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Abstract

The auditory systems of numerous species including humans exhibit remarkable
properties. Mammalian hearing is characterized by four hallmarks, given by an
extreme sensitivity, a wide dynamic range, a sharp frequency selectivity, and
spontaneous otoacoustic emissions (SOAEs). The last-mentioned are sounds
which are generated by the cochlea, the hearing organ within the inner ear, in
absence of external stimulation and become manifest as pressure fluctuations
in the ear canal. The four characteristics, in particular SOAEs, are associated
with an active nonlinear amplification process taking place on a mechanical
level in the cochlea. A previously proposed generic one-dimensional model of
the human cochlea in the frequency domain, which comprises hydrodynamically
coupled critical oscillators of gradually varying eigenfrequencies, was found to
capture three of the four characteristics, with exception of the fourth charac-
teristic, SOAEs. In this thesis, we extend the above frequency domain model
and propose a spatially discrete, active nonlinear one-dimensional model of the
cochlea in the time domain describing human SOAEs including their basic sta-
tistical features. We consider the distribution of the frequencies of emissions
ranging from 0.5 to 8 kHz, the monotonically decaying distribution of the num-
bers of emissions per cochlea, and the distribution of the distances between
neighboring emissions exhibiting a maximum at one semitone. By means of a
combination of mainly elastic longitudinal coupling with a weak dissipative part,
clusters of synchronized oscillators appear in our model, resulting in a preferred
minimal distance between neighboring spontaneous emissions. The model we
propose captures all three above mentioned experimental distributions of SOAEs
by employing dynamical noise, elastic and dissipative longitudinal coupling, and
irregularities in the bifurcation parameter, which are normally distributed and
exponentially correlated in space. Thus, the model can account for all four
hallmarks of human hearing including essential statistical features of SOAEs.



Kurzfassung

Die auditorischen Organe vieler Tierarten inklusive des Menschen weisen be-
merkenswerte Eigenschaften auf. Der Gehörsinn von Säugetieren wird anhand
von vier Hauptmerkmalen charakterisiert: Eine hohe Empfindlichkeit, ein großer
dynamischer Bereich, eine scharfe Frequenzselektivität und spontane otoakustis-
che Emissionen (SOAEs). Letztere sind Geräusche, die von der Cochlea, dem
Hörorgan im Innenohr, in Abwesenheit von äußerer Stimulation produziert wer-
den und als Druckschwankungen im Ohrkanal messbar sind. Die vier Haupt-
merkmale, insbesondere SOAEs, stehen in Verbindung zu einer aktiven nicht-
linearen Signalverstärkung, die auf mechanischer Ebene in der Cochlea abläuft.
Ein von anderen Autoren entwickeltes generisches eindimensionales Modell der
menschlichen Cochlea im Frequenzbereich, das aus hydrodynamisch gekoppel-
ten kritischen Oszillatoren mit graduell variierenden Eigenfrequenzen besteht,
beschreibt drei der vier Charakteristiken des Gehörsystems, mit Ausnahme der
vierten Charakteristik, der SOAEs. In der vorliegenden Dissertation erweit-
ern wir das obige Modell im Frequenzbereich und präsentieren ein räumlich
diskretes, aktives nichtlineares eindimensionales Cochlea-Modell im Zeitbereich,
das menschliche SOAEs und deren grundlegenden statistischen Eigenschaften
beschreibt. Wir betrachten die Verteilung der Emissionsfrequenzen, welche
von 0.5 bis 8 kHz reichen, die monoton abfallende Verteilung der Anzahl der
Emissionen pro Cochlea und die Verteilung der Frequenzabstände benachbarter
Emissionen, die ein Maximum bei einem Halbton aufweist. Eine Kombina-
tion aus vorwiegend elastischer und einem schwachen Anteil von dissipativer
longitudinaler Kopplung führt zur Entstehung synchronisierter Gruppen von
Oszillatoren in unserem Modell und so zu einem präferierten Mindestabstand
benachbarter spontaner Emissionen. Unser Modell beschreibt alle drei obigen
experimentellen Verteilungen unter Verwendung von dynamischem Rauschen,
elastischer und dissipativer longitudinaler Kopplung sowie statischer Unord-
nung im Bifurkationsparameter, die normalverteilt und exponentiell korreliert
im Raum ist. Somit weist das Modell alle vier Hauptmerkmale des menschlichen
Gehörsinnes auf, inklusive grundlegender Statistiken spontaner Emissionen.
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Chapter 1

Introduction

One essential sense enabling us to perceive our surrounding environment is the
auditory sense, which detects even minuscule pressure fluctuations in the air.
Although the act of hearing involves a considerable processing of information
by the neural system, already on the mechanical level a considerable amount
of processing and information filtering takes place. Despite its importance, the
mechanics of hearing is not yet understood in detail. The basic principles and
constituents are believed to be known, but the exact nature of the interplay
between the components is unresolved. Put differently, how exactly the ear
functions remains under debate.
This dissertation focuses on the mechanics of human hearing, which displays an
active nonlinear amplification of incoming stimuli. This active mechanism of
the human auditory system possesses four key features: First, the exquisite sen-
sitivity of our auditory system allows for the recognition of faint sounds such as
the rustling of leaves or the buzzing of mosquitos. Second, our auditory system
covers a wide dynamic range of input stimuli and is thus also able to perceive
intense sounds as well, for instance of airplanes taking off, where pressure levels
are six orders of magnitude higher than rustling leaves. This is achieved with-
out suffering from severe damages of the auditory system. Third, the ability to
distinguish different frequencies of pure tones can reach values as low as 1%�
relative difference [140]. Setting this number in context, this is substantially less
than the tones of two neighboring keys on a piano, corresponding to a difference
of one semitone, which gives a relative frequency difference of about 6%. The
fourth hallmark is the remarkable observation that the cochlea generates spon-
taneous otoacoustic emissions (SOAEs), i.e., sounds emitted by the inner ear in
absence of any external stimulation, becoming manifest in pressure fluctuations
in the ear canal.

In this thesis, we describe how mechanics facilitates the process of sound de-
tection, and we put forward a model that can account for all four hallmarks of
the active mechanism. In particular, we provide a possible answer to the ques-
tion of why and how the cochlea exhibits spontaneous activity. SOAEs exhibit

1



1.1. BIOPHYSICS OF HEARING 2

certain characteristic statistical features captured by our model. The statis-
tics of interest are given by the distribution of SOAE frequencies, the number of
SOAEs per cochlea, and the spacing between neighboring SOAEs. Interestingly,
it turns out that neighboring emissions exhibit a preferred minimal distance of
one semitone.
It is commonly assumed that the production of SOAEs is an epiphenomenon of
the active amplification at work. Put differently, SOAEs are thought to possess
no direct use and can be considered a footprint of the active nonlinear amplifi-
cation mechanism with which we can gain further understanding of this process.

In the following chapter, we describe the biology of the cochlea, the mechanical
processing of sound stimuli, and the constituents of cochlear mechanics. Pure
tone stimuli elicit nonlinear traveling waves of the basilar membrane within the
cochlea. We discuss the physics of these waves related to the sound stimuli.
Furthermore, we describe active oscillators with which we later model the ver-
tical displacement of the basilar membrane within the cochlea. Additionally,
we put this work in context by presenting descriptions of nonlinear waves and
previously proposed cochlea models. Finally, we outline the structure of this
thesis, providing a guide for the subsequent chapters.

1.1 Biophysics of hearing

In this section, we describe the mechanics and the physiology of the human
auditory system, which contains a fluid-filled inner ear and is connected via
bones and membranes to the gas-filled outer environment. Moreover, we present
details about sound processing of the human inner ear on a mechanical level.
In particular, we describe amplification properties of the inner ear.
The experimental findings presented here are also valid for most mammals as
they resemble each other and share the key structure of the auditory system.
Note that, in general, structures and architecture of hearing organs vary broadly
between different animal classes and also between animals belonging to the same
class [86, 87]. However, the basic unit of sound detection is shared by virtually all
species: Hair cells act as mechanoelectrical transducers, converting mechanical
oscillations into ion flows and consequently into electrical currents which are
transmitted to afferent neurons.

1.1.1 Physiology of the cochlea and active amplification

The outer part of the ear is composed of the pinna, the concha and the ear
canal, see Fig. 1.1. The tympanum separates the outer ear from the middle ear,
which consists of a air-filled cavity containing three bones: Hammer, incus, and
stapes. These bones transmit vibrations of the tympanic membrane by means of
a lever-like motion to the oval window impinging on the inner ear. The middle
ear is separated from the inner ear by the oval and round window. The inner
ear of mammals is a fluid-filled duct, shaped like a snail shell and well encapsu-
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Figure 1.1: Overview of the ear. The ear is divided into outer, middle and
inner ear, separated by tympanum and oval window. The outer ear consists of
the pinna, the concha, and the ear canal. The air-filled middle ear comprises
three little bones - the ossicles: Incus, malleus, and stapes, which impinge
on the oval window. The Eustachian tube connects the middle ear with the
nasopharynx, the back of the nose and upper throat, thus equalizing the pressure
on both sides of the tympanum. The fluid-filled inner ear is encapsulated by
bone except for the areas of the oval and round window. It contains the organ
of balance and the cochlea, the organ of hearing. The vestibular and cochlear
nerve transmit electrical pulses to the brain. Graph reproduced with permission
of Palgrave Macmillan [5].

lated in one of the hardest bones of the human body, the temporal bone of the
skull. It contains the balance and hearing organ, the so-called cochlea, and is
connected to the outer world via the middle and outer ear.

The cochlea is a fluid-filled, coiled duct, resembling a snail’s shell, of about
10 mm height and 5mm width, and in the uncoiled state it possesses a length
of about 35 mm. The cochlea is divided into three chambers in longitudinal
direction, which are separated from each other via membranes, as depicted in
Fig. 1.2 and Fig. 1.3. Reissner’s membrane separates the upper chamber (scala
vestibuli) from the middle chamber (scala media), whereas the lower chamber
(scala tympani) and the middle chamber are separated by an elastic membrane
called basilar membrane (BM) - except for the apical end of the cochlea, where
the two channels are connected via a hole in the BM termed helicotrema. The
cross-sectional area of the cochlea decreases from base to apex. The upper and
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Figure 1.2: Cross section of the cochlea. The cochlea is divided into three
chambers which are separated by the basilar membrane and the Reissner’s mem-
brane. On top of the basilar membrane sits the organ of Corti including the
hair cells (marked in red) whose tips are connected to the overlying tectorial
membrane. Graph modified from [4].

lower chambers are filled with water-like fluid. In contrast, the middle cham-
ber contains a viscous fluid and several tissues: The organ of Corti, the BM
and the tectorial membrane. Due to the viscosity of the fluid in the middle
chamber, each cross section of the middle chamber moves essentially as one.
The organ of Corti is supported by the BM and contains the key elements of
hearing: The outer and inner hair cells together with their protrusions called
stereocilia, whose tips are connected to the tectorial membrane. Hair cells act as
mechanoelectrical transducers, converting mechanical deflections of stereocilia
into electrical currents by means of opening ion channels in the stereocilia [57].
The BM and organ of Corti are segmented in longitudinal direction, where each
segment contains one inner and three to five outer hair cells. Each of these
segments possesses a local best frequency that maximizes the response of the
section to external stimulation. This characteristic frequency varies along the
cochlea and decreases exponentially from base to apex, locating high eigenfre-
quencies near the base and low ones on the apical portion. The BM is rather
stiff and narrow near the apex and becomes relatively loose and wide near the
base.

Sound pressure waves coming from the outer environment enter the pinna, travel
through the ear canal and hit the tympanic membrane. From there the ossi-



5 CHAPTER 1. INTRODUCTION

Figure 1.3: Overview of the cochlea. The subgraphs show an increas-
ingly detailed image of the cochlea and its constituents. The graph in
the upper left corner is an overview of the whole ear. The graph in the middle of
the upper row shows the inner ear organ, which consists of the organ of balance
and the organ of hearing, together with the vestibular and auditory nerve. In
the upper right corner we see a cross section of the cochlear tube, consisting
of three chambers with tissues in the middle chamber. The lower right graph
depicts a detailed view of these tissues. The basilar membrane supports the
hair cells, which are arranged in four rows and whose tips make contact with
the tectorial membrane. The graph in the lower left corner displays the regular
arrangement of hair cells, organized into one row of inner hair cells and three (to
five) "V"- or "W"-shaped outer hair cells. Graph reproduced with permission
from [121].
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cles transduce the sound vibrations to the oval window, which impinges on the
cochlea. Motions of the oval window cause fluctuations in pressure difference
between the upper and lower chamber within the cochlea. Movements of the
oval window are compensated by opposite movements of the round window,
which is located in the lower chamber. In his famous experiments on human
cadaver cochleae, Békésy found that a sinusoidal tone elicits a traveling wave
on the BM traveling from base to apex [14]. Note that these traveling waves
are drastically slower than the sound velocity in water. Vertical oscillations of
the BM are directly associated with deflections of stereocilia. The direction of
deflections of the stereocilia is perpendicular to the longitudinal axis. Thus,
a segment of the BM moving up and down leads to a radial sliding motion
of the tectorial membrane relative to both the inner and outer hair cells, and
consequently to a deflection of the stereocilia. Hair cells are mechanoelectrical
transducers, i.e., deflections of the stereocilia result in electrical currents stim-
ulating neurons that are connected to the hair cells. Certain neurons transmit
the electrical signal to the neuronal pathway of hearing, finally leading to the
sensation of tone perception.

The BM typically contains 15000-16000 hair cells organized in four to six rows:
One row of inner hair cells and three to five rows of outer hair cells, with the
number of rows increasing towards the apex [116]. Hair cells are innervated
by both afferent neurons, which transmit signals towards the central nervous
system, and efferent neurons, which carry signals away from the central ner-
vous system. Signal transmission in and between connected neurons is achieved
by means of distinct action potentials, each of which is a rapid increase in the
electrical membrane potential, followed by a prompt decrease. Thus, action po-
tentials take the form of pulses and are often called spikes. The process of spike
emission is termed firing. The average number of spikes per unit time is known
as the firing rate.

Inner cells are considered to function mainly as detection units sending signals
to the brain. Outer hair cells are thought to function predominantly as ampli-
fication units. This is supported by the disparity regarding their innervation:
The majority of the slightly more than 30000 afferent neurons present in the
cochlea are associated with inner hair cells, whereas efferent neurons are mainly
connected to the outer hair cells. However, inner hair cells are sparsely inner-
vated by efferent neurons, and outer hair cells are sparsely innervated by afferent
neurons [66].

Each afferent neuron is connected to only one inner hair cell. There are about
ten afferent neurons which are connected to each individual inner hair cell.
These neurons are typically sensitive to different specific specific pressure am-
plitude ranges. Some neurons are receptive to small stimulus intensities; those
show a high spontaneous firing rate, and their response to stimuli saturates for
medium pressures. In contrast, other neurons show drastically higher pressure
thresholds. These neurons have a low spontaneous firing rate, and can exhibit
graded responses for stimuli even stronger than 100 decibel (this unit will be
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defined in subsection 1.1.3). At each location, the neurons are most susceptible
to the characteristic eigenfrequency of the corresponding BM part.
For low frequencies, the neurons fire once per period, whereas at higher stimulus
frequencies they fire once every few cycles. However, in both cases, neurons fire
at a specific phase of the oscillation for stimulus frequencies up to 4 kHz. This
gives rise to a rate coding of the frequency by the neurons. In conclusion, the
encoding of sound signals by afferent neurons in the cochlea takes place on a
spatial and temporal level, as well as by the individual response patterns of the
neurons, i.e., which of the neurons fire.

When Békésy performed his experiments, he was forced to stimulate the cochlea
strongly in order to be able to observe a response. This was due to limitations of
apparatus sensitivity, but also due to the postmortem state of the probes. How-
ever, it "turns out, you hear a lot better when you are alive" (Thomas Duke).
Indeed, it has been found that the alive, intact cochlea exhibits an active nonlin-
ear amplification of incoming pressure waves [63]. In particular, the response of
the BM to faint signals is substantially more pronounced than what is observed
in cadavers. This gave rise to the nowadays commonly accepted paradigm of
the ’cochlear amplifier’ - an active nonlinear amplification mechanism of the
BM response. Small stimuli are amplified, enabling the ear to detect very faint
sounds, whereas the amplitude of the BM motion in response to strong stimuli is
nonlinearly compressed. This active mechanism is essential for the astonishing
properties of the cochlea, outperforming any artificial sound detection system
by far, and compressing many orders of input magnitude in terms of sound pres-
sure level into few orders of magnitudes in output, i.e., magnitude of vertical
displacement of the BM. Signatures of this nonlinear process include the dis-
tortion product: For simultaneous stimulation with two frequencies f1 and f2

(f1 < f2), the cochlea exhibits a response at the stimulus frequencies but also at
a combination tone with frequency 2f1−f2. This would not hold true for a linear
system. However, the exact implementation of the physical mechanism and the
details of the interplay between its constituents currently remains under debate.

Hair cells display many features associated with this active mechanism, in par-
ticular the so-called active hair bundle motility. Hair bundles are not solely
passive antennas, but they can generate mechanical work and power deflections
of their tips. They exhibit nonlinear amplification, and the hair bundles of some
species such as the bull frog or turtle have been shown to frequently oscillate
spontaneously [36, 95, 29]. Mammalian hair cells possess the additional property
of electromotility, which describes the property of length change of the hair cell
in response to a change of the electrical field potential [23]. In the mammalian
cochlea, BM and hair cells are intimately related. Vertical movements of the
BM are directly related to deflections of stereocilia. Thus, active motion of the
BM could well be powered by active hair cells. These observations indicate that
hair cells play a vital role in the active nonlinear amplification process and are
a possible candidate for the generation of SOAEs.
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Figure 1.4: Threshold curves of intact young cochleae of a human and
a cat, plotted in dB as a function of frequency. For selected sound
sources such as rock concerts, gun shots, and road drill, the sound pressure level
is depicted. 120 dB mark the high risk threshold of damage of the auditory
system. The threshold of pain is located at 140 dB. For sounds from human
conversation, frequency and dynamic range are plotted. Graph reproduced with
permission of Palgrave Macmillan [5].

The range of sounds perceived by the human ear is both a function of fre-
quency and loudness, see Fig. 1.4. The human cochlea is most sensitive to
sounds with frequencies around 4 kHz, and becomes increasingly insensitive to
both higher and lower frequencies [5]. To be heard, sounds of low frequencies
have to be drastically more intense than sounds within the medium frequency
range. Note that the threshold curve (black line) is plotted for the range of
frequencies that corresponds to the range of characteristic frequencies found on
the BM. The threshold curve and perceived frequency range vary significantly
between individuals. High frequency thresholds rise with age.

1.1.2 Historical overview

Theories of hearing reach back to the time of ancient Egypt and Greece [40].
Due to a lack of experimental data, many theories about the nature of hearing
arose [164]. In his book ’Treatise of Man’, published in 1662, Descartes put
forward one of the first ideas of how hearing might function. He proposed that
auditory signals were solely encoded by both their amplitude and their specific
time trace of the individual sound. Two centuries later, important discoveries
in theory and experiments gave rise to novel approaches and models.
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Figure 1.5: Envelopes of traveling waves in the human post-mortem
cochlea elicited by pure tones. Envelopes of traveling waves in human
cadavers as a function of longitudinal position for three different stimulus fre-
quencies. The location of the base and the helicotrema are x = 0 and x = 35
mm, respectively. Adopted from [36], the graph is a reproduction from [15].

By the middle of the 19th century, the Fourier analysis was a well-established
technique, and a series of significant experimental investigations were carried
out revealing the microscopic structure of the mammalian inner ear [28, 30].
Employing these insights in 1863, H. von Helmholtz made a significant con-
tribution to the research field of hearing by introducing the resonance theory.
This framework describes the BM as a strip composed of transverse strings of
gradually changing eigenfrequencies, where incoming sound elicits a resonance
at a frequency-dependent position [55]. However, this model faced the central
problem that fluid damping does not allow for a sharp frequency resolution ob-
served in vivo.
Another substantial contribution was made in 1928. Békésy found in his pi-
oneering experiments from the late 1920s to the 1940s on human postmortem
cochleae, for which he earned the Nobel prize, that the cochlea exhibits traveling
waves in response to sinusoidal stimulation, see Fig. 1.5 [11, 12, 13, 14]. The
response of human cadaver ears to pure tone stimuli is displayed in Fig. 1.5.
We see that higher frequencies cause the traveling wave to peak closer to the
base. Note that the response is out of the physiological range which is of the
order of nanometers. In those experiments, the cochlea responded in a linear
manner to stimulation. In 1948, Zwislocki proposed a model, based on estab-
lished physical principles, which explained experimental evidence well and could
account for the linear cochlear responses including the traveling waves, taking
into account hydrodynamic interactions of the fluid [163, 164]. As a result, "in
the 1950s the function of the cochlea seemed to be understood" [165]. Note that
the model proposed by Zwislocki was linear, in accordance with experimental
data at that time. By the end of the 1960s, this view was severely challenged as
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contrary evidence arose due to novel observation techniques such as the Möss-
bauer technique. Experiments in 1967 revealed substantially sharper peaks for
the maxima of traveling waves in living guinea pigs than what had been ob-
served in experiments by Békésy [62]. Additionally, it was discovered that the
location of these maxima depends on the stimulus intensity. In the early 1970s,
the finding of increased sharpness was supported by experiments by Rhode on
squirrel monkeys, providing evidence for both the physiological vulnerability of
the BM and decreasing BM displacement amplitudes after death [127]. More-
over, he discovered that in living cochleae, the BM displacement growth as a
function of stimulus intensity exhibits a nonlinear compression [126].
Note that many invasive experiments, and all in living cochleae, are only per-
formed in non-human animals. However, cochleae of humans and other mam-
mals are structurally rather similar. Consequently, experimental findings con-
cerning one species can be inferred to hold true for other species such as humans
as well.
By the end of the 1960s, another important step was taken towards the current
understanding of cochlear mechanics: The discrepancy between the innervation
of inner and out hair cells was discovered. Connections from the cochlea and
afferent nerve fibers, which transmit nerve signals to the brain, are predomi-
nantly found to innervate inner hair cells, only 5-10% are connected to outer
hair cells [141, 142]. This lead to the question of the functional role of the outer
hair cells. In 1977, inner hair cells were found to be as sharply tuned as nerve
fibers [130], implying that no further filtering of the signal between the inner
hair cells and the afferent neurons was necessary.
In 1978, Kemp discovered otoacoustic emissions, i.e., sound emissions from the
cochlea, caused by external stimulation [67]. One year later, he observed that
these emissions are often present even in the absence of any external stimulation
[69], the spontaneous otoacoustic emissions were found. The gathered evidence
of these discoveries finally lead to the notion of active nonlinear cochlear me-
chanics, and it was commonly accepted that Békésy and Zwislocki had described
only the passive cochlea. Remarkably, an active process had been put forward
already at the end of the 1940s by Gold [50], proposing that the remedy for the
poor frequency resolution in the model by Helmholtz could be an active, elec-
tromechanical feedback mechanism, which in case of overcompensation might
lead to spontaneous emissions. Gold’s contribution was predominantly rejected
and discarded until his hypothesis, which resulted from theoretical considera-
tions, was found to be true by the experiments of Kemp 30 years later. An
important statistical aspect of spontaneous emissions was discovered in 1983:
Adjacent spontaneous emissions exhibit a preferred minimum distance of one
semitone, later confirmed by larger studies [135, 31, 131, 146].
In 1985, it was found that unlike inner hair cells, outer hair cells possess somatic
electromotility, meaning that their cell bodies change their length in response
to electrical stimulation, even up to rather high frequencies [23, 133, 6]. Fur-
thermore, Crawford and Fettiplace discovered that hair bundles can show spon-
taneous oscillations [29]. This led to the assumption that outer hair cells might
be responsible for electromechanical feedback and SOAEs. The observed activ-
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ity of the hair bundles was associated with the presence of myosin adaptation
motors [56, 76]. Footprints of active mechanics of the ear including SOAEs have
also been found in other species such as lizards, fruit flies, toadfishes, guinea
pigs, and barn owls. [52, 88, 122, 111, 149].
However, a detailed, exhaustive understanding of the exact biophysical mech-
anism giving rise to the active amplifications and SOAEs has still not been
reached. How nature achieves this, is currently under debate and is an active,
vital research topic in the field of the mechanics of hearing [7]. The question
of the interplay between somatic motility and active hair-bundle motility is an
example of a current subject of research [123, 124, 112].

1.1.3 Otoacoustic emissions - measures and models

In this section, we describe ways to quantify and determine otoacoustic emis-
sions. Furthermore, we present models of non-mammalian inner ears which aim
at describing spontaneous otoacoustic emissions.

In general, the Fourier transform of a variable y considered in a time inter-
val [0, T ] is henceforth denoted by " ỹ" and is defined as follows:

ỹ(f) =

∫ T

0

y(t)e−2πiftdt. (1.1)

The power spectrum of the time trace of y reads

Sy(f) =
ỹỹ∗

T
. (1.2)

From the mathematical point of view, these definitions suffice to analyze otoa-
coustic emissions.
A revolutionary finding was that the inner ear does not only receive acoustical
energy provided from the outer environment, but it also actively generates and
emits it [118]. These otoacoustic emissions become manifest in sounds detectable
in the ear canal either in the presence or, remarkably, even in the absence of
external stimuli. There is a variety of different otoacoustic emissions such as
stimulus frequency otoacoustic emissions (SFOAEs), which are evoked by pure
tones, click evoked otoacoustic emissions, which are transient responses to click
stimuli, and spontaneous otoacoustic emissions (SOAEs), which occur in ab-
sence of any external stimulation. Click evoked otoacoustic emissions, displayed
in Fig. 1.6 A-D, are nowadays routinely employed in hospitals as an noninva-
sive audiometric test of neonates, who cannot cooperate in conventional hearing
tests [70]. From the cochlear response to click stimuli, departures from intact
auditory function can be detected. Stimulus frequency otoacoustic emissions
measure the cyclo-stationary cochlear response to pure tones at the stimulus
frequency. They are of research interest as they exhibit interesting features
such as a regular variation of amplitude as a function of stimulation frequency.
Furthermore, they are connected to other types of otoacoustic emissions such
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Figure 1.6: Otoacoustic emission time trace examples of intact young
ears. For each graph A-G we see the pressure in the ear canal as a function of
post-stimulus time. A-D show four typical responses to click stimuli. E-G show
responses to an excitation with tone burst consisting of a sinusoidal stimulus of
cycles with frequencies of 800 Hz (E), 1100 Hz (F), and 1800 Hz (G). Graph
adopted from [67].

as SOAEs and to hearing thresholds. Fig. 1.6 E-F displays typical time traces
for tone bursts of sinusoidal stimuli of four cycles.
SOAEs, predicted by Gold in 1948 [50] and discovered by Kemp in 1979 [68],
are present in the majority of humans. However, they are not a necessary
consequence of normal hearing. Typical spectra of SOAEs, as shown in Fig. 1.7
A and B, exhibit a smooth background with discrete, well separated peaks on
top. Human SOAEs are remarkably stable. The amplitude of individual SOAEs
can vary, but the frequency remains rather stable over decades [47, 24].
In order to detect SOAEs, time traces of pressure fluctuations in the ear canal
are measured, and the resulting power spectra are computed. There is as yet
no consensus on the optimal detection criterion, as experiments face substan-
tial challenges and diverse noise sources such as line noise [146]. A frequently
employed criterion for a peak to count as an emission is that it rises 3 decibel
in sound pressure level (dB SPL) above the noise floor [131]. dB SPL or short
dB is a logarithmic, relative unit defined by the formula

L = 20 · log10 (P/Pref ) , (1.3)

where L is the level measured in dB, P is a pressure, and Pref is a reference
pressure, chosen to be 2 · 10−5 Pa. By definition, a signal has a sound pres-
sure level of 0 dB if the root mean square value of the signal is equal to Pref .
For a sinusoidal signal, the root mean square is given by the amplitude of the
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Figure 1.7: Example of experimental and model power spectra of pe. A,
B: Examples of experimental power spectra, with courtesy of Talmadge, panel
A published previously [146]. C, D: Upper panel: Typical power spectrum of
the model which we will introduce in chapter 4. Parameters corresponding to
tables 2.1, 3.1, 4.1. Lower panel: The corresponding bifurcation parameter ε(x),
which governs the oscillatory activity, plotted as a function of the eigenfrequency
f(x) = ω(x)/(2π). Red shaded areas indicate frequency regions where the
oscillators are active.

signal divided by
√

2. Equivalently, one can define L = 10 · log10 (S(f)/Sref ) ,
where S(f) is the power spectrum at frequency f , and Sref is a reference value
corresponding to the chosen Pref .
The logarithmic unit decibel corresponds well to human sound perception which
is also logarithmic. More precisely, psychoacoustics has shown that humans
perceive a multiplicative increase in sound amplitude as an additive rise in
subjective loudness.

Single SOAEs are narrow band emissions of sinusoidal form that can be well
described by a self-sustained oscillator subject to white noise [18, 145]. We con-
sider SOAEs as results of stochastic processes. In particular, values of individual
SOAE frequencies and distances between neighboring SOAEs are random, but
they both follow certain distributions and exhibit specific statistics. In the
following, we introduce some statistics of SOAEs, based on experiments by Tal-
madge, which he generously made available to us [146].
The distribution of the number of SOAEs per ear follows an exponential shape,
see Fig. 1.8 A. Up to 32 SOAEs per ear are reported. SOAEs can be detected
for up to 8000 Hz and exhibit a bimodal distribution with maxima at 1500 Hz
and 3000 Hz, see Fig. 1.8 B. There are extra-cochlear noise sources possibly
leading to peaks in the power spectrum of the pressure in the ear canal. How-
ever, those noise sources, such as respiration, cardiovascular activity or muscle
contractions are of frequencies below 500 Hz. As SOAEs are observed in order to
study spontaneous cochlear activity, emissions are considered to be SOAEs only
for frequencies above 500 Hz, for which physiological sources can be excluded.
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Figure 1.8: Statistics of SOAE frequency, number of SOAEs per
cochlea, and inter-emission frequency intervals in experiment. Data
shown for 152 individual ears in experiment, kindly provided by Talmadge [146].
A: Histogram of SOAE number per cochlea. The average number of SOAEs per
cochlea is about 3.9, equivalent to a total count of 588 emissions. B: Count his-
tograms of emission frequency detected. C: Inverse relative frequency intervals
f̄

∆f =
√
f1f2

|f2−f1| , where f1 and f2 are frequencies of two adjacent emissions in the
spectrum. D: Histogram of relative frequency intervals, given in units of Cent
for the same data as in C.

Neighboring SOAEs are not arbitrarily close but possess a regular preferred
minimal spacing of roughly one semitone [20]. Two measures of the frequency
distance are of particular interest: For two neighboring frequencies f2 > f1, the
inverse relative interval is given by

f̄/∆f =
√
f1f2/|f2 − f1|. (1.4)

Expressing the relative distance in units of Cent, we define

I(f2, f1) = 1200 · log2(f2/f1). (1.5)

The minimal spacing of one-halftone corresponds to exactly 100 Cent and to a
value of f̄/∆f ≈ 17. The scatterplot of the inverse relative interval as a function
of the mean frequency

√
f1f2 shows a trend from lower values towards higher

inverse relative interval values, see Fig. 1.8 C. In Fig. 1.8 D we see the histogram
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of the same data as in C, measured in units of Cent. It exhibits a pronounced
maximum at 100 Cent and few values smaller than 50 Cent or greater than 200
Cent. Note that both interval measures were employed previously to charac-
terize SOAEs [131, 19, 137]. In chapter 4, we will discuss distances between
neighboring emissions in more detail.
The investigation of SOAEs serves as a window through which we can try to
gain a further understanding of cochlear mechanics. An understanding of these
statistics of SOAEs might shed light on the process of SOAE generation and
thus on the cochlear amplifier itself. In chapter 4 we will present a model which
incorporates longitudinal coupling and irregularities in the local activity of the
individual BM segments. Fitting free parameters associated to the coupling and
the irregularities, the model exhibits spontaneous emissions and can account for
the above mentioned statistics of SOAEs.

Interestingly, the intriguing finding of a preferred minimal distance between
neighboring SOAEs is not solely observable in humans or other mammals:
Amongst others species, lizards’ inner ears have been found to exhibit such
a characteristic spacing as well, together with very robust SOAEs, despite the
fact that their inner ear anatomy is strikingly different from mammals’ [74]. In
particular, the lizard’s inner ear organ lacks a frequency-selective BM traveling
wave [85, 73, 89, 16], which is a requirement in some model for mammalian
SOAEs [161].
Vilfan & Duke [152] described SOAEs and the regular spacing between neigh-
boring SOAEs in lizards by means of longitudinal coupling. In their model, the
lizard’s inner ear is represented by a chain of Hopf oscillators in the oscillatory
regime with a gradually changing eigenfrequency. They were able to show that
either purely dissipative or a combination of predominantly elastic plus small
dissipative next-nearest neighbor coupling can lead to frequency clustering of
the oscillators. Put differently, the chain of oscillators is separated into several
groups of oscillators, where all oscillators within one group oscillate with the
same frequency. In the following, we refer to these groups as clusters. Clustering
leads to a finite number of separated peaks in the power spectrum. The fre-
quency differences between the peaks in the power spectrum correspond to the
frequency differences of the average frequencies between the different clusters.
Thus, frequency clustering leads to distinct emissions with characteristic inter-
emission intervals, thus providing a possible explanation for the characteristic
spacing of SOAEs. This idea was employed by H.P. Wit and P. van Dijk to de-
scribe a small segment of the mammalian cochlea, coupled only longitudinally,
thus neglecting any hydrodynamical interactions [158]. It was shown that this
coupling can lead to a spacing of one semitone, as it is observed in humans. We
will employ and explain this idea in more detail in chapter 4.

Note that while lizards are the most prominent example of non-mammalian
SOAE producing species, there are other species such as mosquitos who also ex-
hibit spontaneous oscillations of hair cells. The hearing organ of the mosquito
species Toxorhynchites brevipalpis involves only one single antenna. The dy-
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namics of the antenna was modeled by D. Avitabile et al. [8], representing it by
a stiff rod and describing its deflection by a harmonic oscillator which is coupled
to a set of active threads that power oscillations of the antenna. The model can
account for key characteristics of antenna dynamics including nonlinear ampli-
fication and spontaneous oscillations.

1.2 The physics of waves
Waves are a ubiquitous phenomenon, observable as water waves, electromag-
netic waves such as light, vibrating strings, pressure waves in the air, traveling
cochlear waves, and many more. One way to classify theories of waves is by
making the distinction between linear and nonlinear waves. In this section, we
describe linear waves in one dimension, as we will treat cochlear hydrodynam-
ics in this way in the consecutive chapter. We present a method of solution,
the WKB method, which captures passive cochlear waves well. Furthermore,
we introduce theoretical descriptions of nonlinear waves to put our model of
nonlinear cochlear waves into context. Finally, we present experimental data,
providing evidence that cochlear waves are indeed nonlinear.
Note that we do not define waves or wave equations as there is no consensus in
the literature. Consequently, diverse definitions exist, many of which exclude
certain interesting cases that are considered to be waves.

1.2.1 Linear wave propagation in one dimension
Although in nature most waves are in fact nonlinear, many can be approximated
well by means of linear theories, for instance vibrations of strings, electromag-
netic radiation in linear media, or acoustic waves of small amplitude. Linear
waves are described by linear wave equations, which possess the convenient prop-
erty that arbitrary superpositions of solutions are again solutions of the same
equation. Thus, complex solutions can be decomposed into simple components,
for instance by means of Fourier analysis.
For an observable z, the prototype of the one-dimensional wave equation is given
by the partial differential equation

∂2
t z = c2∂2

xz. (1.6)

Here and in the following, ∂t and ∂x denote the partial derivative with respect
to position x and time t, respectively. The quantity c represents the (local) wave
propagation velocity, which can be verified below by the form of the solutions
of this equation: For constant c the two independent solutions are given by
f(x− ct) and g(x+ ct) for arbitrary two-times differentiable functions f, g. The
two solutions represent forwards and backwards traveling waves, respectively.
Standing waves are defined by the property that they can be separated into a
space- and time-dependent part, i.e., f(x, t) = f1(x)f2(t).
Note that c is not necessarily a constant but for instance could be dependent on
the location. The hydrodynamic interaction within the cochlea, presented later
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in section 2.1, is described by an equation as above with a position-dependent
c(x). Finding an exact analytical solution for such a space-dependent c(x) can
be intricate. One possible and often surprisingly good approximation is the
Wentzel-Kramers-Brillouin (WKB) method, which approximates solutions of
linear differential equations whose highest order derivative is multiplied by a
small parameter. In order to apply the WKB method to the equation above,
we apply the Fourier transformation to Eq. (1.6) with a space-dependent c(x):

−ω2z̃ = c(x)2 d

dx
z̃. (1.7)

By defining Q(x) = 1/
√
c(x) and ε = i/ω, the equation above, which is a linear,

homogeneous ordinary differential equation of second order, can be written as

ε2
d2z

dx2
= Q(x)z. (1.8)

The assumptions for the WKB method to work are that ε is small, and Q(x) 6= 0.
Writing z as a power of a small quantity, the WKB method gives in first order
the approximation [10]

z(x) ≈ Q(x)−1/4
(
C1e

γ(x) + C2e
−γ(x)

)
, γ(x) =

1

ε

∫ x

x0

Q(x′)1/2dx′, (1.9)

where C1, C2 are two constants. This is the approximation of the solution of
the wave equation (1.6) with space-dependent c(x) and for a single frequency ω
under consideration. For Q(x) > 0 and ε purely imaginary, the solution above
is written as sum of the forward and reverse traveling wave. The first order
approximation does not include reflections except for at the boundaries. Note
that even for cases where ε is not small, the WKB method can yield surprisingly
accurate results. It can be used for solving the linear wave equation, as was done
in case of the cochlea [41]. Note that the WKB method is a valid approximation
for regions outside the nonlinear resonance.

1.2.2 Nonlinear waves
Nonlinear waves are described by nonlinear wave equations, implying that the
superposition principle does not hold in general. This may lead to emergent
structures and makes the finding of solutions considerably more intricate. How-
ever, nonlinear wave equations are of great significance as they are employed in
many branches of physics to describe numerous nonlinear phenomena, such as
earthquakes, traffic flows, shock waves, solitons, or traveling waves in healthy,
living cochleae. In the following, we introduce a selection of the broad range of
nonlinear wave equation types, all of which come in diverse variants.

A prominent example for a nonlinear wave equation describing solitary wa-
ter waves [134] is given by the Korteweg-de Vries equation, whose canonical,
nondimensional form reads

∂th+ ∂3
xh+ 6h∂xh = 0. (1.10)
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One analytical solution takes the form

h(x, t) =
c

2
sech2

(√
c

2
(x− ct− x0)

)
, (1.11)

describing a wave propagating along the x-direction with velocity c, where x0

is an arbitrary constant. The Korteweg-de Vries equation, developed in 1895,
can successfully describe experiments such as the first reported observation of
solitons (and its succeeding studies) by Russell in 1834, who observed a solitary
wave traveling along a canal. One of the predictions of the Korteweg-de Vries
system is that higher waves travel faster, visible in the dimensionless solution
above as the height is given by half its velocity. This is in accordance with ex-
perimental observations by Russell. Although the Korteweg-de Vries equation
was mostly forgotten, it was rediscovered decades later in a different context:
It was derived as the continuum limit of the Fermi-Pasta-Ulam system model-
ing both nonlinear beaded strings and one-dimensional crystals. Furthermore,
Korteweg-de Vries type equations are applied in plasma physics and for the
description of shock waves [151].
The Boussinesq equation, a typical variant of which reads

∂2
t h− ∂2

xh+ 3h∂2
xh+ α∂4

xh = 0, (1.12)

admits the solution [1]

h(x, t) =
1

6

(
1 + 8k2 − c2

)
− 2k2 tanh2 (k (x+ ct)) , (1.13)

where k and c denote the wavenumber and speed, respectively. The Boussinesq
equation is applied to describe similar phenomena as the Korteweg-de Vries
equation and can be employed to model surface motion of shallow water waves
including tsunamis, which can be considered waves in shallow water due to their
long wavelength compared to the ocean depth.

Another major example of a nonlinear partial differential equation is given by
the FitzHugh-Nagumo equation, which is a simplified version of the Hodgkin-
Huxley model for the axon membrane potential dynamics in a spiking neuron.
The FitzHugh-Nagumo equation is known to describe traveling wave fronts in
excitable media such as nerve fibers [53]. The related Nagumo equation

∂th = D∂2
xh+ h(1− h)(h− a), (1.14)

where a ∈ [0, 1], and D > 0, exhibits the analytical traveling wave solution

h(x, t) =

(
1 + exp

[
x/
√

2D + t

(
a− 1

2

)])−1

. (1.15)

The Nagumo equation is a model for active pulse transmission, employed amongst
others in circuit theory and in biology [26].
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Lastly, we present the Swift-Hohenberg equation, which is widely used in mod-
ern science to describe pattern formation in both simple and complex fluids,
neural tissues, optical physics, etc. One variant including dispersion is given by
the equation [79]

∂th+ 2∂2
xh+ ∂4

xh− σ∂3
xh = αh+ βh2 − γh3 (1.16)

for parameters σ, α, β and γ. It was found that in case of σ 6= 0 there exist
(non-stationary) traveling waves. Furthermore, variants of the Swift-Hohenberg
equation were shown to admit soliton solutions as well [96].

Turning towards cochlear waves, h henceforth denotes the vertical displacement
of the BM. The wave equation for h, which we employ in this thesis for the
description of nonlinear cochlear waves, can be written as

∂2
t h = ∂2

x

[
γ1∂tz + γ2z + γ3∂

2
xz + γ4|z|2z

]
, (1.17)

where z is a complex variable with real part h, and γ1, γ2, γ3, γ4 are complex
parameters. The values of γ1, γ2 and γ3 are constant, in contrast to the space-
dependent coefficient γ2 which leads to a space-dependent traveling wave propa-
gation velocity. The equation above arises from a linear hydrodynamic equation,
which relates the pressure within the cochlea to the vertical BM deflection h, in
combination with longitudinal coupling and nonlinear local oscillator dynamics
describing the motion of a single element given by the Hopf normal form, where
the single element represents a small segment of the BM. No analytic solution
is known for this equation or its frequency domain representation, even in the
linear case with γ4 = 0. In this thesis, the equation is solved numerically in the
presence of dynamical white Gaussian noise. Note that the formulation of the
equation above is not optimal for the numerical integration. Thus, we choose a
different form, which will be described in chapter 2.

From the experimental data displayed in Fig. 1.9 A, one can conclude that
cochlear waves are indeed nonlinear as the superposition principle does not hold
true. Envelopes of traveling waves in the living guinea pig cochlea are shown,
caused by pure tone stimulations of 15 kHz and various strengths ranging from
15 to 100 dB. The relation between input and BM displacement is approximately
linear near the base, corresponding to small x values. In contrast, for locations
in the vicinity of the characteristic frequency corresponding to the peak region
of the waves, a sublinear growth of the maximal displacement as a function
of stimulus intensity is visible. This indicates a compressive nonlinearity. It
is evident that the waves alter their shape and become broader for increasing
input amplitudes. Note that, in general, maxima also shift to the basal part for
stronger stimuli.
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Figure 1.9: Pure tone responses of the guinea pig cochlea. A: The BM
displacement for pure tones of f = 15 kHz with different stimulus strengths is
plotted as a function of position along the cochlea in living guinea pigs [132].
The second horizontal axis denotes the best frequency of the location of the BM
associated with its position. B: The effect of death on the cochlear response to
pure tones. The black solid curves denote the magnitude of the response of the
cochlea presented as isovelocity mechanical tuning curve for a fixed portion of
the BM as a function of stimulus frequency, i.e., the magnitude of the stapes
velocity is plotted for which the considered portion of the BM, which is located
in the basal turn, oscillates with a velocity of 50 µm/s for varied frequencies.
The solid lines denote the magnitude of the response of the living and dead
cochlea, respectively. The dashed lines indicate the phase of the BM response
relative to the stapes. Data from [109], presented in the reprinted version of
[129].

Fig. 1.9 B illustrates the difference between the ante- and post-mortem organ.
Isovelocity curves for a specific portion of the cochlea are plotted as a function
of driving frequency. The graph shows the velocity with which the stapes have
to be driven to attain a fixed BM velocity of 50 µm/s for the BM part under
consideration. The solid lines denote the magnitude of the stapes velocity, and
the dashed lines represent the phase of the BM oscillation relative to the stapes.
Both lines are given for both the living and dead specimen. It is apparent
that in the post-mortem state, the cochlea must be driven significantly stronger
to elicit the same velocity response, indicating that the active amplification
mechanism has deteriorated or vanished. The relative phase of BM and stapes
seems basically unaffected by death.

1.3 Active oscillators

In this section, we describe properties of active oscillators and transitions lead-
ing to self-sustained oscillations. Active oscillators are highly relevant in the
field of mechanics of hearing, as both hair bundle and BM dynamics have been
well captured in the framework of active oscillators. We also employ active os-
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cillators as vital elements in the model of SOAEs which we present in this thesis.

Dynamical systems with an observable x(t) can exhibit qualitatively very dif-
ferent dynamics. Active oscillators are physical systems that possess a power
source, which enables them to overcome damping and to oscillate spontaneously.
Thus, active oscillators can exhibit self-sustained spontaneous oscillations, fi-
nally arriving at a cyclo-stationary state, which makes them qualitatively dif-
ferent from passive oscillators whose amplitude of oscillations decay over time in
presence of damping [42]. Active oscillators can be used to describe persistent
oscillations in the absence of external periodic stimulation, such as the heart
beat, circadian rhythms, oscillating chemical reactions, and spontaneously os-
cillating hair bundles [144, 114]. Physical realizations of active oscillators can
be constructed for instance by including nonlinear damping (the van der Pol
oscillator is a prominent example for such an oscillator), nonlinear stiffness, or
time-delayed feedback [42].

Suppose a dynamical system can be described by a single control parameter C
which governs the internal state of the system. A continuous variation of this
parameter may lead to abrupt qualitative changes of the dynamical system. If
by variation of C, fixed points of the dynamical system vanish, emerge or lose
their stability, these qualitative changes are termed bifurcations. The values of
C at which they occur are called bifurcation points. A particularly interesting
case arises if an oscillator is passive for control parameter values C < Ccrit and
active for C > Ccrit, where Ccrit is the critical value. This will be discussed in
the following subsection.

1.3.1 Hopf bifurcation

Consider a two-dimensional dynamical system with a stable fixed point to which
the perturbed systems returns by means of exponentially damped oscillations.
The stability of the fixed point is equivalent to negative real parts of both eigen-
values of the system’s Jacobian. If for a variation of C, both eigenvalues cross
the imaginary axis simultaneously into the right half of the complex plane at a
critical parameter value Ccrit, the system is said to undergo a Hopf bifurcation.
Thus, the fixed point loses its stability. If by transversing the critical point a
stable limit cycle arises, the bifurcation is termed supercritical Hopf bifurcation
[144]. In the following, we focus only on this case, and we will refer to it as
Hopf bifurcation. However, note that there is also a subcritical Hopf bifurca-
tion. To summarize, a Hopf bifurcation is given if a fixed point of a dynamical
system loses stability and gives birth to a limit cycle, with the dynamical system
undergoing a transition from a passive to an active oscillator.

It can be shown that regardless of the specific details of the dynamical system, all
systems in the proximity of a Hopf bifurcation share certain generic properties
which are due to the characteristics of this bifurcation.
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Figure 1.10: Average size of spontaneous limit cycle oscillations in vicin-
ity of a supercritical Hopf bifurcation as function of the control pa-
rameter C. Sketch of the average displacement of an oscillator in the (cyclo-
)stationary state near a supercritical Hopf bifurcation, plotted as a function of
the control parameter C. Ccrit is the critical point. For values C < Ccrit, the
system is stable and a perturbed system returns to its equilibrium. In the oscil-
latory regime, C > Ccrit, the equilibrium becomes unstable and the perturbed
system performs limit cycle oscillations of amplitude |x1| ∼

√
C − Ccrit.

For an arbitrary system close to a Hopf bifurcation with state variable x(t) =∑
n∈N xne

inωt, the response to a periodic driving f(t) = f1e
iωt + f−1e

−iωt in
the cyclo-stationary state can be approximated as

f1 = Ax1 + B|x1|2x1, (1.18)

where A and B are complex coefficients depending on ω and the control parame-
ter [25]. Note that no quadratic terms are present. If the system is at its critical
point and is driven with its resonance frequency, the linear terms vanishes, i.e.,
A = 0 holds.
After a possibly nonlinear transformation of variables, each system can be de-
scribed by the so-called Hopf normal form

dz

dt
= (ε+ iω0)z + (a+ ib)|z|2z +O(|z|5), (1.19)

where z is the complex state variable, ε is the bifurcation parameter, which
determines the stability of the system, and a, b are real coefficients [157]. Note
that we consider only the supercritical Hopf bifurcation. In the subcritical case,
there would be a term of 5th order that might be non-negligible. For the above
equation, ε = 0 is the critical point. For ε < 0 the system behaves as a passive
oscillator with a stable fixed point at the origin, and oscillations decay with the
rate |ε|. For ε > 0 the fixed point becomes unstable, and the system becomes
an active oscillator exhibiting limit-cycle oscillations, see Fig. 1.10. Of special
interest is the case of the system posed exactly at ε = 0, where the oscillator is
termed critical and exhibits a pronounced nonlinear behavior.
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Figure 1.11: Spontaneous power spectra of the noisy Hopf oscillator.
Spontaneous power spectra of the real part of z of the Hopf oscillator driven
by white noise for medium noise strength d = 0.025 obtained by simulation
(red line) and theoretical predictions (blue line), and for weak noise strength
d = 0.01 (simulation result represented by black line, theoretical prediction
marked green). The medium and weak noise lead to peak widths ∆ω1 = 0.02 Hz
and ∆ω2 = 0.05 Hz, respectively. The corresponding quality factors are Q1 = 50
and Q2 = 20, respectively. Parameter values are given by ε = 1, ω0 = 1, a = −1,
and b = 0. The theoretical calculations are according to Eq. (1.21).

Applications of the Hopf oscillator include the description of hair bundle dy-
namics, which we discuss in more detail in the next section [35, 93, 94, 114].
Furthermore, the mammalian hearing system shares many key features with a
system close to a Hopf bifurcation, such as a sharp frequency selectivity, an
extreme sensitivity detecting small signals, and a wide dynamic range [25, 41].

1.3.2 Noisy oscillators

In this subsection, we turn towards the interesting case of the normal form en-
dowed with a noise source. We investigate the Hopf oscillator subject to additive
white noise, which we will use later in this thesis to model the dynamics of the
BM subject to diverse noise sources.

The equation for the dynamics of a single stochastic Hopf oscillator in the time
domain subject to additive white Gaussian noise reads

dz

dt
= (ε+ iω0)z + (a+ ib)|z|2z + ξ, (1.20)

where the strength of the noise ξ is given by d. The dynamics of the stochas-
tic Hopf oscillator can be well captured by a theoretical description under the
condition of weak noise [54, 65].
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In the oscillatory regime, i.e. for ε > 0, and for a purely real nonlinearity by
setting b = 0, the power spectrum of the real part of z is a Lorentzian and can
be approximated by

S(ω) =
ε2

2da2

(
1 +

ε2

d2a2
(ω0 − ω)2

)−1

. (1.21)

It is apparent from the formula that the noise intensity d and the bifurcation
parameter ε shape the power spectrum. An increase in ε results in a more
pronounced peak in the power spectrum, whereas for stronger d the maximal
value of the peak decreases and the peak broadens, see Fig. 1.11. Note that
the integral over the peak, i.e., the power of the emission, is independent of the
noise intensity.
For a peak in the power spectrum, the quality factor Q is defined to be the ratio
of its center frequency and its full width at the half-maximum magnitude, i.e.,
Q = ω

∆ω , and in the theoretical approximation we have Q = ωε/(2d|a|). Thus,
the formula predicts an inverse proportionality of noise strength and quality
factor, which corresponds well to simulation results, see Fig. 1.11.
Hair bundle dynamics can be well described in the framework of stochastic
Hopf oscillators [80, 101, 102]. The active regime of the Hopf oscillator describes
spontaneously oscillating hair bundles which in case of the bull frog are observed
frequently. The stochasticity stems from various sources such as thermal motion
of the surrounding fluid, stochastic opening and closing of ion channels, and
stochasticity due to internal myosin motors, which have also been associated
with the activity of the hair bundle [36, 101].
Studies have shown that hair bundles contribute significantly to our ability
to hear and are thought to be a key component. However, their mechanical
response properties, in particular the gain, are worse than what is observed for
the entire auditory organ in experiments. This might be due to the noise hair
bundles are exposed to. The question is how the ear achieves its performance
despite a limited performance of its single constituents. It turns out that elastic
coupling of hair bundles might reduce the influence of noise. Indeed, it was
shown coupling of hair-bundle models leads to an effective noise reduction [36].
Furthermore, for Hopf oscillators exposed to noise, a reduction of noise leads to
improved amplification properties.

1.4 Models of the mammalian cochlea
In this section, we discuss a selection of models describing mammalian cochleae
in order to place the model of this thesis in context. We outline both linear and
nonlinear models, focusing on one-dimensional models. In particular, we present
models which can account for spontaneous activity of the cochlea resulting in
SOAEs.

The mammalian cochlea is the subject of extensive research and has been de-
scribed by numerous structurally different models. The scale of complexity of



25 CHAPTER 1. INTRODUCTION

the models varies significantly: Some models aim at describing the cochlea as
realistically as possible, using a three-dimensional representation of the cochlear
geometry, for instance models developed by the group of Karl Grosh [99]. Others
prefer to use a slight reduction of complexity and use two-dimensional repre-
sentations. Many models use a one dimensional hydrodynamic approach which
is able to capture essential characteristics of cochlea behavior (which is related
to their property of the so-called critical layer absorption [81, 2]). Here, dimen-
sionality is understood to apply to the description of the pressure within the
cochlea. Put differently, in a one-dimensional hydrodynamic representation, the
pressure within a cross section of the cochlea is uniform.

1.4.1 Linear models

Prior to the early 1970s, the mechanics of the cochlea was believed to be linear.
Consequently, early models were linear as well. This includes one of the first
significant contributions to this field, the theory of local resonators suggested by
Helmholtz in 1863 [55]. He introduced a model with a tonotopic structure, i.e.,
an exponential position-best frequency map acting as a form of spatial Fourier
transform. In a nutshell, Helmholtz neglected hydrodynamic interactions, which
arise due to the fluid motion, and he described the BM as a strip composed of
parallel transverse fibers which can passively resonate with a gradually changing
frequency along the BM in response to sound stimulation. Assuming negligible
tension in longitudinal direction, Helmholtz’ theory of the cochlea is described
by a chain of harmonic oscillators with varying eigenfrequencies.
At the end of the 1940s, Zwislocki developed a model which was the first
to account for the body of empirical evidence present at that time, provided
mainly by experiments carried out by Békésy [163, 164, 11, 12, 13]. Zwislocki’s
one-dimensional model included equations resulting from hydrodynamic inter-
actions, which amongst others employed force balance and conservation of fluid
volume. These equations governing hydrodynamics are still widely used in one-
dimensional models up to date. Assuming a linear relation between the pressure
difference (between the upper and lower chamber) and the vertical BM deflec-
tion governed by an exponentially varying stiffness, the model can account for
traveling waves in response to periodic stimulation.
Since the discovery of the inherent nonlinearity of the living, intact cochlea at
the end of the 1960s, linear models or linear variants of models serve mainly
the purpose of eliciting certain functioning principles or are designed to describe
cochlear function for small stimulus amplitudes, rather than explaining the en-
tire cochlear mechanics.
In 1993, Mammano and Nobili represented the cochlea by means of a one-
dimensional linear model in the frequency domain, describing the BM as a con-
tinuum. In their model, the BM dynamics of a small BM segment is modeled by
a harmonic oscillator with shearing resistance, driven by forces which describe
the actions generated by the motion of both the stapes and the entire organ
of Corti. These forces are transferred simultaneously by the fluid to the BM
[84]. Longitudinal elastic coupling is neglected in this model. In the first part
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of the paper, the cochlea is described by means of a passive model with damped
oscillators as described above. An active version of the model is also presented.
It is an extension of the passive model, introducing an undamping term which
stems from outer hair cell considerations and does not overcompensate for the
present damping. The model can account for traveling waves and describes the
cochlear response to pure tone stimulations with low pressure. However, it can-
not account for nonlinearities, for instance those being present at stimulations
with higher intensities.
In 2003, Wen and Boahen introduced a two-dimensional linear cochlear model
with active bidirectional coupling [155]. The model also takes into account
active forces generated by the outer hair cells. The bidirectional longitudinal
coupling, through which each segment receives feedback and feedforward, is jus-
tified by the presence of specific architectural components observed in the organ
of Corti, namely Deiter’s cells and phalangeal processes, connecting neighboring
segments in longitudinal direction. The model can account for a large ampli-
fication and a sharp tuning. However, it is yet unclear if these physiological
structures serve the function they are used for in the model.

1.4.2 Nonlinear models

The class of nonlinear models is quite large, containing a broad range of dif-
ferent approaches. Here, we present a selection of different important models,
focusing mainly on one-dimensional frameworks, to put the description which
we propose in this thesis into context.

In the 1990s, Talmadge and collaborators proposed an active nonlinear model
in the time domain, which employs a one-dimensional approach [147, 148].
Time-delayed stiffness plus inhomogeneities in the frequency gradient along the
cochlea is the mechanism which is used to account for SOAEs. The BM is
modeled as a one-dimensional chain of van der Pol-type oscillators which are
equipped with time-delayed stiffness [160] and coupled to their neighbors via
hydrodynamic interactions. The time-delayed stiffness in this model comes in
combination of a slow and fast time delay, where the latter acts as power source
by effectively introducing negative damping. A passive harmonic oscillator is
placed at the basal end to describe the middle ear. The two model types pre-
sented in the two papers [147, 148] differ slightly but share the main features.
This model can produce SOAEs. The model variant in [147] is reported to ex-
hibit a spacing distribution with a maximum at one semitone, as observed in
humans. However, no statistics are shown. Although the system was observed
to reach a steady state, SOAE were not necessarily reaching a stable emission
frequency. Note that it cannot be determined where SOAEs occur in this model
before the simulation is carried out.
A similar approach was taken by Epp et al. [45], which is based amongst others
on the model above [97, 148]. Epp et al. described the cochlea by means of a
one-dimensional model in the time domain, where the local oscillator dynamics
are determined by a differential equation corresponding to a harmonic oscilla-
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tor with a specific, partially negative, damping profile and a delayed feedback
stiffness. The model can account for different aspects of otoacoustic emissions
including SOAEs and their regular spacings of roughly 100 Cent equivalent to
one semitone. However, no statistics of the emissions were computed.
Duifhuis described the cochlea by a one-dimensional model consisting of a chain
of hydrodynamically coupled van der Pol or van der Pol-type oscillators with
specific damping functions [40]. This setup might be able to account for SOAEs.
However, SOAEs of the model are not presented [40].
In 2003, Kern proposed a one-dimensional model of the cochlea using coupled
Hopf oscillators in the stable regime as basic units to describe cochlear dynamics
and BM responses. The hydrodynamics are described by means of equations
resulting from water surface wave and energy density considerations [72]. Ex-
tensions of this model are also considered, including active oscillators equipped
with a feedforward mechanism [71]. Although this model might be able to ac-
count for SOAEs, they are not examined in this work.
A model of a small section of the cochlea was considered by Wit and van Dijk
[158] to explain the preferred distance of SOAEs in humans. They described a
small portion of the BM by a chain of Hopf oscillators coupled solely by means
of dissipative and elastic coupling, thus neglecting hydrodynamic interactions
and employing the idea presented by Vilfan and Duke [152]. They were able to
show that longitudinal coupling can lead to cluster formation, where oscillators
within one cluster oscillate with a common frequency, which results in a minimal
distance between neighboring SOAEs.
Another one-dimensional model of the cochlea, describing it also by means of a
chain of Hopf oscillators, was developed by Liu et al. [82]. The chosen setup is
similar to the one presented by Vilfan and Duke. However, oscillators are cou-
pled in a solely dissipative manner, thus neglecting hydrodynamic interactions.
Responses to pure tone stimulation are presented where the stimulus acts in the
same manner on each individual oscillator. The case of SOAEs is not consid-
ered. The assumption of considering only dissipative coupling and neglecting
elastic coupling and hydrodynamic interaction seems controversial. Moreover,
the global action of the stimulus does not correspond to experiments, where the
stimulation only acts via the oval window.
In 2006, Wen extended the linear model outlined in the previous section, intro-
ducing a nonlinearity by incorporating a saturating outer hair cell force [156].
It was hereby assumed that this is the main source of the cochlear nonlinearity.
The model responses are comparable to experimental data.

A two-dimensional model of the cochlea in the frequency domain was put for-
ward Neely and Kim [106, 107], modeling local dynamics of each segment of the
cochlea by means of two degrees of freedom. Put differently, cochlear micro-
mechanics are described by an array of mass-spring-damper systems, where one
mass represents the tectorial membrane, and the other mass models the BM.
The two masses are connected to rigid walls and to each other via springs and
dampers, as sketched in Fig. 1.12. The active mechanism is incorporated by
including a feedback loop with an active pressure source acting on the second
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Figure 1.12: Sketch of the cochlear micro-mechanics model with two
degrees of freedom. The graph depicts the micro-mechanical description
which was employed by Neely, Kim, Elliott, Ku, and Lineton. Two masses
M1,M2 with vertical coordinates x1, x2 are connected to rigid walls and to each
other by means of springs and dampers, indicated by Ki and Ci, respectively
(i = 1, 2, 3). The tectorial membrane and the BM are represented by M1 and
M2, respectively. The system contains a feedback loop of strength γ, imple-
mented by means of an active pressure source Pa. The BM, i.e.M1, is driven by
Pa and Pd, the pressure difference between the scala tympani and scala vestibuli.
Graph adopted from [44].

mass. The BM is driven by both the active pressure and the pressure difference
between the upper and lower chamber of the BM. Note that many parameters
are fitted to match measured responses [106]. The macro-mechanics are de-
scribed by the hydrodynamic equation put forward in earlier models [164, 81].
The parameters of this model were adjusted to describe the cat cochlea for which
there was more experimental data available.
Later the model was formulated in the time domain, and parameters were ad-
justed to describe the human cochlea [44, 77, 78]. Ku, Elliott and Lineton
employed the idea of Neely and Kim to obtain statistics of SOAEs [77, 78]. For
a model variant without stabilizing nonlinearity, instabilities were introduced
by static inhomogeneities in the feedback gain along the cochlea. Statistics
of the resulting instabilities were investigated. More precisely, histograms of
frequencies of occurring instabilities and relative frequency differences between
neighboring instabilities were calculated. The model can account for the pre-
ferred minimal distance of

√
f1f2/|f2 − f1| ≈ 15, given two neighboring SOAEs

at frequencies f1 and f2, observed in experiments. The frequencies of instabili-
ties of the model range from 1 or 2 up to 20 kHz in contrast to a restricted range
of 0.5 to 6 or 8 kHz in experiments. The statistics of the number of emissions
per cochlea are not shown.
The modified model incorporates a saturating nonlinearity which turns linear
instabilities into limit cycle oscillations [78]. Some parameters of the model
are also altered. The resulting model can account for the trend in the inverse
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relative frequency spacing
√
f1f2/|f2 − f1| towards higher values for rising fre-

quencies, which is observed in experiments.

Apart from the descriptions presented above, there are numerous other pas-
sive or active models [33, 34, 75, 81, 159]. Furthermore, there exist detailed
three-dimensional representation of the cochlea [49], or physical models that
were actually manufactured in reality [27].

While existing models presented above may provide interesting insights and can
account for certain features, many of them lack simplicity and are not generic:
Some descriptions have to make specific assumptions such as time-delayed stiff-
ness or feedforward mechanisms whose existence is hypothesized but not exper-
imentally verified, others employ two- or three-dimensional approaches.
For the majority of the models, no statistics of SOAEs were presented. Fur-
thermore, there is no model which can account for the whole body of statistics
that has been observed in experiments. In the following chapters, we introduce
a generic model of the human cochlea which can account for all the four hall-
marks of human hearing. In particular, the model can account for SOAEs and
their main statistics.

1.5 Organization of the thesis

In chapter 2 we introduce a simple and generic model of the active nonlinear
cochlea in the time domain, employing a one-dimensional approach consisting
of a chain of hydrodynamically coupled critical Hopf oscillators. This model
corresponds to and extends a previous description formulated in the frequency
domain [41]. To introduce this model, we discuss hydrodynamic interactions
within the cochlea and model the local oscillator dynamics of the BM. Further-
more, we describe how to integrate this model forward in time and investigate
how this model relates to the previously proposed model in the frequency do-
main. Finally, we determine incoming and outgoing waves for this model.
Subsequently, we present a more biophysical description in chapter 3, intro-
ducing a boundary condition, which represents the middle ear, and elastic as
well as dissipative longitudinal coupling between neighboring oscillators. This
provides a setup where all otoacoustic emissions are well defined and can be
studied more easily than in the setup of chapter 2. We study SFOAEs and
spontaneous activity, finding strong numerical evidence that only disorder in
the bifurcation parameter leads to SOAEs. In particular, disorder in the fre-
quency gradient enlarges some peaks slightly, but it does not suffice to elicit
pronounced SOAEs.
In chapter 4, we exploit these findings and investigate SOAEs in more detail.
We model the bifurcation parameter as essentially critical but with small static
(time-independent) irregularities that are correlated in space. These irregulari-
ties lend individuality to each realization of the model cochlea. Furthermore, we
employ elastic and dissipative longitudinal coupling to obtain clusters of syn-
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chronized oscillators and thus a separation of neighboring SOAEs as observed
in experiments. The resulting model contains free parameters: The strength of
the dynamical noise, the elastic and dissipative longitudinal coupling, and the
standard deviation as well as the correlation length of the irregularities in the
bifurcation parameter. The dynamical noise is mainly used for regularization
purposes. We fit the remaining free parameters in order to match statistics of
experimental SOAEs, which are given by the frequency range of SOAEs, the
number of SOAEs per realization, and the inverse relative distance between
neighboring SOAEs. Finally, we discuss the noiseless system as well as some of
its variants. These include a) the model with a negative mean bifurcation pa-
rameter, which leads to a more realistic shape of the distribution of the number
of SOAEs per realization, and b) the system subjected to global phase noise,
which results in realistic widths of SOAEs.
We conclude this thesis by summarizing the results in chapter 5, presenting an
outlook on possible future investigations, and explaining how to test the model
and its predictions. Put differently, we address open questions and possible
ways to extend and test the description introduced in this dissertation.



Chapter 2

Simple model for nonlinear
waves in the cochlea

In this chapter, we introduce a simple and generic one-dimensional model in the
time domain of the active nonlinear behavior of the cochlea. The BM dynamics
is described by a chain of critical oscillators coupled via hydrodynamic interac-
tions. Although this model is generic and one-dimensional, it can account for
many key features of the auditory system without suffering from instabilities
or making detailed assumptions. The cochlea model reproduces the experimen-
tally observed extreme sensitivity, wide dynamic range and sharp frequency se-
lectivity, and it can account qualitatively and quantitatively for traveling waves
[41, 64]. We derive the model equations and demonstrate how the model can
be simulated forward in time. Furthermore, we put the simple model in the
context of other descriptions of the cochlea by demonstrating that it extends
a previous model put forward in the frequency domain [41]. Additionally, we
investigate the low frequency modes exhibited by the model.
This chapter also serves as foundation for the development of a more biophysical
model in chapter 3. There, we will include several features we neglect in this
chapter for the sake of simplicity in order to highlight the core features of this
model.

2.1 Wave propagation by critical oscillators

In the following, we propose a model which extends the model developed by
T. Duke and F. Jülicher [41], which is set up in the frequency domain. This
is convenient for investigating cyclo-stationary responses to stimuli which are
periodic in time. Nevertheless, there exist some drawbacks and aspects a model
in the frequency domain is not perfectly adjusted to address. We extend the
model by T. Duke and F. Jülicher by considering a corresponding set of equa-

31
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tions in the time domain. This enables us to include various kinds of noise
more easily, to study transient phenomena such as responses to click stimuli,
and to study spontaneous otoacoustic emissions. First, we derive the governing
hydrodynamic equations in the time domain, which have been used frequently
in previous models [164, 81, 146, 41]. Finally, we focus on the local oscillator
dynamics.

The cochlea is a fluid-filled cavity in the skull, encapsulated by both bone and
the membranes of the oval and round window. The density ρ of the intracochlear
fluid is comparable to that of water. The cochlea is longitudinally divided into
three chambers. In the upper and lower chamber the fluid behaves similarly to
water, whereas in the middle chamber the fluid is substantially more viscous.
Due to this fact, at each cross section the middle chamber moves essentially
as one. The coiling of the cochlea is believed to serve the purpose of making
the cochlea more compact, i.e., to conserve space [6]. It is believed that coiling
does not alter the essential response of the cochlea [14, 143], which is supported
by the fact that there exist mammals without substantial coiling, for instance
the spiny anteater. However, recent research suggests that coiling might affect
cochlear mechanics in the low frequency region by tilting waves and directing
the wave energy density towards the outer portion of the BM, which effectively
causes higher amplitudes of the traveling waves compared to the uncoiled case
[90, 91]. According to theoretical calculations, coiling can amplify low-frequency
sounds in the human cochlea by as much as 20 dB.
In order to simplify matters, we neglect the curvature and the varying cross-
sectional area of the cochlea [150]. Consequently, we describe the cochlea as a
rectangular box with two chambers separated in the middle by the BM, except
for the helicotrema at the apex where the chambers are connected. See Fig. 2.1
for a sketch of the model.
As the inner ear is an insulated system, we can safely assume conservation of
fluid volume. Assuming also incompressibility of the fluid leads to the follow-
ing implications: A volume flow J1 in the upper chamber is associated with a
volume flow J2 of the same magnitude and opposite sign in the lower cham-
ber. Furthermore, a change in the volume flow is accompanied by a vertical
displacement h of the BM. Considering a segment [x, x+ ∆x] of the cochlea, it
holds

−∆V = b∆x∆h⇒ −∆J1

∆x
= b∂th⇒ −∂xJ1 = b∂th,

where V is the volume of the upper chamber in the segment [x, x + ∆x], and
b is the breadth of the BM. From the calculation above, ∂xJ2 = b∂th follows
similarly. By defining

j = J1 − J2 (2.1)

we obtain

∂xj = −2b∂th. (2.2)
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Figure 2.1: Schematic representation of the cochlear model. The rect-
angular cochlea of length L, breadth b and height 2`, is separated by the BM
(dark gray) in two fluid-filled chambers. The oval window is located at position
x = 0, the helicotrema at x = L. The ellipse below the oval window indicates
the round window. Vertical displacements of the BM are denoted by h(x). The
BM is represented by a chain of oscillators (red dots) which are coupled via
hydrodynamic interactions (blue waves).

Furthermore, balance of forces is assumed. Considering again a segment [x, x+
∆x] of the upper chamber of the cochlea, this condition reads F = ma, where
F is the net force acting in horizontal direction on the segment, m is its mass,
and a is the acceleration in longitudinal direction of the fluid in the segment.
Physiological movements of the BM are considerably smaller than the height l
of the upper and lower chamber (both possess the same height): h is typically
on the order of nanometers, whereas l = 1 mm. Thus, we obtain l − h ≈ l. It
follows F = b(l−h)(P1(x)−P1(x+ ∆x)) ≈ bl(P1(x)−P1(x+ ∆x)), where P1 is
the pressure in the upper chamber. In addition, ma = ρV a = ρ∆xb(l − h)a ≈
ρ∆xbla = ρ∆x∂tJ1 holds true. From these considerations we obtain

−bl∂xP1(x) = ρ∂tJ1. (2.3)

Analogously, −bl∂xP2(x) = ρ∂tJ2 can be derived, where P2 is the pressure in
the lower chamber. We define

p = P1 − P2 (2.4)

as the pressure difference between the two chambers. Thus, we arrive at

−bl∂xp = ρ∂tj. (2.5)

Combining the temporal derivative of Eq. (2.2) and the spatial derivative of Eq.
(2.5) results in

∂2
xp =

2ρ

l
∂2
t h, (2.6)
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which provides the hydrodynamic interaction and coupling along the BM.

The model in the frequency domain proposed by T. Duke and F. Jülicher
The equations of the model in the frequency domain which was proposed by
T. Duke and F. Jülicher contains two equations: The Fourier transformation of
Eq. (2.6), which reads

d2p̃

dx2
= −2ρω2

l
h̃, (2.7)

together with the local oscillator relation given by the Hopf normal form in the
frequency domain,

p̃ = α̂(ω(x)− ω)h̃+ iβ̂|h̃|2h̃, (2.8)

where α̂ and β̂ are real constants, and ω(x) is the local best frequency of the BM.
We will address the choice of these parameters later in more detail. The two
equations are supplemented by the boundary conditions, which fix the pressure
at both ends of the cochlea: p̃(x = 0) = γ, where γ is the pressure amplitude,
and p̃(x = L) = 0 as the two channels are connected at x = L.

Now we turn towards a description of the local oscillator dynamics in the time
domain. In our description, a single oscillator models the vertical motion of one
small segment of the organ of Corti and the BM, including one inner and three
to five outer hair cells and their rod-like protrusions termed stereocilia.
Hopf oscillators in the vicinity of the critical point provide a good description
of dynamics of hair bundles, cochlear partitions, and the auditory system itself:
As outlined in section 1.1.1, stereocilia, which are intimately associated with
the BM motion, exhibit features observable in experiments on the whole au-
ditory system. One such property is the nonlinear amplification. For some
non-mammalian species, stereocilia have been found to frequently exhibit spon-
taneous oscillations [94]. It was shown that stereocilia deflection dynamics can
be well described by Hopf oscillators near the critical point. Furthermore, for
a model of an individual cochlear partition it was derived that the interplay of
active hair bundle motility and somatic motility can lead to a Hopf bifurcation
[112].
Finally, note that critical oscillators, i.e., Hopf oscillators at the critical point,
share essential properties with the hearing organs of mammals, such as sharp
frequency selectivity, extreme sensitivity, and a wide dynamic range [43]. Hopf
oscillators which are slightly in the oscillatory regime exhibit self-sustained oscil-
lations, thus they provide a possible candidate for modeling spontaneous otoa-
coustic emissions of the cochlea.
Due to these facts, it seems apropriate to employ Hopf oscillators for the de-
scription of local BM dynamics. Note that this description is independent of
the physical details. It does not predict how exactly nature manufactures the
mechanism and how the dynamical system adjusts itself to maintain proximity
to the critical point. In contrast, it is a generic description revealing that the
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above mentioned properties are independent of the exact realization but are
due to the proximity of an dynamic instability. However, there exists a possi-
ble mechanism explaining how the vicinity to the supercritical Hopf bifurcation
point could be achieved [42].
The Hopf normal form in the time domain, representing the local BM dynamics,
reads

dz

dt
= (ε+ iω(x))z − β

α
|z|2 z − i

α
p. (2.9)

The dynamics of a Hopf oscillator in the time domain is described by a complex
variable z = h+ iu, where h is the vertical displacement of the BM, and u is an
auxiliary variable related to the velocity of the BM. The bifurcation parameter
ε governs the spontaneous activity. In this chapter, we only show simulation
results for the system where all oscillators are critical, i.e., ε = 0. The local best
frequency ω(x) = ω0e

−x/d is a function of the distance x to the stapes, decaying
exponentially from base to apex with decay constant d. The passive stiffness
α · ω(x) (per unit area of the BM) governs the relation between the pressure
difference p and the vertical deflection h. We will investigate this in more
detail below. The parameter α is constant as both stiffness and characteristic
frequency vary in a similar manner along the BM [14]. The nonlinearity β
shapes the peak of the traveling wave. Its value is unknown and might possibly
depend on location and frequency. For simplicity, β is assumed to be a constant
real number. The numerical value of β is chosen such that the model fits the
experimental SFOAE response [41], i.e., that it describes the magnitude of the
experimentally observed BM vibration in case of sinusoidal stimuli with driving
frequencies in the range of the local characteristic frequencies present on the BM.
Unless stated otherwise, all parameters are real numbers. For exact numerical
values see table 2.1.
The boundary conditions for this chapter are given by fixating the pressure at
the stapes and the helicotrema:

p(x = 0, t) = A sin(ωt), (2.10)
p(x = L, t) = 0. (2.11)

At the helicotrema, located at the apex at x = L, the two channels are con-
nected. Thus, the pressure difference vanishes. We prescribe a pressure ampli-
tude A ∈ R on the left side. Note that later we are going to replace the boundary
condition at the base by a more sophisticated one, taking middle ear dynamics
into account, which is more appropriate for the investigation of SOAEs.
In general, the middle ear amplifies incoming sound, where the amplification is
strongly dependent on the frequency and amplitude and the specific details of
the sounds, such as its duration and source. For simplicity, in this chapter the
effect of the middle ear is taken into account by amplifying incoming sound by
20 dB - regardless of sound pressure level or frequency.

The terms appearing in Eq. (2.9) correspond to the standard Hopf normal form,
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Table 2.1: List of parameters for chapter 2
Parameter Definition Value
α BM stiffness proportionality factor 5 · 103 Pa s/m
b average breadth of BM 1.1 mm
β nonlinearity 1.25 · 1022 Pa/m3

d decay constant 7 mm
∆x distance between oscillators 10−5 m
ε bifurcation parameter 0 Hz
l height of upper/lower chamber 1 mm
L length of cochlea 35 mm
ρ density of fluid in cochlea 103 kg/m3

ω0 angular frequency at x = 0 105 Hz
ω(x) local best frequency ω0e

−x/d

with exception of the last term. What determines the exact form of the term
− i
αp? A heuristic justification is that this choice ensures that p acts solely on

u, the imaginary part of z. The variable u is related to the velocity of h, see
subsection 2.3. Thus, this specific choice seems reasonable as in an harmonic os-
cillator forces act solely on the velocity. The exact form of the term −i/α stems
from considerations in the frequency domain representation: Assuming that
|z̃|2z̃ ≈ |̃z|2z, the Fourier transform of Eq. (2.9) reads p̃ ≈ α(ω(x)−ω)z̃+iβ|z̃|2z̃.
Furthermore, approximating |z̃| ≈ 2|h̃| and inserting z̃ = 2h̃ leads to

p̃ ≈ 2α(ω(x)− ω)h̃+ i8β|h̃|2h̃. (2.12)

Assuming exact equality, this equation corresponds to the frequency domain
model, in particular Eq. (2.8).
In the linear case, i.e. for β = 0, α is the constant governing the response of the
BM to a certain pressure difference p̃. In linear order we have p̃ = 2α(ω(x)−ω)h̃.
For low frequencies p and h are in phase, which corresponds to a purely real
α. For ω = 0 we obtain p̃ = 2αω(x)h̃. This relation of the static deflection
corresponds well to experimental data for constant α ∈ R. Put differently,
the static stiffness per unit area is given by αω(x) [14]. This results in the
formulation of Eq. (2.9) in the time domain with the factor α appearing in the
nonlinearity, and it also leads to the term − i

α p̃.

2.2 Discretization of the equations and solution
methods in the time domain

In this section, we consider how to interpret the equations presented in the pre-
vious section. In particular, we discretize the equations spatially. Finally, we
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show how to simulate these equations forward in time.

The above continuum description of cochlear mechanics in the time domain
consists of one real valued equation governing hydrodynamic interactions, given
by Eq. (2.6), and one complex valued equation - or equivalently two real val-
ued equations - describing local oscillator dynamics, given by Eq. (2.9). The
equations are supplemented by the boundary conditions for the pressure at both
ends, given by Eqs. (2.10) and (2.11). Consequently, the equations for the real
valued system variables h, u, and p read:

∂2
t h =

l

2ρ
∂2
xp, (2.13)

dh

dt
= −ω(x)u+ εh− β

α

(
h2 + u2

)
h, (2.14)

du

dt
= ω(x)h+ εu− β

α

(
h2 + u2

)
u− 1

α
p, (2.15)

complemented by the boundary conditions

p(x = 0, t) = A sin(ωt), p(x = L, t) = 0. (2.16)

Model parameters can be found in table 2.1. At first glance the system seems
simultaneously under- and overdetermined: It provides one rule for the time
evolution of u but none for p, and two for h.
In order to evolve the system forward in time, for given h and u at time t0,
we calculate p at time t to determine ∂th, ∂tu and thus compute h and u at
time t + ∆t. For calculating p at time t, we repeatedly insert Eqs. (2.14) and
(2.15) into the left side of Eq. (2.13). Put differently, we substitute ∂th and
∂tu repeatedly by their governing equations, finally obtaining a second-order
ordinary differential equation in p,

∂2
xp =

2ρ

l
∂2
t h =

2ρ

l

(
−ω(x)u+ εh− β

α
(h2 + u2)h

)(
ε− β

α

(
3h2 + u2

))
− 2ρ

l

(
ω(x)h+ εu− β

α

(
h2 + u2

)
u

)(
ω(x) +

β

α
2uh

)
+

2ρ

lα
p

(
ω(x) +

β

α
2uh

)
. (2.17)

The resulting ordinary differential equation can be written in the form

d2p(x)

dx2
+ p(x)γ(x, h(x), u(x)) = g(x, h(x), u(x)), (2.18)

where γ, g are p-independent, nonlinear functions, determined by Eq. (2.17).
Now we discretize the equations and the variables p, h, and u spatially in lon-
gitudinal direction.
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The hydrodynamic equation (2.13) can be understood in its continuous formu-
lation, but the local oscillator equations (2.14), (2.15) are to be interpreted
discretely in space in longitudinal direction as the cochlear physiology provides
a natural discretization: The human organ of Corti is divided in longitudinal di-
rection into roughly 3500 segments, corresponding to an average segment width
of 10 µm [32]. Each segment, the so-called cochlear partition, comprises one
inner hair cell and usually three to four outer hair cells. Consequently, we dis-
cretize our model spatially in longitudinal direction with an equidistant spacing
of ∆x = 10 µm, giving rise to a chain of oscillators z0, . . . , zN with N = 3500.
This implies that we perform a discretization approximation for Eq. (2.13).

We change coordinates by x → j and f(x) → fj , where x = j∆x. Spatial
derivatives are discretized in the standard way [40, 44] by means of

d2f(x)

dx2
=
fj+1 − 2fj + fj−1

(∆x)2
.

Consequently, we obtain a discretized version a system of linear equations

pj+1 − 2pj + pj−1

(∆x)2
+ pjγ(x = j∆x, hj , uj) = g(x = j∆x, hj , uj).

It is now necessary to solve the discretized ordinary differential equation for
each instance in time. One way of obtaining a solution for this type of equation
is given by the shoot-and-match method, which was employed in the frequency
domain model which we extend [41]. However, for this setup the shoot-and-
match method, where one starts from one side and tries to match the second
boundary condition, turns out to be unstable. This is mainly because the desired
values for p(x = 0, t) cannot always be matched with the required precision. In
contrast, the method of finite differences fulfills the correct boundary conditions
for p(x = 0, t), p(x = L, t), see Eq. (2.16), by definition and turns out to be
well suited for this model. It turned out that this scheme had been used for
other one-dimensional cochlea models as well [44, 100, 139]. The method of
finite differences solves the differential equation by solving the corresponding
tridiagonal matrix equation, which results from the discretization. In matrix
form, the resulting system of equations can be written as

1 0 0
a b1 a

. . . . . . . . .
a bi a

. . . . . . . . .
a bN−1 a

0 0 1





p0

p1

...
pi
...

pN−1

pN


=



g0(h0, u0)
g1(h1, u1)

...
gi(hi, ui)

...
gN−1(hN−1, uN−1)

gN (hN , uN )


,

(2.19)
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with a =
1

(∆x)2
and bj = −2a+ γj , where γj = −2ρ

lα

(
ω(xj) +

β

α
2ujhj

)
.

It holds g0 = A sin(ωt0) and gN = 0. For 1 ≤ j ≤ N − 1 we have

gj =
2ρ

l

(
−ω(xj)uj + εhj −

β

α
(h2
j + u2

j )hj

)(
ε− β

α

(
3h2

j + u2
j

))
− 2ρ

l

(
ω(xj)hj + εuj −

β

α
(h2
j + u2

j )uj

)(
ω(xj) +

β

α
2ujhj

)
.

We solve the above matrix equation with the efficient algorithm "tridag" for
tridiagonal matrix equations [108]. For an N ×N matrix, the algorithm needs
approximately 3N steps to calculate the solution vector p. This is substantially
faster than general algorithms for inverting matrices which may need a num-
ber of steps proportional to N2. Note that due to the absence of pivoting, the
algorithm can theoretically crash even if the matrix equation is solvable, but
this unlikely event never occurred during the numerous times this algorithm
has been used for our research.

The dynamics in time are discretized by using finite time steps of size ∆t = 10−5

s. To compute h(x, t0 + ∆t) and u(x, t0 + ∆t), the second-order Runge-Kutta
method is employed, as it turns out that the Euler method requires too small
time steps and thus slows down simulations substantially. Throughout this the-
sis, the starting conditions are chosen to be hi = ui = pi = 0 for all i = 0, . . . , N.
Note that system dynamics for times after a short relaxation time are indepen-
dent of the initial conditions.
In Fig. 2.2 the response of the time domain model to a weak sinusoidal signal
with a frequency of 1300 Hz is plotted. It is visible how the traveling wave builds
up over time from shortly after the onset of the stimulus, shown in the upper
graph, until it has reached a cyclo-stationary state after 50 ms, displayed in the
lowest graph of Fig. 2.2. The wave travels from left to right. As observed in
experiments, the magnitude of the BM deflection in response to stimuli builds
up along the BM until the wave reaches the resonance frequency, after which
there is a steep decay. Note that the waves accumulate on the apical side of the
peak. The magnitude of the displacement caused by these waves decays over
time (not shown here).
In Fig. 2.3 we see the Fourier transform of the BM responses of the model to
periodic stimuli of different strengths and frequencies. In experiment as well as
in our model, the response to faint stimuli is sharp, localized at the region of
the resonance frequency. For stronger inputs, the BM response becomes broader
and the maximum of the envelope of the BM response shifts to the left. For
experimental traveling waves in the guinea pig, see Fig. 1.9 A. Note that, due to
the frequency gradient, for high frequencies the maximum of the BM response
is located near the base, low frequencies elicit a maximum in the proximity of
the apex.
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Figure 2.2: BM vibrations for different instances in time in presence of
a sinusoidal signal. The response of the BM to a periodic low-level stimulus
of 20 dB amplitude and a frequency of 1300 Hz is shown. For different instances
in times t, denoted in the upper right corners of the individual graphs, the red
lines denote snapshots of instant BM deflections as a function of longitudinal
position x, ranging from x = 0 on the left side to x = L on the right side. The
green lines represent the envelope of the BM deflections, for each location x
denoting the value maxt′≤t|h(x, t)|.
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Figure 2.3: BM vibration amplitude |h̃| in response to sinusoidal stimuli
of different frequencies and strengths. In each graph, |h̃|, given in units
of nanometers, is shown as a function of longitudinal position x. In the left
column, i.e. for graphs A, C, and E, the sound pressure level is 40 dB. In the
right column, i.e. for graphs B, D, and F, the sound pressure level is 80 dB.
The pure tone frequency is given by 4.6 kHz in graphs A and B, 1.3 kHz in
graphs C and D, and 0.37 kHz in graphs E and F. Note that all oscillators in
the simulated model are at the critical point, i.e. ε = 0.

Solving the set of equations in an alternative way

There exists another way to evolve the presented model forward in time. As
before, we have the following system of three real valued equations, where we
omitted the terms with the bifurcation parameter ε for simplicity:

∂2
t h =

l

2ρ
∂2
xp, (2.20)

dh

dt
= −ω(x)u− β

α

(
h2 + u2

)
h, (2.21)

du

dt
= ω(x)h− β

α

(
h2 + u2

)
u− 1

α
p. (2.22)

In the previous section we obtained a second-order ordinary differential equation
in p by inserting Eq. (2.21) and Eq. (2.22) repeatedly into Eq. (2.20). Here we
use a different approach deriving an ordinary differential equation in ∂tu, which
will result in the elimination of p: First, Eq. (2.22) is solved for p and then
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inserted into the right side of Eq. (2.20). Then, Eq. (2.21) is inserted into the
left side of Eq. (2.20). This results in the following equation:

2ρ

l
∂t

[
−ω(x)u− β

α

(
h2 + u2

)
h

]
= ∂2

x

[
αω(x)h− β

(
h2 + u2

)
u− α∂tu

]
.

By applying the chain rule on both sides, inserting Eq. (2.21), and reordering
terms, we obtain

− 2ρ

l

(
ω(x) + 2

β

α
uh

)
∂tu+ α∂2

x∂tu

=
2ρ

l

β

α

(
3h2 + u2

)(
−ω(x)u− β

α

(
h2 + u2

)
h

)
+ αω(x)

[
∂2
xh− 2

1

d
∂xh+

1

d2
h

]
− β

[
6u(∂xu)2 + (3u2 + h2)∂2

xu+ 2u(∂xh)2 + 2hu∂2
xh+ 4h∂xh∂xu

]
.

As before, the spatial discretization is performed by x → j and f(x) → fj ,
where x = j∆x. Applying the standard spatial derivative discretizations, as
denoted in the previous subsection, gives rise to(

−2ρ

l

(
ω(xj) + 2

β

α
ujhj

)
− 2α

(∆x)2

)
∂tuj +

α

(∆x)2
(∂tuj−1 + ∂tuj+1) =

2ρ

l

β

α
(3h2

j + u2
j )

(
−ω(xj)uj −

β

α
(h2
j + u2

j )hj

)
+ αω(xj)

[
hj+1 − 2hj + hj−1

(∆x)2
− 2

1

d

hj+1 − hj−1

2∆x
+

1

d2
hj

]
(2.23)

− β

[
6uj

(
uj+1 − uj−1

2∆x

)2

+ (3 u2
j + h2

j )
uj+1 − 2uj + uj−1

(∆x)2

]

− β

[
2uj

(
hj+1 − hj−1

2∆x

)2

+ 2hjuj
hj+1 − 2hj + hj−1

(∆x)2

]

− β
[
4hj

hj+1 − hj−1

2∆x

uj+1 − uj−1

2∆x

]
.

In matrix form, the resulting system of equations can be written as



1 0 0
a b1 a

a b2 a
. . . . . . . . .

a bN−1 a
0 0 1





∂tu0

∂tu1

...

∂tuN


=



s0

s1

...

sN


, (2.24)

with a =
α

(∆x)2
, bj = −

(
2ρ

l

(
ω(xj) + 2

β

α
ujhj

)
+

2α

(∆x)2

)
. The sj for 1 <

j < N are equal to the right side of the discretized equation (2.23). At the
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boundaries we have p(x = 0, t) = A sin(ωt) and p(x = L, t) = 0, which gives us
∂tu0 and ∂tuN . The boundary conditions are incorporated via the first and last
line of the matrix and by setting

s0 = ∂tu0 = w0h0 −
β

α
(h2

0 + u2
0)u0 −

1

α
A sin(ωt), (2.25)

sN = ∂tuN = w0e
−L/dhN −

β

α
(h2
N + u2

N )uN . (2.26)

Thus, we can now calculate ∂tuj by solving the matrix equation (2.24) as de-
scribed in the previous section. Furthermore, we already knew ∂thj , as the
governing equation does not contain any pressure terms. The knowledge of ∂thj
and ∂tuj enables us to integrate hj and uj forward in time. The next steps are
the same as in the previously described integration scheme.
Note that both methods are equivalent, which is not shown here. In particular,
this alternative method does not explicitly calculate pj , but it can be calculated
via Eq. (2.22).

2.3 Linear waves as a limit case of the nonlinear
model

In this section, we compare the Hopf normal form with the harmonic oscillator,
and we present approximate solutions of the linear cochlea, which turns out to
be insightful for the investigation of the cochlear traveling wave.

The linear Hopf oscillator

In this section, we show the correspondence between the Hopf normal form in
the time domain with β = 0, which we call the linear case, and the harmonic
oscillator. Recall that the linear form of the Hopf normal form for z = h + iu
reads

dz

dt
= iΩz + εz − i

α
p. (2.27)

The dynamics of the damped harmonic oscillator with observable y is given by

m
d2y

dt2
y + γ

dy

dt
+mΩ2

0y = F (t), (2.28)

with mass m, damping constant γ, eigenfrequency Ω0, and driving force F (t).
If we identify y = h and set v = dh

dt = −Ωu + εh, we obtain u = (εh − v)/Ω.
This leads to

dv

dt
= 2εv − (Ω2 + ε2)h+

Ω

α
p,
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which results in the identifications γ = −2εm, Ω0 =
√

Ω2 + ε2. Note that ε
influences both friction and eigenfrequency. For ε < 0 the friction is positive
and vice versa, as expected.
However, different choices of identification are also possible. We reproduce one
other choice [152], taking also longitudinal coupling into account, which will
turn out to be useful for considerations in consecutive chapters. Suppose we
have Eq. (2.28) with F (t) = k̂el(y2 − 2y + y0) + k̂di(∂ty2 − 2∂ty + ∂ty0), where
y2, y0 are two oscillators to which y is coupled by means of elastic and dissipative
coupling k̂el and k̂di, respectively. By identifying z = y− i/Ω0∂tz in Eqs. (2.27)
and (2.28), we obtain

dz

dt
= iΩz + 2iεu+ 2ikel(h0 − 2h+ h2) + 2ikdi(u0 − 2u+ u2), (2.29)

where zj = hj + iuj (for j = 0, 2) are the oscillators to which z is coupled. We
arrive at

Ω = Ω0, ε = −γ/(2m), kel = −k̂el/(2mΩ0), kdi = k̂di/(2m). (2.30)

By incorporating an additional term of third order in z in Eq. (2.29), we obtain

dz

dt
= iΩz + 2iεu+ 2ikel(h0 − 2h+ h2) + 2ikdi(u0 − 2u+ u2) +O(z3). (2.31)

If the system described by this equation is close to the Hopf bifurcation and if
oscillations are small, Eq. (2.31) can be written in the Hopf normal form

dz

dt
= iΩz + εz + (kdi + ikel)(z0 − 2z + z2)−B|z|2z, (2.32)

where B is the parameter governing the strength of the nonlinearity. This
formulation will be used later for introducing longitudinal coupling.
Coupled harmonic oscillators can be employed to describe BM segments, taking
into account observable physiological properties such as mass, damping, stiff-
ness, and experimentally measured coupling strengths. This it not easily possi-
ble in the framework of the Hopf normal form. The coupling strength relations
in Eq. (2.30) enable us to compare coupling strengths used in the model with
experimentally observed coupling strengths. Note that the conversion factors
of elastic and dissipative coupling differ by the factor Ω. In particular, a ratio
of r = kel/kdi for coupling strengths of the model involving Hopf oscillators
corresponds to a ratio of rΩ0 in the harmonic oscillator model. For the frequen-
cies under consideration in this thesis, the last-mentioned ratio is substantially
higher than the first one.
Note that the first transformation presented here, h = y, can be also performed
in presence of elastic longitudinal coupling kel(h0 − 2h + h2), resulting in an
identification k̂el = −mΩ0kel.
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The linear cochlea
The nonlinearity β ensures that oscillations do not grow without bounds. Pro-
vided the hydrodynamic coupling together with the discrete setup of the model
or the bifurcation parameter limit the oscillations of each oscillator, the non-
linearity is not essential in the following sense: It does not determine whether
or not there are non-zero oscillations at a certain location. It only influences
the magnitude of oscillations significantly above a certain threshold. For small
sinusoidal stimuli the nonlinearity acts only in the vicinity of the resonance.
This fact can be used to approximate cochlear waves by means of analytical
approaches such as the WKB method [10]. We show the result which was pre-
sented for the model developed by T. Duke and F. Jülicher [41]: In regions where
the nonlinearity β can be neglected, the WKB approximation can be employed.
Considering the Fourier transformed time domain model equations with β = 0,

we obtain p̃ ≈ 2α(ω(x) − ω)h̃, see Eq. (2.37), and −ω2h̃ =
l

2ρ
∂2
xp, arriving at

the second-order ordinary differential equation

lα

ρω2

d2p̃

dx2
=

−1

ω(x)− ω
p̃. (2.33)

The WKB approximation of the BM displacement gives the two terms

h̃1,2(x) = (ω(x)− ω)3/4e±i
∫ x
0
dx′q(x′), q(x′) =

√
ρω2

lα(ω(x)− ω)
, (2.34)

whose weighted sum describes h̃, where the weights are determined by the
boundary conditions. The formula shows that for ω < ω(x) there are two
traveling waves h̃1, h̃2, corresponding to real q(x), and for ω > ω(x) the wave is
quickly decaying as q(x) becomes imaginary.

2.4 Comparison with a frequency domain approx-
imation

In this section, we compare the model developed in the time domain in section
2.1 with the model formulated in the frequency domain, proposed by T. Duke
and F. Jülicher [41].
The Hopf normal form in the time domain for an oscillator driven by a pressure
difference p reads

dz

dt
= (ε+ iω(x))z − β

α
|z|2 z − i

α
p. (2.35)

Assuming that |z̃|2z̃ ≈ |̃z|2z, the Fourier transformation of this equation takes
the form

p̃ ≈ α(ω(x)− ω − iε)z̃ + iβ|z̃|2z̃. (2.36)
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Figure 2.4: Absolute BM displacement |h̃| in response to a sinusoidal input
stimulus with f = 1300 Hz for low and high intensity: A) 40 dB, B) 80 dB.
The black lines denote the Fourier transform of the response of the time domain
model, considered at the driving frequency. The red lines represent the solution
of the frequency domain model. Note that all oscillators are critical, i.e., ε = 0.

Note that z̃ = h̃ + iũ. Assuming h and u are roughly of the same magni-
tude, it holds |z̃| ≈ 2|h̃|. If we insert the approximation z̃ = 2h̃ and write the
approximations as equations, we obtain

p̃ = 2α(ω(x)− ω − iε)h̃+ i · 8β|h̃|2h̃. (2.37)

The corresponding equation of the model proposed by T. Duke and F. Jülicher
[41], formulated in the frequency domain, reads

p̃ = α̂(ω(x)− ω − iε)h̃+ iβ̂|h̃|2h̃. (2.38)

By choosing the parameters α = α̂/2, β = β̂/8 we obtain a time model corre-
sponding to the frequency domain model under the assumption z̃ = 2h̃. Fig. 2.4
shows the BM response to a pure tone of 1300 Hz for the model in the frequency
domain and the time domain. We see that the approximation above is reason-
ably good. The waves are of similar form and height. There are deviations on
the basal side. In the peak region the amplitudes are comparable, in particular
for small stimuli. Note that exact agreement of the two models could not be
expected due to the approximation above and due to approximating the Fourier
transform of |h|2h by |h̃|2h̃.
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It is possible to derive an exact formula for the relation between p̃ and h̃ if we
assume there is a unique positive solution of the cubic equation relating |p̃| and
|z̃|, i.e., we have |z̃|2 = |z̃|2 (p̃). Applying the Fourier transformation to Eqs.
(2.14) and (2.15), results in

iωh̃ = −ω(x)ũ− β

α
|z̃|2 h̃+ εh̃, (2.39)

iωũ = ω(x)h̃− β

α
|z̃|2 ũ− 1

α
p+ εũ, (2.40)

where |z̃|2 = (h̃2 + ũ2). Solving Eq. (2.39) for ũ and Eq. (2.40) for p̃, we obtain

p̃ = h̃
α

ω(x)

(
ω(x)2 +

(
ε− β

α
|z̃|2 − iω

)2
)
. (2.41)

It is clear that parameter values in this formula cannot be compared directly
with parameter values in Eq. (2.38) as for instance even in the linear case
β = β̂ = 0 with ε = 0, the terms are of structurally different form: The
difference (ω(x)− ω) is linear in one equation and quadratic in the other.

In the following, we discuss the choice of parameter functions in the frequency
domain model [41] as this deepens the understanding of the time domain for-
mulation as well:
In general the Hopf normal form in the frequency domain [25] reads

p̃ = Ah̃+B|h̃|2h̃. (2.42)

The linear term A has to vanish at the resonant frequency if the system is at
the critical point. The simplest choice of A ensuring this property is given by
the ansatz

A = α̂ (ω(x)− ω) . (2.43)

α̂ can be derived experimentally from the static relation between pressure and
vertical BM displacement in the linear case. The parameter B, which is em-
ployed to describe the nonlinearity for frequencies near the resonance frequency,
is chosen to be

B = iβ̂, (2.44)

where β̂ is real, and thus B is imaginary. By choosing A purely real and B
purely imaginary it is ensured that there are no spontaneous oscillations cor-
responding to a non-zero solution of h̃ for Eq. (2.42) with p̃ = 0 which would
be unphysiological. The choice of α and β turns out to facilitate numerical
simulations of the system. Note that for low frequencies this description breaks
down as the static response of the cochlea is rather linear.
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2.5 Determination of incoming and outgoing pres-
sure waves

In order to understand otoacoustic emissions of our model, it is helpful to mea-
sure the strengths of forwards and backwards traveling waves at the stapes. For
this reason, in the following we determine incoming and outgoing pressure waves
of the cochlea model. We perform this analysis both in the frequency and in
the time domain.
Thus far we prescribed and fixed the total pressure amplitude A at the stapes,
which are located at x = 0. However, in experiments the total pressure at
x = 0 is not the input presented to the system. In contrast, it is the driving
pressure in the ear canal that is fixed. From the ear canal the input pressure
is transmitted via the tympanum, the ossicles and the oval window to the in-
side of the cochlea. These considerations suggest that the input might be more
appropriately approximated by the incoming pressure at x = 0 instead of the
total pressure at x = 0, which is a superposition of the incoming and outgoing
pressure. For strong driving the total pressure is dominated by the incoming
pressure. However, for small pressure amplitudes this does not necessarily hold
true due to back reflections from the inside of the cochlea.

In general, incoming and outgoing waves cannot be uniquely determined and
thus not distinguished in inhomogeneous media (for an example see [22] or [2],
p. 49). The BM is a slowly varying medium where we can assume that there
is a unique discrimination of the two directions (see [2] for more details). We
assume that at the left end, i.e., in the proximity of x = 0, the nonlinear term
in the oscillator equation can be neglected and thus we are in the linear, pas-
sive and homogeneous case where it is possible to uniquely define incoming and
outgoing waves.
In the frequency domain for p̃ in the neighborhood of x = 0, we make the ansatz

p̃(x, ω) = pine
−i(kx+φin) + poute

i(kx+φout) (2.45)

⇒ d

dx
p̃|x=0 = ik

(
−pine−iφin + poute

iφout
)
, (2.46)

where the wave number k is yet to be determined, and pin and pout are the
amplitudes of the incoming and outgoing waves in the frequency domain. Em-
ploying the two equations above, pin and pout can be related to the pressure
and its derivative at the boundary as follows:

pin =
1

2

∣∣∣∣p̃(x = 0)− 1

ik

d

dx
p̃|x=0

∣∣∣∣ , pout =
1

2

∣∣∣∣p̃(x = 0) +
1

ik

d

dx
p̃|x=0

∣∣∣∣ . (2.47)

In the following, we determine the wave vector k at x = 0: For the approximate
formulation of the Fourier transform of the model in the time domain, Eq.
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(2.37), we obtain p̃ = α(ω(x) − ω + iε)h̃ in case of β = 0 . Consequently, the
hydrodynamic equation can be written as

d2p̃

dx2
= −2ρω2

l
h̃ = −2ρω2

l

p̃

α(ω(x = 0)− ω + iε)
(2.48)

⇒ k = ω

√
2ρ

lα(ω0 − ω + iε)
. (2.49)

Using the more exact formula (2.41) of the Fourier transform of the time domain
model in the linear case, we obtain

d2p̃

dx2
= −2ρω2

l
h̃ = −2ρω2

l
p̃

ω(x = 0)

α(ω(x)2 + (ε− iω)2)
(2.50)

⇒ k = ω

√
2ρω0

αl(ω2
0 + (ε− iω)2)

. (2.51)

This result, which is more precise compared to the value obtained by Eq. (2.49),
can be employed to investigate SFOAEs in the frequency domain model.

2.5.1 Extracting pin in the time domain

In this section, we address the problem of extracting the amplitude of incom-
ing and outgoing waves in the spatially discretized version of the time domain
model. For this we only need to know the trajectories of the two left-most oscil-
lators p(x = 0, t), p(x = L/N, t). We abuse notation by using p0 for describing
the amplitude of the pressure at x = 0 instead of the pressure itself.

We assume that in the vicinity of x = 0 we are able to make the ansatz

p(x, t) =
1

2

[
p+

0 e
i(kx−ωt+φ+) + p+

0 e
−i(k∗x−ωt+φ+) (2.52)

+ p−0 e
i(−kx−ωt+φ−) + p−0 e

−i(−kx−ωt+φ−)
]
,

where p+
0 and p−0 denote the amplitudes of incoming and reverse pressure, re-

spectively. Note that pressures are always real. We describe the pressure at
position x = 0 by a (real valued) oscillation of frequency ω, amplitude p0 and
phase φ0. Thus, we can write

p(x = 0, t) =
p0

2

(
ei(φ0−ωt) + ei(−φ0+ωt)

)
. (2.53)

The pressure at x = 0 is a superposition of incoming and outgoing waves,

p0e
iφ0 = p+

0 e
iφ+ + p−0 e

iφ− . (2.54)
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Analogously, we obtain

∂xp|x=0 =
p∆

2

(
ei(φ∆−ωt) + ei(−φ∆+ωt)

)
, (2.55)

p∆e
iφ∆ = k

(
p+

0 e
i(φ++π/2) − p−0 ei(φ−+π/2)

)
. (2.56)

Eq. (2.54) gives us p−0 e
iφ− = p0e

iφ0 − p+
0 e

iφ+ which we insert into Eq. (2.56).

p∆e
iφ∆ = k

(
2p+

0 e
i(φ++π/2) − p0e

i(φ0+π/2)
)

(2.57)

⇒ p+
0 =

1

2
e−i(φ++π/2)

(p∆

k
eiφ∆ + p0e

i(φ0+π/2)
)

=
1

2

√(p∆

k
cos(φ∆)− p0 sin (φ0)

)2

+
(p∆

k
sin(φ∆) + p0 cos (φ0)

)2

.

(2.58)

The last equation follows because p+
0 is real by definition. Similarly, we obtain

p−0 =
1

2
e−i(φ−+π/2)

(
−p∆

k
eiφ∆ + p0e

i(φ0+π/2)
)

=
1

2

√(
−p∆

k
cos(φ∆)− p0 sin(φ0)

)2

+
(
−p∆

k
sin(φ∆) + p0 cos(φ0)

)2

.

(2.59)

The value of k can be calculated from the model. The quantities p0 and φ0

are input variables and thus also known. The values of p∆ and φ∆ can be
determined by Fourier transforming (p(L/N, t) − p(0, t))/∆x ≈ ∂xp(x = 0, t),
taking one cycle as data set for the transformation. This gives a time-dependent
value for the reflection coefficient R = p−0 /p

+
0 , which can be used for the analysis

of SFOAEs of the model in the time domain and in general for similar time
domain models of inhomogeneous, slowly varying media. However, we do not
apply this analysis to the model as there exists a middle ear boundary condition,
introduced in chapter 3, which corresponds better to the experimental setup
than the boundary condition at x = 0 which we employed here.

2.6 Low frequency modes

In the time domain model of the cochlea which we presented in the previous sec-
tions, two slow modes are present. In the following, we show that the lower mode
is the fundamental mode of the system, and the one with the higher frequency
is the first harmonic of the lower one. This is done by means of calculating an
approximate formula for the fundamental mode. We compute the frequency of
the fundamental mode for a string and apply the obtained results to the BM.
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Consider a string of length L with fixed boundary conditions. The fundamental
mode possesses the wave length λ0 = 2L. We want to calculate the frequency
ν0 of the fundamental mode. Let the wave equation of the string be given by

∂2
t y = c2∂2

xy, (2.60)

where y is the displacement in the vertical direction, and c is the speed of the
wave. For now we assume c is a constant. Solutions of the above equation are
given by f(x− ct) and g(x+ ct) for arbitrary two times differentiable functions
f, g. It holds c = ν0λ0 ⇒ ν0 = c

λ0
= c

2L . By writing c = L
T , where T is the time

the wave needs to travel the distance L, we obtain

ν0 =
1

2T
. (2.61)

In summary, for given c and L, it is possible to calculate T and consequently
ν0.
In the following, we exploit this result for the calculation of the fundamental
mode of the BM. First, we calculate c(x) of the BM, where c(x) is a non-constant,
x-dependent function. Knowing c(x), we can determine T , which enables us to
compute the frequency ν0 of the fundamental mode of the BM.

The hydrodynamic equation (2.6) of the cochlea reads ∂2
t h = l

2ρ∂
2
xp. In the

linear, passive approximation for the static deflections it holds p = αω(x)h.
Inserting this relation into the hydrodynamic equation, results in

∂2
t p =

αω(x)l

2ρ
∂2
xp (2.62)

and hence

c(x) =

√
αω(x)l

2ρ
, (2.63)

where c(x) is the local, position dependent wave propagation velocity. We as-
sume the existence of wave functions f(x− c(x)t) and f(x+ c(x)t) which solve
Eq. (2.62) approximately and travel forward and reverse, respectively, with ve-
locity c(x).

For an object moving in longitudinal direction, let X(t) denote the value of
its longitudinal position x at time t. The velocity as a function of time is given
by dX(t)

dt . Defining c(x) as the velocity as function of location (assuming the
object moves only in one direction), we obtain c(x(t)) = dX(t)

dt . The time T the
object needs to travel from x = 0 to x = L, is given by

T =

∫ T

0

1dt =

∫ X(T )

X(0)

dt

dx
dx =

∫ L

0

1

c(x)
dx. (2.64)
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Figure 2.5: Comparison between the simulation results (black lines) and theo-
retical predictions (red lines) of the frequency of the fundamental mode. A: The
frequency of the fundamental mode is plotted as a function of ω0. The standard
parameter value is given by ω0=105 Hz. B: The frequency of the fundamental
mode is plotted as a function of L, the length of the cochlea, where L=35 mm
is the standard length.

Combining this relation with Eq. (2.63), we obtain

T =

∫ L

0

1

c(x)
dx =

√
2ρ

αω0l

∫ L

0

e
x
2d dx =

√
2ρ

αω0l
2d
(
e

L
2d − 1

)
. (2.65)

Thus, the frequency of the fundamental mode of the BM reads

ν0 =
1

2T
=

√
αω0l

4
√

2ρd
(
e

L
2d − 1

) . (2.66)

The theoretical value of ν0 for the time domain model according to the equation
above reads ν0 = 50.5 Hz. Simulations of the system, employing the boundary
conditions p(x = 0) = 0 and p(x = L) = 0, give ν0 = 47.0 Hz. In order to
verify the theoretical approximation, the model is simulated for varying ω0 and
L, for which the frequency of the fundamental mode is measured. There is a
good agreement between the theoretical prediction and simulation results, see
Fig. 2.5, which becomes better for high maximal angular eigenfrequencies ω0

and large cochlea lengths L. In both cases the agreement becomes better for
increasing frequencies ν0 of the fundamental mode.
The boundary conditions at the helicotrema and the apex are fixed in terms of p
as the pressure differences vanish. Note that due to the vanishing pressures, the
BM motion at the boundaries is rather small and we can consider the boundary
conditions to be approximately fixed in terms of h as well. The fundamental
mode also visible as a pronounced peak in the power spectrum of the pressure
in the ear canal if we use the boundary condition proposed in the subsequent
chapter. In this case, the frequency of the fundamental mode is reduced to
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about 36 Hz and two higher harmonics are visible.

Note that the theoretical approximation above is only valid if ν0, the frequency
of the fundamental mode, is lower than the lowest characteristic frequency on
the BM, which is the case all data points in Fig. 2.5. This ensures that the wave
is always propagating and not decaying at some point. This would be the case
for frequencies which are higher than the eigenfrequency on the BM, because
the factor c(x) in the wave equation would become negative for x larger than the
resonance point xr, leading to an exponentially decaying wave solution. This is
visible in the WKB approximation, which we considered previously.
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Chapter 3

Effects of boundary
conditions, longitudinal
coupling and static disorder

In the previous chapter, we presented a simple and generic model of the cochlea.
Now we advance towards a more biophysical description in order to study evoked
and spontaneous cochlear activity, in particular phenomena such as stimulus fre-
quency otoacoustic emissions, which we abbreviate with SFOAEs, and SOAEs.
In section 3.1 we incorporate a new boundary condition taking into account
middle ear mechanics. We describe the middle ear acting as a harmonic oscil-
lator. This provides a natural way to implement a boundary condition, which
corresponds well to the experimental setup, where the cochlea is stimulated by a
driving pressure in the ear canal. Furthermore, this boundary condition ensures
that the pressure in the ear canal is an observable, which is vital in order to
compare model results with experiments. Section 3.2 determines the response
of the model to sinusoidal stimuli. These SFOAEs are an important measure
in the field of mechanics of hearing, and they are connected to other observ-
ables such as SOAEs, which we will investigate further in chapter 4. Section
3.3 investigates the problem of determining the bifurcation point of the global
system. For a single Hopf oscillator this point is located at ε = 0, but for the
global system this does not have to remain true. Subsequently, we add dynam-
ical noise, which accounts for intrinsic fluctuations of the oscillatory elements,
representing diverse forces acting on the BM. The issue of longitudinal coupling
is addressed in 3.4, where we gather experimental results and study the effect
of longitudinal coupling on the model. In section 3.5, we perturb parameters
and investigate if it suffices to introduce disorder in the parameters to cause
the generation of SOAEs. It turns out that disorder in the frequency gradient
ω(x) or the nonlinearity β is not sufficient. Solely disorder in the bifurcation
parameter is sufficient to provoke SOAEs.

55
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After introducing longitudinal coupling and dynamical noise, the full equation
for the local oscillator dynamics is given by the following generalized complex
Ginzburg-Landau equation:

∂tz = (ε(x) + iω(x))z − β

α
|z|2z + (κ+ iκ′)∂2

xz −
i

α
p+ ξ(x, t), (3.1)

where ε(x) is the bifurcation parameter (which we will choose to be position-
dependent in chapter 4), κ, κ′ denote the dissipative and elastic coupling, respec-
tively. The dynamical noise, represented by ξ(x, t), is chosen to be a zero-mean
Gaussian noise which is white in both space and time.

3.1 Dynamic boundary condition mediated by the
middle ear

Thus far we have only modeled the inner part of the ear. However, despite the
fact that the active inner ear contains the key elements of cochlear mechanics,
the outer and in particular the middle ear, which are both essentially passive,
are also integral components of the auditory system and contribute substan-
tially to the hearing process by transmitting acoustic energy into the cochlea.
The fluid-filled cochlea is not directly connected to the outer environment. The
transmission to and from the outer environment is mediated by the middle ear,
which is an air-filled cavity comprising the three bones (see Fig. 3.1 A), and by
two membranes: The tympanum and the oval window separate the middle ear
from other parts of the ear. They are connected via a lever-like construction
composed of the ossicles, namely the incus, malleus and the stapes. The lever
joint is fixated via the muscular system and ligaments, and it is driven by two
forces acting on them both from the outside via the tympanum and from within
the cochlea via the oval window.

The main function of the middle ear is widely believed to be matching impedances
[5, 55]. Put differently, the task of the middle ear is connecting the air-filled
ear canal with the fluid-filled cochlea in such a way that transmission losses due
to reflections at the the boundaries are minimized. Small pressure amplitudes
at the tympanum are transformed to high pressure intensities at the oval win-
dow. This is achieved by two factors introducing a mechanical gain: The area
of the tympanum is more than an order of magnitude larger than the oval win-
dow, and the ossicles act like a lever with two different lever arm lengths, built
such that large motions of the tympanum are transformed into small motions
at the oval window. The presence of the middle ear allows for a transmis-
sion of approximately 60% of incoming sound energy into the cochlea. Without
impedance matching, i.e., if the oval window was directly connected to the outer
environment, less than 0.1% of the acoustic energy would be transmitted, and
consequently over 99.9% would be reflected back [5].
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Figure 3.1: A: Sketch of the human middle ear. Modified from [39]. B: Sketch
of the middle ear model. The calibrated driving pressure drives the middle ear
via ξdr. In the ear canal of volume Ve the pressure is denoted by pe. The ossicles
are represented by a lever with two lever arms, whose lengths are `mi and `is,
and two surfaces at the respective ends, the tympanum with area Sty, and the
oval window with area Sow. Graph adopted from [148].

However, this is only a simplified picture of the middle ear, as the dynamics
of this system are complex and strongly frequency-dependent. Note that the
precise mechanism of middle ear dynamics is not yet fully understood and the
subject of active research [120]. For instance, it is not entirely clear why the
middle ear transmission factors in forward and reverse direction as a function
of frequency are neither shifted nor reciprocal versions of each other [119, 154,
37, 38].

In this section, we employ a different boundary condition for the base result-
ing from hydrodynamic considerations. Subsequently, we present a middle ear
model which is based on the representation of the middle ear as a lever, thus
acting as a system with one degree of freedom, driven from two oppositional
sides. The boundary condition as well as the model of the middle ear stem from
Talmadge et al. [148].
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The boundary condition results from the following considerations: Balance of
inertial forces and resulting external forces at the base inside the cochlea give us,
as in section 2.1, ρ∂tJ1 = −bl∂xP1(0, t) and ρ∂tJ2 = −bl∂xP2(0, t) As J2 = −J1

and thus 2J1 = j we obtain ρ∂tj0(t) = −bl∂xp(0, t), where j0(t) = 2J1(x = 0, t).
Spatial discretization gives

ρ
d

dt
j0(t) = −bl p1(t)− p0(t)

∆x
, (3.2)

where we define p0(t) = p(x = 0, t) and p1(t) = p(x = ∆x, t). The volume
flow at the base is dominated by the movements of the oval window (see the
discussion at the end of this section for a detailed justification). Let q denote
the displacement in longitudinal direction of the the oval window, where a pos-
itive q corresponds to a motion towards the inside of the cochlea. Neglecting
contributions from movements of h0, we attain J1 ≈ Sow

d
dtq(t). Consequently,

we arrive at the condition

p1(t)− p0(t) = −2
ρSow∆x

b`

d2

dt2
q. (3.3)

This is the boundary equation we use henceforth in this thesis. It remains to
determine the dynamics of q.

According to Talmadge, we model the middle ear as a lever, thus assuming
a single degree of freedom, i.e., making the ansatz that ossicles and membranes
move as one, see Fig. 3.1 B. The dynamics of the middle ear are described by a
harmonic oscillator with the variable q. The effective areas of the oval window
and tympanum are represented by Sow and Sty, respectively. We assume that
the oval window and the tympanum move in piston-like manner. The oval win-
dow is subject to the force Sowp0 from the inside of the cochlea and the force
ΓmiStype due to pressure variations in the ear canal. Γmi is the lever factor,
resulting from the ratio of the lever arm lengths, and pe is the pressure in the
ear canal. Thus, we arrive at

m
d2

dt2
q + γ

d

dt
q +mω2

ow,eq = −Sowp0(t) + ΓmiStype(t), (3.4)

where m, γ and ωow,e are the mass, damping constant and eigenfrequency of
the middle ear, which can be estimated by physiological data and a more bio-
physical middle ear model. See table 3.1 for parameter values. We make the
simplification that the pressure in the ear canal is uniform and can be described
by a single variable pe. The minimal wavelength of SOAEs, which corresponds
to the upper bound of 8 kHz in terms of reported SOAE frequencies, is about
two times larger than the length of the ear canal. However, note that the outer
ear exhibits a resonance at about 3 kHz [117].
In general, pressure is understood to be not the absolute pressure but rather
the difference to the ambient pressure. In this section, this convention applies
to pe and pdr. Also note that sound pressure waves in the air are very small
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compared to the ambient pressure, typically at least 5 orders of magnitude lower
in pressure amplitude.
Eq. (3.4) has the drawback that we have to insert pe as an input variable. We
would rather use pe as an observable like in experiments. In order to achieve
this, we introduce pdr, the calibrated driving pressure, and relate the ear canal
pressure to the driving pressure: pdr is defined to be the pressure which is
present in the ear canal if the tympanum is fixed to its rest position. The
compression of the air in the ear canal can be assumed to be adiabatic, i.e., to
happen without exchange of energy with the surrounding environment. This
holds true for fast processes. In the case of acoustic stimulation in the ear canal
the assumption is approximately fulfilled. For an adiabatic processes, PV γair =
const or equivalently dP = −γairP dV

V , where γair is the ratio of specific heats,
V is the volume, and P the pressure. By applying this to our setup, we obtain
dP = pe− pdr and dV = StyΓmiq, where V = Ve is the volume of the ear canal,
and P = P 0

e is the ambient air pressure in the ear canal. Employing the relation
for adiabatic processes, we attain

pe(t) = pdr(t)−
γairP

0
e StyΓmi
Ve

q(t). (3.5)

Inserting this result into Eq. (3.4) leads to

m
d2

dt2
q +mγ

d

dt
q +mω2

owq = −Sowp0(t) + ΓmiStypdr(t), (3.6)

where ω2
ow = ω2

ow,e+γairP
0
e S

2
tyΓ2

mi/(mVe). Eq. (3.3) provides the dynamics of q,
necessary for employing Eq. (3.6). Taken together, these two equations provide
a boundary condition where the input is given by the calibrated driving pressure
pdr. As in experiments, the pressure in the ear canal, pe, is an observable via Eq.
(3.5). For the case of SOAEs, by definition pdr = 0, and thus pe is proportional
to the oval window displacement q.

Henceforth, we will use this boundary condition together with the dynamics
for q and the equation for the ear canal pressure, Eq. (3.5). Employing this
boundary condition also influences the response to pure tones. Furthermore, we
will use a modified value for the nonlinearity β = 4 · 1023 Pa/m3 which in the
new setup corresponds better to the BM deflection amplitudes in the frequency
domain model than with the previously chosen value of β.
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Table 3.1: List of parameters used for the model that includes the middle ear
boundary condition
Parameter Definition Value
b average breadth of BM 1.1 mm
β nonlinearity 4 · 1023 Pa/m3

Γmi lever factor 1.3
γair specific heat ratio of air 1.4
γow middle ear damping 0.0295 N s m−1

l height of upper/lower chamber 1 mm
m mass of middle ear 0.059 g
P 0
e ambient pressure in ear canal 105 Pa
Sow area of oval window 3.2 mm2

Sty area of tympanum 49 mm2

ωow eigenfrequency of middle ear 2π · 1500 Hz
Ve volume of ear canal 160 mm3

Discussion of the middle ear model and its limitations.
In order to verify the earlier assumption that the volume flow at the base is
dominated by oval window movements, we compare the change of volume flow
at x = 0 caused by the oval window longitudinal displacement q with the change
of flow caused by h0, the vertical displacement of the BM at x = 0. This is done
by comparing Sow d

dtq, where Sow is the area of the oval window, to b∆x d
dth0. It

holds Sow = 3.2 ·10−6 m2, b∆x = 1.1 ·10−8 m2, which gives a 300-fold difference
in areas. Simulations show that the amplitude of the motion of h0 exceed the
magnitude of the movements of q by not more than a factor of 20 for frequencies
up to 4kHz. Thus, the contribution of the oval window dominates the volume
flow at the stapes.
We represent the middle ear by a harmonic oscillator driven by two forces. This
model captures essential physical principles of the middle ear and facilitates
comparison with experiments by providing a setup that corresponds well to the
experimental setup when measuring otoacoustic emissions. However, the model
also includes several simplifications. Experimental results show that in certain
respects the middle ear is more complex. The lever joint in real cochleae is not
fixed but can move. For high frequencies, the ossicles move in a considerably
more complicated manner than a lever [5]. Moreover, the piston-like motion of
the two membranes is only an idealization which is not met in reality. However,
note that in the model we use effective areas of the membranes to take this fact
into account. In addition, complex modes of membrane motion were observed
in experiments [120]. Furthermore, the assumption of a uniform pressure in the
ear canal is not satisfied for high frequencies. External ear canal resonance was
reported to be at about 3 kHz [20]. The model is also too simple regarding
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its transmission properties. Forward and reverse transmission of the middle ear
are not reciprocal, nor are they shifted versions of each other. The transmission
behavior of the middle ear is considerably more complex than that of a harmonic
oscillator and is strongly dependent on frequency [119]. The loads of the cochlea
and the ear canal are very different, which influences measurements of forward
and reverse transmission. Moreover, the umbo, which is the notch with which
the tympanic membrane is mainly moving, does not behave symmetrically with
respect to the direction of stimulation [38].
Forward transmission properties are expected to influence the cochlear response
to pure tones and other incoming sounds. Reverse transmission and ear canal
resonance are likely to have an effect on different distributions of SOAEs, in
particular the statistics of emission frequencies.
Finally, note that the oval window in the model is in a different angle and
position relative to the cochlea than what is observed experimentally, see Fig. 3.1
A. Due to the incompressibility of the fluid and the encapsulated structure of the
inner ear, the angle is assumed to not alter the physics of the system significantly.
Furthermore, in our one-dimensional model we describe the pressure difference
as a scalar quantity, for which the angle of stimulation is not essential.
However, the detailed view of the cochlear architecture can explain parameter
values which might seem paradoxical: The effective area of the oval window,
which impinges on the apical side of the upper chamber, is about three times
larger than the average cross-sectional area of the upper chamber. This can be
understood by Fig. 3.1 A and the fact that the experimental cross-sectional area
of the upper chamber is not constant as we assume in our model but increases
for locations closer to the stapes. Note that the area of the oval window is
slightly larger than the cross-sectional area of the upper chamber at the base.

3.2 Stimulus frequency otoacoustic emissions

The response of the cochlea to pure tone stimulations is an important observ-
able to describe the behavior of the auditory system. It is of particular interest
to study the BM deflection and the magnitude of the total or outgoing pressure
waves in the ear canal. The pressure responses to pure tone stimuli, measured
in the ear canal, are the SFOAEs. These quantities can be studied by analyz-
ing the Fourier transforms of the pressure time traces in the cyclo-stationary
state, considered at the driving frequency. Typically, the cochlear response is
measured as a function of driving frequency. Remarkably, SFAOEs exhibit con-
nections to SOAEs, which we address below.

Fig. 3.2 A shows typical SFOAE curves of one ear for different stimulus am-
plitudes. We observe three striking features: Firstly, the amplitude of the re-
sponse decreases slowly for increasing frequency, rather independent of stimu-
lus amplitude. Secondly, the fine-structure of these SFOAE curves comprises
fast oscillations with a regular spacing on top of the slowly varying decrease.
Thirdly, note that the fast oscillations decrease in size for increasing stimulus
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amplitude. The fast oscillations of the experiment show a surprising regularity.
Let ∆f = f2− f1 denote the difference between two maxima at f1 and f2 of an
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Figure 3.2: The total sound pressure amplitude at the driving frequency, mea-
sured in the ear canal during a stimulation with a pure tone, plotted as a
function of driving frequency. A) shows experimental results for one ear and
different stimulus amplitudes. Adopted from [136]. B) displays the result of the
model for a stimulus amplitude of the same dB levels as in A). The system was
simulated with ω̃(x) = ω(x)(1 + ν(x)), where ν(x) is white Gaussian noise with
zero mean and a standard deviation of 0.01. All curves were simulated with the
same realization of the perturbation ω̃. The amplitudes of the stimulus for the
different curves are 10 (black), 20 (red), 30 (green), 40 (blue), and 50 dB SPL
(orange).

SFOAE curve as depicted in 3.2 A, and f =
√
f1f2 their geometric mean. For

experiments it holds true that

∆f

f
≈ 1

15
. (3.7)

Consequently, for frequencies around 1500 Hz this corresponds to a spacing of
100 Hz. The relative distance of 1/15 has also been found to be the preferred
minimal distance between neighboring SOAEs. Note that this value changes
slightly as a function of frequency, and a value of ∆f/f = 1/17 was also re-
ported, corresponding to a distance of one semitone. On basis of theoretical
considerations, it was hypothesized that small, random irregularities in param-
eters, for instance in the frequency gradient ω(x), can be responsible for this
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Figure 3.3: The total sound pressure amplitude in the ear canal, measured as
the value of the Fourier transform evaluated at the driving frequency, during a
stimulation of 5 s with a pure tones of 40 dB, plotted as a function of varying
frequency for three different standard deviations of the perturbation of ω(x).

pattern [161]. Indeed, we see in Fig. 3.3 that the SFOAE curve of the model
does not contain fast oscillations for a smooth, unperturbed ω(x). By perturb-
ing ω(x) with white Gaussian noise we obtain fast oscillations. For a driving
amplitude of 40 dB, the frequency of the fast oscillations are of the order of
the ones in experiments. However, they do not exhibit the high regularity ob-
served in experiments. Fig. 3.2 B shows the SFOAE response of the model for
varying amplitudes. The SFOAE curves of the model are of a different overall
shape compared to experimental data, first they increase until at around 1.6 kHz
where they start decreasing. The maximum at 1.6 kHz is presumably partly due
to the presence of the harmonic oscillator which represents the middle ear and
has an eigenfrequency of 1.5 kHz. The frequency of the fast oscillations for low
stimulus amplitudes is too high. For medium stimuli, the oscillations are of a
similar frequency, as visible in Fig. 3.3. As in experiments, the fast oscillations
vanish for higher stimulus amplitudes, shown in Fig. 3.2.
One explanation of the fine-structure and its relation to SFOAEs has been pro-
vided on theoretical grounds by G. Zweig and C.A. Shera [161, 137], putting
forward the idea of coherent reflection filtering which describes the cochlea as an
analog of a laser with certain modes, i.e., global standing waves. In a nutshell,
the explanation of the regular oscillations is based on roughness of some param-
eter, for instance the frequency gradient. Random irregularities of the before
smooth frequency gradient ω(x) act as a source of reflection, leading to regular
spacings in the SFOAE curves. The fact that the fine-structure disappears for
large stimulation amplitudes is explained by the claim that for high input inten-
sities the traveling wave is reflected over a broad range of the cochlea, resulting
in non-coherent reflections. This hypothesis serves as a possible answer for both
the periodicity in SFOAEs and SOAEs, where one also observes a characteristic
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minimal distance of 1/15 between neighboring SOAEs.
According to the theory sketched above, SOAEs are a global collective phe-
nomenon in contrast to local autonomous oscillations. We will investigate this
question further in section 3.5.

3.3 Spontaneous activity of the system

In this section, we ask under which conditions the model exhibits spontaneous
activity, measured in terms of pressure fluctuations in the ear canal. Single
dynamical systems governed by the Hopf normal form exhibit spontaneous os-
cillations if and only if the bifurcation parameter is positive, i.e., in the unstable
regime. Although our model comprises a chain of coupled oscillators described
by the Hopf normal form, the global bifurcation point εcrit of the model does
not have to coincide with the bifurcation point of an individual oscillator, which
is located at 0. Indeed, it turns out that the global system possesses a small
but non-zero value εcrit > 0. However, the transients are too long to precisely
determine the exact value. Furthermore, there is a spatial dependence of the
activity. The model is most insensitive to overcritical oscillators placed in the
middle of the cochlea. The measure we employ for spontaneous activity is cho-
sen to be the variance of the pressure in the ear canal.

Relaxation times of the system become rather large near the global critical
point εcrit of the system, similar to the diverging relaxation rate for a single
Hopf oscillator near the critical point. Thus, we choose to approximate εcrit by
means of a method which is similar to procedures employed in case of hysteresis
but which is solely due to transients: We equip all oscillators of the model with
a constant εglobal = -1, thus locating them in the stable regime, except for two
neighboring oscillators which possess a high εloc > 0. We simulate the model
for a period Tsim and measure the variance of pe. Subsequently, we vary the
parameter εloc for the two selected neighboring oscillators. Starting from a high
value, εloc is first decreased multiple times and then increased again. This leads
to curves like the one depicted in Fig. 3.4, where we start from high values on
the right, proceed to low values on the left, and then move to the right by in-
creasing εloc again. By choosing a threshold, which corresponds to the reference
pressure of 0 dB SPL, and determining the εloc-values for which the threshold
value is reached, we can infer an estimate of upper and lower bounds of εloc of
the two oscillators for which the system becomes active.
By carrying out this procedure for different positions of the active oscillators we
obtain an estimate of εcrit as a function of x, as displayed in Fig. 3.5. The model
is most insensitive to active oscillators positioned in the middle of the cochlea,
corresponding to intermediate frequencies. The apical part of the BM is easier
excitable than the basal portion and exhibits higher magnitudes of spontaneous
oscillation in the presence of noise. However, the basal end is closer to the ear
canal, thus transmission might be facilitated in comparison to low frequencies.
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Figure 3.4: The variance of pe shown as a function of εloc for three different
simulation times: 4 s (black), 8 s (red), and 16 s (green). For a given value
of εloc, we simulate the system for a period Tsim, measure the variance of pe
and then change the parameter εloc. Starting from a high value of ε, it is first
decreased and then increased again. The threshold corresponds to the reference
pressure of 0 dB SPL.
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Figure 3.5: Upper and lower bounds of εloc as a function of the position of the
two neighboring overcritical oscillators for a system size of N = 100, for two
different values of εglobal. The black lines denotes εglobal = −10 Hz, the red lines
indicate εglobal = −1 Hz. Similar results are obtained for other choices of N .
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Note that we chose a local threshold criterion for determining activity of the
global system, namely the pressure in the ear canal, i.e., the pressure next
to the basal end of the cochlea. The two above mentioned competing effects,
the vicinity to the base and an easier excitability, might lead to the maximum
observed in Fig. 3.5.

3.4 Longitudinal coupling of oscillators

In this section, we are concerned with longitudinal coupling of the BM. We re-
view experimental findings and study the effects of longitudinal coupling on the
model.
There is contradictory findings about the nature and relevance of longitudinal
coupling in the organ of Corti. In 1960, experiments by Békésy led to the conclu-
sion that there is non-negligible longitudinal coupling in cadaver cochleae [14].
In contrast to Békésy’s results, Voldrich found in 1978 that for live guinea pig
cochleae longitudinal coupling can be discarded and that the organ of Corti is
organized as a system of parallel fibers [153]. However, a more recent experimen-
tal investigation in 2001 found that longitudinal coupling in living cochleae is
indeed significant [104, 105], in accordance with the results obtained by Békésy.
The strength of the longitudinal coupling may be irrelevant in some respects,
as for instance in case of SFOAEs with high stimuli, but relevant in others, for
instance for SOAEs. It was shown experimentally and theoretically that cou-
pling reduces the influence of noise on hair cells and thus enhances nonlinear
amplification [35, 36, 9], leading to a possible explanation to the question of
why the entire cochlea is more sensitive than its key individual constituents,
the hair cells. Additionally, it was found that longitudinal coupling of active
Hopf oscillators can lead to the formation of synchronized clusters of oscillators.
Thus, longitudinal coupling provides a possible mechanism for the separation of
SOAEs and the characteristic minimum distance between neighboring SOAEs
[152], as mentioned in the sections 1.1 and 3.2.

We introduce next-nearest neighbor coupling in the model. In its continuum
formulation the local oscillator dynamics including coupling is given by Eq.
(3.1). The response of the model to longitudinal coupling is displayed in Fig.
3.6. Introducing elastic coupling leads to a similar shape of the power spec-
trum but with shifted frequencies of the small peaks in Fig. 3.6 B. In contrast,
dissipative coupling diminishes small peaks, smoothening the spectrum. This
corresponds better to the experimental spectra, which exhibit a very smooth
background spectrum, and potentially discrete, well separated peaks on top of
that. We chose all oscillators in the model for the simulations of Fig. 3.6 to be
critical. The effect of longitudinal coupling on active oscillators will be studied
in the subsequent chapter of this thesis.

There exist several possible sources of longitudinal coupling by means of tis-
sue connectivity in the cochlea. The three main candidates are given by the
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Figure 3.6: Power spectra for different cases of the longitudinal cou-
pling. A: Black: No longitudinal coupling, red: Purely elastic coupling, green:
Purely dissipative coupling, blue: Elastic and dissipative coupling. B: Zoomed
in version of graph A. Parameters as in table 2.1.

tectorial membrane, the reticula lamina, and the BM. The tectorial membrane
is situated on top of the tips of the hair bundles, thus connecting stereocilia
of different hair cells, which are widely believed to be the source of the active
amplification. The reticula lamina consists of hexagonal tilings placed on the
top surfaces of the outer hair cells and the phalangeal processes of the Deiter’s
cells [84]. The BM is located below the hair cells, supporting the whole organ
of Corti. In both a theoretical order of magnitude analysis by Jaffer and an
experimental study by Naidu and Mountain, the reticula lamina was found to
be the main source of longitudinal tissue connectivity [104, 60, 61]. However,
it seems also plausible that longitudinal coupling mediated by the BM or the
tectorial membrane contributes in a significant manner [105, 125].

3.5 Static disorder in the properties of oscillators
and spontaneous emissions

Based on the ubiquitous presence of stochasticity in nature in general, introduc-
ing perturbed parameters of the cochlea comes to mind. In hearing research,
mainly irregularities in the characteristic frequency ω(x) are considered, in par-
ticular as a possible mechanism for the preferred minimal distance in SOAEs
and the periodicity of SFOAEs [137] (see section 3.2). Note that we use the
words disorder, perturbation, and irregularities synonymously.
In the following, the effect of irregularities in different parameters is examined:
Static disorder is added to the characteristic frequency ω(x), the nonlinearity
β(= β(x)), and the bifurcation parameter ε(x), and the effect of these pertur-
bations are compared. More exactly, for a smooth parameter function γ(x), the
perturbed case is given by γ(x)(1+ν(x)), where ν is static, white Gaussian noise
with zero mean and a small standard deviation. In particular, we investigate
whether these perturbations serve as sources for SOAEs.
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Figure 3.7: Typical power spectra of pe for disorder in the local best
frequency ω(x). A: Typical spectra of pe for different standard deviations of
the disorder in β: δω(x) = 0 (black line), δω(x) = 1%� (red line), δω(x) = 1%
(green line). B: Zoomed in version of graph A with the same spectra. The
x-values of the crosses indicate the eigenfrequency ω(x)/(2π) of the oscillators.
The y-value of the crosses was chosen arbitrarily.

In case of critical oscillators, i.e. ε = 0, we find strong numerical evidence that
disorder in ω(x) or β does not elicit SOAEs. Only disorder in the bifurcation
parameter ε(x) is sufficient to generate SOAEs, which become manifest in peaks
in the power spectrum of pe. This finding also holds true in case of active
oscillators, i.e. for ε > 0, or in presence of longitudinal coupling, i.e. in these
cases we also find strong numerical evidence that disorder in β or ω(x) does
not lead to SOAEs, in contrast to disorder in ε. Note that for the spectra
shown below, the system was simulated for 300 s with zero driving pressure,
i.e., pdr = 0, employing the stochastic Hopf normal form with small additive
white noise, taking the form of Eq. (3.1). Consequently, time traces of the ear
canal pressure pe(t) are obtained over 300 s via Eq. (3.5). From these time
traces, the spectral density S(f) is computed by averaging the squares of the
Fourier coefficients obtained for 1 s intervals.

3.5.1 Characteristic frequency

Perturbing ω(x) with different strengths gives typical spectra as displayed in
Fig. 3.7. The left side shows a larger part of the spectrum, the right side a more
detailed view of the left side. As it is visible in Fig. 3.7 B, all model spectra
consist of numerous small peaks in contrast to the smooth experimental spectra,
which possess a very smooth background spectrum. The relative difference in
characteristic frequency of neighboring oscillators is e∆x/d−1 = e10−5/0.007−1 ≈
1.4%�. The magnitudes of the disorders in Fig. 3.7 are 1 %�(red line) and 1 %
(green line). Thus, the disorder of the red line is comparable to the average
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Figure 3.8: Typical power spectra of pe for disorder in the nonlinearity
β. A: Typical spectra of pe for different standard deviations of the disorder in
β: 5% (black line), 1% (red line), 1 %� (green line). B: Zoomed in version of
graph A.

relative distance of neighboring oscillators, whereas the disorder of the green line
is significantly higher. Hitherto, detailed experimental data on the heterogeneity
of the physiological frequency gradient is lacking. The graph also demonstrates
that disorder in ω(x) leads to some oscillators having similar frequencies which
in turn can lead to slightly higher peaks in the spectra. However, all spectra
lack large peaks which rise substantially above the background spectrum. Note
that we simulated numerous different realizations of disorders to verify if the
presented results hold true in general and if the presented spectra are typical.
We conclude that introducing disorder in the characteristic frequency is not
sufficient to generate SOAEs.

3.5.2 Oscillator nonlinearity
Disorder in the nonlinearity β is another possible candidate for causing SOAEs.
We perturb the constant β = β(x) as before spatially by adding frozen disorder
in the form of white Gaussian noise. Graph 3.8 displays typical power spec-
tra for different disorder strengths δβ. Is is visible that disorder in β is not
sufficient to cause SOAEs. In fact, the spectra are basically indistinguishable
from each other. It seems plausible that stochasticity in β does not suffice for
SOAE generation because the nonlinearity only becomes a significant factor for
oscillations above a certain magnitude. β does not influence small oscillations
and mainly prevents the active Hopf oscillator from diverging.

3.5.3 Bifurcation parameter
In this subsection, we perturb the bifurcation parameter ε(x) = 0. Introducing
disorder in ε(x), realized as static white Gaussian noise, causes the system to
exhibit SOAEs. This is plausible as the single oscillator exhibits oscillations if ε
is larger than zero. Fig. 3.9 displays typical power spectra for different strengths
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Figure 3.9: Typical power spectra of pe for disorder in the bifurcation
parameter ε(x). A: Typical spectra of pe for different standard deviations of
the disorder in ε(x): 5 Hz (black line), 2 Hz (red line), 1 Hz (green line). The
mean value of ε(x) is 0. B: Zoomed in version of graph A .

of disorder in ε(x). As expected, greater disorder in ε(x) elicits stronger peaks in
the spectrum. Peaks occur in a certain limited frequency range which is signifi-
cantly smaller than the range of local characteristic frequencies being present on
the BM. The local best frequencies present on the BM in the model, ω(x)/(2π),
range from about 100 Hz up to 16000 Hz. Note that in contrast to experiments
there is no preferred minimum distance visible between neighboring peaks in
the spectrum. In conclusion, disorder in ε elicits SOAEs, but in this setup it
cannot account for the statistics of SOAEs. This suggests there might be an
additional mechanism at work which prevents SOAEs from being too close to
each other.
Switching on longitudinal coupling can lead to a separation of neighboring peaks
and thus to the existence of a preferred minimal distance between neighboring
emissions, as will be shown in the subsequent chapter (section 4.3).



Chapter 4

Statistics of spontaneous
emissions in the model and in
vivo

SOAEs possess rich statistics. In this chapter, we present experimental data
and compare it with statistics obtained from the model employing longitudi-
nal coupling and irregularities in the bifurcation parameter. The majority of
the model parameters are fixed. We tune free model parameters to match the
statistics observed in experiments. Furthermore, we discuss several extensions
of the model, and we present pure tone responses of the new model, showing that
it still functions as an ’ear’ in the sense that it is able to detect sinusoidal stimuli.

Two examples of emission spectra of our model were already presented in Fig.
1.7 C and D. In the panels below the subgraphs C and D, the corresponding
irregularities ε are plotted as a function of the local best frequency ω(x)/(2π).
Spectra typically contain emissions in frequency regions where oscillators are
active (i.e., ε(x) > 0), while the converse is not necessarily true, i.e., positive
excursions of the bifurcation parameter ε(x) do not necessarily lead to emissions
in the spectra.

SOAEs typically occur in the frequency range of up to 8 kHz. The lower bound
for accepting an emission as a SOAE is 500 Hz. The number of SOAEs per ear is
an exponentially decaying distribution. Furthermore, SOAEs show the striking
and puzzling feature of a characteristic minimal distance of about one semi-
tone between neighboring emissions. This preferred minimum spacing decreases
slightly for increasing frequency. It is presently unresolved what the underly-
ing mechanism for these statistics is. In this chapter, we provide a model that
accounts qualitatively and quantitatively for those statistics.

71
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Figure 4.1: Schematic representation of the full cochlear model in the
time domain including elastic and dissipative coupling and irregular-
ities in the bifurcation parameter. A: The rectangular cochlea of length L,
breadth b, and height 2` is separated by the BM (dark gray) in two fluid-filled
chambers. The oval window and the helicotrema are located at x = 0 and x = L,
respectively. Vertical displacements of the BM are denoted by h(x). The BM
is represented by a discrete chain of oscillators (red dots), which are coupled
via hydrodynamic interactions (blue waves) and elastic and dissipative coupling
(green springs). B: The frequency profile ω(x) (red line) is shown together with
a typical profile of the irregularities ε(x) (black line) along the cochlea.

We compare the model results with experimental data which were kindly pro-
vided by Talmadge [146]. He investigated 76 humans or, equivalently, 152 ears.
For each ear he recorded time traces of the pressure in the ear canal for 5
minutes. Ears of the same person are not independent regarding their SOAE
properties. For instance, if a SOAE with frequency f1 is present in one ear, the
other ear possesses a higher than average probability to exhibit a SOAE within
a few hundred Hertz of f1. However, we calculate the histograms for the data
from all 152 ears. We compare the model results with experimental statistics
by simulating 152 individual realizations of the model using the final parame-
ter values (see table 4.1) for 300 s, each provided with static irregularities in
the bifurcation parameter ε(x). Repeating this procedure ten times gives the
averages and standard deviations for these model distributions indicated by the
gray shaded areas in the figures presented subsequently.
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Table 4.1: List of free fit parameters
Parameter Definition Value
D noise strength 10−21 m2/s2

κ dissipative coupling 39 Hz
κ′ elastic coupling 330 Hz
nc correlation length of ε(x) 5 · 10−3 m
σ standard deviation of ε(x) 58.5 Hz

The time-independent, perturbed bifurcation parameter ε(x) lends individuality
to each simulation run. We model ε(x) as a static Ornstein-Uhlenbeck process,
thus attaining a bifurcation parameter which possesses a Gaussian distribution
with standard deviation σ and zero mean, and which is exponentially correlated
in longitudinal direction in space with correlation length nc.

The dynamical noise is realized as additive white Gaussian noise and is not a key
factor in our simulations. We use it mainly as a regularization instrument. The
strength of the noise is chosen such that the background of the spectrum is in a
reasonable physiological range. However, note that we do not aim for a descrip-
tion of the background. The noise mildly influences the frequency distribution
of SOAEs and the distribution of distances between adjacent SOAEs.
We utilize the remaining free parameters of the model to fit the statistics of
the experiment. In particular, we use the standard deviation σ and correlation
length nc of the bifurcation parameter, and the strengths of dissipative and
elastic coupling κ, κ′. σ is chosen such that the total number of SOAEs of all
152 realizations of the model matches the total number of 588 experimental
SOAEs summed over all ears. The range of occurring frequencies is dependent
on multiple parameters including the free parameters and the value of α, which
we leave fixed. In the linear case of the model, α · ω(x) is the stiffness per unit
area of the BM. The numerical value of α was derived from measurements of
the static vertical deflection of human post-mortem BMs in response to global
pressure [41, 14]. This determines only the static response, whereas the model
is manufactured to describe the cochlear response to frequencies in the range of
the local best frequencies of the BM. Although stiffness is not a very vulnerable
physiological property, a more realistic value of α would have to be inferred
from experiments with living specimen and at non-zero frequencies. However,
the chosen value of α serves as an approximation and upper bound of a more
realistic value.
The distribution of the number of emissions per realization depends mainly on
nc, but it is also influenced by the threshold criterion. The longer the correla-
tion, the more likely are realizations with a high number of SOAEs, provided
we adjust the standard deviation σ such that the total number of 588 and thus
the average number of 3.9 SOAEs per cochlea remains constant. In the limit
of small nc we find a rather narrow distribution of the number of emissions
centering around the mean of 3.9 SOAEs per realization. Note that an increase
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of nc while keeping all other parameters constant leads to a decrease in the
total number of emissions, as we will discuss later. The preferred relative inter-
emission interval length of neighboring SOAEs is predominantly determined by
the coupling, more exactly by the relation between elastic and dissipative cou-
pling. For our model, the elastic coupling dominates the dissipative. However,
including dissipative coupling is necessary to obtain a characteristic minimum
distance between neighboring emissions. As it was found in experiments, the
inverse relative inter-emission interval slightly increases for higher frequencies
of SOAEs.

A sketch of the model is presented in Fig. 4.1. The model equations we consider
in this chapter are given by the usual hydrodynamic equation (2.6), together
with the middle ear equations developed in the last chapter and the following
equation for the local oscillator dynamics presented in the continuum notation:

∂tz = (ε(x) + iω(x))z − β

α
|z|2z + (κ̂+ iκ̂′)∂2

xz + ξ(x, t)− i

α
p. (4.1)

We consider disorder in the bifurcation parameter, which elicits SOAEs as we
saw in the previous chapter. However, in this chapter the disorder possesses a
different form. The disorder, which lends individual time-independent charac-
teristics to a model cochlea, is generated by an Ornstein-Uhlenbeck-process via
the stochastic differential equation

nc
d

dx
ε(x) = −ε(x) + ν(x), (4.2)

where ν(x) is a Gaussian stochastic variable with zero mean and correlations
〈ν(x)ν(x′)〉 = 2σ2ncδ(x − x′). σ and nc are the standard deviation and the
correlation length of ε(x), respectively. We employ the boundary conditions
presented in the previous chapter given by Eq. (2.11) and Eq. (3.3) in combi-
nation with Eq. (3.6).
The continuum description of Eq. (4.1), Eq. (4.2), and Eq. (2.6) was introduced
for the ease of notation. In the simulations of the model we solve a discrete
version of these equations for the variables hj , uj , pj , εj at N discrete sites with
positions xj = ∆x · j, j = 0, . . . , N , and ∆x = L/N = 10−5 m, as outlined in
section 2.2. We choose N = 3500 corresponding to the approximate number of
rows of hair cells in the human cochlea [32]. The spatially discretized form of
Eq. (4.1) reads

dzj
dt

= (εj + iω(xj))zj −
β

α
|zj |2zj + (κ+ iκ′)(zj+1 − 2zj + zj−1) + ξ(xj , t)−

i

α
pj .

(4.3)

Eq. (4.2) is simulated once for each simulation and is kept constant throughout
the time evolution of the specific realization of the model. Starting at x = 0
with a value drawn from the stationary distribution, the Ornstein-Uhlenbeck
process is simulated forward in longitudinal direction by employing the Euler
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Figure 4.2: Detection criterion of spontaneous emissions.: An example
of a power spectrum S (black line) of the ear canal pressure pe obtained in the
model in a small frequency interval exhibiting three emissions at frequencies f1

to f3. Intervals between neighboring emissions are denoted by ∆f1 and ∆f2.
The running average of log(S) (red curve) is determined with a window size of
1000 Hz. If an emission in the power spectrum exceeds the running average by
20 dB (indicated by the green curve), an emission is detected.

scheme with a step size of 10−8 m until x = L is reached. The discrete values
of εi, where i = 0, . . . , N , are obtained by sampling each 1000th point.
The parameters values used in this chapter for fitting the experimentally ob-
served statistics are denoted in table 4.1. For the other parameters see tables
2.1 and 3.1.

Emission detection

From the simulations, time traces of the ear canal pressure pe(t) are obtained via
Eq. (3.5) for a simulation time T = 300 s corresponding to the measurement time
in the experiments by Talmadge. From these time traces, the spectral density
S(f) is computed by averaging the squares of the Fourier coefficients obtained
from 1 s intervals. The starting conditions are given by hi = ui = pi = 0 for
all i = 0, . . . , N . Note that the system reaches a cyclo-stationary steady state
in less than 1 s. Furthermore, the starting conditions do not affect simulation
results significantly.
In the field of mechanics of hearing, there is no consensus on the optimal de-
tection criterion, as experiments face substantial challenges and diverse noise
sources such as line noise [146]. Consequently, in experiments different SOAE
detection criteria were put forward over the course of time. A frequent crite-
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rion is the requirement that the peak in the power spectrum is 3 dB above the
background spectrum [131].
Here we use a self-referencing threshold criterion, as illustrated in Fig. 4.2:
For each spectrum (black line) we define spontaneous otoacoustic emissions as
peaks in the spectrum S(f) which rise above the background level by more
than a threshold level which we choose at 20 dB, indicated by the green line.
The background is defined as the running average of the decibel values of the
spectrum over a 1000 Hz interval, indicated by red line.
We compare the statistics of the so defined SOAEs with those obtained from
experiments by Talmadge [146]. For the peak detection in experimental spectra,
Talmadge used slightly different criteria which were needed because of consider-
able amounts of noise, which affected the background and introduced additional
AC peaks. Since such artifacts are absent in our simulations, we can detect peaks
by the simpler criterion stated above. The criterion used by Talmadge is that
a peak has 5 points above the visual top of the noise floor. This condition is
chosen to ensure that the false alarm rate is small. Put differently, the method
shall reduce the number of emission which are accepted as SOAEs but are in
fact none. One difficulty in experiments is the so called ’line noise’, which is
due to electrical currents that show higher harmonics, even in the range of the
100th higher harmonic.
The uniqueness and the constance over time of emission spectra is caused in our
model by the static irregularities of the bifurcation parameter εn in a given re-
alization. From the procedure specified above, we obtain for a given realization
of εn a discrete sequence of peak frequencies fm, with m = 1, . . . ,M , where M
is the number of emissions in the spectrum. In order to compare the statistics
of SOAEs in our simulations with human cochleae, we use 152 different realiza-
tions of εn corresponding to the number of individual cochleae studied in the
experiments by Talmadge et al. [146].

4.1 Emission frequencies

The range of experimental SOAEs spans the entire frequency range from 0.5
to 8 kHz. Peaks in the power spectrum with frequencies below 500 Hz are
discarded due to the presence of physiological noise sources (such as respiratory,
muscular or cardiovascular activity) that might cause these peaks. The blue
count histogram in Fig. 4.3 displays the experimental distribution of the SOAE
frequencies exhibiting a bimodal distribution with two (local) maxima at 1.5 kHz
and 3 kHz. The histogram is binned logarithmically, each bin corresponding to
two semitones. Note that the bimodality is also present in the experimental
data set measured by others [20, 131]. The 3 kHz mode has been attributed
to a resonance in the external ear canal, whereas for the 1.5 kHz mode it has
been claimed that there is no mechanical explanation [20]. In particular, there
is experimental data that suggests that the eigenfrequency of the middle ear is
not 1.5 kHz and thus cannot be the source of this mode. However, the middle
ear model employed by Talmadge possesses an eigenfrequency of 1.5 kHz [148]
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Figure 4.3: Histogram of the frequencies of SOAEs. Count histograms
of emission frequencies detected in the experiments on 152 individual cochleae
in the experiments (blue) and the model (red). The gray region depicts the
standard deviation around the average calculated from 10 sets of 152 model
realizations.

and stems from a more complicated, biophysical model. Thus, there is some
apparent conflict between Braun’s statement above and the model employed by
Talmadge et al.
The red line in Fig. 4.3 depicts the count histogram of SOAE count histogram
of SOAE frequency obtained in our model from 152 realizations of the irregu-
larities.
The simulated frequency statistics of emissions accounts for both the range of
otoacoustic emissions (0.5 - 8 kHz) and the peak in the experimental histogram
near 1.5 kHz. In some of our simulation results we obtain a bimodal distribution
as well. The pronounced maximum at 1.5 kHz corresponds to the eigenfrequency
of the harmonic oscillator representing the middle ear. In the model we assume
a uniform pressure in the entire ear canal, describing it by one variable pe, thus
excluding the phenomenon of a possible resonance in the ear canal.

4.2 Emission numbers

In the experimental data from Talmadge [146], the total number of emissions
M for a given cochlea varies broadly. A histogram of the emission number is
shown in Fig. 4.4, indicated by the blue circles. 67 of the 152 cochleae studied
did not possess any SOAEs. Emission numbers above 20 occurred occasionally
and reached up to 32 SOAEs per cochlea [146].
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Figure 4.4: Histogram of the number of SOAEs per cochlea. Histogram
of the SOAE number per cochlea detected in 152 individual cochleae in the ex-
periments (blue circles) and the model (red squares). The gray region indicates
the standard deviation around the average determined from 10 repetitions of
152 realizations of the model.

The experimental histogram of the number of emissions M is well captured by
our model. A typical histogram of M obtained from the model with parameters
as in table 4.1 is displayed by the red squares in Fig. 4.4. Using ten sets of
152 realizations each, we see a shoulder in the histogram, indicated by the gray
band, which seems consistent with the experimentally obtained data. However,
there are slightly more cochleae with more than 20 emissions in the experimental
data compared to the simulations. A possible reason for this discrepancy might
be that the experimental, physiological equivalent to the bifurcation parameter
in the model does not possess Gaussian statistics. However, we will see later
that a slightly negative mean value of the bifurcation parameter leads to more
similar distributions of the number of emissions. Both the experimental and
the model distribution follow roughly an exponential decay with the exception
of the data point indicating the number of zero emissions.

The number of emissions is related to the number and size of active regions
in the cochlea, which is governed by the parameters nc and σ characterizing the
irregularities. σ is adjusted such that for given nc, the total number of SOAEs
summed over all 152 cochleae corresponds to the number of 588 SOAEs detected
in experiments. For small nc the number of SOAEs per realization does not fol-
low an exponential shape but resembles a Gaussian distribution. For fixed σ,
an increase in nc leads to a decrease of the total number of SOAEs.

These observations can be explained in the framework of the peak separation
and the resulting preferred distance between neighboring emissions. A long
active region of the cochlea, corresponding to a long positive and uninterrupted
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Figure 4.5: Power spectra exhibit more peaks for more small intervals
with ε > 0 than few long intervals with ε > 0, if longitudinal coupling is
present. Lower panel: Bifurcation parameters ε(f) for three different lengths of
active intervals, i.e., ε > 0, plotted as a function of f , using the correspondence
between f and x via ω(x). Upper panel: Three power spectra obtained from
simulations of the model with the three corresponding bifurcation parameters
from the lower panel, where the black spectrum belongs to the black bifurcation
parameter realization, and similarly for red and green.

excursion of bifurcation parameter ε, causes fewer emissions than a number of
short sections which together span the same length. The latter case corresponds
to a bifurcation parameter ε which is positive for short, consecutive intervals that
are separated by intervals with ε < 0. Fig. 4.5 shows a long interval with positive
ε (black line in the lower panel) and the resulting power spectrum (black line
in the upper panel). Also plotted are two realizations with short intervals of
positive ε, separated by small regions of ε < 0 (red and green lines in the lower
panel), together with the obtained power spectra (red and green lines in the
upper panel). It is apparent that the power spectrum indicated by the green
broken line exhibits more SOAEs than the spectrum indicated by the red line,
and likewise the spectrum marked in red exhibits more emissions than the power
spectrum marked in black. The correlation length nc governs the probability
of long excursions. An increase of nc makes long excursions more likely and
thus leads to a smaller total number of emissions if all other parameters remain
constant.
Now we want to explain the observation that an increase nc makes large numbers
of emissions per cochlea more likely, provided we increase σ such that the total
number of emissions remains constant.
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Figure 4.6: Power spectra for different strengths of longitudinal cou-
pling. For all spectra in the upper panel the bifurcation parameter ε(f) is as
depicted in the lower graph by the black line: For oscillators with eigenfrequen-
cies ranging from 700 to 900 Hz, we have ε = 100 Hz, all others possess values
of ε = −20 Hz. The strengths of the longitudinal coupling for the power spectra
are given by 0 Hz (black line), 10 Hz (red), −i · 100 Hz (green), 10− i · 100 Hz
(blue), where the terms with and without the factor −i denote the strength of
dissipative and elastic coupling, respectively.

Leaving σ fixed and increasing nc leads to an increase in the variance of the
average number ε̄ of each realization of ε, i.e., ε̄ = Σj=Nj=0 εj/(N + 1), for an
individual realization of the irregularities. Note that the theoretical mean value
of ε is by definition ε̄ = 0, which would correspond to an infinite sampling.
A larger nc leads to an effectively smaller number of samplings: The sample
size of 3501 remains constant, but for higher nc the individual values are more
similar due to the higher correlation length. The two extremes are nc = 0,
where we sample 3501 independent values of ε, and nc →∞, where we sample
3501 identical values.
If we increase nc and then also increase σ such that the total number of emissions
remains constant, we obtain a higher variance of ε̄ and also a higher variance of
εn. This increases the probability of realizations with a high value of ε̄. Such
irregularities lead in turn to large numbers of emissions per realization.

4.3 Relative frequency intervals between emis-
sions

Inner ears of different species exhibit the puzzling feature of a regular relative
inter-emission intervals with a preferred relative distance. For humans the dis-
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Figure 4.7: Average frequencies for different strengths of longitudinal
coupling. Average oscillation frequencies f = 1/ 〈T 〉 determined from the
average oscillation period T in the simulation as a function of oscillator number
j for bifurcation parameter depicted in the lower panel, given different coupling
strengths of 0 Hz (black line), 10 Hz (red), −i · 100 Hz (green), 10− i · 100 Hz
(blue), where real and imaginary numbers denote the strength of dissipative and
elastic coupling, respectively. The data is obtained from the same simulation as
in Fig. 4.6.

tribution of the relative distance shows a maximum at one semitone, which
is equivalent to a value f̄/∆f =

√
f1 · f2/|f2 − f1| ≈ 17 for two neighbor-

ing frequencies f1, f2, and exhibits a trend towards higher values of f̄/∆f for
increasing frequencies. It was shown that longitudinal coupling of active os-
cillators can lead to synchronized clusters of oscillators, resulting in a set of
discrete peaks in the spectrum with a preferred minimal distance [152]. By
introducing elastic and dissipative longitudinal coupling, we can capture both
the preferred minimum distance of 100 Cent, equivalent to one semitone, as well
as the trend. First, we describe the mechanism involving longitudinal coupling,
then we present statistics of the experiments and the model.

Emission mechanism

In the upper panel of Fig. 4.6 we see power spectra for cochleae with an activated
stripe in the region from 700-900 Hz (i.e., oscillators with eigenfrequencies in this
interval possess ε > 0) for four different cases of longitudinal coupling, where
the bifurcation parameter values are given by the lower panel and are the same
for all four spectra. The power spectrum for the system without longitudinal
coupling (black line) exhibits a plateau and no discrete peaks. The same holds
true for the case of purely dissipative or purely elastic coupling (red and green,
respectively). In contrast, if both elastic and dissipative coupling are present
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Figure 4.8: Oscillation frequencies within an active region in the
cochlea model. A: Irregularities ε as a function of oscillator index j within a
small frequency interval. The red area indicates ε > 0 corresponding to active
oscillators. B: Actual frequency oscillation f = 1/ 〈T 〉 calculated from the av-
erage oscillation period T in the simulation (black) together with characteristic
frequency (red dotted line). C: Power spectrum of the ear canal pressure in the
model. The threshold line (green) is employed to identify emissions. Sponta-
neous emissions, visible as peaks in the spectrum in C, correspond to frequency
plateaus in B (dashed orange line).

(blue), where the elastic coupling dominates, the spectrum exhibits sharp, well-
separated peaks. Note that, in general, dissipative coupling alone can also lead
to peak separation [152]. Fig. 4.7 displays the corresponding actual average fre-
quencies of oscillation. In this parameter regime, plateaus emerge only if both
dissipative and elastic coupling are switched on. These sharp plateaus lead to
separated peaks in the power spectrum, and the frequency of the plateaus cor-
respond to the frequencies of the peaks in the spectrum. The length of these
plateaus determine the frequency differences between the resulting plateaus and
thus the frequency differences of emissions in the power spectra. Due to the
presence of the elastic coupling, the frequency of each plateau is determined by
the oscillator with the highest eigenfrequency within the group of synchronized
oscillators [152].

Each realization of εj defines regions in which ε > 0 and the model cochlea is
active, see Fig. 4.8 A. The length of these regions is of the order of nc, the cor-
relation length of the irregularities. The typical maximum of such excursions in
ε is substantially smaller than the eigenfrequency ω(xj). In an active region, os-
cillators, which possess a gradually varying intrinsic local best frequency ω(xj),
tend to oscillate spontaneously. Due to the presence of elastic and dissipative
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coupling, oscillators form synchronized clusters, i.e. groups emerge in which they
oscillate with the same frequency. Fig. 4.8 B shows the local average frequency
as a function of oscillator index j, indicated by the black solid line. In this
plot, synchronized clusters correspond to frequency plateaus in the black line.
The average frequency is defined as the average number of oscillation periods
per unit time determined for oscillator j in the model. The power spectrum
of the ear canal pressure pe in Fig. 4.8 C reveals the correspondence between
the frequencies of peaks in the spectrum and the oscillation frequencies of the
plateaus, indicated by the dashed orange lines. Thus, the number of oscilla-
tors Nsyn which cooperate in a synchronized cluster determines the distance
between two emissions. In the example of Fig. 4.8 Nsyn ≈ 40 corresponding
to f̄/∆f ≈ 17. For the parameter values used here Nsyn < Nc, the number of
correlated oscillators, given by Nc = nc∆x. Consequently, active regions typ-
ically split up into several synchronized clusters, causing multiple neighboring
discrete peaks in the power spectrum. Due to the presence of elastic coupling,
the frequency of each plateau corresponds to the oscillator in the cluster with
the highest characteristic frequency [152]. Unfortunately, there is still a lack of
theoretical understanding of clustering in presence of both elastic and dissipa-
tive coupling. Osipov and Sushchik investigated the case of a chain of purely
dissipatively coupled active oscillators with a linear frequency gradient and de-
rived an approximate formula for the cluster size [113], which we will employ in
the following subsection. However, they did not consider a cochlea model. In
particular, no hydrodynamic interactions are present in their study.

Inter-emission interval statistics

Given the peak separation mechanism, which was described in the previous sec-
tion, we now turn towards the statistics of the inter-emission intervals. The
statistics of intervals ∆f = fn − fn−1 between adjacent emissions are of special
interest. We consider the inverse relative interval f̄/∆f , where f̄ = (fn−1fn)1/2

and alternatively the interval measured in Cent units defined as I(fn, fn−1) =
1200 · log2(fn/fn−1). Note that, by definition, 100 Cent are equal to one semi-
tone. Both interval measures have been employed previously to characterize
spontaneous emissions [131, 19, 137]. Fig. 4.9 A displayes the reverse rela-
tive intervals as a function of the mean frequency f̄ (blue circles), which scatter
around f̄/∆f ≈ 17. There is a trend towards larger values of the inverse relative
interval f̄/∆f for increasing frequencies. Many intervals lie around a straight
line corresponding to a power law [137]

∆f ∼ f̄ν . (4.4)

A value of ν = 0.31± 0.05 was estimated by Shera [137] for the data shown in
Fig. 4.9 A as blue circles. The distribution of the relative intervals in Cent units
is shown in Fig. 4.9 B. In the experimental data (blue histogram), the most
frequent relative interval occurs at 100 Cent corresponding to one semitone
interval [19].
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Figure 4.9: Comparison of the statistics of emission frequency inter-
vals in model (red) and experiment (blue). A: Inverse relative frequency
intervals f̄

∆f =
√
f1f2

|f2−f1| , where f1 and f2 are frequencies of two adjacent emis-
sions in the spectrum. Data points correspond to pairs of emissions in 152
realizations (model) or ears (experiment). The dashed brown line indicates the
relation ∆f ∼ f0.39. B: Histogram of the relative frequency intervals, defined
by 1200 log2

f2

f1
, given in units of Cent (1200 Cent correspond to one octave) for

the same data as in A. The gray region indicates the standard deviation around
the average determined from 10 repetitions of 152 realizations of the model.
The inset shows the relative frequency interval corresponding to the maximum
in the histogram as a function of the elastic coupling strength of oscillators.
The dashed line denotes the parameter value of the elastic coupling used for
simulations.

The scatterplot of inverse relative emission intervals obtained from the model,
plotted versus frequency (see Fig. 4.9 A), corresponds well to the experimen-
tal data. However, in simulations there are more small intervals ∆f with
f̄/∆f > 100, which lead to second peak at small Cent values in Fig. 4.9 B.
This difference in distributions might be partly due to the different peak detec-
tion criteria employed in experiments and simulations. Observe that the model
can capture both the maximum at about 100 Cent and the overall shape of the
interval histogram shown in Fig. 4.9 B for large Cent values. Finally, our model
also accounts for the trend of the intervals towards higher values for increasing
frequency f̄ , described by Eq. (4.4). Fitting this relation to the maxima of the
distribution of the inverse relative intervals, we estimate ν ≈ 0.39± 0.04 for the
model data and ν ≈ 0.33±0.1 for the experimental data. Thus, the model value
is consistent with the experimental data within the error margin. Note that the
error margin in our estimate of the value of ν obtained from the experimental
data is higher than the value reported by Shera, which is due to the employment
of different estimation schemes.
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Figure 4.10: Preferred minimum distance ∆f/f̄ as a function of elastic coupling
strength κ′.

The number of oscillators Nsyn which cooperate in a synchronized cluster deter-
mines the distance between two emissions. For the parameter values used here,
it holds Nsyn ≈ 40 corresponding to f̄/∆f ≈ 17. As Nsyn < Nc = 500, where
Nc is the correlation length of the Ornstein-Uhlenbeck process measured in num-
bers of oscillators, active regions typically break up into several synchronized
clusters, see Fig. 4.8.
In order to discuss the typical intervals between emissions, we need to under-
stand the size Nsyn of synchronized clusters [41, 113]. Hitherto, there exists no
general theory for the cluster size Nsyn. For purely dissipative coupling and a
linear frequency gradient, a necessary condition for global synchronization was
calculated [113], ∣∣∣∣∣ (ω(xn)− ω(xn−1))N2

syn

8κ̂

∣∣∣∣∣ < 1, (4.5)

where κ̂ denotes a coupling strength. We make the assumption that relation
(4.5) can be used to estimate the maximal size of clusters in case of a chain that
breaks up into several clusters. In addition, we assume that the relation holds
even in the presence of elastic coupling and for nonlinear frequency gradients.
Thus, we obtain a relation for the inter-emission interval, ∆f = ∆ω/(2π), with
∆ω ≈ Nsyn(ω(xn−1) − ω(xn)). Employing ω(xn−1) − ω(xn) ≈ ∂xω(xn)∆x =
ω(xn)∆x/d, relation (4.5) leads to

(∆ω)2d

8κ̂ω(x)∆x
< 1. (4.6)

In order to estimate the maximal values for which this relation still holds, which
gives us the maximal cluster size, we assume equality in this relation. Thus,
we arrive at ∆ω ∼ ω1/2 corresponding to ν = 1/2. This value is not consistent
with experimental data, but it is also not drastically different from it.

The inset in Fig. 4.9 shows the position of the maximum of the Cent histogram
as a function of elastic longitudinal coupling strength κ′. Stronger coupling
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leads to an increase in cluster size and consequently to larger frequency differ-
ences between neighboring clusters, causing larger relative frequency differences
between neighboring SOAEs. The relation between the elastic coupling strength
κ′ and the mean relative frequency difference ∆f/f̄ is roughly linear, shown in
Fig. 4.10, in contrast to the prediction of formula (4.5). However, note that
consistency with the formula could not be expected as the formula holds only
in case of purely dissipative coupling.

Discussion

The level of the background of the power spectra is significantly lower than seen
in experiments. However, we do not aim for a description of the background,
which might depend on the measurement apparatus and technique, which might
be influenced by microphone noise and other noise sources. Utilizing stronger
additive noise leads to a diminishing of the cooperative effect if all other param-
eters are kept constant. This results in less clustering and consequently more
small relative SOAE distances and fewer inter-emission intervals of one semitone
or larger.
The quality of an emission in a power spectrum is defined as the ratio of the
frequency and the full half-width, see Fig. 1.11. For a single Hopf oscillator the
quality is determined by noise, the bifurcation parameter and the nonlinearity,
see subsection 1.3.2. An increase in additive noise leads to smaller and broader
peaks in the power spectrum. This holds also for our model consisting of an array
of coupled Hopf oscillators. For the model with parameters used for matching
the statistics, see table 4.1, quality factors of SOAEs center around 100000,
which is three orders of magnitude higher than what is observed in experiment,
where quality factors range from about 10 to 10000 with a maximum around 100,
see Fig. 4.11. Note that some quality factors of the model might be even higher.
This is due to the fact that simulation time was limited to 300 s. The accuracy
of the estimate of the quality factors is dependent on the simulation time. In
order to precisely measure high quality factors corresponding to small widths,
long simulation times of the model are required. The discrepancy between
quality factors from model and experiments is presumably partly due to the
different peak detection criterion: For the model, only those peaks are identified
as SOAEs which rise 20 dB above the background spectrum, thereby discarding
low and broad peaks and detecting emissions regardless of their width. In
contrast, Talmadge identified peaks as SOAEs if the peak rises above the visual
noise floor for at least 5 points of the spectrum (with a resolution of about 1
Hz). This implies that small but broad peaks may also be counted (the data set
indeed contains peaks which rise less than 3 dB above the noise floor), whereas
large and sharp peaks might be discarded. However, these differences do not
fully account for the observed discrepancy. Thus, the model indicates that
the influence of noise on the system might be substantially more complex than
processes which can be captured by dynamical, additive white Gaussian noise.
There might be other processes taking place in the cochlea which determine the
quality and are not captured or well described by the noise we employed. Other
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Figure 4.11: Distributions of the quality factor of SOAEs in experiment
and simulation. The graph shows the count histograms of the quality factor
of SOAEs in the experiment (blue) and the model (red) with the standard
parameters of chapter 4. Data are shown for 152 individual ears in experiment
and results from the model obtained from 152 realizations of the irregularities.
The gray region indicates the standard deviation around the average determined
from 10 repetitions of 152 model realizations.

noise sources such as physiological noise, caused for instance by cardiovascular
activity, which is known to influence SOAEs [83], might be more appropriately
described by a noise which acts on the phase of the oscillator, thus perturbing its
characteristic frequency. Employing such noise leads indeed to a correct mean
value of the quality, as shown in section 4.5.
The power of emissions in the model is comparable to the power seen in exper-
iments, see Fig. 4.12. Both distributions have a similar mean power. However,
the distributions exhibit different skews, and the experimental power distribu-
tion is wider than the distribution obtained from the model. In particular,
some SOAEs from experiments reach higher maximal power than SOAEs in the
model. This might be partly due to the different widths of the SOAEs, i.e.,
the fact that peaks in the model are substantially more narrow than in exper-
iment. By increasing the noise in the model, two peaks which are very close
to each other might merge and form one peak, whose power is the sum of the
two individual peaks. In both model and experiment these results are influ-
enced by diverse sources of uncertainties. Some degree of uncertainty results
from the procedures with which the power is determined. Talmadge obtained
the power of experimental SOAEs by performing a nonlinear fit consisting of
a Lorentzian function plus background terms [146]. The fit parameters asso-
ciated to the Lorentzian were then used to determine the power. The power
distribution obtained from the model is calculated by integrating the numerical
power spectrum in a small window and subtracting the background spectrum.
In case of the model, this method is more reliable for determining the power of
peaks because the method employed by Talmadge is strongly influenced by the
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Figure 4.12: Distributions of power of SOAEs in experiment and sim-
ulation. The graph shows the count histograms of the power of SOAEs in the
experiment (blue) and the model (red) with the standard parameters of chap-
ter 4. Data shown for 152 individual ears in experiment and results from the
model obtained from the average determined from 10 repetitions of 152 model
realizations of the irregularities.

fit results of the widths. Due to the small values of the widths in the model,
their fits are not very precise.
The power of SOAEs is influenced by both the power within the cochlea and the
transmission properties of the middle ear. There exist diverse possible sources
of the discrepancies between the power of SOAEs in the model and experiments.
One source is given by the different transmission properties of the physiological
middle ear and the harmonic oscillator representing the middle ear in the model.
Put differently, transmission properties of the middle ear are more complex than
transmission properties of the harmonic oscillator.
In cats it was observed that the prediction of the mechanical gain is higher
than what is observed for the middle ear transmission in experiments [5]. It
is difficult to perform this comparison in humans, but due to the anatomical
similarity of mammalian cochleae, the discrepancy is believed to hold true for
humans as well. The gain in humans (and other mammals including cats) varies
among individuals and is strongly frequency dependent, and transmission gains
in forward and backward direction are not related by an easy relation. These
properties are due to several factors: The ossicles were found to behave differ-
ently with respect to forwards and reverse transmission. The lever joint of the
ossicles is not completely fixed as it is held by ligaments and muscles. Besides,
the ossicles display more complex motions than a lever does, particularly for
higher frequencies [138]. The lever factor of the ossicles is not constant with re-
spect to frequency as the ossicles do not move in total synchrony. Furthermore,
the tympanum exhibits complex modes depending on the frequency [46, 38].
Moreover, the middle ear cavity is connected to mastoid air cells, which are air-
filled cavities of varying sizes inside the temporal bone. These air cells influence
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transmission properties as well and are considered to be important for the func-
tioning of the middle ear [51, 98, 120]. Finally, the position of the microphone
in the ear canal plays a role for the measurements of SOAEs, and the volume
of the ear canal influences the strength of SOAEs.

In the following, we discuss parameter choices and estimates. The free param-
eters were fitted because there is no experimental evidence determining these
parameters. However, for some we can provide estimates of upper bounds.
The dynamical white Gaussian noise possesses a clear upper bound, given by
the constraint that the background of model spectra may not be higher than
experimental spectra. An increase in the dynamical noise leads to a rising
background. Note that experimental backgrounds vary significantly and are
dependent on several factors such as the measurement technique and the ex-
perimental setup. However, in the model spectra, the background is well below
typical, experimentally observed backgrounds.
We made the assumption of an exponentially correlated bifurcation parameter
with zero mean and exponential correlation in space. It is unclear whether those
hypotheses are met in nature. We argue that it seems plausible and that we
chose a generic description. In particular, there is no estimate of the correla-
tion length. However, we can estimate rough upper bounds for the standard
deviation of the bifurcation parameter as we know that spontaneous oscillations
should be small. Furthermore, it seems plausible that the BM operates close to
a Hopf bifurcation. Thus, the bifurcation parameter should be also small com-
pared to the characteristic frequency. Both conditions are met by the particular
choice of the standard deviation of the bifurcation parameter.
It is not clear whether longitudinal coupling of the strength we employed in the
model exists in reality and whether it is both elastic and dissipative. Experi-
mental results indicate there is longitudinal coupling, which is mainly elastic.
However, it seems plausible that it is also weakly dissipative.
In order to estimate the strength coupling in the model, a transformation to
other description of local dynamics is necessary, as the Hopf normal form is
an effective, phenomenological description without physiological details. We
choose to compare the Hopf normal form to an harmonic oscillator by means of
a transformation presented in section 2.3. Dissipative and elastic longitudinal
coupling of strengths κ and κ′ in the Hopf oscillator correspond to coupling
strengths |k̂el| = 2mΩ0|κ| and |2mk̂di| = |κ′| in the description of the harmonic
oscillator, where m and Ω0 are mass and eigenfrequency of the harmonic oscil-
lator, respectively. In simulations we use κ = 39 Hz, |κ′| = 300 Hz. For the
comparison we choose a medium angular frequency of 104 Hz. Corresponding to
the setup of our model, we choose m to be the mass of a segment of the cochlear
partition of length ∆x = 10µm. Estimates for the mass of the cochlear partition
vary [106]. However, it can be assumed that the density of the partition is not
significantly higher than the density of water, which is 103 kg/m3. The breadth
of the partition is about 1 mm. Its height is less than 1 mm, thus the volume
is less is not greater than 10−11 m, resulting in a mass of less than 10−8 kg.
Duifhuis gives a value of 0.5 kg/m2 for the areal density of the partition [40],
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Figure 4.13: Response of the time and frequency domain models to
periodic stimuli of frequency f = 1300 Hz and varying strengths. A:
Maximal BM deflection |h| as a function of position x along the cochlea (red
line), where the maximum is computed for each position over a small time
window, shown together with the magnitude of the Fourier transformation at
the driving frequency (black line) for a stimulus of 40 dB SPL. B: Same graph as
A but for a stimulus of 80 dB SPL. C,D: Magnitude of the response according to
the cochlea model in the frequency domain [41] for 40 dB and 80 dB, depicted
in C and D, respectively. Note that all the black lines, which represent either
the results of Fourier model or the Fourier transform of the time model, were
multiplied by two in order to correspond to the time domain response.

which leads to a mass of 0.5·10−8 kg. Inserting the value of m obtained with the
parameter from Duifhuis into the above relation for the coupling strengths, we
obtain k̂el = 0.03 N/m, k̂di = 2 · 10−7N/m. Comparing the value of the elastic
coupling with results obtained by Dierkes [36], the strength falls into the range
of strong coupling of hair bundles.

4.4 Stimulus frequency otoacoustic emissions re-
visited

As we saw in the previous sections, the model provided with longitudinal cou-
pling can account for SOAEs including its statistics. The question remaining
is whether the model can still account for the other three hallmarks of hearing
given by an extreme sensitivity, a wide dynamic range, and a sharp frequency
selectivity. In this section, we stimulate the system we proposed in this chap-
ter with pure tones and measure its response, showing that this model, which
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contains dynamical noise, longitudinal coupling, and disorder in the bifurca-
tion parameter, still works as an ’ear’ in the sense that it detects sinusoidal
sound stimuli. Stimulating the cochlea with a pure sine tone, Fig. 4.13 shows
a good agreement between the Fourier transform of the time series h(x, t) ob-
tained from the time domain model including irregularities in ε, indicated by
the black lines in A and B, and the solution of the model in frequency space
[41], shown in C and D. Thus, the time domain model extends the frequency
domain model, hereby ensuring that the time domain model can function as an
’ear’ in the sense of a sound detector for pure tones. However, note that there
are differences between the responses of the two models. The envelopes in the
time domain model are smaller and possess a broader overall shape compared
to the model in the frequency domain. Furthermore, graphs 4.13 A and B show
that in the time domain model, frequencies other than the stimulus frequency
are also present, since the red lines, which denote the maximum of |h| for a
small time window, are larger than the black one, particularly on the right side
of the peak. In the frequency domain model no other frequencies are present.
Differences between the two models are expected due to several reasons. First
of all, the Fourier transform of the time domain model corresponds only in an
approximate manner to the model in the frequency domain. Furthermore, the
boundary conditions are different as we employ the middle ear boundary condi-
tion in the time domain. Besides, in contrast to the frequency domain model, the
time domain model comprises dynamical noise, irregularities in the bifurcation
parameter, longitudinal coupling. In addition, the values of the nonlinearity β
differ. The numerical value of β in the time domain model was chosen such that
the SFOAE response of the model resembles the SFOAE response of the basic
frequency domain model [41]. Note that the magnitudes of the Fourier modes
in Fig. 4.13 were multiplied by two in order to correspond to the time domain
snapshot, as the Fourier transform of a sinusoid returns half the amplitude at
the driving frequency.

4.5 Extensions of the model

Although the final model incorporates diverse biophysical features, such as the
middle ear boundary condition, irregularities in the bifurcation parameter, lon-
gitudinal coupling, and dynamical noise, we avoided unnecessary modifications
to maintain the generic character of the model. However, it might be interest-
ing to consider different extensions and alterations of the model. We discuss
statistics of the model 1) without any dynamical noise, 2) with both dynamical
additive and phase noise, and, finally, 3) with a negative mean bifurcation value.

In order to obtain the desired statistics of the inter-emission intervals, the fre-
quency distribution and the distribution of the number of emissions per cochlea,
it is not necessary to include dynamical noise. For the system without dynamical
noise and with otherwise unchanged parameters, we present typical statistics in
Fig. 4.14 for an adjusted threshold value of 31 dB of the peak detection criterion,
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Figure 4.14: Comparison of the statistics of SOAE frequency, number of
SOAEs per cochlea, and inter-emission frequency intervals in experi-
ment (blue) and model without dynamical noise (red). Data shown for
152 individual ears in experiment and results from the model obtained from 152
realizations of the irregularities. A: Histogram of SOAE number per cochlea. B:
Count histograms of emission frequency detected. C: Inverse relative frequency
intervals f̄

∆f =
√
f1f2

|f2−f1| , where f1 and f2 are frequencies of two adjacent emis-
sions in the spectrum. The brown line indicates the relation ∆f ∼ f0.39. D:
Histogram of relative frequency intervals, given in units of Cent for the same
data as in C. The gray regions in A,B, and D indicate the standard deviation
around the average determined from 10 repetitions of 152 realizations. Param-
eter values are given by the standard parameters, as used for Figs. 4.3, 4.4, 4.9,
except for the noise intensity, which is set equal to 0 here.

which is necessary to maintain an average number of SOAEs that corresponds
to experimental data. The distributions do not change dramatically. The distri-
bution of SOAE frequencies exhibits a slight second maximum. The histogram
of the relative frequency distances between neighboring SOAEs exhibits fewer
small distances, see Fig. 4.14 D, compared to the system with dynamical noise.
This is in accordance with the observation that the peak separation mechanism
is weakened by the presence of dynamical additive white noise. Furthermore,
the rise of the threshold value also contributes to the decrease in the number of
small distances, which corresponds to the observation that large peaks show a
more pronounced separation effect compared to small peaks.
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Figure 4.15: Comparison of the statistics of SOAE frequency, number
of SOAEs per cochlea, and inter-emission frequency intervals in ex-
periment (blue) and model with negative mean bifurcation parameter
(red). The panels show the same quantities as explained in Fig. 4.14. Param-
eter values are given by the standard parameters, as used for Figs. 4.3,4.4,4.9,
except for the mean bifurcation parameter ε̄ = −80 Hz, and the standard devi-
ation σ = 97 Hz.

Thus far we described ε(x) by an Ornstein-Uhlenbeck process with theoreti-
cal mean equal to 0. Though it seems justified to set the mean exactly to 0, it
is also possible that the mean bifurcation parameter corresponding to experi-
ments is slightly different from 0. Choosing ε̄ < 0 has a regularizing effect on the
spectra. Small peaks in the spectrum become less pronounced and thus regions
between tall peaks become usually smoother. In case of ε̄ = 0, the prevalence of
model cochleae with one or more SOAEs is systematically higher than what is
observed in experiments, corresponding to a lower number of realizations with-
out any emissions, see Fig. 4.4. This feature is rather robust, and it appeared
in most of the different setups and parameter sets that were investigated during
this study. In addition, cochleae with a high numbers of SOAEs are less fre-
quent in the model with ε̄ = 0 compared to experimental results. By choosing a
slightly negative mean value ε̄, the agreement of the distribution of the number
of SOAEs per cochlea obtained from the model and the experiment improves,
see Fig. 4.15 A, compared to the case ε̄ = 0, see Fig. 4.4. In particular, the
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prevalence of cochleae with at least one SOAE can be captured which is equiva-
lent to matching the number of cochleae with zero SOAEs. Furthermore, model
cochleae with high numbers of SOAEs become more frequent.
The distribution of emission frequencies and the distribution of inter-emission
intervals remain similar, see Fig. 4.15 B-D. Though, small inter-emission inter-
vals become more likely, whereas large ones become slightly less frequent.
However, in order to keep the average number of emissions constant, choosing
ε̄ < 0 needs to be compensated by an increase in σ. Thus, long excursions of an
elevated level of the power spectra become more likely, by which we mean large
frequency intervals of several hundred up to 1000 Hz in which all points in the
spectrum lie above the background level.

In the following, we consider the model subjected to an additional noise source.
The model system with the standard parameters including the standard strength
of the additive noise exhibits unrealistically high quality factors centering around
105, see Fig. 4.11, in comparison to experimental quality factors, which center
around 100. This discrepancy might be partly due to other noise sources being
present in the real cochlea, which are not captured by additive white noise. One
possible candidate for a not captured noise source is the cardiovascular activity,
in particular the heart beat, which modulates the blood pressure and is known to
influence SOAEs [83]. Such noise sources might be more appropriately modeled
by phase noise, which we investigate below.
We model the system with the standard parameters in presence of phase noise,
which we describe by an additional term iη(t)zj in Eq. (4.7), where η(t) is
an Ornstein-Uhlenbeck process in time acting globally on all oscillators. Its
standard deviation is σpn and the correlation time is 1 second. Thus, the local
oscillator dynamics reads

dzj
dt

= (εj + iω(xj) + iη(t))zj −
β

α
|zj |2zj

+ (κ+ iκ′)(zj+1 − 2zj + zj−1) + ξ(xj , t)−
i

α
pj . (4.7)

We simulate the system including phase noise by simulating each local oscillator
with an effective local frequency ω(xj)+η(t). The statistics of this system, which
is subject to global phase noise as well as additive white noise, is depicted in Fig.
4.16. In general, the distribution of the number of emissions, the distribution
of emission frequencies and distribution of the inter-emission intervals do not
differ drastically from the system without phase noise. However, small distances
between adjacent emissions become less likely. This effect is facilitated by the
increased width of SOAEs. Two narrow emissions which are very close to each
other in the system without phase noise are not discriminable anymore in the
presence of the phase noise if their distance is sufficiently small compared to the
typical width of emissions caused by phase noise. In this case, the two emissions
merge into one common emission.
Employing such noise leads indeed to a scatterplot of quality factor values that
corresponds well to experimental data, see Fig. 4.17 A, and to a correct mean
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Figure 4.16: Comparison of the statistics of SOAE frequency, number
of SOAEs per cochlea, and inter-emission frequency intervals in ex-
periment (blue) and model with phase noise (red). The panels show the
same quantities as explained in Fig. 4.14. Standard parameters are used (as
for Figs. 4.3, 4.4, 4.9) except for the phase noise, which possesses a correlation
time of 1 Hz and a standard deviation of 35 Hz. The SOAE detection threshold
value is set to 9.5 dB.
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Figure 4.17: Statistics of the quality factor in experiment (blue) and
model in case of phase noise (red). A: Scatterplot of quality factors as a
function of frequency. The dashed brown line indicates the theoretical prediction
Q = f/λ, where λ ≈ 13 Hz. B: Distribution of quality factors for the same
data as in A. Standard parameters are used with an adjusted SOAE detection
threshold value of 9.5 dB. Data from the same simulations as in Fig. 4.16
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value of the quality, see Fig. 4.17 B. Furthermore, in both experiment and model
the quality factors increase as a function of frequency, see Fig. 4.17 A. However,
the distribution of quality factors in the model is narrower compared to the
experimental quality factors, which span three orders of magnitude, despite
the fact that SOAEs frequencies span only slightly more than one order of
magnitude. This suggests that the question of how to represent noise is more
complex in reality. The narrower distribution of the quality factors of the model
can be explained by by the limited range of SOAE frequencies and the similar
width for all SOAEs, as the phase noise acts globally on all oscillators.
The width of the Gaussian distribution with mean µ and σ is given by 2σ

√
2 ln(2).

Assuming that the widths of the model SOAEs are solely determined by the stan-
dard deviation of the phase noise, the width of a SOAE can be approximated
by 2σpn

√
2 ln (2)/2/π, which we define as λ. The quality factors obtained from

the model scatter around the theoretical approximation Q = f/λ, indicated by
the brown dashed line in Fig. 4.17, showing a good agreement between model
and theory.

It might be interesting to investigate other noise types or phase noise that
is not global but contains some spatial variation. This might lead to an in-
creased width of the distribution of quality factors in the model. In addition,
investigating different functions governing the irregularities in ε might provide
new insights. Furthermore, it is likely that the bifurcation parameter ε which
corresponds to activity in the experiment is not static but changes slightly with
time, as power spectra of the pressure in the ear canal are known to be stable
with respect to the frequency of the emissions but not necessarily very stable
with respect to the amplitude of the emissions. Indeed, emission amplitudes
in experiments change over the course of time on various different time scales.
Incorporating a time-dependent ε might improve the correspondence between
model and experiments. Moreover, the combination of irregularities in the bi-
furcation parameter and the characteristic frequency might represent a more
realistic, biophysical model.



Chapter 5

Summary and conclusions

The auditory systems of numerous species including humans exhibit remarkable
properties. Mammalian hearing is characterized by four hallmarks, given by an
extreme sensitivity, a wide dynamic range, a sharp frequency selectivity, and
spontaneous otoacoustic emissions (SOAEs). The last-mentioned are sounds
which are generated by the cochlea, the hearing organ within the inner ear, in
absence of external stimulation and become manifest as pressure fluctuations in
the ear canal. The four characteristics, in particular SOAEs, are associated with
an active nonlinear amplification process taking place on a mechanical level in
the cochlea.

In this thesis, we extended the generic one-dimensional cochlea model which
was proposed by T. Duke and F. Jülicher [41]. This model is set up in the fre-
quency domain, and it represents the active nonlinear human cochlea by a chain
of critical oscillators coupled via hydrodynamic interactions. It does not aim
for describing each detail of the cochlea as for instance some three-dimensional
models with finite element methods do. In contrast, the model aims for an ef-
fective description of cochlear geometry and the essential biophysical principles
that shape the mechanics of hearing. As this model is formulated in the fre-
quency domain, only cyclo-stationary inputs and responses can be considered.
It was found that this model accounts for three of the four hallmarks of hearing,
with the exception of spontaneous emissions, which were not investigated.
We proposed a spatially discrete model in time space whose Fourier transform
corresponds to the above frequency domain model. Our goal was to describe
the fourth, remaining hallmark, spontaneous emissions including its main statis-
tics, and thus eventually account for all four hallmarks of hearing by means of
our generic model. We investigated hydrodynamic principles of the cochlea
which were applied in both the time domain and the frequency domain model.
The hydrodynamic equations we employed are valid in the long wavelength ap-
proximation, which assumes that the wavelength of the traveling wave is large
compared to the channel height. However, for a traveling wave elicited by a
pure tone this does not hold true for locations in the vicinity of the resonance.

97
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We made additional approximations by assuming incompressibility and negli-
gible viscosity of the fluid within the upper and lower chamber. Although this
seems plausible, it might be interesting to take compressibility and viscosity
into account.
Furthermore, we discussed the description of local dynamics in the time domain
model, and we justified the usage of the Hopf normal form in time space. We
performed an equidistant discretization of the model equations along the longi-
tudinal axis of the cochlea, where each of the 3501 segments contains a set of
one inner and three to five outer hair cells. Thus, we arrive at a chain of one-
dimensional chain of oscillators, whose local dynamics are governed by the Hopf
normal form. Like the previously proposed model in the frequency domain, our
time domain model does not describe the details of the cochlear micromechan-
ics, nor does it take details of the cochlear geometry into account. In particular,
active hair bundle motility, electromotility, and their interplay are not captured
by our model. The chosen number of segments in the model corresponds to
the average number of natural segments of the organ of Corti and the basilar
membrane. However, hair cell widths and thus also segment lengths vary along
the cochlea and increase for locations closer to the apex [21]. Changing the dis-
cretization in the model might alter the dynamics and responses of the model.
Subsequently, we provided procedures to simulate the proposed model system
forward in time. We verified that the time domain model corresponds to the
frequency domain model by investigating responses to pure tone stimulations.
Moreover, forward and reverse traveling waves were determined at the base in
the model. In particular, it was shown how to extract incoming pressure waves
in the frequency and time domain. The model exhibits low frequency modes,
present as spontaneous global basilar membrane oscillations in presence of ad-
ditive white noise. On grounds of theoretical considerations, these modes were
identified as the fundamental mode and the first harmonic of the system.
Albeit the above wave analysis is useful for calculating forward and reverse trav-
eling waves, there is a more suitable framework to study SOAEs and incoming
waves. We introduced a boundary condition proposed by Talmadge et al. [148],
which corresponds better to the experimental setup. Henceforth, we employed
this boundary condition, which involves the representation of the middle ear
by a harmonic oscillator and a force balance equation at the base. It facili-
tates comparison with experiments by enabling us to treat and determine the
pressure in the ear canal as an observable rather than an input variable. By
incorporating this boundary condition, the modes of the model become man-
ifest in pronounced peaks in the power spectrum of the pressure in the ear
canal. It was shown that the response of the cochlea model to pure tones is
consistent with the physiological response, though the generic description of the
model cannot capture all details of the experimentally observed motion. The
fit to specific experimental data might be improved by considering frequency-,
location-, or strength-dependent parameters, which we did not investigate in
order to focus on the generic properties of our model. Furthermore, we intro-
duced elastic and dissipative longitudinal coupling of oscillators, accounting for
experimental evidence of tissue connectivity via different structures. However,
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there are inconsistent experimental results regarding the strength and relevance
of longitudinal coupling are. In addition, it is yet unclear by which tissues the
coupling is mediated. Plausible candidates are given by the tectorial membrane,
the reticula lamina and the basilar membrane.
Elastic and dissipative longitudinal coupling have been used previously to ac-
count for minimal frequency differences between neighboring SOAEs in lizards.
In this thesis, we employed longitudinal coupling in the human cochlea to ac-
count for the minimal frequency spacing between neighboring SOAEs. Irregu-
larities in parameters have been claimed to be an important mechanism for the
generation of mammalian SOAEs and their preferred minimal distance, postu-
lated to cause back-scattering of the traveling waves and as a result spontaneous
otoacoustic emissions emerge as a global phenomenon. We investigated this idea
in the framework of our proposed model, finding strong numerical evidence that
solely disorder in the bifurcation parameter governing the local activity can
account for spontaneous emissions. However, we cannot exclude that sponta-
neous emissions are elicited by a mechanism which involves processes we did not
consider or which cannot be adequately described by our generic model. For in-
stance, it has been proposed that time-delayed stiffness can lead to spontaneous
emissions.
The final version of the model incorporates longitudinal coupling, dynamical
noise and irregularities in the bifurcation parameter. We assumed that static
irregularities of the bifurcation parameter are normally distributed around zero
and exponentially correlated in space, thereby lending individuality to each
realization of the cochlea model.
All but five parameter values of the resulting model were fixed by experimental
evidence. These five free parameters were given by the strength of the dynamical
noise, the strength of the dissipative and elastic coupling, and the standard
deviation and correlation length of the static (time-independent) irregularities
in the bifurcation parameter. The strength of the dynamical noise did not
play an essential part, and it was mainly employed for a regularizing effect.
The remaining free parameters were used to to match statistics observed for
experimental SOAEs. In experiments on 152 cochleae by C.L. Talmadge [146],
emission frequencies range from 500 Hz up to 8000 Hz. The distribution of the
number of emissions per cochlea is monotonically decaying and follows roughly
an exponential shape. Furthermore, there is a preferred minimal distance of
one semitone between the frequencies of neighboring SOAEs, exhibiting a trend
towards smaller values for higher frequencies.
The standard deviation and the correlation length of the irregularities in the bi-
furcation parameter strongly influence the statistics of the number of SOAEs per
cochlea, in particular the average number of emissions. Both parameters also
have an effect on the distribution of the frequencies of emissions. Furthermore,
the statistics of the inverse, relative frequency intervals between neighboring
emissions is predominantly controlled by the coupling strengths. For some sets
of the free parameters, we were able to simultaneously match the distribution of
SOAE frequencies, the number of SOAEs per cochlea, and the relative, inverse
distance between neighboring SOAEs including its trend. Despite the good cor-
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respondence, there remain some discrepancies, some of which can be resolved by
extending the model. In contrast to experimental spectra, some model spectra
display long regions of more than 100 Hz for which the spectrum rises above
the background. This fact is associated with the length of the regions with a
positive bifurcation parameter. Furthermore, the model spectra display more
small peaks than experimental spectra, which display only few emissions on top
of a smooth background spectrum. Note that we did not aim for a description of
the background. The range of SOAE frequencies is well matched. However, the
experimental distribution is bimodal with two maxima at 1.5 kHz and 3 kHz,
whereas the model distribution exhibits only one strong maximum at 1.5 kHz.
A second maximum at 3 kHz was only occasionally present in some sets of the
152 model cochleae. The experimental maximum at 3 kHz was attributed to a
resonance in the ear canal. As we treat the pressure in the ear canal as a scalar,
uniform quantity, we do not capture this resonance. The statistics of the number
of emissions per cochlea obtained from model and experiment are similar, both
exhibiting a monotonic decay of roughly exponential shape. Nevertheless, the
model predicts a higher prevalence of humans with SOAEs. Furthermore, the
probability of a high number of emissions per cochlea is higher in experiment
than in the model, in particular for emission numbers greater than 15. This dis-
crepancy is associated with the chosen distribution of the bifurcation parameter
in the model which might not perfectly describe the corresponding experimental
quantity. We found that changing the mean value of the bifurcation parameter
from 0 to a slightly negative value leads to a better agreement of the distri-
bution of the numbers of SOAEs including the prevalence of cochlea with at
least one emission and the number of cochleae with numerous emissions. This
might indicate that the bifurcation parameter corresponding to experimental
data is on average in the proximity of the critical point but still in the stable
regime. However, note that the prevalence of SOAEs is highly dependent on
measurement techniques and detection criteria. It is plausible to assume that
the local activity and thus the experimental equivalent to the bifurcation param-
eter exhibits inhomogeneities. However, the source is not clear. While Gaussian
statistics and an exponential correlation are reasonable assumptions, there is no
evidence supporting this ansatz. Put differently, the distribution of the exper-
imental quantity that corresponds to the bifurcation parameter is not known.
Besides, it is unclear whether there is significant spatial correlation. According
to the model, the local activity is associated to SOAEs, which in turn exhibit
several remarkable features that have to be in accordance with the notion of
the inhomogeneities we propose. SOAE profiles are influenced by genetics, a
result obtained by studying mono- and dizygotic twins. Moreover, SOAEs in
the two ears of individuals display correlations in both frequency and number.
This might be due to genetic factors or due to the influence of afferent neurons,
directing signals from the brain towards the cochlea. Additionally, individual
SOAEs vary both in frequency and amplitude over time. Frequencies changes
over various different time scales and systematically decrease over the course of
years. These aspects are not understood yet and are not captured by our model.
Fluctuations in the amplitude might be captured by non-static bifurcation ir-



101 CHAPTER 5. SUMMARY AND CONCLUSIONS

regularities in the model.
The power of the emissions in model and experiment are comparable. Though,
experimental SOAEs were reported to reach higher maximal strengths than in
the model. However, there are several sources of approximations and uncer-
tainties that influence the power of the model emissions, such as the middle
ear, which we represent in our model by an harmonic oscillator. It has been
shown that the middle ear is more complex than a harmonic oscillator, in par-
ticular regarding its forward and reverse transmission properties. Additionally,
the power of emissions is influenced by the peak criterion, i.e., which peaks are
accepted as SOAEs.

We discussed several extensions of our model and showed that the experimental
statistics can be also captured by the model system without dynamical noise.
One statistical feature the model cannot account for is given by the distribu-
tion of the quality factors of SOAEs. Each emission corresponds to a peak in
the power spectrum. The quality factor of a peak is defined as the ratio of its
center frequency to its width. In the model, quality factors are three orders of
magnitude higher, centering around 105, than what is observed in experiments,
where values center around 102. By incorporating global phase noise, the mean
of the experimental quality factor distribution could be matched, but the width
of the quality factor distribution in the model is slightly smaller compared to
experiments.

According to the model, there is a fundamental mode present in the system.
Due to several uncertainties, it might be intricate to verify this prediction ex-
perimentally. The frequency of the fundamental mode depends on the length
of the individual cochlea. However, experiments find a natural variation of
several millimeters in cochlea length. Furthermore, in the model simplifying as-
sumptions were made regarding the local best frequencies, which influence the
fundamental mode. The lowest eigenfrequency of the model cochlea is slightly
above 100 Hz, whereas experimental best frequencies reach as low as 20 Hz.
For an eigenfrequency as low as 20 Hz, the assumptions of the approximation
are not fulfilled. Furthermore, diverse physiological noise sources are present in
experiments, which might lead to peaks in the power spectrum which do not
originate in the inner ear.
In addition, the model predicts the time course of the build up of basilar mem-
brane vibrations in response to pure tone stimulation. In particular, it predicts
the required time to reach a steady state. However, this has not been investi-
gated experimentally hitherto.
In the model, spontaneous basilar membrane activity is associated with the bi-
furcation parameter. In particular, if a region of the basilar membrane displays
spontaneous oscillations which are not due to the fundamental mode of the sys-
tem, then the irregularities in the bifurcation parameter in that specific region
are positive. The model requires active local oscillators as a source for SOAEs.
Put differently, if a SOAE is present in the power spectrum of the pressure in the
ear canal in the model, the oscillators in the area of the basilar membrane with
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the corresponding local best frequency are active. Thus, the model requires that
if a power spectrum from experiment exhibits a peak, then the corresponding,
possibly isolated, section of the basilar membrane is vibrating spontaneously.
The model could be falsified if these single sections with intact amplification
mechanism would not exhibit spontaneous oscillatory motion. This correspon-
dence between a peak in the power spectrum and local spontaneous oscillation
of the basilar membrane has been established for one SOAE in a cochlea of a
guinea pig [111].
The model does not predict the source of spontaneous basilar membrane vi-
brations, but a reasonable guess is that spontaneous oscillations of stereocilia
elicit this spontaneous motion. However, partly due to the small dimensions
of mammalian stereocilia, spontaneous oscillations of mammalian hair bundles
have not been observed to the present date.
One other prediction is that an increase in dynamical, additive noise leads to a
less effective peak separation. However, this is difficult to test in experiment.
For instance, a rise in temperature in experiment, which might be associated
with a higher additive noise in the model, might also lead to other effects such
as changes in SOAE frequencies. Furthermore, the model predicts that elas-
tic and dissipative longitudinal coupling play an essential role for the observed
peak separation of spontaneous otoacoustic emissions. It would be interesting
to probe this hypothesis by altering elastic and dissipative coupling in experi-
ments without changing other system properties. This seems rather intricate,
and for obtaining statistics this would have to be done in many specimens. How-
ever, it might be possible to test this hypothesis in single lizard ears exhibiting
SOAEs by manipulating or removing the tectorial membrane and thus possibly
changing longitudinal coupling. Changes in SOAE spectra might indicate the
dependence of the frequency spacing on longitudinal coupling. Furthermore, it
would be of interest to study inter-emission intervals in different lizard species
as the family of lizards comprises species with and without a tectorial mem-
brane. Alternatively, transgenic mice, some of which lack a tectorial membrane
structure, could be employed to test the hypothesis of peak separation by means
of longitudinal coupling. However, the peak separation phenomenon might still
be present in mice which lack a tectorial membrane due to the presence of other
connective tissues, such as the basilar membrane or the reticular lamina.

In conclusion, this dissertation presents an active nonlinear model of the cochlea
in the time domain, which can account for all four hallmarks of the human au-
ditory system. Furthermore, this model captures essential statistics of SOAEs
including the remarkable finding of a preferred minimal distance between neigh-
boring SOAEs. We find that spontaneous emissions are consistent with the no-
tion of active oscillators out of thermodynamic equilibrium. Thus, by proposing
this model we make a contribution to the deeper understanding of spontaneous
emissions with implications on cochlear mechanics in general. Further investiga-
tion on model properties, predictions of the model, and comparison to different
experimental data provide interesting topics for future research.
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