of the values

of the average total MinE concentrationE where oscillations are possible only in the stochastic

case. II) Region of oscillatory solutions for both cases, deterministic and stochastic. III) Region

of oscillatory solution only in the deterministic case. IV)Region where oscillatory solutions are

not possible. Error bars for the stochastic case are calculated taking the width at half heigh of the

DFT performed on a time interval of 20min. The system length is2µm.

We also notice that the value of the period itself decreases in the stochastic case com-

pared to the deterministic one. A similar behavior was foundfor different values of the

parameters and different ratiosD/E (considered in this particular case, data not shown).

The standard deviation (SD) of the period, figure 4.5, qualitatively increases at low values

of Np but does not show a regular behavior. At the expected values of Np in wt cells [110],

it oscillates between5s and30s. Figure 4.6 shows the oscillation period as a function of

the average total MinE densityE . Similar considerations, as for the case of the total

Min-protein concentration, can be carried out. Furthermore, the range ofNp supporting

oscillations is even more reduced. Figure 4.7 shows the oscillation period as a function

of the average total MinD densityD. In this case, the stochasticity shifts the range ofD
values supporting oscillations up to higher values with respect to the deterministic case.

The deterministic behavior is qualitatively maintained, i.e. the period initially increases

and then decreases slightly withD. However, the stochasticity considerably reduces the

variation ofT , whose values stay between60s and80s.

Figure 4.8 shows the time-averaged total MinD concentration. As opposed to [75] we

did not perform the average over the entire cell cycle time of20min but over three periods
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Figure 4.7: Dependence of the oscillation periodT on the average total MinD concentrationD.

Red dots stochastic simulations, black dots deterministicsimulations. I) Region of the values of

the average total MinD concentrationD where oscillations are possible only in the deterministic

case. II) Region of oscillatory solutions for both cases, deterministic and stochastic. III) Region

of oscillatory solution only in the stochastic case. IV) Region where oscillatory solutions are not

possible. Error bars for the stochastic case are calculatedtaking the width at half heigh of the DFT

performed on a time interval of 20min. The system length is2µm.

only. In fact, the cell spends only a small fraction of this time on selecting the division site.

The figure clearly shows that, loweringNp, the minimum of the spatial averaged profile

becomes deeper and the profile less noisy apparently in contrast to the fact that the local

fluctuations increase at low values ofNp. Because the period increases when lowering

Np, this might be due to the fact that the average was carried outfor a longer time at a

low proteins levels. However, this characteristic is preserved considering average times of

20min. A possible explanation of this non-intuitive behavior might be the following. At

low protein levels and at some time during the oscillations,all proteins accumulate at one

pole (roughly within an half period) and then switch almost all together to the opposite

pole and stay there during the next semi-period, leaving always one pole and the mid-cell

empty and without fluctuations at all. In contrast when the protein levels are increased

not all of the proteins switch from one pole to the other during oscillations. In fact, the

interaction is not strong enough to aggregate all proteins at one pole, in addition, the

maximum valuenmax also prevents this possibility. Then, a small number of proteins is

alway present at one pole and at the middle of the cell. As a consequence, very strong local
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Figure 4.8: The total MinD distribution averaged over threeperiods〈n̄d + n̄de〉, for different

total protein concentrationsNp. Black dotsNp = 1187µm−1, red squaresNp = 935µm−1, green

crossesNp = 683µm−1, blue plusesNp = 431µm−1, orange diamondsNp = 179µm−1. The

ratio between the MinD and MinE average total concentrations isD/E ≃ 2.6.

fluctuations appear that make the time-averaged spatial profile noisier and the minimum

in the middle of the cell less pronounced.

Finally, we noticed that for very low protein numbers,Np ≃ 180µm−1, stationary

patterns appear (orange diamonds in figure 4.8). In this case, reducing the value of the

interaction rangerd and keeping the same system length, stationary states existwith the

maxima at both poles. This indicates that the present model might also apply to the case

of the Min-system inB. subtilis, where MinD and homologues of MinE are present.

4.1.4 Oscillation period as a function of the cell length

Figure 4.9 shows the oscillation period as a function of the cell length with constant

protein density. For the system length at which the oscillation pattern changes in the

deterministic case, i.e. around3µm, the stochastic simulations show two peaks in the

DFT, see figure 4.9(c). The intrinsic noise cannot account for the large variations of the

oscillation period at approximately fixed length observed in a cell population measure-

ment, see figure 2.14. In fact, the SD is always much smaller than the variation of the

period7, according to the experimental data in single cell measurements (figure 2.5 and

7Has to be notice that the SD increase if we calculate within a time shorter than20min and if we take
the parameter value ofp equal to 1 in the simulations.
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Figure 4.9: a) Oscillation period of stochastic simulations as a function of the system length.

Black dots: oscillation pattern as in figure 4.2, red, green,and blue dots: oscillation pattern with

two, three and four stripes, respectively. Error bars are calculated taking the width at half heigh

of the DFT performed within a time interval of 20min. b), c), and d) DFT performed on a time

interval of 20min, for system length of1.8µm, 2.6µm, and3µm, respectively.

data not shown). Figure 4.9 shows the oscillation period as afunction of the cell length

with constant protein density.

Figure 4.10 shows the oscillation period of solutions to thedeterministic equations

(3.2.3) and (3.2.4) as a function of the cell length. For eachone of the data points a

different value of the protein densitiesE andD was used. In particular, for each kind

of spatial pattern (one, two, three and four stripes) the same number of points as in the

reported experimental data were considered. Experimentally, typical values of the cell-

cell variations in protein concentrations are on the order of ten percent of the mean [144–

147]. However, in order to reproduce the experimental data the values ofE andD were

chosen in a larger interval compared to a variation of the tenpercent of the mean. Of

course, as figure 4.10 shows, with so many free parameters it is possible to reproduce

quite well the experimental data. Although the contribution to the large variations of

the oscillation period at approximately fixed length that come from cell-cell variations in

protein concentrations seems to be higher when compared with the one due to internal

noise, our simulations indicate that both of them must be included. Further studies are
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Figure 4.10: Oscillation period of solutions to the equations (3.2.3) and (3.2.4) as a function of

the system length. Black dots: oscillation pattern as in figure 3.3(a), red pluses: oscillation pattern

as in figure 3.3(b), green squares and blueXs: oscillation pattern with three and four stripes,

respectively. For each point different values ofE andD were chosen. All the other parameters

values are as in figure 3.3(a).

necessary in order to quantitatively specify this point. Finally, numerically we found

(data not shown) that the periodT and its standard deviation (SD) increase and decrease,

respectively, withDd.

4.2 Langevin equation

In 1954 it was pointed out by D. K. C. MacDonald that for nonlinear equa-

tions the addition of a Langevin force is inconsistent [148,149]. One cannot

add indiscriminately a Langevin term to a macroscopic equation when that

equation is not linear. This was forcefully expressed by thequestion: Does

a diode rectify its own fluctuations? This situation gave rise to some dis-

cussion, involving the notorious Itô-Stratonovich dilemma; for literature see

reference [126]. The conclusion was that it is necessary to start from a more

fundamental level which includes the physical cause and theactual form of

the noise. This episode, however, was soon forgotten in favor of the so con-

venient Langevin device.

Niko van Kampen [150]



4.2. Langevin equation 71

In the previous section we analyzed through MonteCarlo simulations the processes

considered in the deterministic model. These stochastic simulations correspond to the

coarsely grained master equation (F.0.11) derived in appendix F. In appendix F, starting

from a microscopic master equation (F.0.5), we derived, through coarse graining, a

functional Fokker-Planck equation (FPE), and the associated LEs for the protein densities

cd and cde. The deterministic limit of these LEs corresponds to the equations (3.2.3)

and (3.2.4). This correspondence (obtained analytically)allowed us to compare the

stochastic simulations performed in the previous section with the deterministic ones

shown in chapter three. Below, after a short general introduction to the LE, the LEs for

the membrane-bound protein concentrations in the case of the homogeneous cytosolic

distribution will be presented, and an outline of the procedure used for the derivation

of these equations will be given. In particular, we will analyze the hypothesis used and

discuss the space and time scales involved. Furthermore, the expression of the current

jd used in the equations (3.2.3) and (3.2.4) will be derived starting from the expression

(F.0.28) obtained in appendix F, and, in this way, the phenomenological parametersk1,

k2, k̄1 and k̄2 in the equations (3.2.3) and (3.2.4) will be linked with the microscopic

quantities used for the microscopic simulations in the previous section.

A stochastic differential equation (SDE) in the case in which the noise term appears

linearly, is a Langevin equation. Let us see what this means precisely. A SDE is a differ-

ential equation which contains a stochastic processξ̂(t)8:

dĉ(t)

dt
= G(ĉ(t), t, ξ̂(t)) , (4.2.1)

whereG depend on three variables.̂ξ(t) is a stochastic process: a family of functions

ξu(t) depending on the outcomeu of an experiment (for example a numerical experiment)

S. As a consequence, as SDE is not a single differential equation but rather a family of

ordinary differential equations:

dcu(t)

dt
= G(cu(t), t, ξu(t)) . (4.2.2)

Therefore, the family of solutionscu(t) of these differential equations, constitutes a

stochastic procesŝc(t). To “solve” a SDE means to completely characterize the stochastic

procesŝc(t), i.e. to give them-times probability density functionp(c1, ...., cm; t1, .., tm),

which, in general, is quite a difficult task.

8See [151] for a short introduction to stochastic processes from a physical point of view.
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When the stochastic processξ̂(t) appears linearly one speaks of a Langevin equation,

which has the following general shape:

dc(t)

dt
= f(c, t) + g(c, t)ξ(t) (4.2.3)

(from now on, to simplify the notation, the “hat” will be dropped). In the LE,ξ(t) is

usually referred to as the “noise” term9. If the functiong(c, t) has a constant value, the

noise is said to beadditive, otherwisemultiplicative.

The stochastic integral associated with a SDE with multiplicative noise is not uniquely

defined [152]. For instance, when we consider the integral

∫ t+h

t

g(c(s))ξ(s)ds (4.2.4)

to be computed in the limith → 0. The unbounded variation of the stochastic process

ξ(t)dt leads to a lack of mathematical rigor and gives rise to some problems of interpreta-

tion. Among the many interpretations that can be given to this integral, two are frequently

used [126,152]: the Stratonovich interpretation that follows the standard rules of calculus

but gives rise to nonintuitive statistical properties of the noise terms and the Itô interpreta-

tion that avoids this problem, at the expense of requiring new rules of calculus. Here, we

are not interested in the mathematical definitions of these two interpretations [126,152]10,

but only in what they differ concerning possible applications to our study. The rule that

links the two interpretations is the following. Considering a white noise, i.e. a stochastic

processξw, satisfying the correlations

〈ξw(t)〉 = 0 , (4.2.5)

〈ξw(t1)ξw(t2)〉 = δ(t1 − t2) , (4.2.6)

the SDE

dc(t)

dt
= f(c) + g(c)ξw(t) (4.2.7)

in the Itô sense is equivalent to the SDE

dc(t)

dt
= f(c) +

1

2
g(c)

∂g(c)

∂c
+ g(c)ξw(t) (4.2.8)

9The word “noise” comes from the random “noise” one can actually hear in electric circuits
10See also reference [153] for a brief introduction to Itô calculus (pages 40-41 contain a compact defini-

tion of Itô and Stratonovich stochastic integral), and reference [154] for more mathematical details.
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in the Stratonovich sense. Both interpretations coincide for the additive case. Thus, given

a stochastic equation with multiplicative noise, as is the case here, the result depends on

the interpretation, and a preliminary analysis of the physical problem has to be performed

to make an appropriate choice [155]. In any physical process, there is a finite correlation

time τ for the noise variables. The Stratonovich prescription forwhite noise gives us

the result one would get for a time-correlated noise in the limit of vanishing correlation

time. In our case, we are considering internal noise which issimple due to the fact the

number of proteins is finite. We assume that the noise is genuinely uncorrelated even for

the closest time moments, and therefore we consider the Itôinterpretation. We notice that

this assumption cannot be made in the context of cooperativeattachment process and that

also in our case is an approximation. In fact because of the maximum possible coverage

for the proteins on membrane, the probability of an attachment event in the same spatial

point is modified by a previous attachment process.

In the case of homogenous cytosolic distributions, as was shown in the previous sec-

tion, the effects of noise are negligible for the cytosolic concentrations that fluctuate

around an average value. In fact, there is no interaction between the proteins in the

cytosol that can create confined agglomerations of proteins, and local fluctuations are

immediately quenched by fast diffusion. In the following, we will neglect these fluctu-

ations, assuming a constant uniform value for the protein concentrations in the cytosol.

In appendix G, we will derive the LEs for the case of the0-dimensional system and will

explicitly show, in this particular case, how the amplitudeof the relative fluctuations in

the cytosol is small when compared to the ones on the membrane(the absolute values of

the fluctuations associated with each one of the reaction processes are exactly the same,

as a simple consequence of the conservation of the protein number).

The deterministic equations (3.2.3) and (3.2.4) in chapterthree can be seen as the

deterministic limit of the following Langevin equation (derived in appendix F) for the

fluctuating proteins densitycd andcde:

∂tcd = ωDCD(1− cd − cde)− ωECEcd − ∂xjd

+ ξd(x, t) ,

(4.2.9)

∂tcde = −ωdecde + ωECEcd + ξde(x, t) , (4.2.10)

where now the protein concentrations are dimensionless fluctuating fieldscd,de(r, t), de-

fined ascd,de = c̃d,de/cmax, wherec̃d,de are the protein densities of equations (3.2.3) and

(3.2.4). All the other symbols in the deterministic part have the same meaning as in equa-

tions (3.2.3) and (3.2.4), included the current termjd. However, now the currentjd is
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expressed in term of microscopic quantities that can be directly linked to the phenomeno-

logical parametersk1, k2, k̄1 and k̄2 used in the deterministic description. A detailed

analysis of the currentjd is carried out in section 4.2.2. The noise termsξd(r, t) and

ξde(r, t) take into account internal fluctuations of attachment, detachment, and transport

processes, and have the form

ξd(x, t) = Ω1/2
√

ωDCD(1− cd − cde)αD(x, t)+

+Ω1/2
√

ωdeCEcdαE(x, t)+

+Ω1/2∂x(
√

2Ddcd(1− cd − cde)β(x, t)) ,

(4.2.11)

ξde(x, t) = Ω1/2
(√

ωdecdeαde(x, t)−
√

ωECEcdαE(x, t)
)

, (4.2.12)

whereαD(x, t), αE(x, t), αde(x, t), associated with attachment and detachment processes,

and β(x, t), associated with transport processes, are independent white noises of unit

intensity:

〈αi(x, t)αi(x
′, t′)〉 = δ(x− x′)δ(t− t′) , i = D, E, de

〈β(x, t)βd(x
′, t′)〉 = δ(x− x′)δ(t− t′) ,

(4.2.13)

〈αi(x, t)αj(x
′, t′)〉 = 0, for i 6= j ,

〈β(x, t)αi(x
′, t′)〉 = 0 .

The prefactor of the noise variablesα’s andβ, reflect that the noise strength depends

on the number of free binding sites and possible binding molecules. Their can be derived

from theN sites lattice model introduced before. LetL be the length of the system.

Then the parameterΩ = L/N , which goes to zero in the deterministic limit (Np → ∞,

N →∞), specifies the number of lattice sites per unit length. The noise terms associated

with the cytosolic distributions isΩcyt = L/Ncyt, whereNcyt is the number of available

sites in the cytosol (see appendix G). AssumingNcyt ≫ N , the relative fluctuations of

the cytosolic protein concentrations can be neglected whenthey are compared with the

relative fluctuations of the membrane-bound protein concentrations. The internal noise

of reactions and diffusion is multiplicative. It is proportional to the square root of the

local protein concentrations in such a way that the noise terms are directly linked to the
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deterministic part. It was pointed out a long time ago by van Kampen that noise in a

jumpMarkov process “is inherent in the very mechanism by which the state of the system

evolves and cannot be divorced from its equations of motion”11.

The LEs allow for estimating the relative contribution of different physical processes

to the noise, namely attachment and detachment processes and transport processes, as

well as their role for the behavior of the dynamics.

The integration of LEs with multiplicative noise as in equations (4.2.9) and (4.2.10)

has to be performed carefully. In fact, standard schemes give rise to unphysical negative

values for the protein concentrationsc(x, t) [156–158].

4.2.1 Reaction processes

In this section, we consider the simple case of the0-dimensional system. Thus, only the

reaction processes have to be taken into account. We would like to give an impression of

the derivation of the LEs (4.2.9) and (4.2.10), and show in detail some of the hypotheses

behind this derivation. The next section, where the spatialextension of the system will be

taken into account, was written from a similar motivation. Amathematical derivation of

the LEs (4.2.9) and (4.2.10) is given in appendix F.

Let us consider the following reactions12

D −→ d (ωD) ,

E + d −→ de (ωE) ,

de −→ E + D (ωde) ,

(4.2.14)

where D and E represent cytosolic MinD and MinE molecules, d and e membrane-bound

MinD and MinE molecules, respectively, andωD, ωE andωde are the associated rates.

Each one of these reactions takes place only in one direction, thus breaking the detailed

balance.

For the sake of simplicity, here, we consider only the membrane-bound proteins as

variables. In appendix G we show that the LEs associated withthese variables do not

change when the cytosolic protein concentrations are also considered as variables.

We can write the total number of MinD,ND, and MinE,NE of the stationary uniform

state in the cytosol in terms of the stationary uniform statevalues of MinD,n0
d and MinDE,

11See the 1981 edition of reference [126], p. 247.
12In wild-type cells, MinE is likely to be active as a dimer [105], therefore the second reaction is2E +

d −→ de, and the third isde −→ 2E + D. Here, the symbols E and e refer to these dimers.
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n0
de, on the membrane

ND = N tot
D − n0

d − n0
de ,

NE = N tot
E − n0

de ,
(4.2.15)

whereN tot
D , andN tot

E , are the total MinD and MinE proteins, respectively. Let us

consider the first reaction in (4.2.14). It can be interpreted as the generation of a single

membrane-bound MinD molecule at an average rate of

ωDND

(
1− nd + nde

N

)
, (4.2.16)

proteins per unit time. In this case, the number of sitesN corresponds to the maximum

number of Min proteins allowed to be membrane-bound, therefore the last term is the

fraction of cytosolic proteins MinD that can be converted tomembrane-bound MinD.ωD

is the attachment rate of a single MinD protein. Assuming that all of the other reactions

are quenched, the probabilityp(nd, t) of findingnd MinD proteins at a timet satisfies the

following master equation [126,152,159]:

dp

dt
= −ωDND

(
1− nd + nde

N

)
p(nd, t) +

+ωDND

(
1− nd − 1 + nde

N

)
p(nd − 1, t) ,

(4.2.17)

where
∑

nd
p(nd, t) = 1 at any timet, with nd = 0, . . . , N andp(nd − 1, t) = 0 when

nd = 0. In order to consider the probability densityp(cd) = 1
N

p(nd), we introduced the

quantitiescd = nd/N andcde = nde/N . Taking into account that these quantities change

only a little as a result of an attachment event, we can write

p(cd − 1/N) ≈ p(cd)−N−1 ∂p

∂cd
+

1

2
N−2 ∂2p

∂c2
d

+ O(
1

N3
) . (4.2.18)

Remark

We want to stress that this is not the usual procedure adoptedin similar situations. In

fact, we would say ‘as a rule’, the previous expansion is typically carried out in respect

to the number of actual particles (the so called van KampenΩ-expansion) and not in

respect to the number of ‘possible’ particles. This would not be possible in our case, in

fact, a priori, the number of proteinsnd can also be zero at some moment in time, even

when the total number of MinD proteins is extremely high. This cause the fluctuations
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to be so large that theΩ-expansion breaks down. This point will be become clearer in

the next section, where the case of the spatially extended system will be considered.

This approach has as a consequence that one of the key parameters of our model, the

parametercmax = nmax/N (here dimensionless) goes into the noise prefactorΩ. It

turns out that the amplitude of the noise is in part fixed by thevalue of this parameter.

In particular, the noise terms vanish whencmax → ∞. When this limit is applied to

the deterministic equations, the oscillations are lost. The other standard features of the

LE, like the noise amplitude equal the square root of the deterministic term, are preserved.

Let us continue with our derivation of the LE. For smooth distributions p(cd) the

terms with higher derivatives in expansion (4.2.18) can be ignored. Substituting the

approximation (4.2.18) into (4.2.17) and retaining the terms up to the order1/N , we

obtain the following Fokker-Planck equation [160,161]

∂tp = − ∂

∂cd

(fDp) +
1

2
N−1 ∂2

∂c2
d

(fDp) , (4.2.19)

where

fD = ωD

(
ND

N

)
(1− cd − cde) , (4.2.20)

As follows from the theory of random processes [126,152,159], this Fokker-Planck equa-

tion is equivalent to the stochastic differential equation

d

dt
cd = fD +

1√
N

[
√

fDαD(t)] , (4.2.21)

whereαD(t), is an independent white noise of unity intensity

〈αD(t)αD(t′)〉 = δ(t− t′) . (4.2.22)

Now, we will consider the second reaction in (4.2.14). Following the above derivation,

we write the stochastic differential equations as

d

dt
cd = −fE +

1√
N

[√
fEαE(t))

]
,

d

dt
cde = fE −

1√
N

[√
fEαE(t)

]
,

(4.2.23)



78 Chapter 4. Stochastic description of the Min-oscillations

where

fE = ωE

(
NE

N

)
cd . (4.2.24)

The noise terms in this equation have to be identical in absolute value and with opposite

signs, because each reaction event simultaneously changesthe number of proteins of both

species. The same procedure can be followed for the last reaction, yielding

d

dt
cd = fD +

1√
N

[√
fDαD(t)

]
,

d

dt
cde = −fde +

1√
N

[√
fdeαde(t)

]
,

(4.2.25)

where

fde = ωdecde . (4.2.26)

In principle, taking into account that our actual system hasa finite spatial extension, like

we did with the maximum protein numberN of membrane-bound proteins, a maximum

protein numberNcyt for the cytosolic proteins has to be introduced. Thus, the previous

expression would take the form

fde = ωdecde

(
1− nD + nE

Ncyt

)
. (4.2.27)

However, a reasonable assumption is thatNcyt ≫ N tot
D , N tot

E , thus

(
1− nD + nE

Ncyt

)
≈ 1 . (4.2.28)

Such an assumption was implicit in the deterministic equations, where only the parameter

cmax for the membrane-bound protein concentrations was presentand its corresponding

parameter for the cytosolic protein concentrations was not.

Now, assuming the different noise processes as completely independent,

〈αi(t)αj(t
′)〉 = 0 when i 6= j , (4.2.29)

i.e. each reaction make an independent contribution to the noise terms, the total LEs are

given by the sum of each term on the right side of the previous equations. However,
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this assumption is only an approximation. In fact, if we consider, for instance, the MinE

attachment and hydrolysis processes, some correlation between the two processes would

have built up after some temporal interval∆t.

In the deterministic limit (N → ∞) the noise terms vanish, and the deterministic

equations (3.2.3) and (3.2.4) are recovered without spatial degrees of freedom.

4.2.2 Transport processes

Here, the spatial degrees of freedom and the coarse grainingprocedure are introduced.

Then, the space scales involved are analyzed. Finally, the current termjd introduced in

the deterministic equations (3.2.3) and (3.2.4) is considered from a microscopic point of

view, starting from the expression (F.0.28).

A 1-dimensional lattice, with lattice lengthl0, N total number of sites and total length

L = l0N is considered. The lattice spacing is assumedl0 ≈ lp, wherelp is the protein size,

assumed to be equal for all species. The state of the system iscompletely defined when the

occupation numbers of all protein species on each site are given. The occupancy of site

j is ni,j , with i = d, de representing membrane-bound MinD and the complex MinDE,

respectively. The occupation numbers can only be1 or 0. Coarse graining consists of

dividing the lattice intom boxes of lengthlb, each containing a number of sitesnmax > 1.

At the same time, the lengthlb has to be smaller in comparison to the minimal characteris-

tic length scale of the spatial pattern. The fraction of occupied sites in boxj is introduced

as

cj = (number of proteins)j/(number of sites)j . (4.2.30)

With the above definition, the values of this variables change only a little as a result of an

attachment, detachment event or a single diffusion jump. This can be used to transform the

associated master equation to a FPE by performing a Taylor expansion up to the second

order in
[
1/(sites number)

]
j
. Similar to the0-dimensional case we want to point out that

an expansion in term of
[
1/(particle number)

]

j
would not be possible for our specific

system, in fact the occupation numbersnd andnde in each box can also be zero at some

moment in time during the oscillations.

Furthermore, complete diffusional mixing is assumed to take place inside every box.

This means that, for a fixed box lengthlb, our mesoscopic model is valid only on time

scales bigger thanτ = l2b/D whereD is the smallest diffusion constant in the system. In

our caseτd = l2b/Dd. Therefore, becauselb is smaller than the characteristic scale of the

spatial pattern, the variablescj can be regarded as values of a smooth densityc(x) taken at
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Figure 4.11: In the lower line a possible protein distribution on the membrane is shown. The sites

of the lattice are labeled with the indexj, l0 is the lattice size,lb the box size of the coarse graining

procedure, andlc represent all other lengths related to the spatial distribution of the proteins, with

l0 < lb < lc.

the discrete coordinates pointxj , and continuum variables can be introduced. Figure 4.11

shows all of the important length scales of the model. The smallest is the lattice length

l0, the microscopic length scales of our system. As concern thelength boxlb, we have

the freedom to choose the size that allows for a better comparison with the experimental

data. Using a metaphoric picture, we can think of the model asa microscope, where the

maximum resolution islb. The value oflb must be chosen in such a way as to bring into

focus the characteristics of the system which we are interested in. Characteristics of the

system with length scales smaller thanlb cannot be brought out, they appear out of focus

and only some qualitative aspects can be seen. All other lengths, like the typical length

Λ of the pattern or lengths related to quantities that determine the spatial distribution of

the proteins, which we want to observe in detail, are represent by lc. Because inside the

space intervallb and the time intervalτd = l2b/Dd, the system appears homogeneous, all

these lengths have to be bigger thanlb and their changes have to be observed over a time

scale bigger thanτd. In conclusion,lb andτ , are the space and time scales of our model.

Now, we will explicitly consider the transport term. In appendix F the following
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general expression for the current is derived:

jd =
[
cd(1− cd − cde)

∂(V/kBT )

∂ξ

]
− ∂cd

∂ξ
, (4.2.31)

here, written in dimensionless form (see appendix D). In this way, we can introduce the

parameterld =
√

Dd/ωE, in regard to which we want to specify the limits of validity for

the approximation in the expansion of the currentjd to be considered. For simplicity we

consider only MinD-MinD interaction that correspond in term of macroscopic parameter

to fix k̄1 = 0 and k̄2 = 0. V is a binary attraction potential (with the dimensions of an

energy)

V (ξ) = −
∫

u(ξ − ξ′)cd(ξ
′)dξ′ (4.2.32)

between two proteins separated by a distancex = ξld on the membrane andu(ξ − ξ′) is

significantly different from zero only in a range of|ξ − ξ′| = rd/ld.

If the membrane concentrationcd(ξ) does not vary significantly within the interaction

range, i.e.ξd = rd/ld, the following Taylor expansion can be considered

∫
u(ξ − ξ′)

[
cd(ξ) + (ξ − ξ′)

∂cd

∂ξ
+

1

2
(ξ − ξ′)2∂2cd

∂ξ2
+ .....

]
dξ′ , (4.2.33)

where the spatial derivatives are taken at pointξ and where we assume

(ξ − ξ′) = rd/ld ≪ 1, i.e. rd ≪ ld . (4.2.34)

Therefore, we have

∫
u(ξ − ξ′)cd(ξ

′)dξ′ ≈ u0cd + χ
∂2cd

∂ξ2
, (4.2.35)

where the coefficients are

u0 =
∫

u(ξ)dξ ,

χ = 1
2

∫
u(ξ)ξ2dξ ,

(4.2.36)

and we have taken into account that, by symmetry, the second term in the expansion is∫
ξu(ξ)dξ = 0. The coefficients in (4.2.36) can be estimated by an order of magnitude as

u0 ≈ Ud , χ ≈ Ud r2
d , (4.2.37)
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whererd is the interaction length andUd ≈ umaxrd, with umax the maximal intensity of

u(x). Therefore, we can write the local (dependent on a finite number of spatial deriva-

tives) expression for the current:

jd = Dd

[
1− Ud

kBT
cd(1− cd − cde)

]∂cd

∂x
−

−Dd
Ud r2

d

kBT
cd(1− cd − cde)

∂3cd

∂x3
.

(4.2.38)

Comparing this expression with the current term in the deterministic equation (3.2.3) and

taking into account that the proteins densities in (4.2.38)were rescaled bycmax, we can

link the parametersks to microscopic quantities by

k1 =
1

c2
max

Dd

kBT
Ud , (4.2.39)

k2 =
1

c2
max

Dd

kBT
Udr

2
d , (4.2.40)

and analogously for̄k1 andk̄2. We can define an effective diffusion constant

Deff(cd, cde) = Dd

[
1− Ud

kBT
cd(1− cd − cde)

]
, (4.2.41)

and

F (cd, cde) = Dd
Ud r2

d

kBT
cd (1− cd − cde) , (4.2.42)

thus write the current as

jd = Deff(cd, cde)
∂cd

∂x
− F (cd, cde)

∂3cd

∂x3
. (4.2.43)

The MinD proteins can move diffusively over the membrane with the effective diffusion

constantDeff . Moreover, potential gradients induce a flow of proteins as described by

the termF (cd, cde). The coefficientDd/kBT represents the mobility of Mind proteins on

the membrane determined by the diffusion constantDd and temperatureT . The factor

(1 − cd − cde) takes into account that the flow can pass only through vacant sites on the

membrane.

We noticed that a new length scale had been introduced, i.e. the interaction rangerd.

Coherently with the meaning of our mesoscopic model we assume rd > lb, and the same
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relation must be satisfied by the interaction rangerde. The mesoscopic theory is justified

in our specific model only if

l0 < lb < rd, rde < ld, Λ, (4.2.44)

whereΛ was assumed to be larger or of the same order ofld. We also noticed that the

validity of the mesoscopic description does not depend, forinstance, on the number of

proteins involved, they can also be zero for all species of proteins, i.e. zero value of

smooth densitiesc(x).

Finally, we can relate the noise prefactorΩ, absent in the deterministic limit, with

different parameters. The lattice spacingl0, the box lengthlb and the box site number

nmax, the system lengthL and the total site numberN , and with the maximum protein

densitycmax,

Ω = l0 = lb/nmax = L/N = 1/cmax . (4.2.45)

Then, we can imagine different ways for obtaining the deterministic limit, as

Np →∞ , lb → 0 , m→∞ , lbm = L fixed, (4.2.46)

or

Np →∞, l0 → 0, N →∞, l0N = L fixed. (4.2.47)

In principle, these limits have to be applied to the microscopic simulations considered in

the previous paragraph in order to obtain the continuum limit. However, from a practical

point of view, verify numerically these limits require a large amount of CPU time. For

this reason we chose the less expensive procedure shown in section 4.1.2, where the value

of lb is kept fixed andnmax goes to∞.

4.3 Discussion

In this chapter we studied the effect of the internal noise due to a finite number of proteins.

To this end we performed stochastic simulations based on single particle description.

Deriving the LEs for the protein concentrations, we linked this stochastic description

with the deterministic one presented in chapter three. Sucha link allows us to relate the

phenomenological parametersk1, k2, k̄1 and k̄2 used in the deterministic description of
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the aggregation currentjd with the microscopic parameters,rd, rde, Ud andUde introduced

here.

These relationships are shown in the microscopic equations(4.2.39) and (4.2.40).

Assuming that a simple process leads to aggregation based onshort-range pair interac-

tion potentials, they are valid wheneverrd andrde are much smaller than the diffusion

length ld =
√

Dd/ωE. Taking a diffusion constant of 0.06µm2/s for membrane-bound

MinD, which falls well into the regime we measured (see table2.1), the values of the

phenomenological coefficientsks imply values of 35kBT for the interaction strength be-

tween membrane-bound MinD and 20kBT between MinD and MinDE complexes. The

range for MinD-MinD interactions is then 350nm, and for MinD-MinDE interactions it

is 10nm. While all other values are acceptable, the range forMinD-MinD interactions is

too large for purely electrostatic interaction. This points to more involved microscopic

dynamics of membrane-bound MinD than discussed here.

The effects of the noise in the Min-system will be discussed further in the next con-

clusive chapter.



Chapter 5

Conclusions and Perspectives

The subject of this research was a quantitative analysis of the Min-protein dynamics inE.

coli. From a theoretical point of view, we considered a phenomenological deterministic

description, where lateral interactions between proteinson the cell membrane play a key

role, and in addition we studied the effects of fluctuations using stochastic simulations.

Experimentally, we investigated the predictions of the theoretical model and measured

some of the model parameters. In particular, we measured thetemporal period of the

oscillations as a function of the cell length that we found tobe compatible with the

theoretical prediction. Also, we measured the Min-proteinmobilities in the cytoplasm

and on the membrane.

What are the implications of our experimental study for understanding the

Min-oscillations?

So far, theoretical analysis of the Min-oscillations has been essentially qualitative as

no values for the dynamic parameters of the Min-proteins were available. Our FCS mea-

surements of the protein mobility partially filled this gap.Let us recall the distinctive

features of the two classes of mechanisms in which we dividedall models proposed so far

(see also figure 2.3):

• MinD proteins attach cooperatively to the membrane, i.e. preferentially at points

where MinD is already bound. We denoted this class of models as Cooperative

Attachment Models (CAM).

• Proteins attach to the membrane unbiased, and MinD-aggregates are formed after

the proteins have bound to the membrane as a consequence of protein-protein inter-

action. We denoted this class of models as Aggregation Current Models (ACM).

Our measurements enable us to propose precise experimentalconditions in order to com-

pare the two mechanisms. For the diffusion constants of cytosolic Min-proteins, the val-
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ues suggested by FRAP measurements of GFP [88] were considered in all of the math-

ematical models proposed. In these measurements, the diffusion constant of GFP fused

to a cytoplasmic maltose binding protein was determined to be2.5µm2/s. The values for

the cytosolic MinD diffusion constant that we found is approx. 16µm2/s, i.e. a factor

of 6 higher, and for the cytosolic MinE is about10µm2/s. Therefore, a cytosolic MinD

molecule explores the volume of a 4µm long cell within roughly a second. A cytosolic

MinE molecule needs about 1.5s. With a residence timeτ of about 300ms of cytosolic

MinD, the value of the diffusion constantD implies a diffusion lengthl = (Dτ)1/2 of

2.3µm. For MinE, this value is about 1.8µm. At least for small bacteria of about 2µm

in length, these values suggest a rather homogeneous distribution of cytosolic MinD and

MinE. Min-oscillations were reported also in short cells just after division [61]1. CA

models do not show oscillations under the condition of homogenous cytosolic protein

densities. Thus, a detailed experimental and theoretical analysis of short bacteria might

provide a way to put the CA models to a crucial test. Particular attention should be paid

to the MinE-ring in these cells. In fact, the analysis of the CA model by Huang et al. [71]

suggests the disappearance of the MinE-ring if the diffusion length is increased in com-

parison to the cell length. The presence of the MinE-ring in short cells might therefore

provide information on the mechanism of its formation. Figure 2.7 shows a possible can-

didate, in fact, the MinE-ring in the low-side indicated by the red arrow belongs to a

coming mini-cell (it can be see in the next frames of the corresponding movie) and its

length can be estimated as being somewhat larger than 2µm (see scale bar).

The values for the cytosolic diffusion constants also support our assumption of a ho-

mogenous cytosolic protein distribution, which allowed for a theoretical description in

terms of the concentrations of membrane-bound MinD and MinDE complexes.

Moreover, in order to generate “striped” patterns in long bacteria, the CA model in-

troduced in [71] requires that the exchange of ATP for ADP on cytosolic MinD be not too

fast. For the parameters used there [71], the authors found acritical rate of1/s. On the

other hand, our measured residence time provides a lower limit to the exchange rate of

approx.3.3s−1 (only after rebinding of ATP, MinD can attach again to the membrane).

The values for the diffusion constants of membrane-bound proteins are about two

orders of magnitude smaller than the cytosolic constants. For membrane-bound MinD, it

is of the same order as the value we used in our theoretical model [77]. This shows that the

mobility of membrane-bound MinD is sufficiently large to allow for an AC mechanism

causing the oscillations. It is also compatible with the CA mechanism as shown by Fange

and Elf [122].

The measurement of the oscillation period as a function of the cell length (see fig-

1Figure 2.7 is one single frame of one of our videos showing such behavior.
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ure 2.14), carried out on a population of cells, was motivated by calculations using the

stochastic and the deterministic model. In the theoreticalstudy, the average total protein

densities were fixed and a characteristic dependence of the period on the cell length was

found, see figure 3.4 and 4.9.

Experimentally, we did not find a simple relation between period and length.

However, the variation of the period in a single-cell measurement at approximately

constant length, seen for example in figure 2.5, cannot account for the large variation

of values found in cell population measurements, see figure 2.14. This is probably due

to cell to cell variations in the protein density. This is also consistent with the small

variation of the period found in stochastic simulations at fixed length and average total

protein density. Thus, we believe that a measurement in a single cell is able to test

the discontinuous dependence of the oscillation period on the system length predicted

by our calculations. To this end, we developed the necessarytechnique for a future

experiment. Using an LSCM and keeping the cells at37◦C, we recorded the oscillations

of the fluorescence intensity for more than 30 minutes. At thesame time, we observed

the cell size increasing by micrometers. Up to now, we have performed only one single

measurement of such kind, whose results are shown in figure 2.15, and we are confident

that successive measurements will give a more definite result.

A “secondary” result

As a control for the measurement of the Min-protein mobility, we also measured

the mobility of the Enhanced Green Fluorescent Protein (EGFP) and found significant

deviations from previous measurements. In fact, in [88], using FRAP, it was found that

DGFP ≃ 7.5µm2/s. There, it was also found that the diffusion constant can be changed

significantly by modifying small parts of the protein, e.g. by adding a His-tag. In contrast,

using FCS, we foundDGFP ≃ 18µm2/s, which was compatible with the values we

measured for MinD and MinE. Furthermore, compared with the FRAP measurements,

our results indicated that a His-tag has a much weaker effecton the diffusion constant of

GFP.

What more do we need from the experiments?

A complete experimental verification of our theoretical predictions or, in other words,

a complete characterization of the Min system allowing for atheoretical quantitative

study, would at least require the knowledge of: (i) the global and local concentration

of molecules in individual cells; (ii) the variation of the global concentration among
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individual, genetically identical members of the cell population; (iii) whether, and how

these quantities vary with time, with the cell length or other quantities of interest; (iv)

and, finally, the rates of the individual reactions causing that variation. For instance,

during the measurement of the period in a growing cell, it might be interesting to

investigate whether the total average protein density stays constant. We experienced the

difficulty of such a measurement with LSCM, in which only the measurement of local

relative concentrations was possible. Generating methodsto achieve this information is

one of the greatest challenges for biology in the twenty-first century [162]. Examples of

new methods to quantify the protein number inside the cell are given in [163,164].

A suggested experiment from the theoretical analysis

In the AC model, non-linear terms appear in the current term describing the protein

interaction on the membrane; in the CA models they appear in the reaction term, describ-

ing the attachment-detachment processes. One possibilityfor discriminating between the

two mechanisms would be to study the dynamics of Min-proteins which are not confined

to a cell. In fact, our analysis of the deterministic model shows that the approximation

of homogenous cytosolic distribution of MinD and MinE is appropriate and that this

approximation might have an important implication regarding experiments. One might

expect that oscillations are observable in a purified systemcontaining essentially only

MinD, MinE, and phospholipid vesicles. Our analysis suggests that oscillations will

show up in the presence of a homogenous distribution of cytosolic proteins. Therefore,

the closed geometry of the bacterium might not be essential,and an open geometry could

be used instead.

How do the Min-oscillations regulate the position of the Z-ring?

Our numerical calculations of the deterministic and the stochastic case give a MinD-

distribution which has a minimum in time average at the cell center. An obvious mech-

anism for Z-ring positioning may be based on the existence ofsuch a minimum [63].

Starting from an almost homogeneous average distribution,the depth of the minimum

increases with the system length (figure 3.5). This feature could also be used to cou-

ple the constriction of the Z-ring to the cell length and, hence, to control the cell cycle.

Qualitatively, this behavior was confirmed experimentally(figure 2.12).

However, in our view, the mechanism based on the mid-cell minimum may have been

overemphasized in the recent literature and not analyzed sufficiently. This is still an un-

solved problem and we would like give two arguments: one against and one in favour of



89

this mechanism.

(i) What do we know about the MinC proteins in connection to this issue? They de-

polymerize the Z-ring filaments invitro, andminc− mutants allow for division near the

cell poles. In principle, the mechanism based on the minimumof the time-averaged pro-

tein concentration in the middle is not necessary. In fact, let us consider a two-thresholds

based mechanism: (i) one threshold for the local protein density, Cth, below which the

growth of the Z-ring is permitted, (ii) a threshold for the time, Tth, during which the

thresholdCth is not to be exceeded in order for the Z-ring to grow. It is easyto show that

a time-averaged protein concentration with a maximum at thecell center can be obtained

also with(cd + cde) < Cth at the mid-cell for a time much longer thanTth, i.e. thus allow-

ing for the growth of the Z-ring. Indeed, some of our measurements show a time-average

MinD concentration which is approximately flat, see figure 2.12.

(ii) On the other hand, we would like to make the following point: The MinC protein

concentrations does not entirely correspond to the MinD protein concentration. In fact,

MinE and MinC cannot bind MinD simultaneously [22]. This means that in order to

obtain the MinC protein concentration on the membrane, the MinE membrane-bound

protein concentration has to be subtracted from the total MinD membrane-bound protein

concentration. Now, the MinE ring is oscillating near the mid-cell and its time-averaged

concentration shows a maximum at the mid-cell (see figure 2.13), therefore the MinC

protein concentration at the cell center is much lower than the MinD one.

Also, one should be aware of the possibility that, in addition to the Min system and

“nucleoid occlusion”, other yet to be identified factors mayexplain the high spatial preci-

sion of division-site placement.

The selection of different oscillatory patterns of the Min-protein distributions as a

function of the cell length provides the bacterium with information about its own length

and could thus be used to regulate cell division. Given a certain value of the average total

protein density, there is a thresholdLmin corresponding to the minimal length supporting

oscillations. It fixes the minimal value at which the cell candivide. When the cell

grows, oscillations start with the characteristic “one stripe” spatial pattern. Before the

doubling of the spatial period of this pattern, the Z-ring islocated in a MinC poor domain

that allows the ring to grow. After period-doubling, i.e. the acquisition of a second

“stripe”, the Z-ring is located in MinC rich domain. We can speculate that the same

protein, MinC, that inhibits the growth of the Z-ring once its growth has started might

induce a conformational change in FtsZ protein that leads toZ-ring contraction. Thus,

the cell cycle would be controlled by the period-doubling ofthe spatial pattern of the

Min-protein concentrations,i.e. by the cell length. Recent theoretical and experimental

studies suggest also that chromosome segregation might be directly related to the cell
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length [55,56] due to entropic effects.

Are there helices?

In order to keep abreast of the experiments, the formation ofMinD helices must be

included. To this end, it is necessary to consider a3-D system and include, starting

from a microscopic level, a mechanism capable of generatingfilaments. The mechanism

introduced in [72] based on nucleation sites at the cell poles is in our opinion not adequate.

In fact, the existence of stripes in long cells, where the division is blocked, suggests that

the polar location in normal cells is not the result of a membrane property unique to

the poles of the cell. In this way, on the one hand such a model introduces an ad hoc

hypothesis, and on the other hand it is not capable of reproducing the characteristic striped

patterns of the Min oscillations. A key point is the dynamicsof these helices, i.e. do they

originate from a fixed spiral scaffold, or are they moving along the cell following the

oscillations? Future experiments will clarify this point.

The model introduced by Pavinet al. [73] also used an ad hoc hypothesis in order to

generate filaments. In particular, they considered four different rates for the detachment

process of MinDE:ATP complexes, depending on how many bondsa MinD:ATP has

formed with its MinD:ATP neighbors.

The effect of noise

In order to study the possible effects of noise due to the low number of involved

proteins, we performed computer simulations of a particle-based description. The prob-

ability for each event was calculated according to the corresponding probability in the

master equation. Stochastic simulations were compared with deterministic simulations

and experimental data from LSCM. Together with our experimental measurements, this

study points to the importance of investigating the Min-protein dynamics through single

cell measurements. In fact, the concentration of a certain protein in a population of genet-

ically identical cells varies from cell to cell due to stochastic processes [83, 84]. Experi-

mental observations [63] indicate that the period increases with the MinD concentration

and decreases with the MinE concentration. The last observation is consistent with our

numerical simulations, see figure 3.6. The cell-cell variations in protein concentrations are

often on the order of ten percent of the mean [144–147]. We believe that this is the most

important contribution to explaining the spread of the datashown in figure 2.14. On the

other hand, we found that the fluctuations in the period in a single cell at fixed length and
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average total protein density either numerically, due to internal noise, or experimentally2,

are small enough to allow, in principle, for a measurement that shows the characteristic

behavior predicted by our theoretical model, see figure 3.4 and 4.9. Figure 2.15 shows

a first attempt of such a measurement. Although it is not clearif this measurement can

differentiate between the different proposed models, it would be an important test for our

model.

Furthermore, as can be seen in figure 4.4, we found that stochasticity destroys oscil-

lations at high protein number corresponding to values of the total protein concentration

where the deterministic case still shows oscillation. The opposite happened at low pro-

tein number where fluctuations are necessary in order to generate oscillations. Moreover,

figure 4.8 shows that in our model fluctuations allowed the system to exploit low protein

numbers to generate more precise time-averaged distributions with a more pronounced

minimum at mid-cell. We noticed that all simulations were performed at the constant ra-

tio of D/E ≃ 2.6, it would be interesting to study these behaviors for different values of

this ratio.

Finally, to bridge the gap between the microscopic and the deterministic descriptions,

a Langevin equation for the fluctuating protein densities was derived through coarse

graining of the microscopic master equation. In this way, weanalytically showed the

relationship between the master equation, used to calculate the probability of each event

in the microscopic simulations, and the deterministic equations (3.2.3) and (3.2.4).

Therefore, the stochastic simulations justify the deterministic model, showing that

oscillations are resistant to the perturbations induced bythe stochastic reactions and by

diffusion. Writing the LE, we also developed an analytical description that keeps separate

the noise terms associated with the different processes, allowing for an estimation of

their relative contributions. We analytically showed (seeappendix G) that the relative

fluctuations of the cytosolic protein concentrations are smaller when they are compared

with the relative fluctuations of the membrane-bound protein concentrations. In the

limit when the noise prefactorΩ vanishes, the LEs allow for a direct comparison with

the deterministic case. For these reasons we believe that the numerical integration of

these equations can give rise to interesting developments in the study of the noise in the

Min-system, and, speaking more generally, this approach could be applied to the study

of noise in other biological spatially extended systems. Finally, we notice that once the

LEs are numerically integrated, our stochastic simulations can then be used to validate

the description of the system that the LEs result in.

2In this case the protein density was not under experimental control.
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Similar systems

The Min system is a prime example of a mechanism that controlsspatial relationships

within the cell. It will be of interest to see if other mechanisms of topological identi-

fication and spatial regulation work in a similar manner in other systems. A possible

candidate could be the bacteriumB. subtilis, where MinCD proteins prevent septation

near the poles, making a stationary pattern with a minimum ofthe concentration at

mid-cell. In a different context respect to the cell division process, it will be interesting

to see if there are any similarities between the Min-oscillations and the FrzS-oscillations

found in Myxobacteria[31]. FrzS is a protein that regulates mobility inMyxobacteria

which is mediated by typeIV pili 3. Oscillations of FrzS suggest that for each reversal

some components at the leading cell pole are inactivated to allow for a function of the

pili at the opposite pole.

Closing remarks

While the mechanism of a dynamic instability inducing Min-protein oscillations has

been conclusively established as fundamental by all existing models, including the model

studied here, a fully quantitative model of the Min-proteindynamics is still missing. Test-

ing the basic assumptions of our model, probing its predictions, measuring some of the

model parameters, and studying the effects of noise, we hopeto get going in that direction.

With this we end our story for now in confidence that understanding the physics of

cell division will have important applications in the near future. For example, one might

envision therapeutic strategies that suppress the replication of bacterial cells which cause

infections. At a level of greater abstraction, this knowledge might prove useful to building

an artificial cell [165], thereby being instrumental in recreating life.

3Pili are used to adhere to surfaces and to facilitate the genetic exchange between bacteria.
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Materials and Methods

Flourescence video-rate microscopy

Bacteria of theE. coli K12 strain JS964 were generously donated by J. Lutken-

haus, University of Kansas. Bacteria taken from the freezerwere grown overnight in 3ml

Luria-Bertani (LB) medium at 37◦C together with 3µl spectinomycin. The overnight

culture of 500µl was added to 50µl spectinomycin and50ml LB medium and then

grown at 37◦C for two hours. The expression of MinD-GFP was induced by 50µl IPTG

and growing the bacteria at 31◦C for at least one hour. The bacteria were immobilized

for fluorescence imagery by using silane-coated cover slips. Fluorescent images were

taken at room temperature with an inverted microscope (Axiovert 200M, Zeiss) using

a 100× NA 1.4 oil immersion objective and a CCD camera from Spot Diagnostic

Instruments, Inc. driven by Metavue (Universal Imaging). The frame rate for measuring

the time-average in figure 2.10 was 1Hz and varied between 0.33Hz and 1Hz for the data

in figure 3.4b. Data were analyzed using Metamorph (Universal Imaging).

FCS

Sample Preparation

Bacteria of theE. coli K12 WM1079 and WM1255 strains and of theE. coli K12 strains

JS964 were kindly donated by W. Margolin, Houston Medical School at University

of Texas, and J. Lutkenhaus, University of Kansas, respectively. Bacteria of the

E. coli BL21 strains BL21(DE3)pLysS were obtained from Novagen (CNBiosciences).

GFPmut2(S65A,V68L,S65T) [23, 166] were expressed in bacteria of the E. coli K12

JS964, WM1079 and WM1255 strains. EGFP and His6-EGFP, with the same kind

of mutant, EGFP(F64L/S65T) were expressed in bacteria of the E. coli BL21 strains
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BL21(DE3)pLysS using the vector pBAT4 and pET9d, respectively. The strains WM1079

and WM1255 were also used in [167, 168], where it was possibleto find general infor-

mation about the plasmids. For information about the strainJS964 see [23, 169].E. coli

strains were grown overnight in 3ml LB medium at 37◦C together with a concentration

of 25µg/ml Spectinomycin, 25µg/ml Kanamycin, 20µg/ml Chloramphenicol and

50µg/ml Ampicillin, respectively for JS964, BL21, WM1079 and WM1255 strains. The

LB medium consists of 10g of tryptone, 5g of yeast extract and5g of NaCl per liter. The

overnight culture of 500µl together with the same concentration of antibiotics as above,

was added to 50ml of fresh LB medium and grown at 37◦C until the optical density

(OD) at 600nm reached≈0.2. The expression of GFP-MinD in JS964 and EGFP in

BL21(DE3)pLysS was induced by adding 20µM isopropyl-β-D-thiogalactopyranoside

(IPTG). The expression of MinE-GFP in WM1079 was induced by adding 0.005%

L-arabinose. No inducer was used for GFP-MinD expression inWM1255 and for

His6-EGFP expression in BL21(DE3)pLysS. Then the bacteriawere grown at 30◦C

for 1-2 hours usually sufficient to produce visible fluorescence and to see Min proteins

oscillations. Different induction levels were tested to find the best signal to noise ratio in

the measurements of the correlation function and to minimize perturbations to cellular

physiology. In fact,G(0) is inversely proportional to the number of fluorophores,

and with a high level of induction the signal will be very low.In addition, to avoid

fluorescent impurity, samples of the LB medium were preparedwith a lower level of

yeast extract of 1g per liter. For microscopic examination asolid slab of1% agarose

(Invitrogene, 15510-027) in LB medium had previously been prepared. A molten (geling

temperature 37-42◦C for 2% agarose concentration) 1% (wt/vol) agarose/LB medium,

was sandwiched between a 25mm×75mm glass slide and a 18mm×18mm cover slide

and allowed to cool to room temperature. Before measurements, the cover slide was

removed and 3µl of cell culture were spread on to this pad (18 mm× 18 mm× ≈ 0.5

mm) of solid agarose. This method allows for the immobilization of the cells and for

keeping the sample near the objective as is necessary for FCSmeasurements. At the same

time, this does not allow the cells to settle into multiple planes of view as, would happen

if the cells were mixed with the liquid agarose and then cooled. The cells also grow

and divide more easily on the slides. Data collection lastedno more than 2h on each slide.

Optical setup

Fluorescence Correlations Spectroscopy (FCS) measurements were performed on a

LSM Meta 510 system (Carl Zeiss, Jena, Germany) using a 40× NA 1.2 UV-VIS-IR

C-Apochromat water immersion objective and a home-built detection unit at the fiber

output channel: A bandpass filter (AHF Analyse Technik, Tübingen, Germany) was used
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behind a collimating achromat to reject the residual laser and background light. Another

achromat (LINOS Photonics, Göttingen, Germany) with a shorter focal length was used

to image the internal pinhole onto the aperture of the fiber ofthe avalanche photo diode

(APD, PerkinElmer, Boston, MA, USA). The correlation curves were obtained with a

hardware correlator Flex 02-01D (correlator.com, Bridgewater, NJ, USA). The position

for FCS measurements could be selected accurately in a corresponding LSM image. The

waistw0 of the detection volume was determined in calibration measurements with free

Alexa 488 in water to bew0 = 157±12nm assuming a diffusion constant ofD = 280µm2

s
.

Theoretical autocorrelation curves. The experimental autocorrelation curves were

analyzed by fitting the expected autocorrelation curves fordifferent processes. Since

the actual height of the detection volume is larger than the diameter of the bacterium,

the cytosolic diffusion can be approximated to occur in two dimensions. Fitting with

a more refined model, taking into account the geometry of the detection volume in

the bacterium [170], did not significantly change the valuesobtained by assuming the

simplified geometry. For two independent species, diffusing with respective diffusion

constantsD1 andD2 the correlation curve is [89,171]

Gdiff(τ) =
1

N1 + N2

{
F

1

1 + τ/τ1
+ (1− F )

1

1 + τ/τ2

}
. (A.0.1)

Here, the number fraction of particles of one species is given by F = N1/(N1 + N2),

whereN1 and N2, respectively, are the average numbers of particles of the different

species in the detection volume. The characteristic relaxation timesτ1 andτ2 are linked

to the respective diffusion constants and the widthw0 of the detection volume through

τi = w2
0/(4Di), i = 1, 2. For a single species diffusing anomalously in two dimensions

the autocorrelation function is given by [93–95] as
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Here, τ−α
a = 4Γ/w2

0, where the anomalous exponentα governs the spreading of an

initially localized distribution,〈x2〉 ∼ tα andΓ is the anomalous transport coefficient.

For particles changing between a mobile state (diffusion constantD) and an immo-

bile state we assume the following reaction kinetics for fraction F of the mobile state

dF/dt = −F/τ1 +(1−F )/τ2, whereτ1 andτ2 are the cytosolic and membrane residence

times, respectively. The autocorrelation of the fluctuations has the form [89,171]
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whereλ1,2 = −(Dk2+τ−1
1 +τ−1

2 )/2±{(Dk2 + 1/τ1 + 1/τ2)
2 − 4Dk2/τ2}1/2

/2, A1,2 =

{λ2,1 + Dk2τ1/(τ2 + τ1)}/(λ2,1 − λ1,2).

Since the cytoplasmic pH ofE. coli is about 7.7 [172], pH-dependent blinking can be

neglected [173].

Data analysis

The correlation curves were fitted in the time intervalτ ∈ [5µs, 1s] with a weighted

nonlinear least-squares fitting algorithm. Curves were selected automatically based on

the convergence of the fit algorithm and the quality of the fit (χ2 < 1.3 for EGFP and

χ2 < 1.5 for Min proteins). For the Min proteins, curves were at first hand-selected

for low and high intensity phases and then automatically forthe quasi-steady states.

The latter were checked by requiring a constant fluorescenceintensity during the

measurement.

Period measurement in single cells.

We used bacteria of theE. coli K12 JS964 strain expressing GFP-MinD, and we

prepared the sample in the same way as for the FCS measurements. To make measure-

ments of growing cells possible we used a heater and a chamberfor live cell imaging

(Bachhoffer Chamber). Measurements were performed on an inverted Laser scanning

Confocal Microscope (LSCM), Zeiss Axiovert 200, manual stage (Jena, Germany) using

a 100×NA 1.4 oil immersion objective. The position for measurements could be selected

accurately in a corresponding LSM image.
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FRAP & FCS

Basic concepts

Fluorescenceis a part of the luminescence class processes in which molecules emit

light from electronically excited states. The formation ofluminescence through excitation

of a molecule by ultraviolet or visible light photons is termed photoluminescence, which

is formally divided into two categories, fluorescence and phosphorescence, depending on

the nature of the excited state. Fluorescence is the emission of light from singlet excited

states. In excited single states, the electron in the excited orbital is paired (to opposite

spin) to the second electron in the ground-state orbital. Consequently, the return to the

ground state is spin allowed and occurs rapidly by the emission of a photon.Phospho-

rescenceis the emission of light from triplet excited states. An electron in the excited

orbital has the same spin orientation as the ground-state electron, and according to Pauli’s

principle, transitions to the ground state are forbidden, which results in rate constants for

the triplet emission that are several orders of magnitude lower than those for fluorescence.

Photobleaching (also termed fading) occurs when a fluorophore permanently

loses the ability to fluoresce due to photon-induced chemical damage and covalent

modification. The probability for a transition from an excited singlet state to an excited

triplet state increases with the intensity of the excitation light. Because the triplet state is

relatively long-lived with respect to the singlet state, fluorophores have enough time to

undergo chemical reactions with components in the environment and produce irreversible

modifications. Each fluorophore has different photobleaching-characteristics, depending

on the molecular structure and the local environment.
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Figure B.1: Fluorescence Recovery After Photobleaching. a) Fluorescence recovering as a func-

tion of time during a FRAP experiment. (1) A baseline of fluorescence is collected before photo-

bleaching occurs (image b1); (2) Photobleaching (blue arrow and image b2); (3) The amount of

fluorescence in the photobleached area increases as unbleached molecules migrate into this area (3

and image b3). b) Images (taken from [174]) of viral glycoprotein ts045 VSVG tagged with green

fluorescence protein (VSVG-GFP) and photobleached in the rectangular area shown in image (2).
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FRAP

Fluorescence Recovery After Photobleaching (FRAP) consists of measuring the flu-

orescence recovery after optically bleaching the molecules in a certain region by high

excitation laser power. The analysis of this process reveals information about the under-

lying protein dynamics.

The principles of FRAP are illustrated in figure B.1. In a selected area the fluores-

cence intensity is collected before and after photobleaching occurs. Immediately after

photobleaching the intensity decreases. Over time, the amount of fluorescence increases

as unbleached molecules move into the bleached area. Later,there is a stabilization of

the amount of fluorescence recovery. IfX is the fluorescence before photobleaching and

Y is the amount of fluorescence that returned to the bleached area, the ratioX/Y almost

never reaches1. The mobility is determined by the slope of the curve of the intensity in

function of the time during the recovering phase. The steeper the curve, the faster the

recovery and, therefore, the more mobile the molecules.

For FRAP experiments it is important to choose a dye which bleaches minimally at

low illumination power to prevent photobleaching during image acquisition but bleaches

quickly and irreversibly at high illumination power.

In addition, a high protein number is needed [175]. In bacteria, a region of half of

the cell size is bleached and fluorescence recovery is due to proteins coming from the

opposite half. An example is given in [88], where the FRAP technique was used to

measure GFP mobility inE. coli. In the case of the Min proteins, FRAP is clearly not

appropriate. In fact, as is shown in section 2.2.1, the dwelling time, during which half of

the cell is almost empty and half is almost full of proteins, is an order of magnitude larger

then the diffusion time. So, bleaching half of the cell, no proper fluorescence recovery

would be observed.

FCS

Distinct from other fluorescence techniques, FluorescenceCorrelation Spectroscopy

(FCS) does not exploit the emission intensity itself but rather intensity fluctuations. Inten-

sity fluctuations in the fluorescence signal collected from asmall volume are caused by

the motion of fluorescent particles or chemical processes leading to changes in the fluores-

cence intensity of individual particles. Among the many physical parameters in principle

accessible by FCS are local concentrations, mobility coefficients and rate constants of

reactions. In the following we will give a short introduction to FCS. For the interested

reader the are many reviews and books that introduce the technique [89,171,176–179].
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Figure B.2: FCS measurement. a) Fluorescent light from anM volume in the cell is collected

by means of a dichroic mirror through a tube lens, a pinhole and an emission filter to APD which

amplifies the signal. b) GFP-MinD fluorescence signal in function of the time for a single run of

5s. c) Fit (red curve) with a2−D diffusion formula B.0.5 of the correlated signal in b).

The number of molecules within a given volume is at any time governed by the Pois-

son distribution. Then, the root mean square fluctuation of the particle numberN is

σN

< N >
=

1√
N

. (B.0.1)

Therefore, fluctuations are bigger for small numbers. To perform FCS measurements

properly, it is important to have concentrations and detection volumes so that only few

molecules are detected simultaneously. However, the fluorescence signal must be higher

than the residual background signal. Typical values are nanomolar or sub-nanomolar con-

centrations and detection volumes in the femtoliter (10−15l) range. FCS was introduced

in 1972 by Madgeet al [180], but efficient detection characteristics were achieved only in

1993 with the implementation of confocal microscopy FCS [181]. Figure B.2a shows a

typical schematic confocal FCS setup. The actual setup we used in our measurements is
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shown in figure 2.16. With this setup, the incoming laser light, through a dichroic mirror,

is focused by a high numerical aperture objective to a diffraction limited volume. The flu-

orescent light from the sample is collected by the same objective and passed through the

dichroic and the emission filter. In addition, a pinhole in the image plane blocks all light

not coming from the focal region. For molecule concentrations in thenM range or below,

the detection of signal fluctuations resulting from individual particles is possible. Subse-

quently, the light is focused onto an avalanche photodiode detector. The resulting signal is

shown in figure B.2b. Improvements could be made using strongand stable sources like

lasers and very sensitive detectors as avalanche photodiodes (APD) with single-photon

sensitivity. The characteristics of the fluorophore are also important, namely fluorescence

lifetime and quantum yield. The quantum yield is the number of emitted photons relative

to the number of absorbed photons. Substances with fluorescence photon yields per sin-

gle molecule approaching unity display the brightest emission. The lifetime determines

the time available for the fluorophore to be recorded during interactions with or diffusion

in its environment. The fluorescence lifetime is about1 − 10ns. The phosphorescence

lifetimes typically go from milliseconds to seconds. The triplet-state population induces

correlations in the recorded fluorescence signal and is the most conspicuous fast dynamics

that can be observed in FCS measurements.

The mathematical quantity used to quantify fluctuations is called the correlation func-

tion. In the case of the temporal fluctuations of the fluorescence signalF (t) this quantity

is:

g(τ) = 〈F (t)F (t + τ)〉 − 〈F (t)〉〈F (t + τ)〉 , (B.0.2)

where〈·〉 denotes an ensemble average andt andτ are two different instant time. Now,

it is clear that if the signal is completely uncorrelated,g(τ) = 0 for everyτ . Assum-

ing that the system under investigation is in the equilibrium state the fluorescence signal

F (t) is a stationary random process, which means that it can be expressed as zero-mean

fluctuationsδF (t) around a constant mean value〈F (t)〉:

F (t) = 〈F (t)〉+ δF (t) ; 〈δF (t)〉 = 0 , (B.0.3)

whereδF denotes the fluctuations around a constant value〈F (t)〉. In other words the

system is invariant in respect to the temporal translation〈F (t)〉 = 〈F (t + τ)〉, and the

correlation function can be written as

g(τ) = 〈F (t)F (t + τ)〉 − 〈F (t)〉2 . (B.0.4)
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In experimental situations, the ergodic theorem is appliedand the ensemble averaging is

replaced by time-averaging:〈·〉 = (1/n)
∑n−1

i=0 ; τ = m∆t, n∆t is the total duration of

the experiment and∆t is the sampling interval withn andm integer. The mean fluores-

cence intensity is strictly positive:〈F (t)〉 > 0 and thenormalizedcorrelation function is

defined as

G(τ) =
g(τ)

〈F 〉2 + 1 =
〈δF (t)δF (t + τ)〉

〈F (t)〉2 . (B.0.5)

The correlation amplitudeG(0) > 0 is the normalized variance of the fluctuating fluores-

cence signalδF (t). In the experimental setup displayed in figure B.2b, the fluorescence

signal is evaluated by a hardware correlator PC card for a timeT to obtain the autocorre-

lation functionG(τ). A typical experimentalG(τ) curve is shown in figure B.2c. If there

is some memory in the signal,i.e. some correlation between fluctuations at timet and

fluctuations at a later timet + τ , thenG(τ) 6= 0 at some range for the values of the lag

time τ around zero. Whenτ becomes large when compared to the characteristic memory

time of the system, the signal values separated byτ become statistically independent and

G(τ) decays to zero. The characteristic time decay of the correlation function is then

associated with the characteristic time of the physical process generating the observed

fluctuations, as, for example, thermal diffusion. The slower the decay of the correlation

function, the longer is the memory of the associated physical process.

Making an appropriate hypothesis on the physical origin of the fluctuations and on

the efficiency of the setup, it is often possible to write an analytical expression forG(τ)

in terms of the physical parameters to be measured and, usingthis formula, to fit the

experimental curve as is shown in figure B.2c. Assuming that all fluctuations come from

the variation in the local concentrationδC within the focal volumeV , it is possible to

write δF (t) in terms ofδC(t)

δF (t) = η

∫

V

I(~r)δC(~r, t)dV , (B.0.6)

whereη is a parameter that includes the physical characteristics of the fluorophore, like

fluctuations in the quantum yield and in the molecular absorption cross-section, the de-

tection efficiency and the maximum value of the excitation energy and determines the

photon count rate per detected molecule per second. This parameter can be a measure for

the signal to noise ratio.I(~r) describes the spatial distribution of the emitted light and

in the usual confocal illumination/detection optical FCS setup can be approximated by a
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Gaussian intensity illumination profile

I(~r) = exp
(
− 2(x2 + y2)

w2
xy

− 2z2

w2
z

)
, (B.0.7)

wherewz andwxy are the sizes of the beam waist in the direction of the propagation

of light and in the perpendicular direction, respectively.Introducing equation (B.0.7) in

equation (B.0.6) and equation (B.0.6) in equation (B.0.5) we obtain the general expres-

sion:

G(τ) =

∫
V ′

∫
V

I(~r)I(~r′)〈δC(~r, 0)δC〉(~r′, τ)dV dV ′

(〈C〉
∫

V
I(~r)dV )2

. (B.0.8)

Now, solving the equation for the relaxation ofδC, we can obtain a formula for the spe-

cific case we are considering. Givens chemical components with concentrationsCi(~r, t)

participating in diffusion and chemical reactions near theequilibrium, the nonlinear equa-

tion can be linearized and the equation forδCi is

∂δCi(~r, t)

∂t
= Di∇2δCi(~r, t) +

s∑

k=1

TijδCj(~r, t) , (B.0.9)

where the first term accounts for diffusion andT is a matrix of kinetic coefficients. For

example, in the case of two diffusing non-interacting species, equation (B.0.9), consist of

the diffusion equation for each species, respectively, which can be solved easily. In our

experimental condition, we can assumew2
z ≫ w2

xy and approximate the3D diffusion with

a two-dimension diffusion in thexy plane. From equation (B.0.8) we obtain the following

expression for the correlation function

G(τ) =
N̄1(

N̄1 + N̄2

)2

(
1

1 + τ/τD1

)
+

N̄2(
N̄1 + N̄2

)2

(
1

1 + τ/τD2

)
, (B.0.10)

whereN̄i is the average number of the molecules in the sampling volumeVeff = π3wxywz:

N̄i = Veff〈Ci〉, and

τDi
=

w2
xy

4Di
(B.0.11)

is the lateral diffusion time during which a molecule remains in the focal volume. The

expression ofG(τ) in equation (B.0.10) can be used to fit experimental autocorrelation
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curves with four parameters: the relative fraction of the two speciesF = N̄1/(N̄1 + N̄2),

one of the two average number̄Ni, and the two diffusion times.

To summarize, both FCS and FRAP are methods for investigating the mobility of

fluorescent proteins. However, due to the different characteristics of these methods, the

fields of application are different. FCS is capable of monitoring the volume of less than1

femtoliter inside the living cell and registering the fluorescence fluctuations resulting from

diffusion of individual molecules. It is sensitive in thenM toµM range and allows for the

calculation of the actual diffusion coefficient and preciselocal concentration. It is applied

to the study of very fast to slow processes (µs to s). FRAP is applied generally to higher

concentrations (mM) and slower processes. It allows the calculation of the diffusion

coefficient and percentage of mobile and immobile fractions. Inherently being an imaging

technique, FRAP also helps to visualize the connectivity ofcellular compartments.



Appendix C

Reduction from three dimensions to one
dimension

Here, we show how the dynamics of the Min protein distributions in three spatial dimen-

sions can be reduced to a description in one spatial dimension. The bacterium is conve-

niently approximated by a cylinder with radiusR0 and lengthL. The volume densities

of cytosolic MinD and MinE at a given point arecD(r, ϑ, x) andcE(r, ϑ, x), respectively.

Here, r andϑ denote the radial and azimuthal coordinate, respectively,while x is the

coordinate along the long axis. Their time evolution is governed by

∂tcD(r, ϑ, x) = −ωD(cmax − cd(ϑ, x)− cde(ϑ, x))cD(r, ϑ, x)δ(r −R0)

+ωdecde(ϑ, x)δ(r −R0) + DD∆3dcD(r, ϑ, x) , (C.0.1)

∂tcE(r, ϑ, x) = −ωEcd(ϑ, x)cE(r, ϑ, x)δ(r −R0) + ωdecde(ϑ, x)δ(r − R0)

+DE∆3dcE(r, ϑ, x) . (C.0.2)

Here, cd and cde are the surface densities of membrane-bound MinD and MinDE-

complexes,∆3d is the three-dimensional Laplace-operator, and the factors of δ(r − R0)

restrict attachment to and detachment from the cytoplasmicmembrane to a region adja-

cent to the cell wall.

Since the diffusion constant of cytosolic MinD and MinE is ofthe order of15µm2

s
,

and the diffusion length of the order of2µm, whereas the period of the oscillations is

about 1min, we consider the density of cytosolic MinD and MinE to be homogenous

perpendicular to the bacterial long axis. The volume densities of cytosolic MinD and
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MinE can then be replaced by surface densitiesc̃D andc̃E with

cD(r, ϑ, x) =
1

R0

c̃D(ϑ, x) , (C.0.3)

cE(r, ϑ, x) =
1

R0

c̃E(ϑ, x) . (C.0.4)

Then, the equations governing the evolution of the protein densities are read as

∂tc̃D = −ωD

R0

(cmax − cd − cde)c̃D + ωdecde + DD∆2dc̃D , (C.0.5)

∂tc̃E = −ωE

R0
cdc̃E + ωdecde + DE∆2dc̃E , (C.0.6)

∂tcd =
ωD

R0
(cmax − cd − cde)c̃D −

ωE

R0
cdc̃E −∇ · jd , (C.0.7)

∂tcde =
ωE

R0
cdc̃E − ωdecde , (C.0.8)

wherej is the aggregation current of MinD on the inner cell membraneand∆2d is the

two-dimensional Laplace operator on the cylinder surface.

It has been shown that MinD forms a filamentous structure on the inner cell mem-

brane [68]. The projection onto this structure yields line-densities, e.g.,̄cd(x) =∫ 2π

0
cd(ϑ, x)R0 dϑ. They are connected to the surface densities via

c̃D(ϑ, x) ≈ 1

2πR0
c̄D(x) , (C.0.9)

c̃E(ϑ, x) ≈ 1

2πR0
c̄E(x) , (C.0.10)

cd(ϑ, x) ≈ c̄d(x)δ(ϑ− ϑ(x)) , (C.0.11)

cde(ϑ, x) ≈ c̄de(x)δ(ϑ− ϑ(x)) , (C.0.12)

whereϑ(x) parameterizes the MinD-helix on the inner cell membrane. The dynamic

equations for the line densities̄cD, c̄E, c̄d, and c̄de are then given by equations. (3.1.1)-

(3.1.4). The currentjd appearing there is obtained by the projection of the surfacecurrent

jd onto thex-direction. Note that a description of the formation of MinD-helices would

also require a specification of the perpendicular componentof the currentjd.
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Linear stability analysis of the
homogenous distribution

In this appendix, we carry out the linear stability study forthe case of homogenous cy-

tosolic distributions, non-homogenous cytosolic distributions, and a finite ATP exchange

rate.

The stability analysis is performed in terms of microscopicparameters, the interaction

strengthsUd andUde, and the interaction rangesrd and rde between membrane-bound

MinD proteins and membrane-bound MinD and MinDE complexes,respectively. They

are linked to the phenomenological parametersks in equations (3.2.3) and (3.2.4) through

k1 =
1

c2
max

Dd

kBT
Ud , (D.0.1)

k2 =
1

c2
max

Dd

kBT
Udr

2
d . (D.0.2)

Similar expressions hold for̄k1, andk̄2. We introduce the dimensionless fieldsc̃d,de(x, t)

defined as̃cd,de = cd,de/cmax and a similar expression for the quantitiesCD andCE. We

define the rates̃ωD,E = ωD,Ecmax, whereωD,E are the parameters introduced in equations

(3.2.3) and (3.2.4). To simplify the notation in the following the “tilde” will be dropped.

We introduce the dimensionless parametersα = ωD/ωE, β = ωde/ωE, gd = Ud/kBT ,

gde = Ude/kBT and scale time and space likeτ = ωEt, ξ = x/ld, whereld =
√

Dd/ωE

is the diffusion length of MinD proteins on the membrane. We also defineηd = (rd/ld)

andηde = (rde/ld). The dimensionless version of equations (3.2.3) and (3.2.4) take the

following shape

∂τcd = α(1− cd − cde)CD − cdCE − ∂ξjd ,

∂τcde = −βcde + cdCE ,

(D.0.3)
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with

jd = jd,d + jd,de , (D.0.4)

where

jd,d = −∂ξcd + cd(1− cd − cde)
[
gd(∂ξcd + η2

d∂
3
ξ cd)

]
, (D.0.5)

and

jd,de = cd(1− cd − cde)
[
gde(∂ξcde + η2

de∂
3
ξ cde)

]
, (D.0.6)

correspond to the current terms, respectively associated with the interaction between

MinD-MinD proteins and MinD-MinDE complexes proteins on the membrane.

The stationary uniform valuescd = c0
d, cde = c0

de are the solution of the following

equations

0 = −α(1− cd − cde)CD + cdCE ,

0 = −βcde + cdCE ,

(D.0.7)

i.e.

c0
d = 1

/[
1 +

CE

β
+

CE

αCD

]
,

c0
de = 1

/[
1 +

β

CE

+
β

αCD

]
.

(D.0.8)

We notice that forCE = 0 we havec0
d = 1 andc0

de = 0, while for CD = 0, c0
d = c0

de = 0.

The stability of the uniform stationary states is studied byapplying a small perturbation

and then linearizing the dynamic equations. Taking periodic boundary conditions, we sub-

stitutecd andcde with the expressionc0
d+δcdexp(λkτ +ikξ) andc0

de+δcdeexp(λkτ +ikξ)

into the equations. D.0.3, whereλk andk are the dimensionless frequency and wavenum-

ber respectively. After linearization, we obtain the following eigenvalues equation

(A(k)− λkI)




δcd

δcde


 = 0 ,
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that determines the dimensionless linear growth ratesλk as a function of the dimensionless

wavenumberk. The elements of the dimensionless2× 2 linearization matrixA are given

by

A11(k) = −αCD − CE − k2
[
1− gdc

0
d(1− c0

d − c0
de)(1− η2

dk
2)
]

,

A12(k) = −αCD − k2
[
gdec

0
d(1− c0

d − c0
de)(1− η2

dek
2)
]

,

A21(k) = CE ,

A22(k) = −β .

(D.0.9)

The correspondent characteristic equation is

λ2 − Tr(A)λ + det(A) = 0 , (D.0.10)

with the solution

λ1,2 =
Tr(A)± (Tr(A)2 − 4det(A))1/2

2
. (D.0.11)

The uniform stationary state becomes unstable with respectto spatially periodic per-

turbations with a dimensionless wavenumberkc when the conditionsR(λk) = 0 and

dR(λk)/dk2 = 0 are satisfied atk = kc
1.

If λk is complex at the instability point, this is a Hopf bifurcation with broken trans-

lational symmetry. Because we haveR(λk) = Tr[A(k)]/2, the conditions for such bifur-

cation are

Tr
[
A(k)

]
= 0,

dTr
[
A(k)

]

dk2
= 0 . (D.0.12)

From this conditions we derive the dimensionless wavenumber kH at the first unstable

mode, corresponding to the Hopf bifurcation:

k2
H =

√
β + αCD + CE

gdη
2
dc

0
d(1− c0

d − c0
de)

. (D.0.13)

1We notice that in principle not all values of k are accessible. In fact, strictly speaking, the perturbations
added to the densitiescd andcde are expanded in the basisexp(iknξ), wherekn ∼ π(ld/L)n with n integer.
Therefore, forL finite the critical valuekc will be given by the closest number to the expressionπ(ld/L)n.
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Figure D.1: The MinD distribution averaged over one temporal period 〈cd〉, for different values

of the intensity strengthgd. Increasing the interaction strengthgd, the spatial average distribution

period decrease. Solid, dotted, dash-dotted and dash line refer togd = 10.5, gd = 12.5, gd = 13.5

andgd = 16 respectively.

Therefore the wavelength of the first unstable mode in non rescaled units is

ΛH = 2π
[2gdc

0
d(1− c0

d − c0
de)

β + αCD + CE

]1/4√
rdld . (D.0.14)

Whit the parametersα, β andC fixed, this corresponds to the following behavior

ΛH ∼ g
1/4
d

√
rdld . (D.0.15)

The wavelength of the spatial pattern, obtained directly from integration of the equa-

tions D.0.3, doesn’t follow this rule. Infact, as it is shownin figure D.1, it decreases

whengd increase. The critical frequency correspondent to Hopf bifurcation given by the

imaginary part ofλH in unrescaled units is

ΩH = ωE

√
det(A(kH)) = ωE

√
αCECD − β2 . (D.0.16)

If Ω is different from zero, oscillating solutions appear. Thisis the case when

β2 < αCECD, i.e. ω2
de < ωdωECDCE . (D.0.17)

We can estimate the value for the periodT of the oscillations fromIm(qH) = 2π/TH , ob-

taining the valueT ≃ 80s. The numerical study of linear stability has given the following
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Figure D.2: Linear stability of the homogenous state. Real (Re, black line) and imaginary part

(Im, red line) of the eigenvalues of the linear operator describing the dynamics of small pertur-

bations around the homogenous state as a function of the wavenumberq = k/ld. In (c) modes

with wave numbers between 1µm−1 and 2.2µm−1 are oscillatory and unstable. The values of the

parameters areα = 0.13, β = 0.13, ηd = 0.78, ηde = 0.05. The interaction strengthgd take

the values (a)15, (b) 18, and (c)25. Notice that the wavelength calculated from the value ofq

corresponding to the maximum for Re weakly depends ongd and in all three cases takes the value

Λ ≃ 4µm.

behavior:kc increases withgd andld (i.e. decreases whenωE increases and increases with

Dd) and decreases whenrd increases. When all other parameters are fixed the periodTH

is especially sensitive to variation ofβ, i.e. ωde, TH decreases whenωde increases.

In absence of the currentjd, it is easy to show thatλ ≤ 0. In fact, in this case

λ =
1

2

[
− (αCD + CE + β) +

√
(αCD + CE + β)2 − 4CEβ

]
≤

≤ −(αCD + CE + β) +
√

(αCD + CE + β)2 = 0 .

(D.0.18)

This continues to be valid for small enough values of the interaction strengthgd. In

figure D.2(a) this is shown bygd = 15. Figure D.2(c) shows the case when the real and

imaginary parts ofλ are different from zero,gd = 25, implying the existence of stable

oscillatory solutions. Figure D.2(b),gd = 18 shows the instability point (R(λ) = 0,

k = kH) at the Hopf bifurcationkH = 0.88 (qH = 1.6µm−1) corresponding to the value

ΛH = (2π/kH)ld ≃ 4µm for the wavelength of the pattern. If we increase further the
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Figure D.3: Graphs of the eigenvalue with the largest real part of the linearized time evolution

operator versus the wave numberq = k/ld. The solid black line refers to homogenous cytosolic

distributions with parameter values as in figure D.2. The redand green lines refer to a finite ATP

exchange rate. Parameter values as in figure D.2 withDD = DE = 15µm2s−1, ωATP = 0.5s−1

are depicted as red dashed lines andωATP = 0.02s−1 with green dash-dot lines.

value ofgd, Im(λ) → 0 in the range of values ofk, for which dRe(λ)/dk2 = 0, which

corresponds to stationary patterns.

In regard to the interaction between Min proteins on the membrane, we consider only

the two cases (i)jd,d 6= 0, (ii) jd,de 6= 0 andjd,d 6= 0, with all other current terms equalling

to zero. In particular, the case (i), corresponds to the assumption that when MinD

attaches to the membrane and/or when MinE attaches to the membrane-bound MinD, its

conformational changes neutralize the interaction between MinD and MinDE complexes.

For the case (ii), the conformational changes of MinD make the interaction between

complexes MinDE and MinD proteins on the membrane repulsive, i.e. gde < 0. The term

jd,de appears in the non-diagonal term of the linearized matrixA in a such way that it does

not change the value of the critical wave number,i.e. the wavelength of the pattern, but

only the imaginary part of the eigenvalues ofA, i.e. the temporal period of the oscillation.

Other possible combinations, including for instance termssuch asjde,de, and/or dif-

ferent values for the sign of the interaction strengthgs do not give rise to Hopf bifurcation.

Finally, we consider the general case of non-homogeneous cytosolic distribution and

a finite rateωATP for the rebinding of ATP to MinD after detachment from the membrane.
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As figure D.3 shows, we find that forωATP > 0.5s−1 the effect of a finite ATP exchange

when compared with the homogeneous cytosolic distributioncase, can be neglected, at

least at the level of a stability study.



114



Appendix E

Numerical integration of PDE

Here, we recover the necessary condition for the numerical stability of our algorithm1

used to integrate equations (3.2.3) and (3.2.4). Usually, PDE’s are integrated according

to one of two general schemes: finite difference methods or spectral methods. The first

is usually preferred for its accuracy and stability and the second for the locality property.

A combination of both was also considered [182]. The finite difference method is typi-

cally less efficient from the point of view of CPU time. This point becomes particularly

important when noise terms are also considered. We chose thefinite difference scheme.

The basis of finite difference methods is the discretizationof the physical domain into

a lattice or array of points at which the solution of the equation is computed for each time

step. For the sake of simplicity we will consider only the current term associated with

MinD-MinD interaction on the membrane,i.e. k̄1 = k̄2 = 0.

The discretization scheme introduces a time step∆t and a mesh size∆x. Some

care has to be given to these parameters to avoid numerical instabilities. We refer to

equations (D.0.3) which can be written in the general form

∂tcd(x, t) = (T + Vcd
)cd(x, t) ,

∂tcde(x, t) = Vcde
cde(x, t) ,

(E.0.1)

whereT is one (non-linear) operator containing all the spatial derivatives and, whereVcd

andVcde
are strictly (linear) local operators. The part associatedwith the operatorsVs can

be reduced to a simple ODEs and only the operatorT has to be considered for studying

numerical stability,i.e.

∂tcd = ∂xjd . (E.0.2)

1The programs used to this end have been written in Fortran 77 language.
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The discrete version of this equation, used in our numericalsimulations, is

ci
d(n) = ci

d(n− 1) +
∆t

(∆x)2

[
ji+1
d (n− 1/2)− 2ji

d(n− 1/2) + ji−1
d +

+
1

(∆x)2

(
ji+2
d (n− 1/2)− 4ji+1

d (n− 1/2) + 6ji
d(n− 1/2)−

−4ji−1
d (n− 1/2) + ji−2

d (n− 1/2)
)]

,

(E.0.3)

wheren is the temporal index,i the box lattice index andjd is calculated at the mid-

point ∆t/2 with a Runge-Kutta algorithm. The expression forji
d depends on the value

of ∆ci
d = (ci+1

d − ci
d). If ∆ci

d > 0, proteins go from sitei + 1 to site i, the product

cd(1−cd−cde) in the expression 3.1.5 for the current has to be written in the discrete case

asci+1
d (1 − ci

d − ci
de). In the opposite case,i.e. ∆ci

d < 0, proteins go from sitei to site

i+1, the expressionci
d(1−ci+1

d −ci+1
de ) has to be considered. Finally, fictitious grid points

were placed around the actual boundary of the system. The values of the concentrationci

in these points were taken to be equal to the values ofci in the respective mirror-reflected

grid points inside the lattice. Writing the equation (E.0.3) for the Fourier transform of the

MinD concentration on the membrane in a lattice of sizeN ,

Ck =
1

N

∑

x

cxe
ikx , (E.0.4)

where the sum goes over the lattice sites, and linearizing around the steady state(c0
d, c

0
de),

we obtain, for the1−dimensional case, the following stability condition

1 + ∆t{Deff Γ(k)−G Γ2(k)} < −1 , (E.0.5)

where

Γ(k) =
2

(∆x)2

[
cos(k∆x)− 1

]
(E.0.6)

is the Fourier transform of the discrete Laplacian in a1−dimensional lattice,k =

2πn/N∆x with n ∈
[
1, N

]
and

Deff = Dd

[
1− gdc

0
d(1− c0

d − c0
de)
]

,

G = Ddgdc
0
d(1− c0

d − c0
de)r

2
d .

(E.0.7)
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The linearized version of the equation (E.0.3) is stable forall k modes when the following

inequality is hold

∆t <
(∆x)4

2Deff(∆x)2 + 2G
. (E.0.8)

This is the criterion for the numerical stability of equation E.0.2. In the limit, where the

interaction between MinD proteins on the membrane goes to zero,G→ 0 andDeff → Dd,

the criterion for the numerical stability of the reaction-diffusion equations is recovered.

From a practical point of view, it is important to take into account that the numerical

stability, given the diffusion coefficientDd and the mesh size∆x as fixed, still depends

on the interaction strengthgd, on the interaction rangerd between the MinD proteins

on the membrane, and on the steady state values(c0
d, c

0
de). Of course, this criterion is

valid near the steady state(c0
d, c

0
de), thus is a condition necessary for numerical stability,

nevertheless, it is not sufficient.
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Appendix F

LE for homogenous cytosolic
distributions

In this appendix we derive, through coarse graining of the microscopic master equation,

the LEs (4.2.9) and (4.2.10) which describe the dynamics of the Min proteins for the case

of large cytosolic diffusion. For the sake of the simplicityof notation the derivation is

carried out in a one-dimensional system, but it can, in a direct way, be generalized in the

three-dimensional case. The outline of the derivation follows [132,159,183] pointing out

the physical meaning of the used approximations and the origin of the different terms.

The starting point is a1-D microscopic lattice model with lattice lengthl0, N total

number of sites, andε sites per unit length. Each site can either be empty or occupied

by a single protein MinD or a complex MinDE,i.e. the multiple occupation of a site is

not permitted. The probabilityI(x → x′) in unit time ∆t, that a protein MinD on the

membrane jumps from a sitex to a sitex′, is influenced by the interaction with other

proteins. We assume the potentialV (x) experienced by the protein MinD at the sitex to

be composed of a superposition of pairwise interactions with the proteins nearby

V (x) = −
N∑

x′

[
vdd(x− x′)nd(x

′) + vdde(x− x′)nde(x
′)
]

, (F.0.1)

wherend(x
′) andnde(x

′) are the occupation numbers atx′ which can take the values0 and

1. The functionsvdd(x) andvdde(x) are binary potentials of the attractive interactions be-

tween MinD-MinD and MinD-MinDE, respectively. We assume that this potentials van-

ish over distances exceeding the characteristic respective interaction radius. We assume

that it is determined according to the Metropolis dynamics,whose hopping probability
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per unit time∆t depends on the difference∆E = V (x′)− V (x), i.e.

I(x→ x′) =





I0 if ∆E < 0

I0 exp
(−∆E

kBT

)
if ∆E > 0,

whereI0 = (Dd∆t/l20) is the hopping probability of a protein MinD on the membrane

in absence of interactions. We define the ratesω̃D,E = ωD,Ecmax, whereωD,E are the

parameters introduced in equations (3.2.3) and (3.2.4), and to simplify the notations, in the

following the “tilde” will be dropped. For the protein MinD,the probability of attachment

in a unit time at the sitex is given by

∆t ωD

(
ND

N

)
(1− nd(x)− nde(x)) , (F.0.2)

for MinDE by

∆tωE

(
NE

N

)
nd(x) , (F.0.3)

and for the detachment process of MinDE

∆tωdende(x) . (F.0.4)

The parametersND andNE are the total numbers of cytosolic MinD and MinE proteins,

respectively. All statistical processes are assumed to be Markovian processes [184]. Using

the above assumptions, we write the following microscopic master equation for the joint



121

probability distributionP ({nd(x)}, {nde(x)}, t)

dP

dt
=
∑

x

ωD{
(ND + 1

N

)
(2− nd(x)− nde(x))nd(x)P (nd(x)− 1, {nde(x)})} −

−
∑

x

ωD{
ND

N
(1− nd(x)− nde(x))[1− nd(x)]P}+

+
∑

x

ωE{
(NE + 1

N

)
(1 + nd(x))nde(x)P (nd(x) + 1, nde(x)− 1)− ENnd(x)[1− nde(x)]P}+

+
∑

x

ωde{(1 + nde(x))[1− nde(x)]P (nd(x), nde + 1)− nde(x)P}+

+
∑

x,x′

I(x′ → x){(nd(x
′) + 1)(2− nd(x)− nde(x))nd(x)P (nd(x)− 1, nd(x

′) + 1, {nde(x)})} −

−
∑

x,x′

I(x→ x′){(2− nd(x
′)− nde(x

′))[1− nd(x)]P} ,

(F.0.5)

The summation overx′ in the last term includes only sites that represent nearest neighbors

of sitex. The notationsP (nd(x) − 1, {nde}), P ({nd}, nde(x) + 1), mean that the set of

occupation number{nd(x)}, {nde(x)} differs from that in the distributionP , whereP ≡
P ({nd}, {nde}, t), only at locationx, wherend is andnde, are respectively, decreased and

increased by one.P (nd(x) + 1, nde(x)− 1, t) denotes the probability distribution for the

case in whichnd(x) andnde(x) are increased respectively decreased by one.P (nd(x) −
1, nd(x

′) + 1, {nde(x)}) is the probability distribution identical to P except for a MinD-

protein shifted fromx to x′.

Now, we introduce the coarse-grained description. The system is divided intom

boxes, each containing a large number of sitesnmax, and with lengthlb chosen to be

smaller than the characteristic length of the spatial patterns which appear. This length

characterizes the resolution of our system, complete diffusional mixing is assumed to

take place in each box.

Because of the complete mixing, the size of the box should also be smaller than the

interaction ranger, i.e. thatr must be relatively large. Nevertheless, it was shown [185]

that the mesoscopic theory describes the concentration profiles in the steady state quan-

titatively well, also for potentials with relatively shortinteraction range. Therefore, al-

though the mesoscopic theory is not fully justified in the case of few lattice length for the
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interaction range, like was considered for the interactionrangerde, it can still be used in

this case for qualitative insights.

For each boxj the probabilityP of attachment in a time step∆t is given by

PD→d = ∆t ωD

(
ND

m

)(
1− nd,j + nde,j

nmax

)
, (F.0.6)

PE→de = ∆t ωE

(
NE

m

)
nd,j

nmax
, (F.0.7)

for MinD and MinE respectively, and

Pde→E+D = ∆t ωdende,j , (F.0.8)

for the detachment process of MinDE. The variablesnd,j andnde,j , are, respectively the

number of MinD and MinDE proteins in each boxj.

The probabilitiesP (j → j ± 1) at each time step, for a transition between the neigh-

boring boxes for the MinD proteins are proportional to the numbernd,j of proteins in the

jth box and to the fraction1− (nd,j±1 + nde,j±1)/nmax of empty sites in the neighboring

box. Furthermore, it depends on the interaction between membrane-bound proteins, and

we write:

Pj→j±1 = nd,j

(
1− nd,j±1 + nde,j±1

nmax

)
I±
j , (F.0.9)

where

I±
j =





I0 if ∆Ej < 0

I0 exp
(−∆Ej

kBT

)
if ∆Ej > 0 ,

(F.0.10)

whereI0 = Dd ∆t/l2b , ∆Ej = Vj±1 − Vj , and we assume that the potentialV (x) does

not change inside the boxj, and therefore can be specified by a certain valueVj.

The master equation for the multidimensional distributionp({nd,1, . . . , nd,m},
{nde,1, . . . , nde,m}, t), which gives the probability of findingnd,1, . . . , nd,m and

nde,1, . . . , nde,m proteins MinD or MinDE, respectively in the boxes positioned at



123

x1, . . . , xm at the timet, takes the following shape:

dp

dt
=
∑

j

ωD

[(
ND + 1

m

)
(nmax − nd,j − nde,j + 1) p−d,j

]
−

−
∑

j

ωD

[(
ND

m

)
(nmax − nd,j − nde,j) p

]
+

+
∑

j

ωE

[(
NE + 1

m

)
(nd,j + 1) p±j −

(
NE

m

)
nd,jp

]
+

+
∑

j

ωde

[
(nde,j + 1) p+

de,j − nde,jp
]
+

+
∑

j

[
I+
j−1 (nd,j−1 + 1) p̂+

j−1 + I−
j+1 (nd,j+1 + 1) p̂−j+1

](
1− nd,j + nde,j − 1

nmax

)
−

−
∑

j

[
I+
j

(
1− nd,j+1 + nde,j+1

nmax

)
+ I−

j

(
1− nd,j−1 + nde,j−1

nmax

)]
nd,jp .

(F.0.11)

Where the sum overj goes from1 to m, and the following short notations were used:

p−d,j = p(nd,j − 1, {nde}, t) ,

p±j = p(nd,j + 1, nde − 1, t) ,

p+
de,j = p({nd,j}, nde + 1, t) ,

p̂+
j = p(nd,j + 1, nd,j+1 − 1, {nde}, t) ,

p̂−j = p(nd,j−1 − 1, nd,j + 1, {nde}, t) .

(F.0.12)

To simplify the recognition of the last terms in equation (F.0.12), we schematically repre-

sent the probability fluxes for thejth box as follows

[j − 1] −→I+

j−1 [j] −→I+

j [j + 1] , (F.0.13)

[j − 1]←−I−j [j]←−I−j+1 [j + 1] . (F.0.14)
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Now, we introduce the symmetric and antisymmetric probability fluxes

sj =
I+
j + I−

j

2
, (F.0.15)

and

aj =
I+
j − I−

j

2
, (F.0.16)

associated with the hopping rates. After shifting the summation index in the fifth sum, the
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master equation (F.0.11) takes the form

dp

dt
=
∑

j

ωD

[(
ND + 1

m

)
(nmax − nd,j − nde,j + 1) p−d,j

]

−
∑

j

ωD

[(
ND

m

)
(nmax − nd,j − nde,j) p

]

+
∑

j

ωE

[(
NE + 1

m

)
(nd,j + 1) p±j −

(
NE

m

)
nd,jp

]

+
∑

j

ωde

[
(nde,j + 1) p+

de,j − nde,jp
]

+
∑

j

sj(nd,j + 1)

[(
1− nd,j+1 + nde,j+1 − 1

nmax

)
p̂+

j

]

+
∑

j

sj(nd,j + 1)

[(
nd,j−1 + nde,j−1 − 1

nmax

)
p̂−j

]

−
∑

j

sjnd,j

(
2− nd,j+1 + nde,j+1 + nd,j−1 + nde,j−1

nmax

)
p

+
∑

j

aj(nd,j + 1)

[(
1− nd,j+1 + nde,j+1 − 1

nmax

)
p̂+

j

]

−
∑

j

aj(nd,j + 1)

[(
1− nd,j−1 + nde,j−1 − 1

nmax

)
p̂−j

]

+
∑

j

ajnd,j

(
nd,j+1 + nde,j+1 + nd,j−1 + nde,j−1

nmax

)
p .

(F.0.17)

We assume that the number of lattice sitesnmax in each box is much larger than one.

Introducing the local quantitiescd,j = nd,j/nmax, andcde,j = nde,j/nmax and taking into

account that their value changes only a little as a result of asingle attachment, detach-

ment, or hopping event, we can consider the following Taylorexpansion in the parameter
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1/nmax

p−d,j ≈ P − 1

nmax

∂P

∂cd,j

+
1

2n2
max

∂2P

∂c2
d,j

,

p±j ≈ P +
1

nmax

(
∂P

∂cd,j

− ∂P

∂cde,j

)
+

1

2n2
max

(
∂2P

∂c2
d,j

+
∂2P

∂c2
de,j

)
+

+
1

2n2
max

(
2

∂2P

∂cd,j∂cde,j

)
,

p+
de,j ≈ P +

1

nmax

∂P

∂cde,j
+

1

2n2
max

∂2P

∂c2
de,j

,

p̂+
j ≈ P +

1

nmax

(
∂P

∂cd,j

− ∂P

∂cd,j+1

)
+

1

2n2
max

(
∂2P

∂c2
d,j

+
∂2P

∂c2
d,j+1

)
+

+
1

2n2
max

(
2

∂2P

∂cd,j∂cd,j+1

)
,

p̂−j ≈ P +
1

nmax

(
∂P

∂cd,j
− ∂P

∂cd,j−1

)
+

1

2n2
max

(
∂2P

∂c2
d,j−1

+
∂2P

∂c2
d,j

)
+

+
1

2n2
max

(
2

∂2P

∂cd,j−1∂cd,j

)
,

(F.0.18)

whereP is the distribution functionP (cd,j, cde,j, t). Substituting these approximations

into equation F.0.17 and keeping the terms up to the order1/nmax, we get a multidimen-

sional Fokker-Planck equation for the joint probability distributionP .

Since, the length of the boxlb is much smaller than the minimal characteristic scale

of the spatial pattern, we can assume that the quantitiescd,j and cde,j do not signifi-

cantly change between the neighboring boxes and can be defined as continuous functions

of the space:cd(x, t) and cde(x, t). Consequently, a continuous version of the multi-

variate Fokker-Planck equation can be introduced, and the joint probability distribution

P (cd,j, cde,j, t) converts to the functionalP ([cd(x)], [cde(x)], t) that gives the probability

density of different random realizations of the protein concentrations.

After the transformation to continuous coordinates, we canapproximate the symmet-
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ric and antisymmetric probability fluxessj andaj as functions of the spatial coordinatex,

which are given by the following expression

s(x) =
I0

2

[
1 + exp

(
− lb

kBT
|∂V/∂x|

)]
,

a(x) = −I0

2

[
1− exp

(
− lb

kBT
|∂V/∂x|

)]
sign

(
∂V

∂x

)
.

(F.0.19)

In the limit whenν ≡ lb|∂V/∂x| → 0, we obtain

limν→0

(
s(x)l2b

)
= Dd , (F.0.20)

whereDd is defined by

Dd = limlb→0

(
I0l

2
b

)
(F.0.21)

and

limν→0(a(x)lb) = limν→0

(
− I0l

2
b

2kBT

∂V

∂x

)
= −1

2

Dd

kBT

∂V

∂x
(F.0.22)

Taking the evolution equation for the functionalP ([cd(x)], [cde(x)], t) in the limit ν ≡
lb|∂V/∂x| → 0 and performing certain transformations of the transport terms (cfr. refer-
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ences [132,159]), we obtain the functional Fokker-Planck equation

∂P

∂t
= −

∫
dx

δ

δcd(x)
{[ωDCD (1− cd(x)− cde(x))− ωECEcd(x) +

+
Dd

kBT

∂

∂x

(
1− cd(x)− cde(x)

∂V

∂x

)
+

∂2cd(x)

∂x2

]
P

}
+

−
∫

dx
δ

δcde(x)
{[ωDCD (1− cd(x)− cde(x))− ωdecde(x)] P}+

+
Ω

2

∫ ∫
dxdx′ δ2

δcd(x)δcd(x′)

{[
(ωDCD (1− cd(x)− cde(x)) +

+ ωECEcd(x)) δ(x− x′) +
∂2

∂x∂x′
(2Dd(1− cd(x)− cde(x))) δ(x− x′)

]
P

}
+

+
Ω

2

∫ ∫
dxdx′ δ2

δcde(x)δcde(x′)
{(ωdecde(x) + ωECEcd) δ(x− x′)P}+

− Ω

2

∫ ∫
dxdx′

[
δ2

δcd(x)δcde(x′)
+

δ2

δcd(x′)δcde(x)

]
(ωECEcdδ(x− x′)P ) ,

(F.0.23)

whereΩ = lb/nmax = L/N = 1/cmax.

As follows from the theory of random processes (cfr. references [152, 159]) this

Fokker-Planck equation is equivalent to the SPDEs

∂tcd = ωDCD(1− cd − cde)− ωECEcd − ∂xjd

+ ξd(x, t) ,

(F.0.24)

∂tcde = −ωdecde + ωECEcd + ξde(x, t) , (F.0.25)

The noise termsξd(r, t) andξde(r, t) take into account internal fluctuations of attach-
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ment, detachment, and transport processes, and have the form

ξd(x, t) = Ω1/2
√

ωDCD(1− cd − cde)αD(x, t) +

+ Ω1/2
√

ωdeCEcdαE(x, t) +

+ Ω1/2∂x(
√

2Ddcd(1− cd − cde)β(x, t)) , (F.0.26)

ξde(x, t) = Ω1/2
(√

ωdecdeαde(x, t)−
√

ωECEcdαE(x, t)
)

, (F.0.27)

whereαD(x, t), αE(x, t), αde(x, t), associated with attachment and detachment processes,

andβ(x, t) associated with transport processes, are independent white noises of unit inten-

sity, and the Itô interpretation of the SPDE was chosen. Thecurrentjd has the following

form

jd =
[ Dd

kBT
cd(1− cd − cde)

∂V

∂x

]
+ Dd

∂cd

∂x
. (F.0.28)

In the approximations considered in section 4.2.2 this current take the form (4.2.38) and

the equations (F.0.24) and (F.0.25) correspond to the LEs (4.2.9) and (4.2.10).
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Appendix G

LE for the 0-dimensional system

In this appendix, we will derive the LEs for the four protein concentrationscd, cde, cD and

cE in the case of the0-dimensional system and for the same attachment and detachment

processes described by the probabilities (F.0.6), (F.0.7)and (F.0.8) given in appendix F,

with the difference that nowm = 1, i.e. there is only one box and no spatial degrees

of freedom are taken into account and thusnmax = N . These LEs will then be used in

order to compare the relative fluctuations of the cytosolic protein concentrations with the

relative fluctuations of the membrane-bound protein concentrations.

The microscopic master equation for the joint probabilityP ≡ P (nd, nde, nD, nE , t)

that gives the probability for findingnd, nde, nD andnE proteins at timet, in this case is

dP

dt
= −

[
ωDnD

(
1− nd + nde

N

)
+ ωEnE

nd

N
+ ωdende

]
P

+ ωD

(
nD + 1

)(
1− nd − 1 + nde

N

)
P (nd − 1, nde, nD + 1, nE, t) +

+ ωE(nE + 1)
(nd + 1

N

)
P (nd + 1, nde − 1, nD, nE + 1, t) +

+ ωde

(
nde + 1

)
P (nd, nde + 1, nD − 1, nE − 1, t) .

(G.0.1)

The notationP (nd − 1, nde, nD + 1, nE, t) means that the set numbersnD, nd, differ

from those in the distribution P, because they are increasedand decreased by one, re-

spectively. P (nd + 1, nde − 1, nD, nE + 1, t) denotes the probability distribution for

the case whennE and nd are increased by one andnde is decreased by one. Finally,

P (nd, nde +1, nD−1, nE−1, t) denotes the probability distribution for the case in which

nD andnE are decreased by one andnde is increased by one. The following short nota-
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tions are introduced

P D
d = P (nD + 1, nE, nd − 1, nde, t) ,

P E,d
de = P (nD, nE + 1, nd + 1, nde − 1, t) ,

P de
D,E = P (nD − 1, nE − 1, nd, nde + 1, t) .

(G.0.2)

Similar to the two variables model, the following variablesare introduced,cd = nd/N ,

cde = nde/N , c̃D = nD/Ncyt = nD/Nθ andc̃E = nE/Ncyt = nE/Nθ, where we assumed

that the number of available sites in the cytosol,Ncyt, is the same for MinD and MinE

proteins, andθ is a geometrical factor of proportionality between the number of sites on

the membrane and in the cytosol. In this way, the values of thefour concentrations go

from 0 to 1, allowing for a comparison between their relative fluctuations.

Taking into account that the value of these variables changes only a little as a result of

an attachment event1, we can write the following expansion in the parameters1/N

P D
d ≈ P + N−1

{1

θ

∂P

∂cD

− ∂P

∂cd

}
+

1

2
N−2

{ 1

θ2

∂2P

∂c2
D

+
∂2P

∂c2
d

− 2

θ

∂2P

∂cd∂cD

}

P E,d
de ≈ P + N−1

{1

θ

∂P

∂cE

+
∂P

∂cd

− ∂P

∂cde

}
+

1

2
N−2

{ 1

θ2

∂2P

∂c2
E

+
∂2P

∂c2
d

+

+
2

θ

∂2P

∂cd∂cE
− 2

θ

∂2P

∂cE∂cde
− 2

∂2P

∂cd∂cde
+

∂2P

∂c2
de

}

P de
D,E ≈ P + N−1

{ ∂P

∂cde
− 1

θ

∂P

∂cD
− 1

θ

∂P

∂cE

}
+

1

2
N−2

{ 1

θ2

∂2P

∂c2
D

+
1

θ2

∂2P

∂c2
E

+

+
2

θ2

∂2P

∂cD∂cE

− 2

θ

∂2P

∂cE∂cde

− 2

θ

∂2P

∂cD∂cde

+
∂2P

∂c2
de

}
.

(G.0.3)

Substituting these approximations into (G.0.1) and retaining there the terms up to the

order1/N , we obtain the following Fokker-Planck equation

∂tP (~c, t) = −∂νF
ν(~c, t)P (~c, t) +

1

2N
∂ν∂µD

νµ(~c, t)P (~c, t) , (G.0.4)

1In the coarse graining procedure this hypotesis is applied on the length scale of the box lengthlb and is
still valid because we considernmax ≫ 1 in each box.
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where we introduced~c = (cd, cde, cD, cE) to simplify the notation,ν = d, de, D, E and

µ = d, de, D, E, F ν is aν−component of a vector

|F〉 =




θ(fD − fE)

θfE − fde

−fD + fde/θ

−fE + fde/θ


 ,

andD is a matrix4× 4

D =




θ(fD + fE) −θfE −fD −fE

−θfE θfE + fde −fde/θ fE − fde/θ

−fD −fde/θ fD/θ + fde/θ
2 fde/θ

2

−fE fE − fde/θ fde/θ
2 fE/θ + fde/θ

2


 ,

with

fD = ωDc̃D(1− cd − cde) ,

fE = ωEcdc̃E ,

fde = ωdecde .

(G.0.5)

Where for the sake of simplicity we did not writẽfD and f̃E we have just to remember

that they scale like1/Ncyt. Now, let us consider the following LEs

∂tcd = θ(fD − fE) +

√
θ

N

(√
fDαD(t) +

√
fEαE(t)

)
, (G.0.6)

∂tcde = θfE − fde +
1√
N

√
fdeαde(t)−

√
θ

N

√
fEαE(t) , (G.0.7)

∂tc̃D = −fD +
fde

θ
− 1√

θN

√
fDαD(t)− 1

θ
√

N

√
fdeαde(t) , (G.0.8)

∂tc̃E = −fE +
fde

θ
− 1√

θN

√
fEαE(t)− 1

θ
√

N

√
fdeαde(t) . (G.0.9)

First we observe that the first two of these equations correspond to the LEs derived in

section 4.2.1 once we take into account that thereCD ∼ (1/N) and herecD ∼ (1/Ncyt).

Second we will now show that they correspond to the FPE (G.0.4). Let us write the four

LEs (G.0.6), (G.0.7), (G.0.8) and (G.0.9) in the following compact form

dcν

dt
= f ν(~c) +

1√
N

bν
i (~c, t)αi(t) , (G.0.10)
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where(ν = d, de, D, E), and(i = D, E, de), i.e. four equations with three independent

sources of white Gaussian noise. The notation~c = (cd, cde, cD, cE) is introduced,f ν is a

ν−component of the vector

|f〉 =




θ(fD − fE)

θfE − fde

−fD + fde/θ

−fE + fde/θ


 ,

andbi are the following vectors

|bD〉 =

√
fD

θ




θ

0

−1

0


 , |bE〉 =

√
fE

θ




θ

−θ

0

−1


 , |bde〉 =

√
fde

θ




0

θ

−1

−1


 .

If we interpret the equation (G.0.10) in the Itô sense, a process described by the equation

(G.0.10) can be equivalentely described by the FPE for the probability density of~c

∂tP (~c, t) = −∂νF̃
ν(~c, t)P (~c, t) +

1

2N
∂ν∂µD̃

νµ(~c, t)P (~c, t) , (G.0.11)

a priori different from (G.0.4). The diffusion matrix̃D is related to the noise coefficients

bν
i by

D̃ = |bi〉〈bi| , (G.0.12)

and the drift componentsF ν are related to the deterministic termsf ν by

F̃ ν = f ν . (G.0.13)

Therefore,F̃ ν = f ν ⇒ |F̃〉 = |F〉, and it is easy to control that̃D correspond exactly to

D.

Remark

In the previous derivation, we used the hypothesis that the noise has a Gaussian dis-

tribution, which is a good approximation when a high number of proteins is considered.

In our specific case, especially when the spatial extension of the system is taken into



135

account, a more suitable description of the noise associated with the attachment and

detachment process is achieved through a Poisson distribution.

Let us go back to the equations (G.0.6), (G.0.7), (G.0.8) and(G.0.9). We just

showed that they are the LEs for the cytosolic and membrane-bound protein concentra-

tions in the0-dimensional case. They show that the cytosolic relative fluctuations are

suppressed when the parameterθ ≫ 1, i.e. whenNcyt ≫ N . In other words, the bigger

‘volume’ available to the cytosolic protein when compared with the ‘one’ available to the

membrane-bound proteins lower the cytosolic relative fluctuations when compared with

the membrane-bound relative fluctuations. Here, the word volume means the maximum

possible number of proteins in the two possible states, namely the cytosolic and the

membrane-bound one. When space is taken into account, this word assumes its own

actual meaning. Concerning the absolute values of the fluctuations they are exactly the

same, in the cytosol and on the membrane, for each one of the attachment-detachment

process by formulation.

Finally, we notice that, if all four protein concentrationsscale in the same way, for

example like1/N , the LEs take the following simple form

∂tcd = fD − fE +
1√
N

(√
fDαD(t) +

√
fEαE(t)

)
, (G.0.14)

∂tcde = fE − fde +
1√
N

√
fdeαde(t)−

1√
N

√
fEαE(t) , (G.0.15)

∂tcD = −fD + fde −
1√
N

√
fDαD(t)− 1√

N

√
fdeαde(t) , (G.0.16)

∂tcE = −fE + fde −
1√
N

√
fEαE(t)− 1√

N

√
fdeαde(t) . (G.0.17)

From these equations, the equations (4.2.9) and (4.2.10), and assuming that each one

of the reaction and diffusion processes make an independentcontribution to the noise

terms, the LEs for the one-dimensional non-homogenous cytosolic distributions case can

be obtained directly.
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Appendix H

Estimation of parameter values

Here, we give an estimation of some of the parameters used in the theoretical description,

and which values are not available experimentally. In particular, we consider the max-

imum densitycmax and the interaction strengthsUs and rangers. Even ifND andNE

were approximately evaluated experimentally [110], untilnow there are no experimental

values forN . Depending on the actual scenario, such a measurement can bevery difficult

or very simple. If the Min-proteins can attach everywhere onthe membrane, thenN can

be estimated straightforward from the area of the membrane surface. If the MinD-proteins

really make helices and these helices are a fixed framework onthe membrane,N can be

estimated from an evaluation of the lenght of such helices, for instance from the pictures

in [68]. This was our choice. Other situations are possible as, for example, the possibility

that MinD can attach only to some specific receptor on the membrane and they can have,

as we know so far, different distributions. Making the assumption that only one protein

can attach on each site of the spiral structure, we can estimate the parameterN

N = L/l0 ≈ [2πa× (winding rounds number) + LC ]/l0 , (H.0.1)

wherea is the cell radius,LC the cell length,lp the proteins size andL is the effective

length of our system. From the experimental values [66,186]

LC ≈ 2µm ,

a ≈ 0.5µm ,

l0 ≈ lp ∼ (3.5− 5.7)nm ,

winding rounds number ≈ 5− 6 ,

(H.0.2)

we can estimateN = (1500− 15000). The bigger value comes from the hypothesis that

there are two helices and the proteins can attach to the membrane one next to other. The

smaller value results from considering only one helical andonly the half length available
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to the attachment process1. In our simulations, we always useN = 2000 for a cell long

2µm, which corresponds tocmax = L/N = 1000µm−1. The order of magnitude for the

value of the interaction strenghtU is (see for example [190]).

U ≈ 10kBT . (H.0.3)

For the interaction ranges, assuming electrostatic interaction we can consider

r ≈ 10nm . (H.0.4)

As was discussed in section 4.3, the value used in our simulation for the MinD-MinD

interaction range was much larger than this.

1Another point to be taken into account is that adsorbed proteins can be in several different states of
different surface sizes. This is supported by experimentalevidence that adsorbed proteins undergo surface-
induced conformational changes [187–189] characterized by a substantial growth of the surface contact
area.
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oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt. Die vorliegende Disserta-

tion wurde am Max-Planck-Institut für Physik komplexer Systeme in Dresden unter der

wissenschaftlichen Betreuung von Prof. Dr. Karsten Kruse angefertigt. Es haben keine
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