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Abstract

Min proteins are a class of proteins that is widely conserved among bacteria.
In the rod-shaped bacterium Escherichia coli, Min proteins form spatiotemporal
patterns which are characterized by concentration maxima that oscillate from one
cell pole to the other.
In this thesis, we use theoretical and experimental tools to characterize the Min
system. We consider two mean field models of the Min system that emphasize
different aspects of Min protein interactions inducing a dynamic instability. The
first model assumes that MinD proteins feel mutual interactions in the membrane-
bound state leading to an aggregating current that results in the formation of
concentration maxima. In the second model, MinD and MinE bind to the mem-
brane in a self-enhanced manner thereby generating a dynamic instability in the
system. We study solutions of the dynamical systems and compare them with the
patterns observed in living E.coli and in vitro. Both models are able to generate
patterns similar to those observed in wild type E.coli. Oscillations in filamentous
cells and the stochastic switching in very short cells are better described by the
first model. In vitro patterning of the Min system is more aptly captured by the
second description.
Using fluorescence correlation spectroscopy in vivo, we obtain characteristic time
constants of the Min system. We experimentally study pattern formation of the
Min system in short E.coli and find stochastic switching of Min proteins instead
of oscillations.
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Zusammenfassung

Min-Proteine sind ein Teil des bakteriellen Zytoskeletts. Im stäbchenförmigen
Bakterium Escherichia coli bilden Min-Proteine raumzeitliche Muster.
In dieser Doktorarbeit benutzen wir sowohl theoretische als auch experimentelle
Methoden, um das Min-System zu charakterisieren.
Im theoretischen Teil der Arbeit betrachten wir zwei verschiedene, grobkörnige
Modelle des Min-Systems, die exemplarisch verschiedene Annahmen über die
Erzeugung der dynamischen Instabilität machen. Das erste Modell geht davon
aus, dass MinD-Proteine im membran-gebundenen Zustand miteinander wechsel-
wirken, so dass ein aggregierender Strom entsteht, der zu einer Bildung von
Konzentrationsmaxima führt. Das zweite Modell nimmt an, dass MinD und
MinE selbstverstärkend an die Membran binden und so eine dynamische Insta-
bilität im System erzeugen. Lösungen der zugehörigen dynamischen Systeme
werden untersucht und mit den Mustern des Min-Systems in E.coli und in vitro
verglichen.
Durch Anwenden von Fluoreszenz-Korellations-Spektroskopie auf Min-Proteine
in vivo konnten wir charakteristische Zeitskalen des Min-Systems bestimmen.
Zusätzlich zeigen wir experimentell, dass in sehr kurzen E.coli Min-Konzentrations-
maxima stochastisch zwischen den Zellpolen hin- und herwechseln.

iv



Acknowledgments

First and foremost, I would like to thank Karsten Kruse for the biophysical exper-
tise, the time and the kindness with which he supervised my work. He encouraged
me to do both, theory and experimental studies, and assisted me in both fields
with his broad knowledge and interest.
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Chapter 1
Introduction

1.1 Why bacteria are fascinating

They are essentially everywhere and we tend to dislike them. Each cough or sniff
reminds us of their presence in our body and environment. Bacteria constitute
a large fraction of the worlds biomass [1]. Their habitats literally range from
the highest mountain to the deepest sea which is due to their robustness and
adaptability. In our body, bacterial cells are more numerous than the actual
human cells which contain our genome. Their presence can make us suffer from
diseases like cholera, anthrax and the bubonic plague. However, we also benefit
from them in many ways. For instance, the bacterial flora in the gut enhances the
immune system, increases the yield of nutrient uptake and regulates fat storage
[2]. Bacteria form an own biological kingdom which comprises a huge number
of species. Most of these have not yet been characterized by scientists. They
are extremely diverse and occur in a variety of different shapes, with various
cellular compositions, metabolic pathways and behavioral strategies. In contrast
to eukaryotes, bacteria do not have a cell nucleus or other membrane-enclosed cell
organelles. Their DNA is dispersed freely in the cytoplasm [3]. A rigid cell wall
makes them resist osmotic pressure [3]. Only some years ago, bacteria where seen
as unspectacular sacs of enzymes. Scientific results of the past few years revised
this view and showed that bacterial cells contain cell-skeletal structures just as
eukaryotes. Their cytoskeleton helps to maintain the cell shape, to perform cell
division and to transport material within the cell [4]. The bacterial cytoskeleton is
made up of proteins which polymerize to filaments with lengths in the micrometer
range. Some of these proteins are evolutionary related to the components of the
eukaryotic cytoskeleton, actin, tubulin and intermediate filament proteins. Other
cytoskeletal proteins in bacteria have no counterpart in the eukaryotic world [4].

• One example of a cytoskeletal protein highly conserved in bacteria is the
tubulin homolog FtsZ. It polymerizes in the presence of the chemical fuel
GTP and forms the essential scaffold of the Z-ring which constricts cells
during cell division [4].

• The actin homolog MreB is also found in many bacterial species. It as-
sembles to dynamic helical polymers beneath the membrane and extends
throughout the cell. MreB plays a role for the maintenance of the cell shape
by guiding the synthesis of new cell wall material [4].

• In the bacterium Caulobacter crescentus, the protein Crescentin has been
identified to contribute to the typical crescent shape of this bacterium.
It is a homolog of proteins which build up the intermediate filaments in
eukaryotes.

1



2 Introduction Chapter 1

c)a) b)

e)d)

Figure 1.1: Patterns formed by self-organization. a) Patterns of the Belousov-
Zhabotinsky reaction in a petri dish, taken from [5] with permission. b,c) The
amoeba Dictyostelium discoideum during the process of chemotactic cell aggre-
gation. In response to cAMP signaling, cells move and slightly elongate changing
their light scattering properties. Thereby, cAMP waves can be made visible by
dark field microscopy [6]. Images are taken from [6] with permission. b) cAMP
waves in a spread of amoebae cells during an early stage of cell aggregation. c)
In a later stage, amoebae mounds have formed and cells from the surrounding
move towards the core. cAMP waves travel outwards. Red arrows indicate the
direction of cell movement, whereas blue arrows indicate the direction of cAMP
wave propagation. d) Self-organized asters of microtubules and kinesin motors in
a dark field micrograph, taken from [7] with permission. e) Spiral wave of fluo-
rescently labeled MinE. The self-organized Min protein structures form in vitro
on a supported lipid bilayer, immersed in a buffer with MinD, MinE and ATP.

• The protein MinD and related proteins form a fourth family of highly con-
served proteins in bacteria and play a key role in subcellular organization.
They take part in the selection of the division site of the bacterium. In this
thesis, we aim to understand how the spatiotemporal patterns are formed
which are produced by the Min proteins in E.coli .

1.2 Self-organization in nature

How does it come about that a huge container of proteins and other molecules
suddenly forms structures as elaborate as the mitotic spindle or the contractile
ring of cell division1? The evolution of biological processes has kept biologists
busy for centuries and also attracted the attention of physicists in the last decades.
Much is known about the proteins involved in cellular processes and about their
interactions. However, when reading a biology text book one often gets the idea

1See the glossary for explanation of mitotic spindle and contractile ring.
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that there is an invisible hand which drives ingredients of a cell at the right
moment to the right place in order to accomplish a cellular process. The origin of
the forces which drive molecules to a certain position during the life cycle of a cell
is often not obvious. An illustrating example is the observation that a rod-shaped
E.coli cell divides in the middle and aggregates its division machinery there. The
question arises how the cell actually knows where its middle is and how this is
communicated to the particles involved in division. The answer is not yet entirely
known but there is strong evidence that it is related to a self-organizing process
in the E.coli cell, namely the oscillation of Min proteins. The emerging pattern of
Min proteins highlights the cell middle as much as a swinging pendulum highlights
its resting point. Self-organization is a process by which patterns can emerge in
systems with many particles of a few different sorts. The patterns which emerge
are determined by the dynamical parameters of the system and by the geometry
of the container in which the particles are confined. The length scale of the
pattern is by orders of magnitude larger than the size of the involved particles.
It is usually on the micrometer scale if the particles are molecules within a cell.
Pattern formation by self-organization comes about by local interactions between
particles and spatial coupling, e.g. by diffusion. Local interactions of particles
typically emerge from chemical reactions, particle attraction or particle repulsion.

Self-organization seems to contradict the laws of thermodynamics as emerging
spatial order decreases the entropy in the system. Indeed, thermodynamics states
that the free energy of a system in contact with a heat bath has to be minimal.
The Boltzmann principle assigns an extremely small probability to low entropy
states of a system at room temperature or higher temperatures. Thus, spatial
order would essentially never occur in such a system in thermal equilibrium. The
solution to this apparent paradox is that thermodynamics does not apply to self-
organizing systems since these are not in thermal equilibrium. Self-organization
can only be maintained if the system is kept away from thermal equilibrium by
constant energy consumption which is often accomplished by the hydrolyzation
of the chemical fuel ATP in biological systems. Patterns emerging from self-
organization are thus also termed dissipative structures since they rely on the
continuous dissipation of energy. Nicolis and Prigogine describe the maintenance
of dissipative structures in the following way [8]: “An appropriate illustration
would be a town that can only survive as long as it is a center of inflow of food,
fuel, and other commodities and sends out products and wastes.”

The most famous example of pattern formation by self-organization is presum-
ably the Belousov-Zhabotinsky reaction. This class of chemical reactions results
in chemical oscillations which can also give rise to dynamical spatial structures,
typically rings and spirals, see Figure 1.1a. The reaction was discovered by the
chemist Boris Belousov in the 1950s. A pioneering theoretical work on pattern
formation in biology was published in 1952 by Alan Turing [9]. Turing focused
on the mathematical description of self-organization in systems motivated from
embryogenesis. Later, the chemist Ilya Prigogine studied self-organization in dis-
sipative systems and applied nonequiblirium thermodynamics and the theory of
dynamical systems to explain them [8]. He gained the Nobel price for chemistry
in 1977 as approval of his work. Today, self-organization is known as a pattern-
forming mechanism in biology, chemistry and physics. It embraces a wide field of
theoretical and experimental research. A review of pattern formation in nonequi-
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librium systems can be found in [10].
In biology, self-organization occurs on the cellular and subcellular level. In the
following, we will give some examples.

Pattern formation on the cellular level

cAMP waves. The amoeba of the species Dictyostelium discoideum live as
unicellular organisms in the soil. Upon shortage of nutrients, cells show social
behavior and aggregate to a multicellular structure, the so-called slug. The slug
migrates as a whole in response to environmental signals. In case of further lack
of food, it ripens to a fruiting body containing spores. The aggregation of single
cells works by chemotaxis which is mediated by the signaling molecule cAMP.
By the interplay of cell migration, adaptation and induced cAMP release of cells,
beautiful cAMP wave patterns form in the cell aggregate. An example, taken
from [6] is presented in Figure 1.1b,c. Indeed, Dictyostelids form patterns in two
ways: First, the cells release cAMP in a concerted manner such that patterns in
the cAMP concentration form all over the cell spread. Secondly, the amoebae
form patterns of the cell density by condensing into a multicellular structure.

Pattern formation on the subcellular level

Microtubule asters. The microtubule asters which form as part of the mi-
totic/meiotic spindle during cell division can emerge from self-organization. Aster
formation could be reconstituted in vitro [7]. From a mixture of tubulin, motor
proteins and ATP, microtubule asters and vortices form spontaneously, see Fig-
ure 1.1d. Computer simulations reproduced these structures [7,11].
Min waves. The Min proteins MinD and MinE oscillate from pole to pole in
the rod- shaped E.coli cell. Pattern formation of MinD, MinE and ATP can
also be found in vitro on a supported lipid bilayer immersed in a buffer [12], see
Figure 1.1e. A simple theoretical description yields similar structures as observed
in vitro and reproduces at the same time oscillations in a one-dimensional cell
geometry [12].

1.3 Outline of the thesis

In this thesis, we study pattern formation in the Min system of the bacterium
Escherichia coli theoretically and experimentally. Especially, we will consider
the aspect of self-organization as a mechanism which can generate the structures
observed in the Min system.
The following chapter gives background information on the bacterium Escherichia
coli and experimental results on Min proteins. Also, it gives an overview of the
theoretical descriptions of the Min system which have been suggested in the
literature.
In the third chapter, we discuss a mean field description of the Min system. It as-
sumes that MinD proteins feel mutual interactions in the membrane-bound state
thus inducing an aggregating current of MinD on the membrane. Earlier studies
in one space dimension had demonstrated that this approach can reproduce Min
oscillations in the cell [13]. To learn more about the dynamical system and to
make predictions for the real Min system, we now examine the dynamics in dif-
ferent geometries. Numerical and theoretical analyses predict the occurrence of
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surface waves in geometries that differ from the wild type cell tube. We especially
discuss the case of cells with enlarged radii and the case of Min patterning on a
flat surface.
The fourth chapter starts with a summary of Min pattern formation in vitro [12].
In the respective experiments, MinD and MinE form patterns on a flat membrane
surface in the presence of ATP. We discuss the implications of the experiments
for existing theoretical descriptions of Min oscillations in the cell and suggest
a computational mean field model which qualitatively reproduces the protein
structures found experimentally.
In the fifth chapter, we present measurements on fluorescent MinD and MinE
proteins in living E.coli cells by fluorescence correlation spectroscopy in vivo. An
analysis of the data allows to extract characteristic time scales of the Min system
in vivo. Two of these are associated to MinD and MinE mobility in the cytoplasm
of the cell.
The sixth chapter is dedicated to Min oscillations in the context of cell growth.
We report experimental results where E.coli cells, expressing GFP-MinD, were
recorded over time spans on the order of the cells’ life cycles. We have found that
in short “newborn” cells, which are around 2µm in length, Min concentration
maxima switch far less regular between the cell poles than in E.coli cells prior
to division. We have analysed data of a large number of short cells and find
that Min switching gets more regular when the cell lengthens. Furthermore, we
have observed the process of Min pattern change in cells growing filamentous, i.e.
larger than typical wild type cells.
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Chapter 2
The Min system in the bacterium
Escherichia coli

The bacterium Escherichia coli

Escherichia coli is a rod-shaped bacterium living for instance in the intestine of
humans and other endothermal animals, see Figure 2.1. The cell length ranges for
wild type cells from 1.5–4µm depending on the chosen strain. The cell diameter
is about 1µm. They are gram-negative bacteria, that is they have an inner and
an outer cell membrane. In between these membranes, there is a rigid layer of
peptidoglycan, which is a polymer made of sugars and amino acids. This layer
gives the cell a fixed shape and counteracts the osmotic pressure, which could
otherwise make the cell burst [3].
Many E. coli strains are flagellated. Their flagella have a peritrichous arrange-
ment, i.e. they point in different directions. These motile strains are able to
perform chemotaxis by switching between a run and a tumble mode of motion.
In the tumble mode the cell reorients randomly its swimming direction. In the
run mode it performs straight swimming. To follow the direction of chemical gra-
dients it adapts the length of run and tumble modes according to the temporal
change of chemoattractant concentrations [3,14].
As all other prokaryotes, E. coli contains no nucleus or other cell compartments
such as mitochondria or an endoplasmic reticulum usually found in eukaryotes.
The cell contains one chromosome, dispersed in the cytoplasm, and in addition
several plasmids. The bacterium divides by binary fission forming a septum in
the middle of the bacterium. In nutrient-rich medium at a temperature of 37◦C,
division can take place every 20 minutes. Before the cell divides, the chromosome
is duplicated and segregates to either half of the cell. Two mechanisms help the
cell to locate its division machinery in the cell middle. Nucleoid occlusion im-
pedes septum formation over the DNA [15,16] and the Min system keeps septum
formation away from the cell poles [17]. If the Min system is not functional the
septum can form at the cell poles leading to mini-cells void of DNA.

flagellum

cytoplasm

chromosome

inner membrane

outer membrane
peptidoglycan layer

Figure 2.1: Sketch of Escherichia coli cell

7
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Figure 2.2: The Z-ring in two Escherichia coli cells of the strain EC448. The left
image shows the cells in a DIC-micrograph. The image on the right shows the
fluorescently labeled protein FtsZ constituting the Z-ring. It is located in the cell
middle and attached to the inner side of the bacterial membrane. The location of
the Z-ring determines the future division site of the bacterium. The positioning
of the Z-ring is guided by the Min system and nucleoid occlusion. The scale bar
is 1µm long.

2.1 What are Min oscillations?

Min proteins are a class of proteins that is widely conserved among bacteria. They
are involved in locating the cell division machinery of the bacterium to the cell
middle. In E. coli, there are three Min proteins, MinC, MinD and MinE. They
have been found to form spatiotemporal patterns in the E.coli cell — the so-called
Min oscillations [4]. Although Min proteins occur in many bacterial species and
even cell organelles, such as chloroplasts and mitochondria, they are not found
to perform oscillations in all occurrences. For instance, in the bacterium Bacillus
subtilis, MinE is missing and MinD and MinC are statically distributed at the
poles [4].

Min proteins are encoded in one operon on the single chromosome of the bacterial
cell and thus form a functional unit in the cell metabolism. They were found to
chemically interact with each other and to locate to the cytoplasmic membrane of
the bacterium in a dynamic and spatially heterogeneous manner. The cytoskeletal
structure constituted by Min proteins is called the Min system. The Min system
plays an important role in inhibiting cell division at the cell poles. The division
site is determined by the formation of the Z-ring [18], which is a ring-shaped
polymer network formed by the protein FtsZ, see Figure 2.2. MinC depolymerizes
FtsZ filaments [19] and sweeps off FtsZ polymers at the cell poles during Min
oscillations.

How does the dynamic redistribution of Min proteins look like? The standing
wave of MinD in an E.coli cell is illustrated in Figure 2.3. MinD accumulates at
the inner side of the bacterial membrane in one cell half. After a characteristic
residence time, this concentration maximum resolves and switches to the opposite
cell half [20]. At the same time, MinE forms a ring on the membrane at the rear
of the MinD-maximum close to the cell middle [21]. A lower concentration of
MinE is also present directly at the pole where MinD is aggregated. When the
MinD-maximum starts to switch to the opposite cell side, the MinE-ring moves
towards the cell pole, disappears, and rebuilds at the rear of the new MinD
maximum at the opposite side of the cell [22]. The distribution of MinC follows
the dynamics of MinD and oscillates from pole to pole [19,23]. The oscillation
periods differ from cell to cell and range from about 40 to 120 seconds. In mutant
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Time

Time
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Figure 2.3: Oscillation of MinD (a and b) and MinE (c) in Escherichia coli cells.
a) Time series of a cell with fluorescently labeled MinD. The leftmost image
shows the cell in a DIC-micrograph. The remaining images show fluorescently
labeled GFP-MinD in the cell for ascending times. MinD maxima locate to one
cell pole and switch to the opposite pole after a characteristic residence time.
The scale bar is 1µm long. b) Kymograph of fluorescently labeled MinD in an
E.coli cell with initial cell length of 3.8µm covering a time interval of 17min. The
leftmost image shows the cell at time= 0s and indicates how the kymograph was
produced. The fluorescence was recorded along the red line and averaged over
the line width. The kymograph then shows the time evolution of light intensity
along this line. c) Kymograph of fluorescently labeled MinE in an E.coli cell with
initial cell length of 4.8µm covering a time interval of 28min. The kymograph
was produced in the same way as in b). The scale bars show 1min.

strains with filamentous cells, which exceed the length of a typical wild type cell,
the oscillation pattern of the Min proteins changes [20], see Figure 2.4. In this
case, the standing wave of Min proteins gains wave nodes. This suggests that the
Min system has an intrinsic wavelength like a dynamical system which oscillates
beyond a Hopf bifurcation with finite wavelength.

2.2 Reaction kinetics of Min proteins

The key players of the oscillation were identified to be MinD and MinE. Both
proteins are needed to sustain the oscillations. MinC-depletion, however, does
not stop the oscillations [20]. MinC binds to MinD on the membrane and follows
the dynamics of MinD.
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0s 0s 12s 24s 36s

48s 60s 72s 84s

Figure 2.4: Oscillation of MinD in a filamentous Escherichia coli cell. The left-
most image shows the cell in a DIC-micrograph. The remaining images show
fluorescence micrographs of GFP-MinD. MinD maxima are first located at both
cell poles and then switch to the cell middle and so forth. The scale bar is 1µm
long.

In vitro experiments have shown that MinD is an ATPase and has a high bind-
ing affinity for the inner cytoplasmic membrane when ATP is present [24,25].
For high concentrations, MinD was found to polymerize on phospholipid vesicles
pulling out membrane tubes [24]. MinD in the presence of ATPγS, which is a
non-hydrolyzable analog of ATP, does bind to the membrane, but does not form
aggregates. This indicates that binding and aggregation of MinD on the mem-
brane is a two-step process. Also, an analysis [26] including a yeast two hybrid
system2 revealed that most of the interaction between MinD is lost, if either the
prey or the bait MinD is not capable to bind to the membrane. This supports the
conjecture that the MinD-MinD interaction is stronger in the membrane-bound
state.

The presence of cooperative effects during attachment of MinD to phospholipid
membrane is indicated by in vitro experiments which show that MinD binding
deviates from Langmuir isotherms [27] and can be described by a Hill function
with a Hill coefficient of 2 [28].

MinE is recruited to the membrane by MinD and promotes there the ATPase
activity of MinD. After ATP-hydrolysis, MinD falls off the membrane and goes
back into the cytoplasm (see Figure 2.5a). These in vitro results are consistent
with in vivo findings in bacterial cells. If cells are void of MinD, then MinE is
spread homogeneously in the cytoplasm. In contrast, MinE-depleted cells have
MinD homogeneously spread on the cytoplasmic membrane [20].

Specific mutations of the topological specificity domain in MinE have been shown
to result in a loss of the MinE ring although Min oscillations were still present [29].

2See the glossary for ‘yeast two hybrid system’.
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Figure 2.5: a) Binding and unbinding cycle of MinD and MinE in the E.coli cell.
Cytoplasmic MinD binds ATP (1) and attaches to the membrane (2). Bound
MinD recruits MinE to the membrane (3) which catalyzes hydrolyzation of ATP.
ADP is released into the cytoplasm (4) and MinD and MinE fall off from the
membrane (5). b) and c), different conceivable aggregation mechanisms of bound
MinD. b) MinD attaches preferably where MinD is already bound. c) MinD
attaches unbiased and moves then in the bound state due to mutual interactions.

In these cells, MinD maxima grew beyond their normal arrest point at the cell
middle and minicelling occurred at low rates. These experiments suggest that
the MinE ring is not necessary for Min patterning in the cells.
Furthermore, Shih and colleagues [30] have reported helical Min structures form-
ing a substructure of the protein aggregates at the cell pole on the inner bacterial
membrane. The authors suggest that concentration maxima of MinC, MinD and
MinE are formed by helical Min protein polymers. They conjecture that the
MinE ring is formed by a helical MinE polymer which grows beyond the MinD
helix located at the cell pole. The meaning of these helix structures for the gen-
eration of Min oscillations remains however obscure. Even the existence of these
structures for different strains and growth conditions than those reported in [30]
is not fully evident.
Experimental results have shown that protein synthesis and degradation do not
play a major role for Min oscillations [20].
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2.3 Understanding Min oscillations

The dynamic relocalisation of Min proteins cannot be naively concluded from
local biochemical interactions of the molecules [31] since the patterns are on the
scale of microns whereas the molecules are only few nanometers in size. Pat-
tern formation in the Min system is a collective effect and needs many molecules
interacting in the cell geometry. This fact indicates that the Min system is self-
organizing: The homogeneous state of protein distributions in the cell is dynam-
ically instable, i.e. small inhomogeneities created by fluctuations are amplified.
After a certain transient evolution, the system ends up in a characteristic spa-
tiotemporal pattern dependent on the geometry of the cell.

Pattern formation in the Min system resembles that of a dynamical system oper-
ating close to a Hopf-bifurcation with finite wavelength. This is because protein
distributions oscillate similarly to a standing wave with characteristic frequency
and wavelength.

2.3.1 Previous theoretical work on Min oscillations

Several computational descriptions of the Min system have been presented in
the past. All of them were able to generate oscillations, which resembled those
observed in wild-type cells. All models share the following basic assumptions:
MinD and MinE interact with each other and with the membrane. MinD can
attach to the membrane. Membrane-bound MinD in turn can then bind MinE
from the cytoplasm. MinE bound to MinD promotes detachment of MinD from
the membrane. Particles in the cytoplasm are subject to diffusion. All models
conserve particle numbers of MinD and MinE apart from the model presented
in [32].

Beyond these basic components, the models differ in many respects. They can
be distinguished according to different criteria.

Some models are deterministic and use a mean field description, others are
particle-based.
Deterministic models describe protein distributions by concentrations depend-
ing on space and time coordinates. The time evolution of the system is completely
determined by these concentrations, and stochastic effects are not directly incor-
porated. Deterministic descriptions have been presented in [12,13,32–37].
Particle-based models were described in [38–41]. In these models, the time
evolution of a number of discrete Min proteins is simulated. State changes of
the proteins and translocation by diffusion are decided using random number
generators.

Furthermore, the proposed models can be divided into two classes according to the
mechanism by which the dynamic instability of the modeling dynamical system
is generated.
Aggregation current. The works by Kruse [34] as well as Meacci and Kruse [13]
use a description in which an aggregation current of membrane-bound MinD
leads to a build up of concentration maxima and thus a destabilization of the
homogeneous state (see Figure 2.5c). This kind of models will be referred to as
aggregation current (AC) models. Here, binding of Min proteins is not considered
to be cooperative.
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Cooperative attachment. All other publications suggest that a certain kind of
cooperativity in binding of MinD or MinE to the membrane leads to the instability
(see Figure 2.5b). That means, they assume that the binding rate of MinD (MinE)
is enhanced by MinD (MinE) which is already bound to the membrane. We will
call this kind of models cooperative attachment (CA) models.

In the following, we will describe the models in greater detail.

• The description by Meinhardt and de Boer [32] includes cooperativity in
binding of MinD and MinE to the membrane, i.e. the binding rates increase
with the concentration of already bound MinD or MinE, respectively. Pro-
tein degradation and production are directly included in the dynamic equa-
tions. Experimentally, this had been shown to be of minor or no importance
for the Min oscillations [20].

• The model of Howard and coworkers [42] assumes that cytoplasmic MinD
recruits MinE to the membrane. In the bound state, MinE promotes the
release of MinD into the cytoplasm. Furthermore, new MinD-binding to the
membrane is reduced by bound MinE. A stochastic version of this model is
presented by Howard and Rutenberg in [43]. There, the authors report that
fluctuations can be essential for certain parameter regimes at low particle
numbers. Also, the role of noise on the location of the period-averaged
MinD concentration along the cell long axis is discussed.

• In the description of Kruse [34], membrane-bound MinD attracts MinE to
the membrane, which then catalyzes release of MinD into the cytoplasm.
MinE detaches spontaneously. In the bound state, MinD is assumed to
move due to mutual protein interactions. This is modeled by an aggregation
current of MinD which creates MinD-concentration maxima.

• Huang and colleagues [35] suggest a system in which MinD binds coopera-
tively to the membrane, i.e. the binding rate increases with the concentra-
tion of bound MinD molecules. When MinE is bound to the membrane it is
assumed to form a protein complex with MinD. This complex is released in
one from the membrane with a certain rate. The equations take explicitely
the ATP loading of MinD in the cytoplasm into account. The dynamic
equations are explicitely given by

∂tcD:ADP =−σADP→ATP

D cD:ADP +σdecdeδ(S) +DD∆cD:ADP

∂tcD:ATP =+σADP→ATP

D cD:ADP −[σD + σdD(cd + cde)]cD:ATPδ(S)+DD∆cD:ATP

∂tcE =−σEcdcEδ(S) +σdecdeδ(S) +DE∆cE

∂tcd =−σEcdcE +[σD + σdD(cd + cde)]cD:ATP

∂tcde =+σEcdcE −σdecde.
(2.1)

Here, cD:ADP , cD:ATP and cE are the concentrations of MinD-ADP, MinD-
ATP and MinE molecules in the cytoplasm. Membrane-bound MinD is
denoted by cd and the concentration of the MinDE complexes on the mem-
brane is symbolised by cde. δ(S) denotes the delta function being unequal
to zero only on the inner membrane surface of the cell. The parameters
σde, σE , σD, σdD characterize the rates of MinDE detachment, MinE attach-
ment, spontaneous and cooperative MinD attachment, respectively. The
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exchange of ADP for ATP in MinD is described by the rate σADP→ATP

D . DD

and DE are the constants of diffusion in the cytoplasm for MinD and MinE.

• The work by Meacci and Kruse [13] modifies the description in [34] by
taking on the idea of MinDE complexes on the membrane. Since we will
study this model extensively in this thesis, a more elaborate description will
be given in the following section.

• A deterministic model motivated by the picture of polymerising and de-
polymerising protein filaments was presented by Drew et al. [36]. This one-
dimensional description assumes that MinD polymers are nucleated at the
pole and grow by recruiting cytoplasmic MinD. MinE can attach to MinD
within the polymer either at internal MinD proteins or at the polymer
end. If MinE attaches to the terminal MinD protein, the MinD polymer
is capped, further growth is prohibited and depolymerisation is induced.
MinE caps nucleate at the same time MinE polymers which grow towards
the middle of the cell. The dynamic equations use concentration fields for
Min polymers and monomers.

All stochastic simulations described in the following are derived from the deter-
ministic model given in [35] whose dynamic equations are listed in (2.1).

• Pavin, Paljetak and Krstic̀ [40] performed three-dimensional stochastic sim-
ulations. They assume that MinD forms two-stranded polymers in the
membrane-bound state. MinE can attach to each MinD-molecule within
the polymer and the resulting hydrolysis rate depends on the number of
bonds the MinD molecule maintains within the polymer.

• Kerr et al. [38] show computations which clarify the effect of the number of
proteins in the cell.

• Tostevin and Howard [39] presented 1D stochastic computations examining
the dependence of the oscillation period on the MinD and MinE concentra-
tion and the cell length. Also, they study the segregation of Min proteins
to the daughter cells during cell division.

• Fange and Elf [41] made a 3D stochastic analysis for various mutant types
of E. coli. They found stochasticity to be important to reproduce Min
dynamics in spherical cells and to reproduce the random MinD clusters in
mutant cells which lack the lipid phosphatidylethanolamine (PE) in the
cytoplasmic membrane.

In this thesis, we will consider two computational models based on different un-
derlying assumptions on what aspect of Min protein interactions causes the in-
stability in the Min system. Experimentally, this has not yet been clarified and
both models are based on plausible scenarios. In the forthcoming sections, we
will give an introduction to either of the computational models.
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2.3.2 A theoretical description of Min oscillations - the
aggregation current (AC) model

To generate an instability in a dynamical system that describes the Min system,
two ways are readily at hand. One possibility is to include nonlinearities in the
binding or unbinding terms that model the exchange of MinD and MinE with the
membrane. This can give rise to the formation of concentration inhomogeneities.
An alternative way is to include a current term for membrane-bound proteins
which drives the formation of protein aggregations on the membrane.

There have been experimental findings which support the latter idea of Min pro-
teins moving on the membrane due to mutual interactions. In vitro experiments,
which involved a non-hydrolyzable ATP-analog, suggested a two-step mechanism
for the formation of MinD helices [24]. According to this mechanism, MinD would
first bind to the membrane and subsequently form clusters. Further support for
MinD interactions in the membrane-bound state gave a yeast two-hybrid essay
(see glossary), in which two populations of MinD interacted more strongly when
both populations were on the membrane as compared to only one or neither of
the populations being membrane-bound [26].

In the computational description which we present here, the distributions of MinD
and MinE in the cytoplasm are described by the concentration fields cD and cE ,
that are defined in the interior of the cell. The distributions of MinD and MinDE
complexes bound to the membrane are given by the fields cd and cde, that are
defined on the two-dimensional boundary of the cell. In the following, the cell
shape will be assumed to be a cylinder with two hemispherical caps at both ends.
The interior of this shape is identified with the cytoplasmic domain. The dynamic
equations for the densities capture the exchange of MinD and MinE between the
cytoplasm and the membrane, diffusion, and the transport of membrane-bound
MinD molecules, which are subject to mutually attractive interactions. The time
change of the four concentration fields is explicitly given by

∂tcD = −ωD(cmax − cd − cde)cDδ(S)+ωdecdeδ(S) +DD∆cD (2.2)

∂tcE = +ωdecdeδ(S)−ωEcdcEδ(S)+DE∆cE (2.3)

∂tcd = +ωD(cmax − cd − cde)cD −ωEcdcE −∇ · jd (2.4)

∂tcde = −ωdecde +ωEcdcE . (2.5)

Here, cmax is the maximal density of MinD on the membrane and the parameters
ωD, ωE, and ωde determine the rates of MinD- and MinE-binding to the membrane
and of MinDE-unbinding from the membrane. Binding is restricted to particles in
the vicinity of the cytoplasmic membrane by δ(S), where S is the (inner) surface
of the model bacterium. The diffusion constants of cytoplasmic MinD and MinE
are DD and DE , respectively. The operator ∇ in Eqs. (2.4) denotes the gradient
operator on the surface S, while ∆ is the Laplace operator in three dimensions.

The two-dimensional current jd, which describes transport of MinD bound to the
membrane, has the form of a Cahn-Hilliard current [44],

jd = −Dd∇cd + cd(cmax − cd − cde)[k1∇cd + k2∇△cd + k̄1∇cde + k̄2∇△cde]. (2.6)

In this expression, ∆ and ∇ are the Laplace operator and the gradient on the
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surface S, respectively. Dd is the diffusion constant of MinD on the membrane
and the coefficients k1 and k2 > 0 are parameters characterizing the interactions
between MinD molecules. If k1 > 0 then this interaction is attractive. Possible
modifications of MinD-MinD interactions due to the binding of MinE to MinD are
taken into account by the parameters k̄1 and k̄2. For simplicity, a possible MinDE
current is neglected. Furthermore, the equations do not incorporate a possible
MinD dimerization before binding to the membrane [45]. Adding corresponding
terms does not significantly alter the dynamics generated by the model for the
parameters used. This can be understood by noting that the large diffusion con-
stants of cytoplasmic MinD and MinE, DD ≈ 15µm2/s and DE ≈ 10µm2/s [46]
result in an almost uniform spatial distribution of cytoplasmic MinD for cells a
few micrometers in size. To a large extent, the effect of MinD dimerization prior
to binding to the membrane can thus be accounted for by an appropriate value
of the parameter ωD.

In the following, we will consider cmax, k1 and k2 to be phenomenological pa-
rameters. In principle, though, their values are related to microscopic parame-
ters [13,47,48]. A simple guess for the maximal density of membrane-bound MinD
is cmax = 1/(lateral size of a MinD molecule), which leads to cmax ≈ 104µm−2.
However, there is evidence that MinD binds only to specific lipids in the mem-
brane reducing this value [28]. We will use a value of cmax = 500µm−2 to produce
oscillations that are compatible with experimental data. Furthermore, k1 and
k2 give a characteristic length scale r = (k2/k1)

1/2 which determines the scale
of the pattern generated by this mechanism. It therefore differs from the bare
interaction range of the MinD-MinD interaction which should be on the order of
a few nanometers.

In the limiting case of homogeneous cytosolic concentrations, the equations for the
cytosolic concentrations decouple from the system (2.2)-(2.5), see Appendix 7.2.
The resulting set of ordinary differential equations for the cytosolic fields cD, cE

exhibits a stationary stable state CD, CE to which the system evolves asymptot-
ically in time [13]. In this limit, the dynamics of the membrane concentration
fields reads

∂tcd = ωDCD(cmax − cd − cde) − ωECEcd − ∂xjd (2.7)

∂tcde = −ωdecde + ωECEcd. (2.8)

An analysis of the above computational model will be presented in Chapter 3.

2.3.3 Another theoretical description using cooperative

attachment (CA)

In vitro experiments including MinD, MinE and ATP in buffer on top of a sup-
ported lipid bilayer have shown pattern formation on length scales much larger
then in Escherichia coli cells [12]. Traveling waves of proteins formed with wave
lengths of about 80µm. Regions of planar waves mixed with spirals and double
spirals (see [12] and Figure 4.1). It is probable that self-organization in this in
vitro system is based on the same chemical processes as the pattern formation in
the cell.

Despite of extensive search in the parameter space, the aggregation current model
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of the preceding section did not exhibit stable planar traveling waves as pattern
on a plane. Also, bleaching experiments applied to the Min patterns observed
in vitro showed that bleached areas within a fluorescent wave band were fix and
did not follow the movement of the wave, see Figures 4.4. This indicates that
the waves were not the result of protein movement on the membrane but of it-
erative detachment and reattachment of proteins from the buffer3. For this
reason, we looked for an alternative model which would be able to reproduce the
in vitro results and the oscillations in the cell at the same time. From the in vitro
observation that regions of high MinE density on the lipid membrane initiated
detachment of MinD, we derived a theoretical description which assumes cooper-
ative attachment (CA) of MinE, as was already suggested in [32]. According to
this theoretical description, the time evolution of the concentrations is given by
the dynamic equations

∂tcD = +ωdecde −cD(ωD + ωdDcd) + DD△cD (2.9)

∂tcE = +ωdecde −cEcd(ωE + ωeEc2
de) + DE△cE (2.10)

∂tcd = −cEcd(ωE + ωeEc2
de) +cD(ωD + ωdDcd) + Dd△cd (2.11)

∂tcde = −ωdecde +cEcd(ωE + ωeEc2
de) + Dde△cde. (2.12)

All concentration fields in the above equations are surface concentrations with
units of an inverse area and the dynamics is assumed to take place in a plane.
This is a simplification from the experiment where naturally concentrations of
MinD and MinE in the buffer are volume concentrations and may vary in the
z-direction (see Chapter 4.1).
The system is a reaction diffusion system and the terms in the equation model
detachment and attachment reactions, diffusive transport in the buffer solution
and in the membrane-bound state. Diffusive transport of the proteins is captured
by the last terms in either equation. The respective attachment/detachment
dynamics is parametrized by ωD, ωdD, ωE, ωeE and ωde. The instability in the
system is generated by the nonlinearities in the MinD attachment rate cD(ωD +
ωdDcd) and the MinE attachment rate cEcd(ωE + ωeEc2

de). Both rates increase
with the concentration of the reaction product giving rise to a self-amplification.
The detachment rate of membrane-bound MinDE is given by ωdecde.
We assume that the exchange of ADP for ATP in unbound MinD is so fast that
we do not have to consider explicitly the concentrations of MinD bound to ADP.
For each rate we used only the terms with the lowest order non-linearity that
were sufficient to reproduce the phenomena observed experimentally. All the
parameters are effective parameters and might account for multiple processes.

3Assuming an aggregation current on the membrane does not necessarily mean that a
bleached area moves along with the wave band, see Figure 3.9.
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Chapter 3
Surface waves of Min proteins
predicted by the aggregation current
model

We study the theoretical description of Min oscillations based on an aggregation
current (AC) of membrane-bound MinD proteins which has been introduced in
Section 2.3.2. This computational model, also termed AC model, is motivated by
experimental observations. In vitro experiments which involve a non-hydrolyzable
ATP-analog suggest a two-step mechanism for the formation of MinD aggre-
gates [24]. According to this mechanism, MinD would first bind to the mem-
brane and subsequently form clusters. Further support for MinD interactions
in the membrane-bound state resulted from a yeast two-hybrid essay, in which
two populations of MinD interacted more strongly when both populations were
on the membrane as compared to only one of the populations being membrane-
bound [26]. These observations indicate the existence of an aggregating protein
movement on the membrane. In the AC model, this is incorporated as a current
term which is of the Cahn-Hilliard form [47].
Meacci and colleagues [13] tested the AC model in a one-dimensional geometry
assuming that Min protein distributions are rotationally symmetric along the cir-
cumference of the cell. They were able to reproduce pole to pole Min oscillations
and the dynamic Min patterns in filamentous cells. To learn more about the
dynamical system and to make predictions for the real Min system, we studied
patterns produced by simulations in different geometries [37].
In model cells with an over-sized radius, we found chiral surface waves that prop-
agate around the bacterial circumference. They are superimposed onto the pole-
to-pole oscillations characteristic for the Min proteins in E. coli. These solutions
have a definite handedness and coexist with a solution of reversed sense of rota-
tion. We also found solutions breaking rotational symmetry in the cooperative
attachment (CA) model suggested by Huang et al. [35,49]. However, these so-
lutions resulted from coupling between a standing longitudinal and a standing
circumferential wave and are consequently non-chiral. Likewise, the CA model
suggested by us in [12] predicts circumferential modes in cells with enlarged ra-
dius, see Section 4.3.2.
We also analyzed the AC model in an open geometry which mimics an in vitro
setting including a flat membrane supported by a solid substrate exposed to a
buffer containing MinD, MinE, and ATP. Here, we found the formation of inter-
esting patterns and surface waves of bound proteins. By calculating the linear
spreading velocity of a perturbation front moving into a homogeneous unstable
state, we were able to characterize the dependence of the wave velocity on the
system parameters.
We conclude that waves on the cytoplasmic membrane are a genuine feature of the
AC mechanism. Similar patterns have been found in surface chemical reactions

19



20 Surface waves predicted by the AC model Chapter 3

in presence of attractive interactions between the adsorbed particles [50,51].

3.1 Circumferential modes of Min oscillations

Using the assumption that protein distributions are homogeneous within a cross
section of an E.coli cell perpendicular to its long axis, one-dimensional simulations
are appropriate to analyse the solutions of the dynamical system. The obtained
solutions reproduce wild-type oscillations of E.coli as well as the pattern change
observed in filamentous cells, where the oscillation pattern gains wave nodes [13].
Considering a more realistic cell shape and relaxing the assumption of radial
symmetry of protein distributions, we simulated the Equations (2.2)-(2.5) in a
bacterial geometry approximated by a cylindrical domain with hemispherical caps
at the cylinder ends, see Figure 3.1a. In this geometry, solutions similar to the 1D-
simulations are expected for sufficiently small cell radius. However, cells whose
circumference is on the order of the wavelength of the oscillations or bigger are
suspected to exhibit circumferential modulations of the concentration.

Numerical integration4 in the bacterial geometry with total length L and radius
R of the model cell yields the following results: If the parameter k1 in the Cahn-
Hilliard current is sufficiently small, the stationary spatially uniform distribution
of Min proteins is stable against small perturbations. As soon as k1 exceeds a
critical value, depending on parameter values, either stationary or oscillating spa-
tially heterogeneous solutions are found. A subset of these solutions are invariant
with respect to rotations around the system’s long axis. They confirm the results
of the one-dimensional analysis [13]. In addition, we find solutions breaking ro-
tational invariance when the cell radius is increased beyond the wild type radius
of E. coli. A typical example is presented in Figure 3.1a, where snapshots of the
total MinD-distribution, cd+cde, are presented for several points in time. Pole-to-
pole oscillations are clearly visible5. Superimposed on these are traveling waves
on the membrane surface that circle around the cell’s long axis. The existence of
chiral waves is independent of the system length, as long as the system displays
oscillations along the long axis.

In Figure 3.1b, we show for different times the position of the maximum of the to-
tal MinD distribution, cd+cde, on the circumference of the cell for a fixed position
on the cell’s long axis. It reveals that the rotation velocity of the traveling wave
is not constant. The time needed for one full turn is in general incommensurate
with the period of the pole-to-pole oscillations. Also, these distributions break
chiral symmetry. The handedness of the solution is determined spontaneously
by the initial condition. A solution mirror-symmetric to the one presented here
coexists for the same parameter values. The distribution of membrane-bound
MinE, cde, is similar to that of MinD, see Figure 3.2.

Figure 3.3a presents a phase diagram of the system as a function of the dimen-

4In the numerical integrations of the AC model, we assume that the cytoplasmic distributions
are homogeneous in a cross-section perpendicular to the system’s long axis. This is appropriate
for the diffusion constants of DD ≈ 15µm2/s and DE ≈ 10µm2/s that have been measured in
E. coli [46].

5There are also stationary solutions that break rotational symmetry. They correspond to
protein blobs forming on the membrane.



Section 3.1 21

0 500 µm -2

0s 6s 12s 18s

24s 30s 36s 42s

48s 54s 60s 66s

72s 78s

0s

0s

3s

6s 9s
12s

15s

18s
21s

24s

27s

30s

33s
36s

39s

a)

b) Position of maxima along the circumference of a fixed cross section

Chiral solution for the AC model, MinD distribution

Figure 3.1: Chiral solution of the AC model defined by the dynamic equations
(2.2)-(2.5). a) Concentration of membrane-bound MinD, cd + cde. The black line
on the bacterium indicates an iso-concentration curve with cd + cde = 300µm−2.
In addition to the pole-to-pole oscillations, the distribution turns around the
long axis. A solution with the opposite sense of rotation coexists with the one
presented here. b) Location of the maximum MinD concentration on the red circle
indicated on the left (distribution at t = 0s) for the solution presented in (a).
The magnitude of this maximum of course changes in time. Parameters are L =
3.2µm, R = 0.68µm,D = 1300µm−3, E = 500µm−3, ωD = 8.4 × 10−5µm3/s, ωde =
0.04s−1, ωE = 3.4×10−4µm3/s, k1 = 16.6 ·10−6µm6/s, k2 = 26.6 ·10−7µm8/s, k̄1 =
−k1, k̄2 = 10−4k2, DD = DE = 15.4µm2/s, Dd = 0.2µm2/s, cmax = 500µm−2. D
and E are the total numbers of MinD and MinE in the cell divided by the cell
volume.
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Figure 3.2: Distribution of MinE on the membrane corresponding to the solution
presented in Figure 3.1. Here, the black line indicates an iso-concentration curve
at cde = 150µm−2.

sionless interaction strength

K = c2
maxk

2
1/(ωdek2) (3.1)

of the membrane-bound proteins and the dimensionless cell radius R̃ = R/r,
where r is the characteristic length defined above. We see that the homogenous
protein distribution is stable as long as the interaction strength K is sufficiently
small. Above a critical value, the distributions are heterogeneous. For the pa-
rameter values chosen for Figure 3.3, the distributions oscillate in time. These
solutions are rotationally invariant for small radii R̃, but lose this invariance
beyond a critical radius. The value of the critical radius depends on K. In ad-
dition, these solutions rotate around the bacterial long axis and spontaneously
break chiral symmetry. Consequently, two solutions of different handedness and
correspondingly of different senses of rotation coexist in this regime.

Linear stability analysis for a simplified geometry. In order to gain more
insight into the phase diagram, we analyse the dynamic equations in the sim-
pler geometry of a cylinder without hemispherical caps. At the cylinder ends,
we choose reflecting boundary conditions. Furthermore, we assume the distri-
butions cD and cE to be homogenous, which is a good approximation in view
of the large cytoplasmic diffusion constants measured for MinD and MinE [46].
In that case, the dynamic equations for the cytoplasmic distributions (2.2) and
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Figure 3.3: Phase diagrams. a) Numerically determined phase diagram for
Eqs. (2.2)–(2.5) in a bacterial geometry as a function of the dimensionless ra-
dius R̃ = R/r, where r =

√

k2/k1, and the dimensionless interaction strength
K = c2

maxk
2
1/(ωdek2). The distribution of Min proteins is either stationary and

homogenous (grey dots) or oscillates, while being rotationally symmetric (yellow
stars) or chiral (blue triangles). The oscillations of data point (2.1, 650) are shown
in Figure 3.1, 3.2. b) Same as in (a) but in a cylindrical geometry. Black lines
indicate boundaries of linear stability of lateral and circumferential modes and
are good approximations for the phase boundaries, see text for further details. In
(a) parameters are (ωDcmax)/(ωder) = 2.6, (ωEcmax)/(ωder) = 10.5, DD/(r2ωde) =
DE/(r2ωde) = 2400, Dd/(r2ωde) = 30, k̄1 = −k1, k̄2 = 10−4k2, (Dr)/cmax = 1.04,
(Er)/cmax = 0.4. The protein concentrations correspond to a MinD concentration
of 900/µm and a MinE concentration of 350/µm in a cell of 3µm length and 1µm
diameter. In (b) we chose ωDCD/ωde = 0.79, ωECE/ωde = 0.79, where CD and CE

are the constant cytoplasmic concentrations. The other parameters are as in (a).
Note that in (b) cytoplasmic concentrations are kept constant for all simulations
since they are fixed parameters of the system. However in (a), the total protein
number was kept constant.

(2.3) decouple from the dynamic equations for the distributions of membrane-
bound proteins (2.4) and (2.5), see [13]. The cytoplasmic concentrations evolve
into a stationary state and we are left with the dynamics on the membrane.
In spite of these simplifying assumptions, the corresponding phase diagram is
qualitatively similar to the diagram obtained before, see Figure 3.3b. We now
perform a linear stability analysis of the homogenous state. To this end, we de-
compose the distributions cd and cde in terms of the eigenfunctions fn,m(z, s, t) =
exp(λn,mt) exp(ins/R) cos(mπz/L), with n, m = 0, 1, 2, . . ., of the linearized time-
evolution operator. Here, t is time, z with 0 ≤ z ≤ L the coordinate along the
system’s long axis and s the coordinate along the circumference. The parame-
ters R and L denote the radius and the length of the cylinder coat, respectively.
Finally, λn,m is the growth exponent of the eigenfunction fn,m. Note, that each
fn,m respects the boundary conditions. The growth exponents λn,m depend only
on the absolute value k of the wave vector k, which can take the discrete values
k(n, m) = (n/R, mπ/L). A typical dependence of the growth exponent’s real and
imaginary parts on k is illustrated in Figure 3.4a. If K is larger than a critical
value, the real part of λ(k) is positive in some interval. Examples of wave vector
lattices for two different radii R̃ together with the regions of λ(k) > 0 are pre-
sented in Figure 3.4b and c. As can be seen, different modes are unstable if the
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Figure 3.4: Growth exponents and wave vectors of Eqs. (2.2)-(2.5) in a cylindrical
geometry and linearized with respect to the stationary homogenous distribution.
a) The real and imaginary part of growth exponent λ as a function of the wave
number k. The red line indicates the interval of unstable modes. Parameters are
as in Figure 3.3b, with K = c2

maxk
2
1/(ωdek2) = 500 and L = 7.5r (r = (k2/k1)

1/2).
b, c) Grid of wave vectors corresponding to eigenmodes in the cylindrical geome-
try. The red annulus indicates regions of unstable wave vectors as obtained from
the linear stability analysis. kz: wave number of the lateral eigenmode, ks: wave
number of circumferential eigenmode. In (b) all circumferential modes are stable,
in (c) there are unstable circumferential modes. Cylinder radii are R = 1.25r (b)
and R = 2r (c).

system’s radius is changed. In particular, for large radii, modes with m 6= 0 can
get unstable indicating the presence of circumferential waves. Remarkably, for K
close to its critical value, the boundary between oscillating states with and with-
out rotational symmetry is well approximated by the stability boundary of modes
with m 6= 0, see Figure 3.3b. The chiral waves thus result from coupling between
the longitudinal (n = 0, m 6= 0) and circumferential modes (n 6= 0, m = 0).
Circumferential modes in CA models. Waves breaking rotational invariance
can also be found in cooperative attachment (CA) models. We performed numer-
ical calculations in the cell-like geometry using the dynamic equations proposed
by Huang, Meir and Wingreen [49]. Similar to the model discussed above, distri-
butions breaking rotational symmetry are found if a certain critical radius of the
system is exceeded. Two solutions are presented in Figure 3.5. All solutions we
observed result from a coupling between a standing longitudinal and a standing
circumferential wave and are consequently non-chiral. For the CA model intro-
duced in Section 2.3.3 and studied in Chapter 4.1, we find circumferential modes
as standing and traveling waves.

3.1.1 In vivo study: Min proteins break rotational symme-
try in Escherichia coli

We conjectured that the loss of rotational symmetry found in our numerical solu-
tions is a mesoscopic effect of the MinD distribution in bacteria with an enlarged
radius compared to wild-type E.coli. Our calculations show that circumferential
modulations of the surface densities should become visible for bacterial circumfer-
ences which are of the same order as the wavelength of the longitudinal pattern.
In order to test our hypothesis of the appearance of circumferential modes in
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Solutions for the CA model suggested by Huang et al.

Figure 3.5: Solutions to the CA model suggested by Huang and colleagues [49]
breaking rotational invariance. Shown are concentrations of membrane-bound
MinD, cd + cde. Black lines indicate iso-concentration contours with cd + cde =
740µm−2 (a) and cd + cde = 360µm−2 (b). Superimposed onto the longitudinal
pole-to-pole oscillations are standing waves along the circumference. In (a), where
cmax = 2000µm−2, the period of the longitudinal oscillation is twice that of the
circumferential oscillation, in (b), where cmax = 1000µm−2, they are equal. Other
parameters are (same notation as in [49]) σde = 0.4s−1, σADP→ATP

D = 1s−1, σD =
0.025µs−1, σdD = 0.0015µm3/s, σE = 0.3µm3/s, DD = DE = 2.5µm2/s, D =
1300µm−3, and E = 500µm−3. The cell has a length of 2.5µm and a radius of
1µm.



26 Surface waves predicted by the AC model Chapter 3
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b) Time

Occurence of circumferential modes in vivo

Figure 3.6: Min oscillations in an E.coli cell treated with the drug A22. Due to
perturbation of the cytoskeleton, the cell enlarged in radius compared to a wild
type cell. a) Time series of the distribution of GFP-MinD at time intervals of 6s.
The red and the green arrow highlight frames where the fluorescence maximum
is on the left or the right cell side, respectively. The scale bar shows 1µm. b)
Kymograph from a line scan along the circumference of the E.coli cell during
the same time period as presented in a). The leftmost image shows the position
of the line (yellow) along which the kymograph has been recorded. The red
bar indicates the point where the beginning and the end of the line touch. It
should be noted that fluorescence maxima appear in the kymograph at the left
and the right border if the fluorescence maximum in the cell is at the top. The
kymograph clearly shows the presence of diagonal stripes which indicates that the
fluorescence rotates around the cell circumference for the chosen time window.
The scale bar shows 30s.
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cells with enlarged radius, we probed Min oscillations in E.coli cells which were
treated with the drug A22 (S-(3,4-dichlorobenzyl)isothiourea). A22 was found
to perturb the cytoskeletal structure MreB in bacteria [52,53] dissolving MreB
helices which form at the inner side of the cytoplasmic membrane. MreB is
involved in the deposition of new bacterial cell wall material [54,55]. In E. coli,
MreB perturbation by A22 induces thickening of bacterial cells and a tendency
towards spherical cell shapes.
In our experiments, we used E.coli cells from the strain JS964, containing the
plasmid pAM238 which encodes MinE and GFP-MinD [19]. Cells were grown
as described in Section 6.1.1 and, 2-3 hours before observation, 10µg/ml of A22
were added to the liquid culture. Recording MinD fluorescence over time, we
found that Min oscillations in chubby cells indeed were no longer rotationally
symmetric around the cell circumference. During switching of MinD from one
cell pole to the other, the fluorescence intensity was frequently located to the
left or the right cell half, see Figure 3.6. At times, Min oscillations looked like
a rotation of the MinD maximum along the cell border (in a 2D projection) as
it would be expected from simulation results as shown in Figure 3.5b and 4.11.
Often, switching also occurred several times in series along the same cell side. In
some instances, the MinD maximum did not show any preference for one cell side
during switching. It is probable, that noise has an influence on the positioning of
the MinD maximum during switching.
Of course it would be desirable to study the three-dimensional distribution of
MinD in cells with an enlarged radius during switching of the fluorescence maxi-
mum. However the resolution of light microscopy with GFP is limited to about
200nm and the MinD distribution is dynamic during switching. Therefore, Z-
stack recordings did not reveal new structural details of the rotationally asym-
metric MinD distributions.
The experimental work by Shih, Le and Rothfield [30] reports helical polymer
structures of membrane-bound MinD and MinE that also break rotational sym-
metry. Although the chiral waves share the same symmetry with the helical
polymers, neither of the solutions presented here resembles this pattern. The
observed structures can rather be expected as result of a particle-based model
than of a coarse-grained description.

3.2 Surface waves in a flat, open geometry

We looked for an experimental situation that would allow to test the formation
of surface waves of Min proteins in a controlled manner. Such a situation is given
by an in vitro set up including a flat membrane immersed in a buffer solution that
acts as a reservoir for MinD, MinE, and ATP. These considerations motivated the
experiments presented in Section 4.1 and in [12]. We now discuss the dynamics
of Min proteins in such a flat geometry according to the AC model. We choose
two different initial conditions corresponding to different experimental settings.
The first is more convenient from an experimental point of view, while the second
allows for a better theoretical analysis.
First scenario. We start with a membrane to which no proteins are attached.
Experimentally, this situation can be realized by initially preparing the buffer
solution without ATP. In that case, MinD and therefore MinE do not bind to the
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Figure 3.7: Time evolution of the MinD concentration in one space dimension
integrating Eqs. (2.7) and (2.8). The initial condition was an essentially empty
membrane with small fluctuations in the MinD concentration. The asymptotic
state is either stationary (a) or oscillatory (b). In (b), the transient phase in
the beginning is left out and only the asymptotic state is shown. Parameters
are ωde = 0.04s−1, Dd = 0.2µm2/s, k1 = k2 = 0, cmax = 477µm−2 with ωDCD =
0.014s−1, ωECE = 0.024s−1, k1 = 11.2 10−6µm6/s, k2 = 18 10−7µm8/s in (a) and
ωDCD = 0.08s−1, ωECE = 0.32s−1, k1 = 13.4 10−5µm6/s, k2 = 21.5 10−6µm8/s in
(b). At the boundaries the first and third spatial derivative of the concentrations
vanish.

membrane [56]. At time t = 0, ATP is added and the Min proteins start to bind
to the membrane, which is assumed to lie in the (x, y)-plane. We analyse this
situation by solving the dynamic Eqs. (2.4) and (2.5) in the (x, y)-plane. As initial
distribution, we use cd(x, y) = ǫcmaxr(x, y) and cde(x, y) = 0, where ǫ ≪ 1 and
r(x, y) is a field of random numbers between 0 and 1. This distribution is used to
mimic an initially sparse irregular cover of the membrane by MinD. A homogenous
initial distribution results in homogenous distributions for all time when evolved
by Eqs. (2.4) and (2.5). For simplicity, we assume in the following that the
solutions are invariant with respect to translations in the y-direction, leaving us
with an essentially one-dimensional problem. The cytosolic concentrations are
assumed to be fixed by the buffer, cD(x, t) = CD and cE(x, t) = CE for all x and
t.

Asymptotically, the initial distribution evolved either into a homogenous or into a
heterogeneous distribution. In the latter case, the distribution was either station-
ary or oscillatory. The case of a stationary solution is presented in Figure 3.7a,
where a space-time plot of the MinD-concentration profile can be seen. As time
increases, a spatially periodic pattern of high and low concentrations develops
throughout the system. An oscillatory solution is shown in Figure 3.7b.

Second scenario. We start with a stationary homogenous distribution of MinD
and MinD/MinE complexes to which we add a localized perturbation. The per-
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turbations do not necessarily relax. Figure 3.8 shows cases where the perturbation
grows and spreads. For the chosen parameter values, the propagating front leaves
a striped (stationary or oscillatory) pattern in its wake. For an emerging station-
ary pattern, the propagation velocity v and the wavelength ℓ of the pattern as a
function of the interaction strength k1 is presented in the same figure.
Spreading velocity of localized perturbations. We have calculated the
asymptotic linear spreading velocity of the perturbation propagating into the un-
stable state, see Ref. [57] for a review of this method. Essentially, the time evo-
lution of the perturbation is analyzed by solving the dynamic equations that are
linearized with respect to the unstable state. The asymptotic linear spreading ve-
locity v∗ is the average velocity of the level curve xǫ(t) = max{x|cd(x, t) = Cd+ǫ}
in the limit of large times6, where Cd is the concentration of the stationary state.
The value of ǫ has to be chosen sufficiently small such that the propagating front
is described well by the linearized dynamic equations. Details of our calcula-
tion are presented in Appendix B. We find, that the actual spreading velocity is
well approximated by the linear spreading velocity v∗, see Figure 3.8d. Further-
more, our linear analysis gives a good approximation for the wavelength ℓ of the
periodic pattern that is formed in the wake of the perturbation front, see Fig-
ure 3.8d. Generally, we find that the spreading velocity increases with the values
of K = c2

maxk
2
1/(ωdek2) and ωde. On the contrary, the velocity decreases with an

increasing diffusion constant Dd. Furthermore, the wavelength ℓ increases with
K and decreases with the diffusion constant Dd.
Realization of displacement in emerging traveling waves. We have seen
that the AC model can have traveling wave solutions in an open geometry in one
space dimension. To understand how displacement of the concentration distri-
bution is realized in this case, we simulated the result of a hypothetical photo-
bleaching experiment for fluorescently labeled MinD which evolves according to
the AC model dynamics. The simulation assumes a Gaussian bleaching profile
with the center located close to a concentration maximum of the wave. The time
evolution of the bleached well is shown in Figure 3.9 for two different choices
of the parameters k1, k2 which characterize the interaction between MinD and
MinDE. In Figure 3.9a, we show the concentration profile of MinD at subsequent
times during bleaching for the case k1 = k2 = 0. The associated contour plot of
MinD concentration is displayed below in Figure 3.9b. We see that in this case
the bleached spot does not move but that a new concentration maximum builds
up in front of the well by attachment of fluorescent proteins. This result is con-
firmed by the comparison of the effective current of the traveling wave vcd, where
v is the wave velocity and cd is the MinD concentration, and the actual value
of the MinD current jd in the dynamic equations (2.2)–(2.5), see Figure 3.9c. A
substantial part of the wave displacement is achieved by iterative attachment and
detachment of proteins and not by the membrane current jd. The analogous study
has been performed for k1 = −k1, k2 = 10−4k2. Here, we find that the bleached
well smooths out fast but the dimmed MinD maximum moves then on with wave
speed v, see Figure 3.9d,e. Thus the bleached region moves in space together
with the wave. A comparison of the effective current of the traveling wave vcd

the MinD current jd shows that the wave displacement is mostly accomplished
by the movement of MinD on the membrane given by jd.

6Note, that the velocity is the same if xǫ is defined with cde instead of cd.
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Figure 3.8: Analysis of front propagation after a small, localized perturbation.
a, b) Time evolution of the concentration of bound MinD. Initial condition: ho-
mogenous distribution with localized perturbation in the interval [0µm, 2µm]
where the concentration was increased by 1%. The asymptotic state is either
stationary (a) or oscillatory (b). Blue lines indicate the rightmost location with
cd = (1 + 5 × 10−4)Cd, where cd = Cd is the concentration of membrane-bound
MinD in the stationary state (Cd = 143µm−2 (a) and Cd = 37µm−2 (b)). c) Prop-
agation speed and pattern wavelength as a function of k1. Numerically obtained
data (black dots for speed, grey rhombi for wavelength, error bars indicate fitting
errors) are compared to results from the linear analysis (red and green lines), see
Sect. 3.2 and Appendix B. Deviations are due to approximations in our calcula-
tions and non-linear effects. The parameters are chosen for (a) as in Figure 3.7 (a),
and for (b) as in Figure 3.7 (b) but with k1 = 10.7 10−6µm6/s, k2 = 17 10−7µm8/s
and k1 = 12.1 10−5µm6/s, k2 = 19.3 10−6µm8/s for (a) and (b), respectively. The
boundary conditions are such that the first and third spatial derivative of the
concentrations vanish at x = 0 and x = 80µm.
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Figure 3.9: Analysis of displacement of MinD in a traveling wave which forms
according to the AC model. a, b, c) and d, e, f) show results for the parameter
choice k1 = k2 = 0 or k1 = −k1, k2 = 10−4k2, respectively. a,d) Concentration
profiles of MinD during bleaching for subsequent times. The time interval is
△t = 0.5/ωde. The grey curve shows the profile before bleaching, the red curve
directly after bleaching. Subsequently, the yellow and then the green profile is
taken. b,e) Associated contour plots to a) and d), respectively. c,f) Comparison
of the effective current of the traveling wave vcd, where v is the wave velocity and
cd is the MinD concentration, and the actual value of the MinD current on the
membrane jd in the dynamic equations (2.2)–(2.5). The remaining parameters are
chosen as ωDcmax/ωde = 1, ωEcmax/ωde = 15, D/cmax = 0.45, E/cmax = 0.18 for
the left-hand side images and as ωDcmax/ωde = 20, ωEcmax/ωde = 10, D/cmax = 1,
E/cmax = 0.5 for the right-hand side. r denotes the characteristic length scale
√

k2/k1. In both cases, we have DD/(r2ωde) = DE/(r2ωde) = 2400, Dd/(r2ωde) =
30 and K = 1.2Kc where Kc is the critical value for the current strength. This
value is taken at the bifurcation.
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3.3 Pattern formation in the open system: deriva-

tion of the amplitude equations for the AC

model

Equations (2.7), (2.8) describe a dynamical system which is able to reproduce es-
sential features of the observed Min oscillations. So far, solutions to this system
have been mainly obtained by numerical integration. However, mere numeric in-
tegration must remain somewhat unsatisfactory since it only tells the properties
of the system for a given parameter set. Although a full analytic solution of the
partial differential equations is not feasible, we can still characterize the system’s
long time behavior in a certain range of parameters. Below a certain strength of
the Cahn-Hilliard part of the current of MinD, the system has a homogeneous
stationary solution, which is stable. Thus, heterogeneities in the system will
smooth out over time. Exceeding a critical value of the current strength, the
system undergoes a bifurcation and the stationary homogeneous state gets un-
stable. A linear stability analysis for deflections from the stationary state tells for
which current strength the bifurcation occurs, and which Fourier mode becomes
unstable first. Close to the bifurcation, the system shows a generic behavior and
analytical tools such as the derivation of amplitude equations can give informa-
tion about solutions. For simplicity, we will assume in the following that the
system depends only on one space dimension. Additionally, we consider only the
parameter range where oscillatory solutions occur beyond the bifurcation point.

General facts about amplitude equations for Hopf bifurcations at finite
wavelength in 1D. For an oscillatory, spatially inhomogeneous bifurcation type
(the eigenvalue of time evolution has a non-vanishing imaginary part, and the
critical Fourier mode is not zero), the solutions of the linearized equations at the
bifurcation point are

ALv ei(ωct+kcx) + ARv ei(ωct−kcx) + c.c.,

where kc is the critical Fourier mode of the system, and iωc the critical frequency.
The vector v is the associated eigenvalue of the linear time evolution operator to
the eigenvalue iωc. AL and AR are the constant amplitudes for the two Fourier
modes, which characterize left and right traveling wave contributions. Beyond
the bifurcation, linear stability analysis is not sufficient anymore to characterize
the behavior of the system, since it predicts exponential growth for the critical
Fourier mode, which contradicts the assumption of this method that deflections
from the stationary state are small. To get information about the behavior of the
system slightly beyond the bifurcation point, there is another mathematical tool
- the derivation of amplitude equations. Amplitude equations are most suitable
for solutions in an open geometry, i.e. in an infinite system. They can provide
information about the pattern which will form in the dynamical system in the
weakly nonlinear regime. The idea of the method is to only slightly modify the
solution of the linearized equations: The amplitudes of the different modes of
the solution are assumed to vary with space and time, but on a longer time
scale and a larger space scale than the solution of the linearized equations. This
idea of scale separation in space and time permits a perturbation calculation
using the defining equations of the system. In this approach, the space and time
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derivatives, the bifurcation control parameter, and the solution are expanded
in terms of an order parameter. This perturbation equation leads to a set of
partial differential equations characterizing the time and space evolution of the
amplitudes. For a more elaborate description of the derivation and features of
amplitude equations see [10,58–60]. The amplitude equations have been found
to be of a distinct shape for a given class of bifurcations. For the oscillatory,
spatially inhomogeneous bifurcation type, one obtains in general

∂tAL + s0∂xAL = εAL + (1 + ic1)∂
2
xAL − (1 − ic3)|AL|2AL − g1(1 − ic2)|AR|2AL

∂tAR − s0∂xAR = εAR + (1 + ic1)∂
2
xAR − (1 − ic3)|AR|2AR − g1(1 − ic2)|AL|2AR.

(3.2)

These equations are called generalized complex Ginzburg-Landau equation. The
parameters ε, g1, s0, c1, c2, c3 of the equations depend on the parameters of the
original equations. The parameter s0 is the group velocity, i.e. it is the derivative
of the imaginary part of the time evolution eigenvalue at k = kc,

∂ω(k)
∂k

∣

∣

k=kc
. If

only a single wave is inherent in the system, i.e. either AL or AR vanish, the
group velocity term can be eliminated by switching to a reference frame moving
with velocity s0.

The Complex Ginzburg-Landau equation permits a number of simple solutions
[10]. A traveling wave solution is

AL = a exp(−iΩt + φ), AR = 0, (3.3)

with a2 = ε, Ω = −c3ε, which is a left-traveling wave. Of course, there is a
right-traveling wave analogue. Also, there are standing wave solutions

AL = AR = a exp(−iΩt + φ), (3.4)

with a2 = ε/(1 + g1), Ω = −ε(c3 + c2g1)/(1 + g1). The traveling wave solutions
turns out to be stable if g1 > 1. In this regime the standing wave solution is
unstable. For −1 < g1 < 1, the situation is reversed, i.e. the traveling wave
solutions are unstable whereas the traveling waves are stable. For g1 < −1
neither of the solutions is stable and no saturation occurs. For an unbounded
system (or for a system with periodic boundary conditions), g1 can thus give a
hint on whether traveling or standing waves are chosen within the system in the
long time limit. An analysis of amplitude equations for two-dimensional space
tells about the stability of a structure against perturbations.

Derivation of amplitude equations for the AC model. Below, we de-
rive the amplitude equations for the system defined by equations (2.7), (2.8) for
one-dimensional space. Which pattern emerges (traveling or standing waves) is
determined by the effective binding parameters wECE, wDCD of MinD and MinE.
We are starting out with the equations (2.7),(2.8). There are nine parameters in
these equations which are wECE , wDCD, ωde, cmax, k1, k2, k1, k2 and Dd. Rescaling
time, space and concentrations as t → tωde, x → x

√

k1/k2, cd/de → cd/de/cmax,
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we obtain the equations

∂tcd =
wDCD

ωde
(1 − cd − cde) −

wECE

ωde
cd +

Ddk1

ωdek2
∂2

xcd

−c2
maxk

2
1

ωdek2
∂xcd(1 − cd − cde)(∂xcd + ∂3

xcd +
k1

k1
∂xcde +

k2

k2
∂3

xcde)

∂tcde = −cde +
wECE

ωde
cd. (3.5)

Thus, we obtain six dimensionless parameters ω̃D = wDCD/ωde, ω̃E = wECE/ωde,
K = c2

maxk
2
1/(ωdek2), D̃d = Ddk1/(k2ωde) and δ = k1/k1, ζ = k2k1/(k2k1). To

avoid a notation too ornately, we will omit the tilde in the newly defined param-
eters. The equations then read

∂tcd = wD(1 − cd − cde) − wEcd + Dd∂
2
xcd

−K∂xcd(1 − cd − cde)(∂xcd + ∂3
xcd + δ(∂xcde + ζ∂3

xcde))

∂tcde = −cde + wEcd. (3.6)

The homogeneous, stationary state of this system is

co
d = wD/(wDwE + wE + wD), co

de = wEwD/(wDwE + wE + wD).

Further analysis greatly simplifies if one assumes that k1 = k2 = 0, i.e. δ = 0
and δζ = 0. Thus, we will present this special case first and then comment on
the general case.

The case k1 = k2 = 0 (no interaction of MinD and MinDE
on the membrane)

For a deflection X = (Xd, Xde) from the homogeneous solution (co
d, c

o
de), the fol-

lowing equation holds

∂t

(

Xd

Xde

)

=

(

−(wD + wE) −wD

wE −1

)(

Xd

Xde

)

+

(

1
0

)

Dd∂
2
xXd

−
(

1
0

)

K∂x(c
o
d + Xd)(1 − co

d − co
de − Xd − Xde)(∂xXd + ∂3

xXd)

= M

(

Xd

Xde

)

+

(

1
0

)

(D∂2
xXd − K ′∂xF(Xd, Xde)(∂xXd + ∂3

xXd)), (3.7)

where F = 1 + αXd + βXde − γXd(Xd + Xde), K ′ = Kco
d(1 − co

d − co
de), and

α = (1 − 2co
d − co

de)/c
o
d/(1 − co

d − co
de)

β = −1/(1 − co
d − co

de)

γ = 1/co
d/(1 − co

d − co
de).
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Figure 3.10: Stability regimes of traveling and standing waves for the dynamical
system given by (3.5) for one space dimension in the weakly nonlinear regime.
This system corresponds to the AC model of Min oscillations in the limit of large
cytoplasmic diffusion. The blue areas symbolise g1 > 1, the beige areas stand for
−1 < g1 < 1 and the white regions indicate g1 < −1. The red parameter regions
belong to non-oscillatory bifurcation behavior. a) The case of k1 = k2 = 0 with
Dd = 30 ·ωdek2/k1. b) The case of k1 = −k1, k2 = 10−4k2 with Dd = 30 ·ωdek2/k1.
c) The case of k1 = k2 = 0 with Dd = 130 · ωdek2/k1. d) The case of k1 = −k1,
k2 = 10−4k2 with Dd = 40 · ωdek2/k1.
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M is the matrix containing the reaction rates. Derivation of the amplitude equa-
tions involves now expansions

X = ǫX1 + ǫ2X2 + ǫ3X3 + . . . ,

∂x = ∂x0
+ ǫ∂x1

+ ǫ2∂x2
+ ǫ3∂x3

+ . . . ,

∂t = ∂t0 + ǫ∂t1 + ǫ2∂t2 + ǫ3∂t3 + . . . ,

K ′ = K ′
c + ǫK ′

1 + ǫ2K ′
2 + . . . (3.8)

The variable ǫ denotes here the order parameter of the perturbation calculation.
K ′ is also expanded since it is the control parameter of the bifurcation.

First order equation. Plugging these expansions into Equation (3.7), the terms
to first order in ǫ give the relation

∂t0X1 = M X1 +

(

1
0

)

Dd∂
2
x0

Xd,1 −
(

1
0

)

K ′
c(∂

2
x0

Xd,1 + ∂4
x0

Xd,1)

=: LX1,

where L denotes the linear operator acting on X1 on the r.h.s. in the top line.
Switching to Fourier space, we obtain

∂t0X̃1 = M X̃1 −
(

1
0

)

Ddk
2X̃d,1 +

(

1
0

)

K ′
c(k

2X̃d,1 − k4X̃d,1)

=

(

(−wD − wE − Ddk
2 − K ′

c(k
4 − k2)) −wD

wE −1

)

X̃1,

where X̃1 is the Fourier transform of X1. As eigenvalues of the time evolution
operator, we obtain

λ1/2 = −(1 + wD + wE + k2Dd + K ′
c(k

4 − k2))

2

±
√

(wD + wE + k2Dd + K ′
c(k

4 − k2) − 1)2

4
− wDwE .

At the bifurcation point, i.e. for K ′ = K ′
c, the real part of λ1/2 is maximal at the

critical wave vector kc with the maximum being equal to zero. Assuming that
the root term will be imaginary, the maximality requirement reads (Dd − K ′

c) +
2K ′

ck
2
c = 0. Thus

kc =

√

1

2
(1 − Dd

K ′
c

) (3.9)

is the critical Fourier mode. Inserting kc into the eigenvalue equation, we get as
condition of vanishing real part of the eigenvalue

0 = (1 + wD + wE + k2
c (Dd − K ′

c)/2),

and therefore

K ′
c = (Dd + 2(1 + wD + wE)) ±

√

(Dd + 2(1 + wD + wE))2 − D2
d. (3.10)
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The sign in front of the root term has to be + since otherwise kc becomes imagi-
nary. For ωc, the imaginary part of λ1(kc)

∣

∣

K ′=K ′

c
, we obtain

ωc =
√

wDwE − 1. (3.11)

Hence, the condition that the system switches to an oscillatory state beyond
the bifurcation means in this case that wDwE has to be greater than 1. If this
condition is not met, the type of bifurcation changes and the above calculation
of the critical point is not valid anymore.

The matrix of the linear operator L in Fourier space takes the following form for
k = kc

(

1 −wD

wE −1

)

.

The eigenvalues of this operator are ±iωc. Recall that the eigenvalues of all
other wave vectors have a negative real part. The eigenvector associated to the
eigenvalue iωc is

v = (1 + iωc, wE). (3.12)

The null space of the adjoint to iωc −L, i.e. −iωc −LT , is spanned by the vector
w = (−(1 − iωc), wD). Thus, the vector w spans the orthogonal complement of
the image of the operator (iωc−L). We will denote the components of the vectors
v and w as (vd, vde) and (wd, wde).

The solution of the linear equation gives the following ansatz for X1

X1 = ALvei(ωct0+kcx0) + ARvei(ωct0−kcx0) + c.c.,

where AL, AR depend on higher order time and space variables.

The equations of second and third order in the perturbation parameter ǫ put
further constraints on the values of AL and AR. The derivation of these equations,
and the extraction of their solvability conditions is contained in Appendix C.1.
As amplitude equation for AL, one gets in the end

∂tAL = −1

2

(

1 − i

ωc

)

△K ′(k4
c − k2

c ) AL + 2

(

1 − i

ωc

)

K ′
ck

2
c∂

2
xAL

+
1

2iωc
(aLL + bLL + cLL)AL|A2

L|

+
1

2iωc
(aRL + bRL + cRL)AL|A2

R|, (3.13)

where △K ′ = K ′ − K ′
c. The coefficients aLL, aRL, bLL, bRL, cLL, cRL are

aLL = 4k4
c (1 − 5k2

c + 4k4
c )K

′
c
2vd|αvd + βvde|2U2,2,d,

aRL = 4k4
c (1 − 5k2

c + 4k4
c )K

′
c
2(αvd + βvde)U0,2,d(vd(2αv∗

d + βv∗
de) + βvdev

∗
d),

bLL = −2k4
c (−1 + k2

c )
2K ′

c
2vd(αvd + βvde)(αU2,2,d + βU2,2,de)v

∗
d,

bRL = −2k4
c (−1 + k2

c )
2K ′

c
2vd(αU0,2,d + βU0,2,de)(βvdev

∗
d + vd(2αv∗

d + βv∗
de)),

cLL = γk2
c (−1 + k2

c )K
′
cv

2
d(v

∗
d + v∗

de),

cRL = 2γk2
c (−1 + k2

c )K
′
cvd(vd + vde)v

∗
d.
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The vectors U2,2,U0,2 are defined in (C.2). The equation for AR is obtained by
exchanging AL, AR in the above equation. Note that the group velocity vanishes.
Rescaling of AL, AR, time and space yields equations of the form of (3.2). The
mode coupling coefficient g1 of the associated Ginzburg Landau equation is given
by

g1 =
Im
(

aRL + bRL + cRL

)

Im
(

aLL + bLL + cLL

) . (3.14)

For fixed membrane diffusion Dd, the rates wD, wE tune the value of g1. For values
of g1 greater than 1, traveling waves are expected as asymptotic pattern in the
system, whereas standing waves will be preferred for the regime of −1 < g1 < 1.
The stability regimes in dependence of these parameters is indicated in Figure
3.10a and b. The prediction of the stability regimes by the value of g1 nicely
agrees with results of simulations.

The general case

For the more general case of non-vanishing parameters k1, k2, the calculation of
the amplitude equation is more involved, especially since the group velocity s0 of
the amplitudes is not zero. Therefore, we will restrict the calculation here to the
parameter g1 of the amplitude equations, which conducts the stability of traveling
and standing waves in the open system. Like in the preceding section, we start
out from Equations (3.6). For the deflections from the homogeneous state, we
get the following relation

∂t

(

Xd

Xde

)

= M

(

Xd

Xde

)

+

(

1
0

)

D∂2
xXd (3.15)

−
(

1
0

)

K ′∂xF(Xd, Xde)(∂xXd + ∂3
xXd + δ(∂xXde + ζ∂3

xXde))

with parameters as in the preceding sections.
The first order equation is thus

∂t0X1 = M X1 +

(

1
0

)

[Dd∂
2
x0

Xd,1 − K ′
c(∂

2
x0

Xd,1 + ∂4
x0

Xd,1 + δ(∂2
x0

Xde + ζ∂4
x0

Xde))]

=:LX1.

In Fourier space, the linear operator L reads

∂t0X1 =

(

−wD − wE − Ddk
2
c − K ′

c(k
4
c − k2

c ) −wD − K ′
cδ(ζk4

c − k2
c )

wE −1

)

X1.

As in the case of k1 = k2 = 0, we assume that the root term in the expression for
the eigenvalues is imaginary at the bifurcation. Thus, we obtain the same value
for K ′

c and kc. The critical frequency ωc is now

ωc =
√

wDwE + K ′
cδ(ζk4

c − k2
c )wE − 1. (3.16)

The eigenvector associated to iωc is v = (1 + iωc, wE). The Null space of the
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adjoint operator to iωc −L is again spanned by the vector w = (−(1− iωc), wD).
The group velocity of the system is given by

s0 = K ′
c

kc

ωc
δ(ζ2k2

c − 1)wE. (3.17)

For the value of g1, again, equation (3.14) holds substituting for the coefficients
aLL, aRL, bLL, bRL, cLL, cRL now the terms given in Equations (C.9). A detailed
derivation of s1 and g1 is given in Appendix C.2. The value of g1 in dependence
of the effective membrane-binding rates wD, wE of the proteins MinD and MinE
is shown in Figure 3.10b. Numerical simulations confirm the obtained results.

3.3.1 Discussion of stability regimes

In the preceding section, we derived a general expression for the mode coupling
coefficient g1 of the Ginzburg Landau equation associated to the dynamic sys-
tem (3.5) which corresponds to the AC model of Min oscillations in the case of
large cytoplasmic diffusion. The coefficient g1 determines the stability regimes of
traveling and standing waves in one space dimension close to the bifurcation.
To discuss the stability regimes in dependence of the effective attachment rates
ω̃D = ωDCD/ωde and ω̃E = ωECE/ωde, we consider fixed membrane diffusion and
two cases of fixed k1, k2.
For the choice Dd = 30 · ωdek2/k1 and either k1 = k2 = 0 or k1 = −k1, k2 =
10−4k2, there are two stability regimes favoring traveling or standing waves of the
concentration fields, see Figure 3.10a and b. This result suggests that according to
the AC model it should be possible to switch between the two stability regimes by
varying separately the concentrations of MinD and MinE in the system, thereby
moving in the parameter plane of the parameters ω̃D and ω̃E. Of course, also a
direct change of the parameters ωD and ωE, e.g. by mutations of the proteins or
alteration of the lipid composition, could change the effective binding rates and
thus the stability regime.
The choice of the membrane diffusion constant Dd also has an influence on the
favored pattern. For k1 = −k1, k2 = 10−4k2, an increase of Dd leads to a reduction
of the standing wave tongue, compare Figure 3.10b and d. For k1 = k2 = 0 and
k1 = −k1, k2 = 10−4k2, a strong increase of Dd to 100 · ωdek2/k1 and more adds
a regime where g1 is smaller than −1, i.e. neither standing nor traveling waves
are stable but mixed states will emerge. For k1 = k2 = 0 , these regimes become
quite extensive, see Figure 3.10c.
Note that the predictions obtained from the amplitude equations are only valid
for systems which are sufficiently large to neglect boundary effects. Therefore,
the results are rather applicable to extended geometries as used in in vitro exper-
iments than to the patterns found in confined cell-like geometries.

3.3.2 Patterns in two space dimensions

We wanted to test whether the AC model produces stable planar traveling wave
(SPTW) patterns in two space dimensions. This is of interest as it is the predom-
inating pattern produced by Min proteins in vitro, see Section 4.1. Apparently,
SPTW patterns are not expected in two space dimensions for parameter regimes



40 Surface waves predicted by the AC model Chapter 3

0 2 4 6 8 10
0

2

4

6

8

10

g(π/2)<1

g(π/2)<1

g(π/2)<1

tra
velin

g w
aves

ω  C   /ωDD deω  C   /ωDD de

ω  C   /ωde

Dd=30 ωde k2/k1
b)a)

g(π)<1

g(π)<1

0 2 4 6 8 10
0

2

4

6

8

10

EE
ω  C   /ωdeEE g(π/2)<1

g(π/2)>1

Dd=30 ωde k2/k1, k1=k2=0

Figure 3.11: Phase diagrams indicating the stability of planar traveling waves
for the dynamical system given by (3.5) in two space dimensions in the weakly
nonlinear regime. This system corresponds to the AC model of Min oscillations
in the limit of large cytoplasmic diffusion. a) The case of k1 = k2 = 0 with
Dd = 30 ωdek2/k1. The blue area indicates the region where the coupling coeffi-
cient g(π/2) is smaller than one. Therefore, planar traveling waves are unstable
against perturbations including traveling waves propagating in a space direction
enclosing an angle of 90◦ with the original propagation direction. The tiny beige
area shows the region in which g(π/2) > 1. b) The case of k1 = −k1, k2 = 10−4k2

with Dd = 30 ωdek2/k1. The blue, the light blue and the white area indicate re-
gions where g(π/2) or g(π) or both are smaller than one. Thus, planar traveling
waves are unstable against perturbations including traveling waves propagating
in a space direction at an angle of 90◦ or/and 180◦. The beige area shows the
region in which g(π/2) > 1 and g(π) > 1. Red parameter regions belong to
non-oscillatory bifurcation behavior.

where traveling waves are unstable in one space dimension. However, parame-
ter regimes with stable traveling waves in one space dimension do not need to
remain stable in two space dimension: Amplitudes of modes with wave vectors
which point in different space directions (with common modulus kc) can couple
and amplify. Lets assume that our solution is of the form

ALv ei(ωct+k1r) + BLv ei(ωct+k2r) + c.c.,

where k1 and k2 have the common modulus kc and that k1 · k2 = cos(θ). That
means, we have planar traveling waves in two space directions which enclose the
arbitrary angle θ. If we leave out spatial variations of the amplitudes, the dynamic
equation of AL defined in 3.2 is replaced by the equation

∂tAL = εAL − (1 − ic3)|AL|2AL + g(θ)(1 − ic(θ))|BL|2AL,

with an analogous equation defining ∂tBL. The value of the coupling coefficient
g(θ) determines if planar traveling wave solutions with for instance AL 6= 0,
BL = 0 are stable against perturbations with BL 6= 0 [10]. This is the case,
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if g(θ) > 1 for all θ ∈ [0, 2π]. We have calculated the coupling coefficient g(θ)
for different parameter values of the AC model in the same way as we derived
the coupling coefficient g1 in the preceding section. The results are summarized
in Figure 3.11. We find that SPTW patterns in two space dimensions are not
generic for the parameter regimes which we considered.
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Chapter 4
In vitro patterns of Min-proteins on a
planar membrane

The Min system is a strong candidate for a self-organizing system in cell biology.
Several computational models were suggested to explain the Min system, see Sec-
tion 2.3.1. Most of them reproduce the oscillations in the cell without additional
spatial markers that guide the Min proteins. Oscillations form spontaneously
from a homogeneous protein distribution by the amplification of fluctuations in
the system. The self-organization of Min proteins however need not be restricted
to the cell geometry. Computational models of the Min system predict pattern
formation also in in vitro situations on flat membranes, see Section 3.2.

4.1 Min proteins organize into surface waves in

vitro

In vitro experiments7 have been carried out by our collaborator Martin Loose [12]:
A supported lipid bilayer was immersed in a buffer containing fluorescently la-
beled MinD (Bodipy-FL), MinE (Alexa647) and ATP. After a transient phase
of about one hour, a protein pattern formed and persisted for several hours (see
Figure 4.1). Spatially periodic bands of proteins formed, separated by concen-
tration troughs devoid of proteins. These bands formed regions of ordered wave
trains, spirals and double spirals (see Figure 4.2). The protein bands moved with
constant velocity of about 0.7µm/s dependent on the MinE concentration in the
system. A characteristic concentration profile of proteins along the propagation
direction (see Figure 4.3) could be observed: From the leading part of the band,
the MinD concentration increased, reached the maximum behind the middle and
fell off again. The MinE concentration monotonously grew towards the rear of
the band, reached its maximum there and then dropped sharply to zero. The
maximum of the MinE concentration followed behind the maximum of the MinD
concentration forming a sharp line at the trailing edge of the protein band. This
arrangement is similar to the situation in the cell where the MinE ring forms
at the rim of the MinD maximum and travels towards the pole when the MinD
maximum dissolves. Thus, in vitro as well as in vivo, MinE maxima eat up MinD
maxima in a pac-man like manner. The MinE concentration in the system influ-
enced the wavelength of the pattern as well as the speed of the waves. Increasing
the concentration from 0.5 to 5µM the average propagation velocity increased as
indicated in Figure 4.7a. The wavelength decreased as shown in Figure 4.7b. Be-
low a MinE concentration of 0.2µM waves formed erratically but the system did
not evolve to a well-defined state. For MinD concentrations higher than 1.25µM
and MinE concentrations lower than 2µM, stationary patterns of proteins formed

7For further experimental details, see [12] and the supporting online material.
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1.5 min 4 min 6 min

10 min 18 min 38 min

Initiation of Min patterns in vitro

Figure 4.1: Initiation of pattern formation. Starting from a homogeneous MinD
distribution, addition of MinE initiates the formation of inhomogeneities and
leads eventually to ordered structures. The frames show fluorescence images as
snapshots of the system after 1.5, 4, 6, 10, 18 and 38 minutes. MinD (1µM),
green channel, MinE (1.5µM), red channel. Scale bar, 50µm.

with filamentous MinD structures surrounded by a thin line of MinE (see [12]).
The presence of ATP proved to be essential for the pattern formation in the sys-
tem. In the absence of ATP, MinD did not attach to the membrane and wave
formation could not be observed. Adding the nonhydrolyzable ATP analogue
adenosine 5’-O-(3-thiotriphosphate) (ATPγS), MinD attached to the membrane
forming a homogeneous protein layer. MinE was recruited to the membrane by
MinD, but pattern formation did not occur. Thus energy dissipation by hydroliza-
tion of ATP is crucial for the formation of surface waves. To test the mobility
of Min proteins in the membrane bound state, fluorescence photobleaching ex-
periments were performed. A bleached area of MinE or MinD remained at its
original position on the membrane, while the wave was propagating, see Fig. 4.4.
This indicates that the waves were not the result of protein translocation on the
membrane but of iterative detachment and reattachment of proteins from the
buffer.

Several features of the in vitro structures of the Min system are strongly reminis-
cent of the Min oscillations in vivo: MinD was distributed homogeneously on the
membrane in the absence of MinE, whereas dynamic patterns could be observed
only in the presence of MinE. MinE was found predominantly localized at the
trailing edge of a moving MinD band [21,22]. We characterized the velocity and
wavelength of the surface waves as a function of MinE concentration and conclude
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Pattern formation by Min proteins in vitro

Figure 4.2: Patterns formed by Min proteins attached to a supported lipid bilayer
in vitro. a) Confocal images of self-organized proteins waves, MinD (1µM) doped
with 20% Bodipy-labeled MinD (green), MinE (1µM) doped with 10% Alexa647-
labeled MinE (red). The lower frame row shows the progression of traveling
waves towards the upper right corner. b) Rotating spiral patterns formed by Min
proteins. In the left frame only labeled MinE is shown in red (MinD, 1µM; MinE,
1µM). c) Double spirals formed by Min proteins. Only labeled MinE is shown
(MinD, 1µM; MinE, 0.5µM). The star labels the center of the double spiral. All
scale bars show 50µm if not differently indicated.
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Figure 4.3: Concentration profile of Min protein waves and kymograph along a
line parallel to direction of wave movement. a) Confocal image of Min protein
waves on the lipid membrane. MinD (1µM), green channel; MinE (1.5µM), red
channel. Scale bar, 50µm. b) Intensity profile plots along the line indicated in
a). The concentration was averaged over the width of the line. The arrows in a)
and b) display the direction of wave propagation. c) Kymographs for MinD and
MinE along the line indicated in a). The time proceeds from top to bottom. The
occurrence of straight stripes in the kymographs evinces that the waves progress
with constant velocity.

that the frequency of the oscillations increases with an increasing MinE/MinD
ratio as in vivo [22]. An explanation for the different length scales of the patterns
observed in vitro and in vivo is given by the theoretical description introduced
in the following section 4.2; When lower values for the diffusion constants of the
membrane-bound proteins were used in our model, we could also reproduce the
Min oscillations observed in the cell (Figure 4.10). One possible reason for lower
diffusion constants in vivo could be molecular crowding in the cytoplasmic mem-
brane of E. coli. Thus, the mechanism generating the surface waves in vitro may
also drive the Min oscillations in vivo .

These experiments have shown that complex biological behavior can emerge from
a limited number of components, namely, two proteins, a membrane, and ATP.
They strongly indicate that self-organization of proteins is used as a pattern
forming mechanism in nature.
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4.1.1 Estimation of in vitro diffusion constants of MinD
and MinE

Diffusion constants of both proteins (Dd, Dde, DD, DE) for the in vitro situation
were estimated from measurements performed by our collaborators Martin Loose
and Jonas Ries. For the diffusion constants in the buffer, we obtained DD =
61.32 ± 1.98 µm2/s and DE = 58.71 ± 2.85 µm2/s (see [12], supporting online
material) using standard tools of FCS measurement and analysis. By FRAP (flu-
orescence recovery after photobleaching), we measured Dd = 0.94 µm2/s±50%
estimated error and Dde = 0.19 µm2/s±50% estimated error. These values are
apparent diffusion constants and might also depend on the kinetics of protein at-
tachment/detachment. Lower values for Dde compared to Dd could be accounted
for with the formation of MinD/MinE complexes. For the analysis of the FRAP
data, we derived a function dependent on the diffusion constant to fit the bleach-
ing profile.

Analysis of FRAP data for MinD and MinE bound to the membrane.
In the following, we describe how values for the membrane diffusion of MinD
are estimated. The same strategies have been applied to FRAP data on fluores-
cent MinE. For simplicity, we have assumed that only detachment/attachment
processes of Min proteins and diffusion play a role in the recovery of the fluo-
rescence. The occurrence of directed currents on the membrane is improbable
since the bleached area did not move on the membrane during the recovery. We
neglect spatial inhomogeneities in the buffer. The membrane profile of the entire
MinD-population including the bleached molecules is assumed to be approxi-
mately constant in the bleached area and its neighborhood. Thus, dependencies
of attachment and detachment rates on membrane concentrations do not have
to be taken explicitely into account. Therefore, the dynamics of the fluorescent
population can be described by the equations

∂tc(r, t) = D△c(r, t) − koffc(r, t) + kon(T − C(t))

∂tC(t) = −koffC(t) + kon(T − C(t)), (4.1)

where c(r, t) denotes the MinD concentration at a certain point on the membrane,
and C(t) denotes the space-averaged concentration of MinD on the membrane.
The variable T indicates the total number of fluorescent MinD proteins per area
after bleaching. D denotes an effective diffusion constant, and the rates koff , kon

characterise detachment and attachment. The latter equation of the equation
system (4.1) can be solved on its own

C(t) =

(

T0(1 − α
Abl

Ages
) − T

)

kon

kon + koff
e−(koff+kon)t +

konT

koff + kon
,

where Abl and Ages are the area of the bleached space, and the total membrane
area, respectively. T0 denotes the total protein number per area before bleaching.
α is the fraction of the bleached molecules in Abl. To abbreviate the above
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expression, we introduce the term △T = (T0(1−α Abl

Ages
)−T ). Thus, the equation

for the time evolution of c(r, t) reads now

∂tc(r, t) = D△c(r, t) − koffc(r, t)

+kon

(

koffT

koff + kon
−△T

kon

kon + koff
e−(koff+kon)t

)

. (4.2)

This equation is inhomogeneous. To obtain the solution space, one can add the
general solution of the homogeneous part ∂tc(r, t) = D△c(r, t) − koffc(r, t) to a
solution of the full equation. A solution of the inhomogeneous equation with no
spatial dependence can be obtained by Laplace transformation

cinh(t) =
kon

koff + kon
T (1 − e−koff t) +

kon

koff + kon
△T (e−(koff+kon)t − e−koff t).

To get the general solution for the homogeneous part of Equation (4.1), we first
solve the diffusion equation, for the following initial concentration: Inside the
bleaching rectangle, say [0, a]× [0, b], the concentration is zero, outside it is one8.
The solution is

cdiff (r, t) =

(

1 − 1

4πDt

∫ b

0

∫ a

0

dx′dy′e−((x−x′)2+(y−y′)2)/(4Dt)

)

=

(

1 − 1

4

[(

erf
(

a−x
2
√

Dt

)

+ erf
(

x
2
√

Dt

))(

erf
(

b−y

2
√

Dt

)

+ erf
(

y

2
√

Dt

))]

)

,

where erf denotes the Gaussian error function. The full solution of equation (4.2)
is then

c(r, t) =
konT0

koff + kon
cdiff (r, t)e

−koff t + cinh(t).

Thus, the intensity profile of a bleached rectangle along x-direction for fixed y is
a function

c(x, t) = A(t)

(

1 − 1

2

(

erf
(

a−x
2
√

Dt

)

+ erf
(

x
2
√

Dt

))

)

+ B(t),

where A(t) and B(t) depend on y. The form of the above equation is also kept
if the concentration profile in x-direction is averaged over some interval in y-
direction.

To analyse the experimental data, intensity profiles along the x-direction (see
Figure 4.4a and b, 2nd frame in the top image series) were fitted to the function

I(x) = A

(

1 − 1

2

(

erf
(

x2−x
σ

)

+ erf
(

x−x1

σ

))

)

+ B. (4.3)

at successive times. Intensities from the experiment were averaged over a cer-
tain interval of the y-axis to reduce the noise. The constants x1 and x2 were
determined from the intensity profile at time zero after bleaching. The remaining

8The calculation is easily adapted to the case of a rest fluorescence in the bleached area.
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parameters A, B and σ =
√

4Dt were fitted for each time individually, see Figure
4.4a1-4 and b1-4. The parameter A scales the depth of the bleached well and
B tunes the homogeneous background. Thus, σ2 could be determined for each
frame of the recorded FRAP movie and these values were plotted versus time.
The diffusion constants Dd and Dde were then deduced fitting the linear function
σ2(t) = 4Dt to the experimental values, see Fig. 4.4a4 and b4. These diffu-
sion constants correspond to the translational movement of the respective fastest
protein species. For example in the case of Dd, we assumed the translational
movement of slow MinD/MinE complexes to be superimposed by the fast move-
ment of MinD alone. It should be noted that the measured values are effective
diffusion constants which might not only result from Brownian motion.
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Figure 4.4: Photobleaching experiments on in vitro surface waves of Min proteins. a) MinD, b) MinE. Analysis of FRAP data was used
to estimate effective diffusion constants of MinD and MinE in the membrane-bound state. a1), a2) Intensity profile of MinD along the
line given in the second frame in a) at a fixed time after bleaching. Solid lines are fits to the function (4.3). a3) Fits for different times
with normalized well depth. a4) Fitted parameter σ2(t) = 4Dt for successive times. Dd is determined by linear regression. The images
b1)–b4) are the analogues of a1)–a4) but for MinE FRAP data.
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a) b) c) d)

Experiment CA model AC modelHuang et al.

Figure 4.5: Comparison of pattern formation in the experiment and different
computational models. a) Confocal image of protein waves from the experiment.
b) Waves forming in the CA model given by equations (4.4)–(4.7). c) and d)
present structures produced by the model suggested by Huang et al. [35] and by
the AC model (see Section 2.3.2), respectively. The scale bars show 50µm. The
green color channel encodes MinD concentration, the red channel encodes MinE
concentration.

4.2 Modeling in vitro dynamics of Min proteins

We wanted to understand the generation of the instability and the emergence of
structures in the experiments described above. We use a mesoscopic description
in terms of concentration fields for the Min proteins. Many descriptions of this
kind have been suggested to account for the Min patterns in the E.coli cell,
which where either on the basis of a classical reaction-diffusion mechanism or
which assumed attractive interactions between bound MinD molecules leading
to an aggregative current on the membrane (see Section 2.3.1). However, the
waves observed in the experiments were qualitatively different from the behavior
predicted by existing theories (see Figure 4.5 c,d).
In the experiment, regions of high MinE densities initiated MinD detachment
and thus pattern formation. From this observation, we deduced a computational
model that includes cooperative effects during MinE binding to the membrane
similar to those suggested in [32]9. The state of the system is described by the
densities cD and cE of MinD and MinE in the buffer, along with the densities
cd and cde of MinD and MinD/MinE complexes on the membrane. The time
evolution of the concentrations is given by dynamic equations which embody the
concept of cooperative attachment (CA)

∂tcD = +ωdecde −cD(ωD + ωdDcd) + DD△cD (4.4)

∂tcE = +ωdecde −cEcd(ωE + ωeEc2
de) + DE△cE (4.5)

∂tcd = −cEcd(ωE + ωeEc2
de) +cD(ωD + ωdDcd) + Dd△cd (4.6)

∂tcde = −ωdecde +cEcd(ωE + ωeEc2
de) + Dde△cde. (4.7)

The respective attachment/detachment dynamics is parametrized by the param-
eters ωD, ωdD, ωE , ωeE and ωde. The first terms in Equations (4.4) and (4.5)
describe unbinding of MinD/MinE complexes from the membrane. The appear-
ance of this term with a minus-sign in Equation (4.7) assures that no material

9This model however includes protein synthesis and degradation as an essential ingredient,
which was shown to be unimportant for the functioning of the Min system.
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is lost or generated during this process. The second term in Equation (4.4),
cD(ωD + ωdDcd), describes binding of MinD to the membrane, with an effective
rate that increases with higher concentrations of membrane-bound MinD. The
second term in Equation (4.5), cEcd(ωE + ωeEc2

de), accounts for cooperative at-
tachment of MinE to membrane-bound MinD/MinE complexes. Note that we
assume in our model cooperative attachment for MinD as well as for MinE. For
the exchange of ADP for ATP in unbound MinD, we assume that it is so fast
that we do not have to consider explicitly the concentrations of MinD bound to
ADP. For each rate, we used only the terms with the lowest order non-linearity
that were sufficient to reproduce the phenomena observed experimentally. All
parameters are effective parameters and might account for multiple processes.
Diffusive transport of the proteins is captured by the last terms in the equations,
where △ is the Laplace operator.

Units of concentrations. For simplicity, the densities cD and cE in Equa-
tions (4.4)–(4.7) are taken as two-dimensional surface densities. This concept
is motivated by the following considerations: Particle exchange between mem-
brane and buffer happens mostly within a certain layer of the buffer beneath the
membrane, parallel to the membrane surface. This is due to the finite diffusion
constant in the buffer and finite binding rates. The height of this layer will be
determined by the buffer diffusion constants of MinD and MinE as well as typi-
cal residence times of Min proteins in the buffer. A buffer diffusion of 60µm2/s
and a residence time of 1–3s gives as typical distance ≈ 10µm. Thus, within
an exchange layer beneath the membrane with a height on the order of magni-
tude 10µm, proteins will permanently switch between diffusion in the buffer and
a membrane bound state. Between the exchange layer and the bulk part of the
buffer on top, particle currents will be negligible since concentration gradients are
not strong at this distance from the membrane. Thus, we assume that the bulk
part can be neglected for the dynamics on the membrane. We describe binding
of proteins from the exchange layer to the membrane by an effective binding rate
proportional to the surface concentration of the exchange layer somewhat sim-
plifying the actual situation in the experiment. Since the height of the exchange
layer can only be roughly estimated, we transform the actual protein concentra-
tions in the buffer into surface densities used in the equations by multiplying the
volume concentrations with the total height of the buffer. Experimentally, we
checked that stirring of the buffer did not have an effect on the protein pattern
on the membrane. Thus concentration gradients in the bulk of the buffer do not
seem to play a significant role.

Emerging patterns. In a suitable parameter regime, the equations produce
patterns made up of ordered wave trains traveling with a constant velocity similar
to the structures observed in the in vitro experiments. Examples of solutions are
shown in Figure 4.6. MinE cooperativity proved to be crucial to reproduce the
dynamic patterns observed experimentally (Figure 4.2). Our theory captures a
similar protein density distribution within a protein band (Figure 4.8). The peak
of the MinE distribution follows the concentration maximum of MinD. However,
we do not capture the sharp drop of the MinE concentration after the peak.
Experimentally obtained dependencies of wavelengths and velocities on the MinE
concentration are qualitatively reproduced by the theory along general lines (see
Figure 4.7c and d).
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a) b)

c) 0s 35s 70s 105s

In silico Min patterns  (CA model)

Figure 4.6: Patterns generated by the computational CA model given by the
equations (4.4)–(4.7). The images a) and b) show a snap shot from simulations
on a domain with side length 900µm and periodic boundary conditions. The green
color channel encodes MinD intensity, the red channel encodes MinE intensity.
c) Rotating spiral from b) at progressive times. The yellow star in b) marks the
center of an occurring double spiral in the simulation. The scale bars indicate
100µm. The chosen parameters and initial conditions are given in the paragraph
on numerical methods 4.2.1.

The values of the diffusion constants in the buffer and on the membrane influence
the characteristic size of the developing pattern. Diffusion in the buffer is by
orders of magnitude larger than on the membrane. Still, the bulk cannot be
assumed to be well-stirred. The finite values for the diffusion constants in the
buffer assure that homogeneous oscillations are suppressed.

4.2.1 Numerical methods and parameter choice

Equations (4.4)–(4.7) have been solved using a forward Euler discretization scheme
for the time step.
Simulation shown in Figure 4.6a We used as initial concentrations a homo-
geneous protein distribution plus random fluctuations which were independently
chosen for each grid point and took values up to a hundredth of the constant
concentration value. The grid spacing of the simulation is 7.5µm and the time
step △t = 0.01s.
Simulation shown in Figure 4.6b The initial concentrations were homoge-
neous protein distributions with a spiral profile of small amplitude added to
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Figure 4.7: Surface wave velocity and wavelength as a function of MinE concentra-
tion (MinD, 1µM). a) and b) show experimental data. Each data point has been
obtained from n = 3 independent measurements. Error bars indicate the stan-
dard deviation. Fitting data of a) to the Hill equation yielded vmax = 0.94µm/s.
c) and d) display results from the computational model. Error bars indicate the
uncertainty with which velocity and wavelength could be extracted from the sim-
ulations. Experiment and theory report an increase of the wave velocity and a dip
of the wavelength for increasing MinE concentrations. Parameters of the simula-
tions were chosen as in Figure 4.6 apart from the MinE concentration. For MinE
concentrations higher than 2µM the spatial patterns were lost in the simulation
and homogeneous oscillation occurred.
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Figure 4.8: Concentration profile of waves and kymograph along a line parallel
to direction of movement predicted by the computational AC model. a) Image
of Min protein waves with MinD concentration encoded by green color intensity
and MinE encoded by red color intensity. Scale bar, 50µm. Intensity profile plots
along the line indicated in a). The concentration was averaged over the width of
the line. The arrows in a) and b) displays the direction of wave propagation. c)
Kymograph for MinD along the line indicated in a). The time proceeds from top
to bottom.

MinD. In this way, we wanted to check if a spiral distribution is stable in the
system. Starting out with a spiral profile does not necessarily mean, that this
structure is kept during the simulation. For the presented model, wavelengths
and extension of the spiral had to be chosen carefully in order to keep the spi-
ral. In the cases where the spiral was kept, it deformed after simulation start
and changed its profile and wavelength, sometimes also the position of its mid-
dle. For instance in Figure 4.6b the middle of the spiral has moved downwards
away from the middle. We also tried to obtain spirals in this way integrating the
dynamical systems described in [13,37] and [35], which were introduced in the
Section 2.3.1. However, in these cases the initial spirals resolved very fast and
vanished completely. The initial spiral profile was achieved by adding the function
0.01 sin(

√

(x2 + y2)/λ2 + ϕ(x, y)) to each grid point not more than 105µm away
from the middle of the simulated square. The origin of the coordinate system
was set to be the middle of the grid. The function ϕ(x, y) is the angle of polar
coordinates in the plane. The value of the wavelength λ was set to 48.75µm. The
grid spacing of the simulation is 3.75µm and the time step △t = 0.01s.

The following parameters are chosen for the simulation of Figure 4.6a and b: ωde =
0.029s−1, ωD = 2.9 · 10−4s−1, ωdD = 4.8 · 10−8µm2/s, ωE = 1.9 · 10−9µm2/s, ωeE =
2.1 · 10−20µm6/s, DD = DE = 60µm2/s, Dd = 1.2µm2/s, Dde = 0.4µm2/s. Protein
concentrations in the buffer were taken as 1µM for MinD and MinE. Converting
this value to a 2D concentration by multiplication with the height of the buffer,
which was estimated as 5mm, gives a surface density of 3 · 106 particles per µm2.
In total, a square of 900µm was integrated with periodic boundary conditions. In
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0s 9s

45s 54s

18s

27s

63s 72s

36s

a)

b)

Figure 4.9: a), b) Patterns generated by the computational models suggested by
Huang and colleagues [35] and by the AC model, respectively (see also Section
2.3.1). The green color channel encodes MinD concentration, the red channel en-
codes MinE concentration. a) The first frame shows the entire simulated domain.
The following smaller frames show the simulation results for exceeding times in
the extract indicated in yellow for t = 0s. We searched the parameter space of
the model in the neighborhood of the parameters given in [35] and [49] and did
not find a regime where ordered wave trains or spirals formed. b) A quadratic
domain of 250µm is shown with periodic boundary conditions. The pattern stays
equal over time but translocates to the right with constant velocity v ≈ 0.25µm/s
as indicated by the black arrow. Scanning the parameter space of the model close
to the bifurcation, we did not find regions of traveling plane waves. The scale
bars indicate 100µm. The parameters of the simulations a) and b) are given in
4.2.1.
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the simulations, concentrations reach maximal values of ∼ 6 · 106µm−2 for MinD,
and ∼ 5.4 · 106µm−2 for MinE. For the given parameters different values for the
diffusion constant Dde have been tested. In the range from 0.5µm2/s to 0.1µm2/s
the results of simulations were qualitatively similar.

Testing other computational models. Of course, the question arises which
Min patterns are predicted in a flat two-dimensional geometry by theoretical de-
scriptions suggested previously. Accordant simulations of the models presented
in [35] and [13] are shown in Figure 4.9. For Figure 4.9a, a square of 450µm has
been simulated with periodic boundary conditions. The total concentration of
MinD in the system was 1µM, and of MinE 0.35µM. The remaining parameters
were σde = 0.7s−1, σADP→ATP = 1s−1, σD = 0.098s−1, σdD = 6.6 ·10−7µm2/s, σE =
4 · 10−5µm2/s, DD = DE = 63µm2/s, cmax = 18.75 · 106µm−2. The concentra-
tions range for MinD from 0 to ∼ 17.25 · 106µm−2, and for MinE from 0 to
∼ 7.5 · 106µm−2. Again spatial variations along the z-direction in the buffer were
neglected and concentrations were assumed as surface concentrations. Figure
4.9b displays results of Min protein dynamics according the aggregation current
model. Shown is a square of 250µm side length with periodic boundary condi-
tions. The total concentration of MinD in the system was 1µM, and of MinE
1µM. The remaining parameters were ωde = 0.002s−1, ωD = 0.0004s−1, ωE =
3.3 · 10−9µm2/s, cmax = 6 · 106µm−2, Dd = 1.5µm2/s, k1 = 7.2 · 10−12µm6/s, k2 =
1.8 · 10−10µm8/s, k1 = −k1, k2 = 10−4 · k2. The concentrations range for MinD
from 0 to ∼ 1 · 106µm−2, and for MinE from 0 to ∼ 6 · 105µm−2. The buffer pro-
teins were assumed to be well-stirred, i.e. spatial variations of the concentrations
within the buffer were neglected.

4.3 Solutions of the derived CA model in cell

geometries

4.3.1 Wild type cells

We numerically solved the dynamic equations (4.4)–(4.7) of the cooperative at-
tachment model also in a bacterial geometry (see Figure 4.10), where we used
lower values for the diffusion constants of the membrane bound proteins accord-
ing to [46]. We assumed the pattern to be invariant with respect to rotations
around the bacterium’s long axis, which led to an effectively one-dimensional de-
scription. We have used a 1D spatial grid with lattice spacing of 0.2µm. The
time step10 was △t = 3 ·10−5s. The resulting dynamics is shown in Fig. 4.10 and
clearly reveals the pole-to-pole oscillations typical for the Min proteins in E.coli
.

4.3.2 Thick cells

In Chapter 3, we have seen that solutions for the Min dynamics in cells with a
radius to length ratio greater than in usual Escherichia coli cells are not anymore

10The smaller time step compared to the simulation of the in vitro setting is necessary due
to the smaller grid spacing △x in order to still match the Courant stability criterion.
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Figure 4.10: Example of pattern formation in the cell according to the equations
(4.4)–(4.7). MinD intensity, green channel; MinE intensity, red channel. The
oscillation period is 67s. The overall MinD and MinE concentration was set to
1000µm−1 and 400µm−1, respectively. The cell length is 2µm. The remaining pa-
rameter values are ωde = 0.125s−1, ωD = 0.0013s−1, ωdD = 9.3 · 10−4µm/s, ωE =
3.8 · 10−5µm/s, ωeE = 8 · 10−9µm3/s, DD = DE = 12.5µm2/s, Dd = Dde =
0.013µm2/s. For simplicity, we used the same cytoplasmic diffusion constants
for MinD and MinE. The respective values are motivated by Meacci et al. [46].

rotationally symmetric with respect to rotation around the long axis of the bac-
terium. This is predicted by the AC model as well as by the model presented by
Huang, Meir and Wingreen [35], (see also 2.3.1). In general, it is expected that
each modeling dynamical system should give solutions of this kind for the cell
radius becoming larger than Lcrit/π, where Lcrit is the minimal cell length for
which oscillations occur. Inserting 2µm for this quantity gives a threshold radius
of ≈ 0.65µm. If the cell radius gets into this regime, the smallest wave vector of
circumferential modes takes about the same value as the smallest non-vanishing
long axis mode for a cell of 2µm length. Since this wave vector is unstable,
yielding long axis oscillations, also the lowest circumferential mode should be-
come unstable. Probing the behavior of the computational model derived for the
description of the in vitro structures observed in two dimensions, we also find
solutions which vary along the cell circumference. Two examples are shown in
Fig. 4.11 and Fig. 4.12. In Fig. 4.11, a traveling wave forms which runs around
the cell staying in a fixed plane, crossing the cell poles. This solution in fact looks
similar to the oscillations which we observed in vivo in cells with enlarged radius,
see Figure 3.6. In Fig. 4.12, we present a chiral solution similar to the one shown
in Fig. 3.1. A solution with the reversed handedness exists simultaneously.
Numerical methods and parameters. The simulations were performed sub-
dividing the cytoplasmic bulk into pie slices adapted to the grid on the membrane
of the model cell. Thus cytoplasmic concentrations were averaged over one pie
slice. A control simulation with a finer subdivision of the cytoplasmic bulk did
not display qualitative differences in the distribution of membrane-bound pro-
teins. The chosen parameters for the solution shown in Fig. 4.11 were ωde =
0.125s−1, ωD = 5.6·10−4µm/s, ωdD = 6.3·10−4µm3/s, ωE = 2.5·10−5µm3/s, ωeE =
1.2 · 10−8µm7/s, DD = DE = 12.5µm2/s, and Dd = Dde = 0.013µm2/s. The av-
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0 1650µm
-2

0 1050µm
-2

Figure 4.11: Solution of the dynamic equations (4.4)-(4.7) with circumferential
modulations. a) Concentration of membrane-bound MinD, cd+cde. The black line
on the bacterium indicates an iso-concentration curve at half the concentration
maximum. The concentration peak travels around the cell staying in a plane
which crosses the cell poles. The concentration range is indicated in the legend
shown at the bottom. b) Distribution of MinE on the membrane corresponding
to the solution presented in a).
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0 1500µm

0

-2

950µm
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Figure 4.12: Chiral solution of the dynamic equations (4.4)-(4.7). a) Concentra-
tion of membrane-bound MinD, cd+cde. The black line on the bacterium indicates
an iso-concentration curve at half the concentration maximum. In addition to the
pole-to-pole oscillations, the distribution turns around the long axis. A solution
with the opposite sense of rotation coexists with the one presented here. The con-
centration range is indicated in the legend shown at the bottom. b) Distribution
of MinE on the membrane corresponding to the solution presented in a).
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erage protein density was for MinD 1500µm−3 and for MinE 600µm−3. For the
solution presented in Fig. 4.11, the parameters were equal apart from ωdD which
was set to ωdD = 0.0013s−1.

4.3.3 Filamentous cells

Escherichia coli cells with a cell length that exceeds typical wild type lengths are
called filamentous cells. Filamentous cells are known to change their oscillation
pattern of Min proteins. The observed standing wave of protein concentration
gains wave nodes such that cells expressing fluorescent MinD exhibit additional
stripes (see also Fig. 2.4). For cells exceeding 6µm in length, we observed also the
occurrence of traveling waves of Min proteins, see Fig. 4.13b,c. The cell shown
there has a length of 11µm.
We have probed the model presented in this chapter in filamentous cells. Ex-
amples of solutions are shown in Fig. 4.13 and 4.14. Fig. 4.13 displays a 10µm
model cell. The parameters are chosen as for the solution in a 2µm cell pre-
sented in Fig. 4.10. For this parameter set, the system switches directly to
traveling waves for longer cells. Wave nodes of the concentration profile are
not gained. In Fig. 4.14, we present simulations of the model for different cell
lengths: a) 2µm, b) 5µm. These simulations were performed for parameter values
ωde = 0.17s−1, ωD = 0.017s−1, ωdD = 3.3 · 10−3µm/s, ωE = 3.3 · 10−5µm/s, ωeE =
8.3 · 10−10µm3/s, DD = DE = 1.7µm2/s, and Dd = Dde = 0.008µm2/s. The
average protein density for MinD and for MinE was 1000µm−1. In a length range
from 2 − 8µm, standing wave solutions are preferred. From about 10µm on, the
standing wave solution starts to get instable. Note that the diffusion constants
in the cytoplasm were chosen lower than the actually measured values from [46]
which where for MinD ∼ 16µm2/s and ∼ 10µm2/s for MinE. Also the MinE
fraction is higher than usually anticipated.
In general, the model seems to prefer traveling wave solutions for longer cells
which is not surprising as it was designed to describe traveling waves in an open
geometry. This fact suggests that the model might be too slender to explain all
the phenomena observed in the Min system.
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a)

c)

b)

Time

Figure 4.13: a) Kymograph of a traveling wave solution in a one-dimensional
cell of 10µm length. The oscillation period is 100s. concentrations range from
0 − 11000µm−1 for MinD and 0 − 6900µm−1 for MinE. b) Micrograph of E.coli
cell expressing fluorescent MinD with a length of 11µm. c) Kymograph of the
cell shown in b), recorded for a time interval of 870s. Thus the oscillation period
is roughly 87s. Scale bars show 1min.

a)

b)

Time

Figure 4.14: Kymographs of Min oscillations in a one-dimensional model cell.
Cell lengths are 2µm in a) and 5µm in b). The oscillation periods are 66.7s and
60s in a) and b), respectively. MinD concentrations range from 800 − 1200µm−1

and MinE concentrations from 200 − 530µm−1.



Chapter 5
Mobility of Min proteins in
Escherichia coli measured by
fluorescence correlation spectroscopy

Theoretical works and in vitro experiments [12] have indicated that the pole-to-
pole oscillations of Min proteins in Escherichia coli are formed by self-organization
of MinD and MinE [61]. At the heart of self-organization of the Min system
are successive biochemical state changes and displacement of Min proteins (see
Fig. 2.5). Respective dynamical processes are attachment and detachment of
Min proteins to and from the membrane, diffusion in the cytoplasm and possibly
movement of Min proteins on the membrane. Each of these processes adds a
characteristic time scale to the dynamical system.
To check the quality of a theoretical description of Min oscillations, quantita-
tive comparison with experiments is necessary. In this chapter, we pinpoint two
characteristic time scales of MinD and of MinE dynamics, using fluorescence
correlation spectroscopy in living E.coli cells [46]. Especially, we determine the
mobility of MinD and MinE in the cytoplasm. Our work is the first study which
determines parameters of the Min system in vivo.
There are several techniques to measure protein mobilities using fluorescence mi-
croscopy. Direct measurements of the displacement of individual proteins have
been used to determine the mobility of membrane proteins in the bacterium
Caulobacter crescentus [62]. Fluorescence recovery after photobleaching (FRAP),
where the fluorescent proteins present in a defined region are bleached and the re-
covery of the fluorescence is recorded, was used to measure the diffusion constants
of cytoplasmic proteins [63]. Fluorescence correlation spectroscopy (FCS) records
the fluorescence intensity emitted from an illuminated region in the sample con-
taining fluorescent particles [64]. The fluctuations of the respective intensity
gives information about dynamic processes in which the fluorescent particles are
involved. To deduce dynamical parameters from the system, the autocorrelation
function of intensity fluctuations is calculated. Fitting this to the autocorrelation
curve, theoretically expected for the process under study, yields the searched-for
values. In bacteria, FCS was used to measure the concentration of phosphory-
lated CheY involved in chemotaxis [65]. Also, the transcription activity at the
RNA level could be determined [66,67].
We have applied FCS to MinD and MinE tagged to Green Fluorescent Protein
(GFP) in E. coli. We found that a simple diffusion process cannot account for
the measured autocorrelation curves. Instead there are two time scales visible,
the faster of which can be attributed to cytoplasmic diffusion. The slower time
scale could result from diffusion of membrane-bound proteins or from protein
exchange between the cytoplasm and the membrane. Independently of the pro-
cesses responsible for the slower time scale, we determine the diffusion constant
of cytoplasmic MinD to be approximately 16µm2/s, while for MinE we find about
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10µm2/s. As a control, we also measured the mobility of GFP and found signif-
icant deviations to previous measurements [63]. The origin of the second time
scale in the correlation curve of Min proteins could not be uniquely determined by
fitting of the data. Assuming that membrane diffusion is at its origin, the mem-
brane diffusion constant was estimated to be ≈ 0.2µm2/s. Considering exchange
of particles in the cytoplasm and on the membrane as underlying process, one
obtains τ1 ≈ 300ms for the time scale associated to membrane attachment and
τ2 ≈ 100ms for the time scale associated to detachment. Experiments have been
performed by Giovanni Meacci and Jonas Ries. Data analysis has been carried
out by Jonas Ries and the author.

5.1 Materials and Methods

5.1.1 Strains

EGFP and His6-EGFP were expressed in BL21(DE3)pLysS using the vectors
pBAT4 and pET9d, respectively (Novagen, CN Biosciences). GFP-MinD was
expressed in JS964 [56] (J. Lutkenhaus, U. Kansas, USA) and WM1255 [68] (W.
Margolin, U. Texas, USA), and MinE-GFP in WM1079 [68] (W. Margolin, U.
Texas, USA). For details on culturing of the strains see [46].

5.1.2 Optical setup

Fluorescence correlations spectroscopy (FCS) measurements were performed on a
LSM Meta 510 system (Carl Zeiss, Jena, Germany) using a 40× NA 1.2 UV-VIS-
IR C-Apochromat water immersion objective and a home-built detection unit at
the fiber output channel: A bandpass filter (AHF Analyse Technik, Tübingen,
Germany) was used behind a collimating achromat to reject the residual laser and
background light. Another achromat (LINOS Photonics, Göttingen, Germany)
with a shorter focal length was used to image the internal pinhole onto the aper-
ture of the fiber of the avalanche photo diode (SPCM-CD 3017, PerkinElmer,
Boston, MA, USA). The correlation curves were obtained with a hardware corre-
lator Flex 02-01D (correlator.com, Bridgewater, NJ, USA). The position for FCS
measurements could be selected accurately in a corresponding laser scanning mi-
croscope (LSM) image. The waist w0 of the detection volume was determined
in calibration measurements with the fluorescent dye Alexa Fluor 488 diffusing
freely in water to be w0 = 157 ± 12nm.

5.1.3 Theoretical autocorrelation curves

The experimental autocorrelation curves were analyzed by fitting autocorrelation
curves expected for different processes. The detection volume in the measure-
ment has an ellipsoidal shape, rotationally symmetric around the z-axis, which is
supposed to be orthogonal to the focal plane. Since the extension in z-direction of
the detection volume is larger than the diameter of the bacterium, the cytosolic
diffusion can be approximated to occur in two dimensions. Fitting with a more
refined model taking into account the geometry of the detection volume in the
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bacterium [69] did not significantly change the values we obtained assuming a
planar disk shape in two dimensions.

Two diffusing species. For two independent species diffusing with respective
diffusion constants D1 and D2 the correlation curve is [64,70]

Gdiff(τ) =
1

N1 + N2

{

F
1

1 + τ/τ1
+ (1 − F )

1

1 + τ/τ2

}

(5.1)

Here, the number fraction of particles of one species is given by F = N1/(N1+N2),
where N1 and N2 are the average numbers of particles of the different species in
the detection volume. The characteristic relaxation times τ1 and τ2 are linked
to the respective diffusion constants and the width w0 of the detection volume
through τi = w2

0/(4Di), i = 1, 2.

Exchange between mobile and immobile state. For particles changing be-
tween a mobile state (diffusion constant D) and an immobile state, we assume
the following reaction kinetics for the fraction F of the mobile state dF/dt =
−F/τ1 + (1 − F )/τ2, where τ1 and τ2 are the cytosolic and membrane residence
times, respectively. Thus, if exchange between the mobile and immobile popula-
tion is in equilibrium, we have τ2 = (1−F )τ1/F , i.e. F and τ1 can be considered
as independent variables whereas τ2 is a function of F and τ1. The autocorrelation
of the fluctuations has the form [64,70]

Gex(τ) =
(2π)−3

(N1 + N2)

∫ ∞

0

dk k e(−w2
0

4
(k2

x+k2
y)) × (5.2)
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j1 F + X−1
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0

dk k e−
w2

0

4
(k2
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y)
{

A1e
λ1τ + A2e

λ2τ
}

(5.3)

where λ1,2 are the eigenvalues of the matrix of the reaction kinetics of the proteins
in Fourier space

Mreact =

(

−D k2 − τ−1
1 τ−1

2

τ−1
1 −τ−1

2

)

. (5.4)

Therefore, we obtain for the eigenvalues

λ1,2 = −(Dk2 + τ−1
1 + τ−1

2 )

2
±
√

(Dk2 + τ−1
1 + τ−1

2 )2 − 4Dk2/τ2

2
.

X is the matrix obtained by combining the eigenvectors of Mreact as column
vectors

X =

(

λ1 + τ−1
2 λ2 + τ−1

2

τ−1
1 τ−1

1

)

.

Its inverse is readily calculated to be

X−1 =
τ1

(λ1 − λ2)

(

τ−1
1 −(λ2 + τ−1

2 )
−τ−1

1 (λ1 + τ−1
2 )

)

.
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Inserting these expressions into the Equation (5.2), we can calculate the factors
A1 and A2

A1,2 =
{

λ2,1 + Dk2τ1/(τ1 + τ2)
}

/(λ2,1 − λ1,2).

Anomalous diffusion. For a single species diffusing anomalously in two dimen-
sions the autocorrelation function is given by [71]

Ga(τ) =
1

N

1

1 +
(

τ
τa

)α (5.5)

Here, τ−α
a = 4Γ/w2

0, where the anomalous exponent α governs the spreading of an
initially localized distribution 〈x2〉 ∼ tα and where Γ is the anomalous transport
coefficient.

5.2 Data analysis

The correlation curves were fitted in the time interval τ ∈ [2µs, 1s]. To this
end, a weighted nonlinear least-squares fit algorithm was programmed in Matlab.
Weights were determined according to the noisiness of the data, in a moving
time window. Curves were selected automatically based on convergence of the
fit algorithm and goodness of the fit (χ2 < 1.2 for EGFP and χ2 < 1.4 for Min
proteins). For measurements on the Min proteins, up to 40 measurements have
been performed subsequently on a single cell. By the course of the intensity
in the detection volume during subsequent measurements, data could be sorted
according to low and high intensity states. This was done by hand-selection. Only
those measurements were kept where the cell was in a quasi-steady state. Since
the detection volume of the measurement was small (w0 ≈ 157nm) compared
to the wavelength of the standing MinD wave in the bacterium, measurements
with the cell in a quasi-steady state were characterized by a roughly constant
fluorescence intensity recording, see Figures 5.3 and 5.6a.

In order to see the differences of the fits to the theoretical correlation curves
(5.1) and (5.3), and to compare the resultant fit parameters with the actual
parameter values, we applied the fitting algorithm to simulated data. These were
produced by simulating the anticipated reaction kinetics of 1000 particles in a
two-dimensional box of 4µm length and 1µm width. Particles were counted in
a disk-shaped area with Gaussian shape and a waist of 160nm. We simulated
three different kinetic scenarios of a system with one type of fluorophore and two
characteristic time scales. First, particles were assumed to be either fast or slowly
diffusing with diffusion constants D1 = 17µm2/s or D2 = 0.15µm2/s. The fraction
of fast diffusing particles was set to F = 0.75. In the second scenario, particles
were either in a mobile state diffusing with D = 17µm2/s or in an immobile state.
The fraction of mobile particles was again set to F = 0.75. The transition rate
from the mobile to the immobile state was chosen as ω1 = 3.33s−1, and for the
reverse process ω2 = 10s−1. In the third scenario, the processes from the first
and the second scenario are simulated simultaneously, with the same parameters.
Here, slow diffusion and binding happen on a comparable time scale. Results
obtained from a simulation time of 100s with time step △t = 10−5s are shown
in Figure 5.1. The analytical expressions of the correlation curves (5.1) (in blue)
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Figure 5.1: Simulated correlation curves for different kinetic processes antici-
pated. a) Two independent diffusing particle species. Diffusion constants are
D1 = 17µm2/s and D2 = 0.15µm2/s. The fraction of fast diffusion particles is
F = 0.75. b) Exchange between a mobile and an immobile state. The fraction
of mobile particles is F = 0.75 diffusing with D = 17µm2/s. The transition rate
from the mobile to the immobile state was chosen as ω1 = 3.33s−1, and for the
reverse process ω2 = 10s−1. c) Processes from a) and b) occuring at the same
time. The analytical expressions for the correlation curves (5.3) (in yellow) and
(5.1) (in blue) were fitted to the data. The respective fit parameters are shown
in the insets. Deviations of the fit are mostly due to boundary effects which are
not captured by the theoretical autocorrelation curve.

and (5.3) (in yellow), corresponding to the first and the second kinetic scenario
respectively, were fitted to the data and the fit parameters are shown in the insets.
In the data sets of Fig. 5.1a and b, the fit quality clearly improves for the correct
theoretical correlation curve fitted. In Fig. 5.1c, the exchange model gives the
better fit to the data although neither of the fitted curves is the correct model.
The obtained exchange rate ω1 or diffusion constant D2, respectively, overestimate
the correct values. This is because exchange and slow diffusion are happening at
the same time giving rise to a faster decay of correlations compared to only one
process taking place. Deviations from the correct theoretical correlation curves
with the exact parameters are due to finite simulation times and most of all due
to boundary effects.

In analogy to the experimental measurements, simulations were also performed
with time step △t = 10−7s for a total period of 5s. For the kinetic scenarios one
and two (two diffusing species and exchange with an immobile reservoir), hun-
dred simulations have been performed with different seeds of the random number
generator. The resultant autocorrelation curves were fitted to the theoretical
autocorrelation curves (5.1) and (5.3). The mean values of the obtained fit pa-
rameters are given in Table 5.1. They show that fitting of the correct and the
false model to the data give approximately the correct values for the fast diffusion
constant and the fraction of fast diffusing particles. Deviations from the theoret-
ical correlation curves with the exact parameter values are due to the relatively
short simulation time of 5s and due to effects of the system boundary.
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simulation two species fit exchange model fit
type D1 (µm2/s) D2 (µm2/s) F D (µm2/s) ω1 (s−1) F

two
species

17.2±0.6 0.18±0.07 0.77±0.04 16.7±0.4 4.9±1.6 0.78±0.04

exchange 17.6±0.42 0.1±0.03 0.76±0.04 17.3±0.4 3.1±0.8 0.77±0.04

Table 5.1: Results from fits of simulated data in analogy to experimental mea-
surements. Simulations where performed for a time period of 5s with a time
step of △t = 10−7s. Two scenarios have been considered: In the first scenario,
two particle species diffuse with distinct diffusion constants. In the second sce-
nario, particles diffuse and exchange with an immobile particle reservoir. In both
cases, hundred simulations have been performed. The data have been fitted to
the theoretical correlation curves of both scenarios. The obtained mean of the fit
parameters and the associated standard deviation are given above.

5.3 Measurement results and discussion

EGFP. First, the autocorrelation of the fluorescence fluctuations of Enhanced
Green Fluorescent Protein (EGFP) was measured in living E. coli. A typical
correlation curve is depicted in Figure 5.2a. The correlation curves of GFP flu-
orescence were fitted to the theoretically expected correlation for one diffusing
particle species in two dimensions (see (5.1), with F=1). In view of the data
analysis for fluorescent MinD and MinE, fits were also performed for the auto-
correlation curves Gdiff with F as fit parameter, Gex and Ga, see Section 5.1.3.
A histogram of the diffusion constants obtained by fitting Gdiff to 1021 curves
is presented in Figure 5.2b. The histogram is well described by a log-normal
distribution with a geometric mean of D = 17.9+4.3

−3.4µm2/s. Within the accuracy
of our measurements, different cells give the same value for the EGFP diffusion
constant. The fraction of the fast component was F = 0.96±0.03, indicating that
most of the dynamics is due to fast diffusion. We arrived at the same conclusion
using Gex for the data analysis, see Table 5.2. Figure 5.2c presents a histogram
of anomalous exponents from analyzing the same curves using Ga.

The values of the diffusion constants are surprisingly large compared to previous
measurements of the EGFP diffusion constant using FRAP. In [63], a value of
DGFP ≃ 7.5µm2/s was obtained. There, it was also found that the diffusion con-
stant can be changed significantly by adding a His-tag. We examined His6-EGFP
expressed in the same strain as was used for the measurement of EGFP mobil-
ity. Using either Gdiff or Gex defined in Equations (5.1) and (5.3), respectively,
we found a decrease in the diffusion constant of about 20% compared to EGFP.
Based on the anomalous diffusion model, we found a slightly reduced value for the
anomalous mobility, Γ = 5.6+5.7

−2.8µm2/sα, while the anomalous exponent remained
the same, α = 0.88 ± 0.1.

Quasi-steady states during Min oscillations. Analysis of fluorescence fluctu-
ations requires a well-defined average state. Apparently, this is not the case for the
Min system, which is dynamic and oscillates with a period of about 80s [13,19,20],
see Figure 5.3a. However, there are regions in the bacterium in which the fluo-
rescence signal is quasi-stationary for about 10s. In Figure 5.3b, the fluorescence
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Figure 5.2: Diffusion coefficients of EGFP in E. coli measured by fluorescence
correlation spectroscopy. a) Typical autocorrelation curve G(τ) for EGFP (black
circles) and non-linear least square fits of correlation curves expected for different
processes. Green: diffusion, see (5.1) with F = 1, gives D = 12.9±2.3µm2/s with
χ2 = 1.6. Pink: anomalous diffusion, see eq:singleanodiff), yields α = 0.83± 0.01
and Γ = 4.7 ± 0.75µmα/s with χ2 = 1.1. Blue: two independent diffusing
populations, see (5.1), yields D1 = 17.7±3.6µm2/s, D2 = 0.3±0.2µm2/s, and F =
0.96 ± 0.01 with χ2 = 1.1. Yellow: exchange between a mobile and an immobile
state, see (5.3), yields D = 14.8±2.8µm2/s, τ1 = 2.3±1.0s, and F = 0.97±0.004
with χ2 = 1.1 No significant autofluorescence of cells was detected, but there
was a non-correlated background of 8kHz from the medium. b) Histogram of
diffusion coefficients obtained from fitting Gdiff to 1020 measurements. Solid line:
log-normal distribution with geometric mean D = 17.9+4.3

−3.4µm2/s. c) Histogram
of anomalous exponents from fitting Ga to the same curves as in (b). Solid line:
normal distribution with mean α = 0.88 and variance σ2

α = 0.09 In (b) and (c)
only fits with χ2 < 1.2 were considered.

intensity in a confocal volume positioned in one cell half is presented. Phases of
high and low constant fluorescence occur as well as phases of strongly varying
fluorescence. These phases reflect the dwelling of MinD in one cell half for a large
fraction of a half-period as well as the comparatively rapid transition to the op-
posite cell half. Figure 5.3c displays the fluorescence intensity along the bacterial
long axis for six different times separated by 2s. The intensity variations during
this period are less then 5%. Fluorescence profiles in cross-sections perpendicular
to the long axis also show only moderate fluctuations, Figure 5.3d,e. The form
of the low intensity profile shows a relatively smooth plateau whereas the high
intensity profile exhibits two peaks. This results from a low fraction of membrane-
bound MinD in the low-intensity region and a high fraction in the high-intensity
region [20]. The fluorescence profiles for different times indicate that the respec-
tive amounts of cytoplasmic and membrane-bound MinD are quasi-stationary
within the 10s shown.

GFP-MinD. MinD-motility was measured in the strain JS964. For the FCS
analysis only fluorescence curves taken from regions in quasi-steady state were
considered. Every individual measurement lasted for 5s. A typical autocorrela-
tion curve is shown in Figure 5.4a. From the graph it is obvious that two distinct
time scales are present. We checked, that neither of them is due to bleaching. To
this end, GFP was adsorbed on an untreated cover slip. Then intensity traces and
correlation curves were recorded for this immobilized GFP. The intensity curves
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Figure 5.3: Quasi steady states. a) GFP-MinD fluorescence in E. coli at different
phases of the oscillation cycle. Scale bar: 1µm. b) Fluorescence intensity in a
confocal volume located in one cell half as a function of time. Oscillations with a
period of 60s are clearly seen. Around states of maximal and minimal intensity,
time-intervals of roughly constant fluorescence intensity can be detected. c,d,e)
Fluorescence intensity along the long axis (c) and the cross-sections (d, e) indi-
cated in (a) for six different times separated by 2s each. The curves vary around
a quasi-stationary mean profile. The differences in the cross-section profiles (d)
and (e) reflect the different fractions of membrane-bound proteins in the low- and
high-intensity phases in a cell half.

could be fitted to an exponential curve with a decay time of a few seconds, see
Figure 5.4a inset11. The corresponding FCS curves show a decay with a similar
characteristic time. These times are larger than the two time scales apparent
in Figure 5.4a. Furthermore, the correlation curves were largely independent of
the excitation intensity (data not shown). We conclude that neither of the time
scales is due to bleaching of immobilized molecules.

One of the time scales detectable in Figure 5.4a is readily attributed to MinD
diffusing freely in the cytosol. The existence of MinD bound to the membrane
suggests two obvious candidate processes leading to the other time scale visible in
the correlation curves. First of all, it could be attributed to diffusion of MinD on
the membrane. Secondly, it could result from the exchange of MinD between the
membrane and the cytosol. We analyzed the measured correlation curves using
separately the two different models. Of course, the two processes are not mutually
exclusive. It would thus be desirable to analyze the correlation curves using a
model that accounts for diffusion on the membrane as well as for binding and

11Some measurements indicated a bi-exponential decay with characteristic times of 0.8s and
4s.
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unbinding. However, the expected correlation curve differs only by small amounts
from the curves for either of the two alternatives separately (see also Fig. 5.1).
The accuracy of our measurements does not allow distinguishing between them.
If MinD is incorporated into helices [30] a significant fraction of membrane-bound
MinD might be immobile. Since these molecules do not contribute to fluctuations
in the average fluorescence intensity, FCS cannot detect them.

We first present the results assuming two states of different mobility. Figure 5.4b
displays the two diffusion constants obtained from fits of Gdiff (5.1) to different
correlation curves measured on a single cell. We interpret the faster diffusion
constant to represent the mobility of cytosolic MinD. It is of the same order as
the diffusion constant of EGFP. The smaller diffusion constant is interpreted as
resulting from the mobility of membrane-bound MinD. This is supported by the
estimated value of the fraction of the fast component: In agreement with the mea-
surements of the cross-sections, Figure 5.3d, e, the fraction of fast moving proteins
is larger in the low-intensity regions than in the high-intensity regions, see Figure
5.4c. Histograms of fast and slow diffusion constants summarizing series of mea-
surements on different cells are shown in Figure 5.4d, e. Both histograms are well
described by a log-normal distribution. The geometric mean value for the fast
diffusion constant is D1 = 17.0+3.0

−2.5µm2/s. For the slow diffusion constant we find
D2 = 0.17+0.14

−0.08µm2/s. This value is one order of magnitude higher than the dif-
fusion constant for the transmembrane histidine kinase PleC measured by single
protein tracking in C. crescentus [62]. PleC is a transmembrane protein whereas
MinD binds to the polar heads of the lipids forming the membrane. Therefore,
the values are compatible. No correlation could be detected between the values
of the fast and slow diffusion constants (data not shown). Separating the curves
into those with low and high average intensity does not reveal significant dif-
ferences between the respective fast and slow diffusion constants, see Table 5.2.
For the membrane diffusion constant, a difference would be plausible e.g. due to
crowding and particle interactions in the regime of higher concentrations. In the
low-intensity regions, however, the fraction F = 0.81 ± 0.1 of the fast-diffusing
component is larger than in the high-intensity regions, where F = 0.71 ± 0.1.
The difference in the fractions is more pronounced when averaging over several
measurements on a single cell than when averaging over measurements on differ-
ent cells, Figure 5.4c. This presumably reflects different protein concentrations
in different cells or a different position of the detection volume in the cells during
measurements.

The same data were analyzed based on the exchange of MinD between a mobile
(cytosolic) state and an immobile (membrane-bound) state, disregarding diffusion
of membrane-bound proteins. As suggested by the cross-section profiles, Figure
5.3d, e, we assume the average fraction of mobile molecules to be constant during
one measurement. In that case, the residence times τ1 and τ2 of MinD in the
mobile and immobile states, respectively, are related to the fraction F of mobile
molecules by F = τ1/(τ1 + τ2). The results obtained from analyzing the same
curves as in Figure 5.4b, c are displayed in Figure 5.5a, b. The diffusion constants
are in the same range as the values of the fast diffusion constant obtained above.
The same holds for the value of the mobile fraction F . Histograms of the diffusion
constant and the residence time in the mobile state are presented in Figure 5.5c,
d. Differences in the values for low- and high-intensity regions are not significant,
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Figure 5.4: Fluorescence correlation analysis of MinD data — two independent
diffusing species. a) Typical autocorrelation curve for GFP-MinD in a region
of quasi-steady state (black circles) and non-linear least square fits of different
expected correlation curves. Green and pink: diffusion and anomalous diffusion,
respectively. Essential features of the experimental curve are missed (χ2 = 5.6
and 1.8, respectively). Blue: two independent diffusing populations, see (5.1),
yields D1 = 19.8 ± 4.3µm2/s, D2 = 0.11 ± 0.02µm2/s, and F = 0.74 ± 0.01 with
χ2 = 1.1. Yellow: exchange between a diffusing and an immobile state yields
D = 15.7 ± 3.1µm2/s, τ1 = 302 ± 25ms, and F = 0.83 ± 0.004 with χ2 = 1.18.
b) Apparent diffusion constants D1 and D2 for 10 curves admitting a good fit
(χ2 < 1.4) among 30 successive measurements on a single cell. The mean values
are D1 = 16.4 ± 2.1µm2/s (mean±SD) and D2 = 0.1 ± 0.09 (mean±SD). c)
Fluorescence intensity and fast fraction for the same measurements as in (b).
The fast fraction is higher for low intensities. d,e) Histograms of the diffusion
constants. Only curves with quasi-steady fluorescence intensity and a fit quality
of χ2 < 1.4 were retained. Solid lines: log-normal distributions with geometric
means D1 = 17.0+3.0

−2.5µm2/s and D2 = 0.17+0.14
−0.08µm2/s.
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Figure 5.5: Fluorescence correlation analysis of MinD data — exchange between
diffusing and immobile state. a) Apparent diffusion constants and residence times
in the mobile state for the same 30 successive measurements on a single cell as
in figure 5.4b,c. The mean values are D = 15.0 ± 1.9µm2/s and τ1 = 783 ±
651ms (mean±SD). b) Fluorescence intensity and mobile fraction for the same
measurements as in (a). The mobile fraction is higher for low intensities. c,d)
Histograms of the diffusion constants and residence times obtained from the same
2017 measurements as in figure 5.4d,e. Solid lines: log-normal distributions with
geometric means D = 14.4+2.6

−2.2µm2/s and τ1 = 322+422
−183ms.

although the residence times are on average larger in the low-intensity regions, see
Table 5.2. The measurements were repeated using a different strain (WM1255).
The average cytosolic diffusion constants were smaller in this strain, while the
average residence time were a little larger, see Table 5.2. In view of the broadness
of the distributions, however, the differences were not significant.
MinE-GFP. For measuring the mobility of MinE, the same strategies were ap-
plied as for MinD. An example of a quasi-steady state of the MinE distribution is
shown in Figure 5.6a. As for MinD, two distinct relaxation times can be detected
in the correlation curves. We analyzed these curves using the same theoretical
descriptions as for MinD. Histograms of the two different diffusion constants and
of the diffusion constant together with the residence time in the mobile state,
respectively, are presented in Figure 5.6b-e. As before, the histograms are well
described by log-normal distributions. Assuming two independent populations
with different mobilities, we find D1 = 11.2+2.9

−2.3µm2/s and D2 = 0.20+0.23
−0.11µm2/s.

The fraction of the faster diffusion population is F = 0.79 ± 0.10. While cytoso-
lic diffusion of MinE is thus smaller than for MinD, the diffusion constants for
membrane-bound MinD and MinE are the same. This is compatible with MinE
being bound to MinD on the membrane. Assuming the other model, we obtain
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Figure 5.6: Fluorescence correlation analysis of MinE. a) Quasi-steady state of
the MinE distribution along a cell’s long axis. Five curves separated each by 3s
vary around a mean profile. An accumulation of MinE close to the cell center,
commonly known as MinE ring, can clearly be recognized. It moves slowly to
one cell pole. b,c) Histograms of the diffusion constants assuming two indepen-
dent diffusing species. Only curves with quasi-steady fluorescence intensity and
a fit quality of χ2 < 1.4 were retained. Solid lines: log-normal distributions with
geometric means D1 = 11.2+2.9

−2.3µm2/s and D2 = 0.20+0.23
−0.11µm2/s. d,e) Histograms

of the diffusion constants and residence times obtained from the same measure-
ments as in (b,c) assuming exchange between a diffusing and an immobile state.
Solid lines: log-normal distributions with geometric means D = 9.3+2.3

−1.9µm2/s and
τ1 = 396+888

−274ms.

for MinE D = 9.3+2.3
−1.9µm2/s and τ1 = 396+888

−274ms. The mobile fraction is in this
case F = 0.86 ± 0.09. Separating the curves into those from a low-intensity and
those from a high-intensity phase, no significant differences between neither the
values of the diffusion constants nor the residence times in the different phases
can be detected, see Table 5.2.

Discussion

In this chapter, we have presented the first measurements of dynamic parameters
of the Min system in vivo. For this, we have used Fluorescence correlation spec-
troscopy in living E. coli. The possibility to apply FCS relies on the existence of
quasi-stationary steady states in some regions of the bacterium for time intervals
of at least 10s, see Figure 5.3c-e and 5.6a. Our correlation data clearly show the
existence of more than one relaxation time. We interpret the faster component
to result from diffusion of cytosolic proteins. The second time scale could result
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from (i) the mobility of proteins in the membrane-bound state or alternatively
from (ii) transitions between the cytoplasm and the membrane. We find that all
in all both models fit equally well to the data, although there can be significant
differences in the fit quality for individual curves. Using either models for analyz-
ing the experimental data, we find values around 16µm2/s and 10µm2/s for the
respective cytosolic diffusion constants of GFP-MinD and MinE-GFP. Therefore,
a cytosolic MinD molecule explores the volume of a 4µm long cell within roughly
a second. Cytosolic MinE, which readily forms dimers, needs about 1.5s, i.e. only
slightly longer.
(i) Assuming slower diffusion on the membrane as second time scale.
The diffusion constants we obtained for membrane-bound proteins are about
two orders of magnitude smaller than the cytosolic diffusion constants. For
membrane-bound MinD, it would be of the same order as the value assumed
in the AC model studied in [13].
(ii) Assuming exchange with the membrane-bound state as second time
scale. For the average residence time of MinD in the cytoplasm, we find a value
of about 300ms. The residence time of MinE in the cytosol is somewhat larger
than for MinD which is compatible with the fact that MinE requires MinD as
a substrate in order to bind to the membrane. From the residence time in the
cytosol and the cytosolic diffusion constants, we can determine the diffusion length
ℓ = (Dt)1/2. This is the average distance traveled by a cytosolic molecule. For
MinD and MinE we find ℓ ≃ 2µm. This value would indicate that in small
bacteria of about 2µm in length, the distribution of cytosolic MinD and MinE
should be homogenous.
Comparing the different values measured in high- and low-intensity phases, re-
spectively, we find that the fraction of cytosolic proteins is always larger in the
low-intensity phases. This is not only an effect due to averaging but is also
present in individual cells, see Figs. 5.4c and 5.5b. Based on the cooperative
attachment (CA) models, a shorter cytosolic residence time of MinD in the high-
intensity phase than in the low-intensity phase is expected. Indeed, on average,
our measurements confirm this expectation, see Table 5.2. Caution should be
taken, though, because the error bars are quite large. The average residence time
of MinE in the cytosol, too, depends on being in a high- or low-intensity phase.
This is expected since a higher number of membrane-bound MinD should lead to
a higher rate of MinE binding to the membrane.
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EGFPa 1021 17.9+4.3
−3.4 0.22+0.51

−0.16 0.96+0.03
−0.03 652 17.9+4.4

−3.6 1100+7150
−953 0.97+0.04

−0.04 690

His6-EGFPa 555 14.9+3.7
−3.0 0.14+0.53

−0.11 0.96+0.04
−0.04 214 15.0+5.7

−4.1 1870+12200
−1620 0.97+0.05

−0.05 220

GFP-MinDb 2017 438 17.0+3.0
−2.5 0.17+0.14

−0.08 0.77+0.11
−0.11 181 14.4+2.6

−2.2 322+422
−183 0.79+0.11

−0.11 217

GFP-MinDb l.i. 191 16.7+3.1
−2.6 0.18+0.16

−0.08 0.81+0.10
−0.10 105 14.7+3.0

−2.5 464+643
−270 0.86+0.08

−0.08 104

GFP-MinDb h.i. 247 17.4+2.6
−2.3 0.15+0.11

−0.06 0.71+0.10
−0.10 76 14.1+2.2

−1.9 230+209
−110 0.73+0.10

−0.10 113

GFP-MinDc 738 102 14.3+2.9
−2.4 0.16+0.18

−0.08 0.80+0.08
−0.08 50 12.4+1.8

−1.6 522+721
−303 0.84+0.07

−0.07 43

MinE-GFPd 1807 528 11.2+2.9
−2.3 0.20+0.23

−0.11 0.79+0.10
−0.10 307 9.3+2.3

−1.9 396+888
−274 0.86−0.09

+0.09 350

MinE-GFPd l.i. 310 11.4+2.8
−2.3 0.21+0.25

−0.11 0.82+0.09
−0.09 198 9.6+2.5

−2.0 478+1105
−334 0.88−0.08

+0.08 223

MinE-GFPd h.i. 218 10.9+3.1
−2.4 0.20+0.20

−0.10 0.75+0.11
−0.11 109 8.8+1.9

−1.5 285+542
−187 0.81−0.09

+0.09 127

Table 5.2: Mobility of EGFP, His6-EGFP, GFP-MinD, MinE-GFP. For the Min proteins, curves from low-intensity phases (l.i.) and
high-intensity (h.i.) phases were analyzed separately. Ntot: total number of correlation curves analyzed. D1, D2: diffusion constants for
two independent populations, D, τ1: diffusion constant and residence time in the mobile state for proteins switching between a mobile
and an immobile state, F : fraction of the faster/mobile population, N : number of curves allowing for a sufficiently good fit. Values were
considered only from curves where the fit produced a χ2 < 1.4 (for EGFP χ2 < 1.2) and where the intensity was constant. Displayed are
the mean values and the 1σ confidence interval. For EGFP, the values of D1 and D are well described by a log-normal distribution. The
values of D2 and τ1 scatter extremely and are described neither by log-normal nor by normal distributions. For the Min proteins, the
values of D1, D2, D, and τ1 are well described by a log-normal distribution. For all strains, the values of F follow a normal distribution.
aBL21(DE3)pLys, bJS964, cWM1255, dWM1079.



Chapter 6
Min oscillations and cell growth

The Min system of the bacterium E.coli exhibits spatiotemporal structures formed
by the Min proteins MinC, MinD and MinE. These proteins are confined by the
cell membrane and bind to it. Therefore, it is an intuitive guess that the Min
patterns change when the cell grows.
Theoretical considerations as well as in vitro experiments suggest that the pat-
terns form by self-organization of the Min proteins, see Section 2.3.1, 4.1 and [12].
For a pattern forming dynamical system, it is known that the onset of a bifur-
cation as well as the shape of the evolving pattern depends on the geometry of
the spatial domain [10]. Thus, if Min proteins self-organize a change of the Min
pattern is predicted if the cell length changes.
Another aspect of Min patterns and cell growth is that the cell length is associ-
ated to the cell age. Passing through the different stages of the cell’s life cycle,
the parameters which rule the Min dynamics might change over time. Possible
candidates for varying parameters are the concentrations of the Min proteins,
their concentration ratio, binding and unbinding rates, the ATP hydrolysis rate
of MinD, membrane diffusion of MinD etc.
In the literature, data on Min oscillations for cells of different lengths are avail-
able. They show that in filamentous E.coli cells the Min pattern gains additional
concentration maxima, i.e. the number of wave nodes in the standing concentra-
tion wave increases [20]. However, to our knowledge, no published data exist on
the evolution of Min oscillations in a single, growing cell. Since we were curious
how Min patterning changes in a growing cell over time, we performed experi-
ments where we recorded the fluorescence from GFP-MinD in E.coli cells over
time spans on the order of the cell’s life cycle.
For the strain we used, cells were typically 2µm long directly after division. Cell
division normally occurred at lengths of 4µm and longer. During our experimental
work, we found interesting new results for the Min patterns in short, newborn
E.coli cells. Instead of regular Min oscillations they display stochastic switching
of Min concentration maxima between the cell poles. We compare these results
with predictions of different computational models. Furthermore, we report on
Min patterns in filamentous E.coli cells which exhibit lengths greater than 4µm.

6.1 Min pattern in short “newborn” E.coli cells

We have systematically studied the Min-protein dynamics as a function of cell
length in growing E. coli cells with initial cell length shorter than 3µm. Sur-
prisingly, in cells shorter than 2.5µm, we found that concentration maxima of
MinD switched stochastically from one cell pole to the other. The corresponding
spatiotemporal Min pattern evolves in terms of switching between two mirror-
symmetric MinD-distributions. Transitions between these two states happened
within a few seconds. The residence times in each of the two states varied strongly

77



78 Min oscillations and cell growth Chapter 6

and were partly much longer than the times observed for regular Min oscillations.
In cells longer than 3µm, the Min proteins displayed periodic switching between
the two states, that is, they show the regular oscillations described in Section 2.1.

6.1.1 Materials and Methods

Data acquisition. We used cells of the E. coli strain JS964 containing the
plasmid pAM238 encoding for MinE and GFP-MinD [19]. Bacteria were grown
overnight in a 3ml LB medium at 37◦C with spectinomycin at 25µg ml−1. Cells
were induced with Isopropyl-β-D-thiogalactopyranosid (IPTG). During measure-
ments, the samples were kept at a temperature of 29◦C using a Bachhoffer cham-
ber. The fluorescence recordings were taken with an Olympus FV 1000 confocal
microscope, at an excitation wavelength of 488nm from a helium laser at low
power. We used an Olympus UPLSAPO 60x, NA 1.35 oil immersion objective
and recorded a frame every 3s. A measurement lasted 40min. During this period,
the focus was manually readjusted at irregular intervals.

In total, we extracted data from 209 cells obtained from 5 different measurements.
We extracted data only for cells which, at the beginning of the measurement, were
smaller than 3µm. Cell lengths were determined from differential interference con-
trast (DIC) images with an accuracy of ±150nm at the beginning and the end of
a measurement. The cell length in-between was determined by linear interpola-
tion. Some of the cells in the field of view divided during the measurement time.
If division occurred after more than 20min of measurement, they were included
in the data analysis. In these cases, fluorescence recordings were used until cell
constriction terminated.

Data analysis. Recordings of a fluorescent cell over time was mapped to a time
series of a two state system by subtracting the total fluorescence emitted in one
cell half from the other. Then, the moving average over four time points was
taken in order to reduce noise. The resultant function f is positive when the
fluorescence maximum is in one cell half and negative in the opposite case. The
zero crossings of f are taken to indicate the times of switching events. Usually,
these switching events could also be read off directly from kymographs, see the
examples in Fig. 6.1. The residence time in one of the two states is given by the
corresponding interswitching interval. To each residence time, we assigned the
cell length at the start of the respective residence period. The power spectrum
shown in Fig. 6.3c was obtained as follows: We selected cells which matched
the constraint of the initial cell length (see figure caption). Then, we used the
intensity data f of each selected cell calculated as described above. The Fourier
transform of the intensity data set was computed and normalized by division
by
√

∑

t f 2
t , where the iterator t counts the time step. To calculate the power

spectrum, the absolute value squared of the Fourier transform was taken. The
obtained power spectra were then averaged over the cell ensemble associated to
the cell length constraint.

Analysis of the simulation results was done in the same way as for the experimen-
tal results. The corresponding function f , though, was obtained by the moving
average of five consecutive data points.
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6.1.2 Results

In total, we analyzed 209 cells, each of which was tracked for a consecutive time
of 40 minutes, see Materials and Methods. During this time, the cells grew for
up to 1µm. Typical kymographs12 of the fluorescence intensity along the cells’
long axis are presented in Fig. 6.1. In cells shorter than 2.5µm, MinD typically
shifted stochastically from one cell half to the other, see Fig. 6.1a. The residence
times of MinD in one cell half varied largely in these cells ranging from 35s to
more than 40min. Complete switching from one cell half to the other occurred in
an interval of less than 15s. The extension of the region covered by MinD in one
cell half did not change notably between two exchange events.
For cell lengths between 2.5µm and 3µm, the Min pattern typically shifted from
stochastic exchange events to regular oscillations with a period of about 80s, see
Fig. 6.1b. The precise lengths at which this transition occurred, differed be-
tween cells. In the oscillatory regime, between two switching events, the region
covered by MinD first grew monotonically from the cell end and then shrank
monotonically towards the same end. Analogously to the stochastic exchange
regime, the transition of MinD from one half to the other was fast compared to
the oscillation period. In a small number of cells (N=5), we observed a shift from
regular oscillations to stochastic exchanges. Cells longer than 3.5µm invariably
displayed regular oscillations, see Fig. 6.1c. The oscillation period typically de-
creased slightly with increasing cell length. For the cell shown in Fig. 6.1c, the
initial period is approximately 87s, while it is approximately 70s at the end.
About 5% of the cells divided during the observation time, see Fig. 6.1d, e. In
all these cases, MinD oscillated regularly prior to division. Consistent with our
findings in non-dividing cells, the pattern displayed by the Min proteins in the
daughter cells immediately after division correlated with their length: daughter
cells shorter than 2.5µm typically displayed stochastic switching, while the Min
proteins mostly oscillated in daughter cells longer than 3µm. In some cases,
however, the two daughter cells showed different MinD patterns, in spite of having
equal lengths: while in one daughter MinD oscillated, it showed stochastic shifts in
the other. In these cases, judged from the fluorescence intensities, the distribution
of MinD between the daughter cells was significantly uneven. Note, that for some
cells the brighter daughter displayed oscillations, while for others it was the fainter
daughter. From our data, we could not detect a clear correlation between the
fluorescence intensity and the dynamic behavior. The corresponding distribution
of MinE could not be assessed simultaneously.
Quantitative analysis. For a quantitative analysis, the fluorescence data were
transformed into a real-valued time-dependent function f by subtracting the flu-
orescence intensities in the two cell halves, see Figure 6.2 and Materials and
Methods. The residence time τ of MinD in one cell half is defined as the interval
between two consecutive zeros of f . The residence time averaged over all mea-
surements together with its standard deviation is shown in Fig. 6.3a as a function
of cell length. Cell lengths were binned to 0.2µm and residence times were as-
signed to the length of the cell at the beginning of the respective dwell period 13.

12See the glossary for ‘kymograph’.
13Within 500s, which is exceptionally large for a residence time, the bacteria grew at most

0.2µm in length, such that our results do not depend significantly on the exact assignment rule.
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Figure 6.1: Kymographs of GFP-MinD fluorescence obtained from line scans
along the long axis of five different bacteria. Fluorescence intensities have been
averaged over the width of the respective cells. Time increases from top to bot-
tom. The initial cell lengths are given at the top, final cell lengths at the bottom.
a) Stochastic exchange of MinD between the two cell halves. b) Stochastic ex-
change turned into regular oscillations when this cell reached a length of 2.8µm
(green arrow). c) Regular Min oscillations with a period of 73s. d, e) Min dy-
namics in dividing cells. Daughter cells show either stochastic switching (d) or
regular oscillations (e). Divisions occurred, respectively, at lengths of 4µm and
5µm of the mother cells (red arrows indicate the time when fluorescence stopped
to be exchanged between the two daughters). f1-f5) DIC and fluorescence images
of the respective cells used in (a)-(e) at the beginning of the measurements.
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Figure 6.2: Kymograph of E.coli cell with fluorescently labeled MinD and corre-
sponding fluorescence intensity curve f obtained by subtracting the fluorescence
intensity of one cell half from the intensity of the other cell half.
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Figure 6.3: Residence time distributions averaged over all measurements. a) Mean
(green dots) and standard deviation (black squares) of residence times τ as a
function of cell length. Cell lengths have been binned to 0.2µm. b) Ratio r of the
standard deviation of residence times to their mean. Ratios have been calculated
for single cells at a given length and were then averaged over the cell ensemble,
see text for details. c) Power spectra S(ω) of the fluorescence function f for cells
of length smaller than 2µm (red) and longer than 2.5µm (blue). The blue curve
exhibits a peak at frequency 0.07s−1 corresponding to a period of ≃ 90s.
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The mean residence time 〈τ〉 decreases with cell length. For lengths smaller
than 2.7µm, 〈τ〉 decreases exponentially with decay length ≈ 0.5µm, while for
longer cells it decays exponentially with decay length ≈ 2µm. The corresponding
standard deviation, too, is monotonically decreasing with increasing cell length.
At L = 2.7µm it falls below the mean residence time which indicates a transition
from stochastic switching to regular oscillations. For cells larger than 3.5µm the
standard deviation is below 10s such that the oscillation period varies remarkably
little form cell to cell.

The existence of a transition from stochastic switching to regular oscillations is
further supported by the power spectra corresponding to f for two different selec-
tions of cells, see Fig. 6.3c. In the first selection, we choose cells which are initially
shorter than 2µm. For the second selection, we choose cells initially longer than
2.5µm. The first selection of cells contains mainly bacteria which exclusively
switch stochastically during the observation time. For this cell ensemble, the av-
eraged power spectrum monotonically decreases as a function of the frequency ω.
The second selection of cells, which are on average longer, contains a considerable
number of bacteria which start to oscillate regularly during the observation time.
For this cell set, the averaged spectrum shows a clear peak at ω = 0.07/s. This
corresponds to a period of T = 2π/ω ≈ 90s.

The data in Fig. 6.3a and c reflect population averages. To rule out that the ob-
served transition just reflects a reduction of cell-to-cell variability with increasing
length and thus protein number, we considered the Min dynamics also in single
cells. To this end, we analyzed the stochasticity of switching in individual cells
by calculating for individual cells the ratio rsc of the standard deviation of the
residence time and the corresponding mean, rsc = (〈τ 2〉sc − 〈τ〉2sc)1/2/〈τ〉sc. Here,
〈. . .〉sc denotes the time average for a single cell over an interval during which the
cell grew for 0.2µm. In Figure 6.3b, we present the average ratio r as a function
of the cell length, r = 〈rsc〉, where 〈. . .〉 denotes the average over all measured
cells in the respective length interval. The value of r initially drops monotonically
and stays constant for cell lengths larger than 3.5µm. These results confirm the
findings obtained from ensemble averages. Note, that only cells were considered
that, within a length interval of 0.2µm, showed at least 5 switching events. In
this way, very long residence times are not considered. Furthermore, the number
of events entering rsc is quite small which tends to systematically underestimate
the standard deviation of the “real” distribution. For these reasons, the values
of r are smaller than the ratio of the standard deviation and the mean displayed
in Fig. 6.3a.

In addition to the change in the average residence time at the transition from
stochastic switching to regular oscillations, there is also a qualitative change in the
distribution of residence times for cells with a given length, see Fig. 6.4. For cells
longer than 3.5µm, the distribution can be fitted well by a log-normal distribution
with a geometric mean of 37.5s and a geometric standard deviation of 1.2s. In
contrast, for cells smaller than 2.5µm, a log-normal distribution dramatically
fails to describe the measured distribution of residence times. Instead, it decays
algebraically as N−α with α = 2.2. This is in contrast to a usual random telegraph
process in which a system switches stochastically between two states at given
constant rates. In this case, the distribution of residence times in one state decays
exponentially. For the distribution of MinD residence times, we have calculated
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Figure 6.4: Histograms of residence times. a) Residence times for cell lengths
between 2 and 2.2µm and b) for lengths between 3.5 and 4µm. Times are binned
into 20s intervals (a) and into 3s intervals (b). Solid lines in (a) result from fits
of an algebraic distribution with exponent −2.2 (red line) and of an exponential
distribution with a characteristic length of 0.008 (orange). The solid line in (b)
represents the fit of a log-normal distribution with geometric mean 37.5s and
geometric standard deviation 1.2s.

the logarithm of the likelihood ratio of the algebraic to the exponential decay.
With a value of 110 it is strongly indicative of an algebraic decay [72].

What is at the origin of the transition between stochastic

switching and oscillations of MinD?

The data presented above show that the form of the MinD pattern correlates
with the cell length. One possible explanation for this phenomenon is suggested
by theoretical analysis of the Min dynamics (see Section 2.3.1) and by in vitro
experiments (see Section 4.1) which indicate that the Min-protein patterns are
self-organized. In this case, it is conceivable that the system size can act as a
control parameter in the self-organized system. Consequently, the cell length
might directly determine if the MinD distribution is switching stochastically or
oscillates. In this scenario, for cells below a critical length, the Min-system settles
into one of two mirror-symmetric stationary states. Transitions between these
states occur stochastically due to intrinsic or external noise. In cells longer than
the critical length, the Min-system would then self-organize into the oscillatory
pattern.
Computational models do not support the idea of the cell length as
control parameter. We have tested the idea of the cell length acting as con-
trol parameter by investigating several models that have been presented for the
dynamics of MinD and MinE. Neglecting fluctuations, the model presented by
Meinhardt and de Boer [32] and the cooperative attachment model suggested
by us (Section 4.2, [12]) show a transition from a stable stationary state that
coexists with its mirror-symmetric state to an oscillatory state upon increasing
the system length 14. However, the first of these models relies on protein syn-
thesis and degradation, which has been shown to be irrelevant for the oscillation

14H. Meinhardt, private communication with K. Kruse
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mechanism. The stationary states, we obtained within the second model, show
only a slight difference between the MinD levels in the two cell halves (less than
5%) [73]. Correspondingly, in a stochastic version of this model, we could not
detect exchanges comparable to the experiments. The aggregation current model
considered in Section 2.3.2 does present stationary bistable states, however, we
did not find a transition to oscillatory states by changing only the system length.
For all other models that we tested, we did not find stationary states comparable
to those observed experimentally. We conclude that the models do not support
the idea of the cell length to be a control parameter for the transition between
stochastic exchanges and oscillations.
Cell age as control parameter. We have found that the form of the Min
patterns depends on the cell length. However, we could interpret our result
also in the alternative way that the Min pattern depends on the cell age, since
the length of the cell correlates strongly with age. While aging, the cell adopts
different stages of the life cycle and thus the parameters of the Min system might
change over time.
This idea is supported by the following observations: As noted above, some
daughter cells of about the same length showed different MinD patterns. In
addition, occasionally cells shorter than 2µm showed oscillations, while in some
cells longer than 3µm, MinD was switching stochastically between the two cell
halves. Therefore, factors other than the cell length have to influence the MinD
pattern. While, in principle, factors external to the Min system might play a
role, for example, the lipid composition of the cytoplasmic membrane, we will in
the following discuss only mechanisms intrinsic to the Min system.

• It is conceivable that MinD and/or MinE production in the cell is not
constant over time but peaks at a certain phase of the life cycle. This would
result in varying Min protein concentrations in the course of the cell’s life
cycle. However, we see stochastic oscillations in daughter cells directly after
division of a regularly oscillating mother cell (see Fig. 6.1d). Assuming that
segregation of Min proteins to the daughter cells is approximately equal, the
daughter cells will have the same Min protein concentration as the mother.
In this scenario, the protein concentration could not trigger the altered Min
switching of the daughter cells. On the other hand, it is possible that Min
proteins are consumed in the process of division or that the Min segregation
to the different daughter cells is considerably uneven. In these cases, the
protein concentration in the daughter cells could still differ from those in
the mother and might play a role for the altered Min patterning behavior.

• Prior to division the bacterial cell duplicates its DNA and segregates the
two chromosomes to either half of the cell. The presence of the DNA close
to the cell poles might as well influence the parameters of the Min dynam-
ics. Proteins which are associated with the DNA could influence membrane
binding, ATP hydrolysis or ATP exchange of MinD. This might facilitate
the resolution of the Min concentration maximum at the pole leading to a
limited residence time. In this way, the cell could assure that Min oscilla-
tions work in the “regular” way directly before constriction of the cell.

• During Min pattern formation in the E.coli cell, MinE is not distributed
evenly on top of the MinD concentration maximum at the pole. At the rim



Section 6.1 85

residence time (s)

a)

c)

e)

. . .. . .

homogeneous cytosol

cell membrane

MinD

MinE

1D stochastic model

jj-1j-2 j+1 j+2

N N

b)Mean residence time (s)

Standard deviation (s)

220 230 240 250

MinE concentration (proteins/µm)

residence time (s)

d)

10

100

50

500

40 100100 500
1

10

100

20 30 40 50 100100
1

10

100100

400

Figure 6.5: Results of simulations with the stochastic model introduced in Ap-
pendix D. a) Schematic illustration of stochastic model. Min protein distribution
in the cytoplasm is considered as homogeneous due to large cytoplasmic diffusion.
The cell membrane is modeled as one-dimensional array of spatial bins in which
Min proteins can dwell. b) Dependence of mean residence times (green dots)
and standard deviation (grey squares) on the MinE concentration used in the
simulations. The MinD concentrations was fixed as 720µm−1. c),d) Histograms
of residence times in stochasticly and periodically switching cells, respectively.
Time bins are 20s for c) and 3s for d). In c), Solid lines result from fits of an
algebraic distribution with exponent −1.9 (red line) and of an exponential distri-
bution with a characteristic length of 0.006 (orange), see also Fig. 6.4. As part of
the tail, we considered data points with ∆T ≥ ∆Tmin. ∆Tmin was chosen as 60s.
The exponential fit is slightly favored for the tail distribution according to the
likelihood ratio. This contrasts the situation in the experiment where for shorter
cells the algebraic decay clearly suits better. In d), the blue curve shows the
corresponding log-normal distribution with geometric mean 35.7s and geometric
standard deviation 1.3s. e) Kymographs of two solutions to the stochastic model
introduced in Appendix D for a time interval of 40min and a MinE concentra-
tion of 221 and 254 MinE proteins per micrometer, respectively. The oscillation
period in the second kymograph is 75s.
The chosen parameters were ωD = 0.08s−1, ωE = 0.6s−1, ωde = 0.08s−1, Dd =
0.12µm2/s, rd = 1.2µm, rde = 0.1µm, gd = 35kBT, gde = −20kBT, nmax = 43. The
cell length is 2.5µm and the total simulation time was 1300min. The cell was
subdivided in m = 75 spatial bins. The MinD concentrations was 720µm−1.
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of the MinD aggregation, a MinE concentration maximum forms known
as the MinE ring. The role of the MinE ring for Min oscillations is not
entirely clear. It has been shown experimentally that the MinE ring is
not necessary for Min oscillations to occur in cells [29,74] but it seems to
support robustness of Min oscillations. In the following, we will anticipate
that the concentration of Min proteins stays constant while the cell grows.
It is conceivable that the MinE ring forms a passive reservoir of MinE
proteins, which effectively reduces the number of active MinE proteins that
act on MinD detachment from the membrane. Assuming that the MinE
ring is constituted by a fixed number of MinE proteins independently of
the cell length, the fraction of buffered MinE would be higher in shorter
cells than in longer cells. Thus the ratio of active MinE to MinD would be
reduced in shorter cells which might give rise to the stochastic switching of
MinD maxima.
Conversely, the MinE ring might be especially active in MinD detachment
from the membrane in comparison to the sparse MinE cover on top of the
MinD tube at the membrane. In this scenario, it is possible that the absolute
number of MinE is not high enough in short cells to form a complete MinE
ring which reaches its full activity in MinD removal from the poles. Thus,
the effective detachment rate of MinD from the membrane would be smaller
for shorter cells which could induce stochastic switching of Min.

Taking up the idea of a reduced fraction of active MinE in short cells as men-
tioned in the third point of the above listing, we have performed simulations
using a stochastic version of the aggregation current model introduced in Sec-
tion 2.3.2. This particle based model was developed by G. Meacci as part of
his PhD thesis [75]. A short description of this model is given in Appendix D.
Since this model in its simplest form does not capture the formation of the MinE
ring, we tested the properties of solutions varying MinE concentrations in the
system (at fixed cell length). We find stochastic switching of Min proteins for low
MinE numbers similar to those observed in small E.coli cells. When increasing
the MinE concentration, a transition to regular oscillations takes place, see Fig-
ure 6.5. Thus, the model predicts that a decrease of the MinE concentration can
trigger a transition from regular oscillations to stochastic switching. According to
the model also a joint decrease of MinD and MinE concentrations, or the change
of the maximal concentration of Min proteins on the membrane can trigger this
transition (data not shown).

According to our simulations, stochastic solutions show a residence time distri-
bution whose tail better fits to an exponential decay as is expected for a random
telegraph process. This contrasts the situation in the experiment where we find a
algebraic decay for the residence time distribution of short cells, see Figure 6.4a.
If, however, we take into account fluctuations of the protein numbers in different
cells around a given mean, we then find an algebraic decay, see Fig. 6.6. This
mechanism is similar to suggestions by Tu and Grinstein for explaining power-law
switching of bacterial flagellar motors [76].
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Figure 6.6: Distribution of residence times obtained from simulations of the
stochastic version of the AC model (see Appendix D). The data have been ob-
tained from different runs which varied in the total MinD and MinE concentra-
tions. The values of the concentrations were drawn from a Gaussian distribution
with mean value 360µm−1 for MinD and 134µm−1 for MinE and a standard de-
viation of 10%. The remaining parameters are as in Figure 6.5. The algebraic fit
(red curve) has an exponent of −2.46 whereas the exponential fit (orange curve)
decays with a rate of 0.003s−1.

6.2 Min oscillations in filamentous “overaged”

cells

When grown at higher temperatures, a fraction of cells of our strain grows fila-
mentous, i.e. it does not divide around the typical length of 4µm but extends
further in length before a septum is formed. As already mentioned, the Min
pattern changes in filamentous cells. Typically, wave nodes are gained in the con-
centration profile if cells grow filamentous resulting in a zebra-striped fluorescence
pattern. We have observed the switching process from normal Min oscillations
to a pattern with three stripes, i.e. two wave nodes, in growing cells. Examples
are shown in Figure 6.7a,b. We have noted that frequently a transient state with
traveling waves bridges between states of one and two wave nodes. This is nicely
illustrated in the kymograph depicted in Figure 6.7a.
If cells with a two-wave-node Min pattern grow even longer, either additional
wave nodes appear [20], or, as we have found, traveling wave patterns are chosen.
Examples are shown in Figure 6.7c,d. This traveling wave patterns can also
contain defects as in the upper part of Figure 6.7d. Surprisingly, concentration
peaks travel only in one direction (from left to right or reversed) within the cell,
i.e. the waves are not reflected at the polar cell boundary but presumably Min
proteins detach from the membrane, and a new concentration peak forms at the
opposing cell pole. Also, only one fluorescence maximum is present.
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Figure 6.7: Kymographs of filamentous E.coli cells expressing fluorescently la-
beled MinD. Time proceeds from top to bottom. a),b) Cells switching from
normal Min oscillations to a three-stripe pattern were fluorescence maxima at
the poles alternate with a fluorescence maximum at the cell middle. c),d) Cells
switching from a three-stripe pattern with two wave nodes to a traveling wave
pattern.



Chapter 7
Conclusions and Outlook

For a long time, bacteria were considered as unstructured bags of enzymes. Only
since a few years, it is known that they build up cytoskeletal structures just as
eukaryotic cells in order to maintain their cell shape, to accomplish cell division
and metabolic processes [4]. Min proteins are a class of cytoskeletal proteins
which is found in many bacteria. They are involved in the regulation of the
division process of the cell and help to position the division machinery to the
cell middle. In Escherichia coli, there are three Min proteins, MinC, MinD and
MinE, which form spatiotemporal patterns in the cell [17]. They bind to the
inner cytoplasmic membrane and form concentration maxima at one cell pole
which persist for a characteristic dwell time. Then, this concentration maximum
resolves and switches to the opposite pole of the cell. This cycle is repeated and
gives rise to the so-called Min oscillations [17]. The Min protein MinC suppresses
the formation of the contractile ring and thus prevents cell division at both cell
poles but not in the middle of the cell [17].
In this thesis, we asked for the mechanism that guides the Min proteins to form
dynamic, spatially inhomogeneous patterns. We did both theoretical and exper-
imental studies on the Min system. The theoretical work of this thesis includes
the analysis of two computational models which are based on different underlying
assumptions which aspect of Min protein interactions causes the instability in the
Min system. Experimentally, this has not yet been clarified and both models are
based on plausible scenarios. The first computational model, which we termed
aggregation current (AC) model, assumes that MinD binds from the cytosol to
the inner cytoplasmic membrane in an unbiased way and then forms aggregates
by mutual interactions of bound proteins which give rise to an aggregating current
term in the equations. In the second computational model, we assumed instead
cooperative attachment (CA) of MinD and MinE to the membrane and did not
take interactions of bound proteins into account. In both scenarios, an instability
arises leading to spatiotemporal patterns. We examined the solutions predicted
by the different models for differently shaped cells and in flat open geometries
corresponding to a flat membrane in an in vitro experimental situation. The
experimental part of this thesis includes the observation of Min oscillations in
growing cells and in cells with an enlarged radius. In this context, we performed
fluorescence microscopy on an E.coli strain expressing fluorescently labeled MinD.
Furthermore, we were able to extract characteristic time scales of the in vivo Min
dynamics by analyzing data from fluorescence correlation spectroscopy.

7.1 Summary of results

• Our aggregation current (AC) model as well as our cooperative attachment
model (CA) can reproduce the Min patterns observed in wild type cells.
Accordant solutions can either be obtained in a bounded one-dimensional
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space interval with zero-flux boundary conditions, or in a model cell given
by a cylinder with hemispherical caps.

• To characterize the AC model further, we studied solutions in an open
geometry. For one space dimension, the AC model of Min oscillations can
create traveling or standing wave patterns of concentrations dependent on
chosen parameters. We calculated the mode coupling coefficient of the
respective amplitude equations of the dynamic system close to the Hopf
bifurcation. From this, we could read off whether the system stabilizes
traveling or standing wave solutions. For two space dimensions, however,
we found that planar wave solutions are not stable. Therefore, this model
cannot account for the Min patterns which have been found in vitro.

• The CA model can generate planar wave trains of concentrations in one
and two space dimensions. We also observed the existence of stable spiral
distributions. The CA model thus predicts two-dimensional patterns which
come close to the in vitro patterns of Min proteins observed in experiments.
This computational model can account for patterns from in vivo and in
vitro experiments.

• Both computational models suggested in this thesis predict that for cells
with an enlarged radius circumferential modes can appear in the oscilla-
tions. This is expected if the radius of the cell becomes larger than Lcrit/π,
where Lcrit is the minimal cell length for which oscillations occur. We es-
timate Lcrit/π ≈ 0.65µm. We performed an in vivo study with E.coli cells
of enlarged radius and indeed observed circumferential modulations of Min
concentrations especially during the switching between the cell poles. These
thickened cells were obtained by treatment with the drug A22 which per-
turbs the cytoskeleton of E.coli.

• Analysis of fluorescence correlation spectroscopy obtained from measure-
ments on Min proteins in vivo revealed characteristic time scales of Min
dynamics. Therefrom, we could estimate diffusion constants of ≈ 17µm2/s
and ≈ 11µm2/s for MinD and MinE, respectively.

• Min oscillations depend on the cell geometry and change while the cell
grows. We recorded the oscillation of fluorescently labeled MinD for ex-
tended periods of up to 40min. We found that for short cells of around
2µm length MinD maxima form but tend to switch stochastically between
the two cell poles with much longer residence times as have been observed
for regularly oscillating cells. When the cells lengthen the switching be-
comes more periodic. We found that on average standard deviations of
residence times drop below the mean value at a length of around 2.7µm
indicating a transition from stochastic switching to oscillations. Before cell
division, Min oscillations always had become regular.

For our AC as well as for our CA model, we could reproduce the Min oscillations
observed in wild type cells. Yet, we cannot conclusively tell which mechanism
creates the instability in the Min system. Both computational models have their
strengths and their weaknesses. Oscillations in filamentous E.coli mutants are
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more accurately described by the AC model [13]. Also, it shows the existence
of stationary spatially inhomogeneous states which resembles those observed for
very short E.coli cells where the majority of Min proteins is located in one cell
half. By contrast, in vitro patterning of the Min system is more aptly captured
by our CA description which relies on cooperative binding.

7.2 Outlook on future work

Microscopic processes

In this thesis, we posed the question which mechanism generates the instability
in the Min system. To address this issue, we made a coarse-grained approach in
terms of mean field equations. The two models considered in this thesis rely on
different underlying assumptions regarding Min protein interactions and kinetics.
Our analysis has shown, that we cannot rule out one or the other assumption by
looking merely at the pattern formation predicted by the obtained mathematical
models. It would thus be beneficial to gain more experimental insight into the
Min system to validate or falsify the different approaches.
On the microscopic level, many question regarding the Min system are still open.
The following issues are pivotal to understand the functioning of the Min system:

• What kind of MinD aggregates form on the membrane? Does it form un-
structured clusters of proteins, or do filamentous polymers form? If filamen-
tous polymers exist, is there a preferred direction of orientation? Helical
polymer structures of MinD have been reported in the literature [30]. How-
ever, we performed TIRF microscopy on E.coli expressing fluorescently la-
beled MinD (data not shown) and did not observe helix structures. We con-
clude therefore that MinD helices are not necessarily contained in the Min
system and might only occur for certain strains and/or special salt/protein
concentrations.

• How do MinD proteins gather to form aggregates on the membrane? Do
they aggregate while bound to the membrane (as assumed in the AC model),
or do they bind self-enhanced (as in cooperative attachment models)?

• Does MinE really bind to one fixed MinD protein on the membrane with
which it detaches jointly? Alternatively, MinE might have some kind of
processivity, i.e. it could stay attached to the membrane when the MinD
protein detaches to which it was formerly associated. A second possibility
is that MinE forms polymers on the membrane which is merely nucleated
at bound MinD.

• How is the MinE ring formed and what is its role for the pattern formation?
Is the MinE ring especially active in detaching MinD from the membrane
or is it a passive MinE reservoir, which reduces the concentration of MinE
interacting with MinD?

• Do the same processes take place during the pattern formation in the E.coli
cell and on the supported lipid bilayer in vitro? Do the same kind of mi-
croscopic structures form?
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In the long run, a particle-based description of Min proteins is desirable to incor-
porate the effect of noise on Min patterns and to include polymerization processes.

Interaction with the division machinery

The way in which the Min system interacts with the division machinery of the
E.coli cell is not entirely clarified. It is known that the protein MinC, which
basically follows the dynamics of MinD, depolymerizes FtsZ polymers. However,
it is not clear if the FtsZ concentration on the membrane along the bacterial long
axis is just depleted proportional to the time-averaged concentration of MinC on
the membrane or if the relationship to the MinC concentration is more involved.
It might be the case that a threshold concentration or a minimal dwell time of
MinC has to be reached to induce an effect on FtsZ polymers.
Another interesting question is, if changes in the Min pattern due to increasing
cell length induce the onset of cell division. The Min system could provide a
measure for the length of the cell by changing its pattern when the cell grows.
This could trigger the assembly of the division machinery at the appropriate
time.



Appendix A
The case of large diffusion constants
in the aggregation current (AC)
model

We consider the case of large cytoplasmic diffusion constants of MinD and MinE
in the context of the aggregation current model introduced in 2.3.2. We show
in the following, that in this case the dynamic equations for the cytoplasmic
concentration fields (2.2)-(2.3) decouple from the equations for the membrane-
bound proteins (2.4)-(2.5).
In the case of large cytoplasmic diffusion constants DD and DE, the times needed
to diffuse along the whole length L of the bacterium, L2/DD and L2/DE, respec-
tively, are short compared to all other relevant time-scales in the Min dynam-
ics. Thus, the distribution of Min proteins in the cytoplasm can be assumed to
be spatially homogeneous, i.e. we can choose cytoplasmic concentration fields
cD(x, t) = cD(t) and cE(x, t) = cE(t). Integrating the equations (2.2)-(2.3) over
the entire space and dividing by the cell volume, we obtain the following de-
coupled set of ordinary differential equations for the cytoplasmic concentration
fields

d

dt
cD = −ωD(cmax −D + cD)cD + ωde(E − cE) (A.1)

d

dt
cE = −ωE(D − E − cD + cE)cE + ωde(E − cE). (A.2)

Here, the variables D and E denote the total spatially averaged concentration of
MinD and MinE, respectively.
For physical conditions 0 ≤ cD ≤ D and 0 ≤ cE ≤ E , the above equations
have one fixed point which is always stable [13]. Asymptotically, the cytoplas-
mic distributions will approach the stationary state {CD, CE}. In this limit,
the dynamics of the membrane-bound Min proteins is described by two partial
differential equations

∂tcd = ωDCD(cmax − cd − cde) − ωECEcd − ∂xjd (A.3)

∂tcde = −ωdecde + ωECEcd. (A.4)
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Appendix B
Calculation of the linear spreading
velocity

In this appendix, we calculate the linear spreading velocity of a localized pertur-
bation into an unstable stationary homogenous state of the dynamic equations
(2.7) and (2.8) in the situation discussed in Sec. 3.2. The distributions cD and
cE are assumed to be homogenous, their values are free parameters. In order to
simplify our calculations, we set k1 = k2 = 0 and restrict ourselves to parameter
values such that ωDωE < ω2

de, where ωD = ωDCD and ωE = ωECE. We assume
that for each wave-vector k at most one of the eigenmodes grows in time and
the corresponding growth exponent is real. In an open geometry, the asymptotic
solutions are stationary if the rates satisfy the condition above.
The linear spreading velocity is obtained from the solution of the dynamic equa-
tions that are obtained by linearizing (2.7) and (2.8) with respect to a stationary
homogenous state. In general, the solution c = (cd, cde) to these equations can
be written as

c(x, t) =
1

2π

∫ ∞

−∞
dk eΛ(k)t+ikx c̄(k), (B.1)

where c̄(k) =
∫∞
−∞ dx c(x) exp(−ikx) denotes the Fourier transform of c(x, t =

0). The matrix Λ(q) is the time-evolution operator of the linearized dynamic
equations in Fourier representation

Λ(k) =

(

−ωD − ωE + (K − Dd)k
2 + Kk4 −ωD

ωE −ωde

)

, (B.2)

where K is the dimensionless control parameter K = c2
maxk

2
1/(ωdek2). Let e1(k)

denote the normalized eigenmode of Λ(k) associated to the eigenvalue λ1, that
has the larger real part of the two eigenvalues. Then, we can write

c(x, t) =
1

2π

∫ ∞

−∞
dk eλ1(k)t+ikx(c̄(k) · e1(k))e1(k). (B.3)

Now consider a uniformly translated reference frame with coordinates ξ = x−v∗t.
Here, v∗ is the average spreading velocity of the perturbation in the limit of large
times. Adapting coordinates to this frame, Eq. (B.3) becomes

c(x, t) =
1

2π

∫ ∞

−∞
dk eiξke(λ1(k)+iv∗k)t(c̄(k) · e1(k))e1(k). (B.4)

As we have chosen the frame such that we ride on the front, we must have for
consistency v∗ = λ1,r

ki
. 15 Otherwise the absolute value of e(λ1(k)+iv∗k)t would

decay or grow exponentially. v∗ is the velocity with which the front spreads in

15Subscripts r and i denote the real and imaginary parts, respectively, i.e. k = kr + iki and
λ1 = λ1,r + iλ1,i.
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the linearized case. As for the chosen parameter regime the emerging pattern in
the wake of the front is stationary with wavelength ℓ, the concentration c(ξ, t) in
the moving frame oscillates with frequency ω = v∗/ℓ. From (B.4), we can read
off ω as (λ1,i(k) + v∗kr). This determines ℓ provided we know v∗.
For large times, the integral (B.4) can be approximated by focusing on the factor
E(t) := e(λ1(k)+iv∗k)t. Assuming a holomorphic integrand, the integration contour
is first moved into the complex plane such that integration is along a contour of
constant phase of E(t). Then a saddle point approximation is performed [77]. At
a saddle point k∗ on a contour of constant phase, the gradient of the real and the
imaginary part of E(t) have to vanish. Therefore, the exponent (λ1(k) + iv∗k)t

has to obey ∂(λ1,r − v∗ki)/∂kr

∣

∣

∣

k∗

= ∂(λ1,r − v∗ki)/∂ki

∣

∣

∣

k∗

= 0. Consequently,

∂λ1,r/∂ki|k∗ = λ1,r/ki|k∗ (B.5)

∂λ1,r/∂kr|k∗ = 0, (B.6)

where
λ1(k) = p(k)/2 +

√

p(k)2/4 − ωDωE

with
p(k) = ωde − ωD − ωE + (K − Dd)k

2 − Kk4.

We have solved Eqs. (B.5) and (B.6) numerically. To this end we neglected ωDωE

in the expression for λ1(k). The good agreement between the values we obtain
for the asymptotic linear spreading velocity and the results from our numerical
solutions of the dynamic equations (2.7) and (2.8) justifies this approximation,
see Fig. 3.8d.



Appendix C
Derivation of amplitude equations

C.1 The case of k1 = k2 = 0

We are deriving the coefficient g1 of the amplitude equations for the dynamical
system given by Equations (3.6) for the special case of k1 = k2 = 0, i.e. δ =
0, δζ = 0. To this end, we perform a perturbation calculation substituting the
Expansions (3.8) into the Equation (3.7) which describes the time evolution of
deflections from the homogeneous state.

C.1.1 Second order equation

The terms of second order in ǫ give the following equation

(∂t0 −L)X2 = −∂t1X1 (C.1)

+Dd

(

1
0

)

2∂x0
∂x1

X1 − K ′
c

(

1
0

)

(2∂x0
∂x1

Xd,1 + 4∂3
x0

∂x1
Xd,1)

−K ′
1

(

1
0

)

(∂2
x0

Xd,1 + ∂4
x0

Xd,1)

−K ′
c

(

1
0

)

∂x0
(αXd,1 + βXde,1)(∂x0

Xd,1 + ∂3
x0

Xd,1).

Here, L is the time evolution operator of the linearized equations. The term in
the second line on the r.h.s. vanishes due to the form of kc. The remaining terms
linear in X1 give a solvability condition on AL and AR. This condition demands
that the occurring terms on the r.h.s. of the above equation have to be in the image
space of the operator (∂t0 − L). This requirement puts constraints on the terms
with Fourier components exp(i(±ωct0 ± kcx0)), since for these modes the null
space of the operator is not zero. The solvability condition results in equations
for AL and AR, separately. These equations include the time derivatives ∂t1AL/R

and show that AL/R exponentially grow or decay with t1 if K ′
1 is nonzero. Since

exponential growth or decay is not expected for a subcritical bifurcation, K ′
1 has

to be zero. The equations of the solvability condition then give ∂t1AL/R = 0 and
thus ∂t1X1 vanishes. The term on the l.h.s. as well as the term nonlinear in X1

in Equation (C.1) give information about X2. Expansion of the term nonlinear
in X1 in Fourier components give the following expression for X2

X2 = (∂t0 −L)−1

{

−K ′
c

(

1
0

)

∂x0
(αXd,1 + βXde,1)(∂x0

Xd,1 + ∂3
x0

Xd,1)

}

= C2,2U2,2 exp (2i(ωct + kcx)) + C2,−2U2,−2 exp (2i(ωct − kcx))

+C−2,2U−2,2 exp (−2i(ωct − kcx)) + C−2,−2U−2,−2 exp (−2i(ωct + kcx))

+C0,2U0,2 exp (−2ikcx) + C0,−2U0,−2 exp (−2ikcx)
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where

C2,2 = −2A2
Lk2

c (k
2
c − 1)K ′

cvd(αvd + βvde)

C2,−2 = −2A2
Rk2

c (k
2
c − 1)K ′

cvd(αvd + βvde)

C−2,2 = C∗
2,−2, C−2,−2 = C∗

2,2

C0,2 = −2ARk2
c (k

2
c − 1)K ′

cA
∗
L(βvdev

∗
d + vd(2αv∗

d + βv∗
de))

C0,−2 = −2ALk2
c (k

2
c − 1)K ′

cA
∗
R(βvdev

∗
d + vd(2αv∗

d + βv∗
de))

and

Un,m = e−i(nωct0+mkcx0)(∂t0 − L)−1

(

1
0

)

ei(nωct0+mkcx0). (C.2)

The Coefficients C.,. have been calculated by defining the Mathematica function

Coeff[expr , n , m ] := ((Coefficient[expr//Expand,

Exp[I ∗ (n ∗ ω ∗ t + m ∗ kc ∗ x)]])/.Exp[y ]− > 0)//Simplify

and setting e.g.

C2,2 = Coeff[−K ′
c∂x0

(αXd,1 + βXde,1)(∂x0
Xd,1 + ∂3

x0
Xd,1), 2, 2].

The inverse of (∂t0 − L) is chosen, such that no elements from the null space of
the operator are added, i.e. the mapping preserves Fourier modes. This can be
done, since we can assume that X2 is orthogonal to the null space of (∂t0 − L).
If the projection of X2 to the null space of (∂t0 − L) were not zero but X0

2, then
we could define an alternative X′

2 = X2 − X0
2 and X′

1 = X1 + ǫX0
2. For X′

2 and
X′

1 all relations hold, which we derived so far for X1 and X2. Note that this
special choice of X2 is possible since the expansion of X = ǫX1 + ǫ2X2 + . . . is
not unique.

C.1.2 Third order equation

The third order equation is of the form

(∂t0 − L)X3 = −∂t1X2 − ∂t2X1

+

(

1
0

)

(

Dd2∂x1
∂x0

X2 − K ′
c(2∂x0

∂x1
Xd,2 + 4∂3

x0
∂x1

Xd,2)
)

−K ′
c

(

1
0

)

∂x0
F1(∂x0

Xd,2 + ∂3
x0

Xd,2)

−K ′
c

(

1
0

)

∂x0
F2(∂x0

Xd,1 + ∂3
x0

Xd,1)

+

(

1
0

)

(

Dd(2∂x0
∂x2

+ ∂2
x1

)Xd,1 − K ′
c(∂

2
x1

+ 6∂2
x0

∂2
x1

+ 2∂x0
∂x2

+ 4∂3
x0

∂x2
)Xd,1

−K ′
2(∂

2
x0

+ ∂4
x0

)Xd,1

−K ′
c∂x1

F1(∂x0
+ ∂3

x0
)Xd,1

−K ′
c∂x0

F1(∂x1
+ 3∂x1

∂2
x0

)Xd,1

)

,
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where we have used that K ′
1 = 0. The symbols F1,F2 denote the first and the

second order part of the function F , which was introduced in (3.7). The sum
of terms, containing derivatives with respect to x2, vanishes, which can be seen
by plugging in the value of kc. All terms linear in X2 give no contribution to
the solvability condition, since X2 contains only Fourier components of second or
zeroth order. Also, this is true for the terms in the last two lines. The remaining
terms which give a contribution to the solvability condition are

(∂t0 −L)X3 = −∂t2X1

−K ′
c

(

1
0

)

{

∂x0
F1(∂x0

Xd,2 + ∂3
x0

Xd,2) + ∂x0
F2(∂x0

Xd,1 + ∂3
x0

Xd,1)
}

+

(

1
0

)

(

Dd(∂
2
x1

)Xd,1 − K ′
c(∂

2
x1

+ 6∂2
x0

∂2
x1

)Xd,1 − K ′
2(∂

2
x0

+ ∂4
x0

)Xd,1

)

+ . . .

= −∂t2X1

−K ′
c

(

1
0

)

∂x0
(αXd,1 + βXde,1)(∂x0

Xd,2 + ∂3
x0

Xd,2)

−K ′
c

(

1
0

)

∂x0
(αXd,2 + βXde,2 − γXd,1(Xd,1 + Xde,1))(∂x0

Xd,1 + ∂3
x0

Xd,1)

+

(

1
0

)

(

4K ′
ck

2
c∂

2
x1

Xd,1 − K ′
2(k

4
c − k2

c )Xd,1

)

+ . . . .

The dots . . . are a placeholder for terms which do not give a contribution to
the solvability condition. The terms in the second and third line after the second
equality sign give contributions to the prefactor of the terms AL|AL|2, AL|AR|2, AR|AL|2
and AR|AR|2 in the equation (3.2). To obtain the nonlinear parts of the equation
for AL, we are interested in those terms which contain the Fourier component
exp (i(ωct0 + kcx0)), and which are either proportional to AL|AL|2 or AL|AR|2.
Lets say

−K ′
c∂x0

(αXd,1 + βXde,1)(∂x0
Xd,2 + ∂3

x0
Xd,2) =:

(aLLAL|AL|2 + aRLAL|AR|2) exp i(ωct0 + kcx0) + . . .

−K ′
c∂x0

(αXd,2 + βXde,2)(∂x0
Xd,1 + ∂3

x0
Xd,1) =:

(bLLAL|AL|2 + bRLAL|AR|2) exp i(ωct0 + kcx0) + . . .

−K ′
c∂x0

(−γXd,1(Xd,1 + Xde,1))(∂x0
Xd,1 + ∂3

x0
Xd,1) =:

(cLLAL|AL|2 + cRLAL|AR|2) exp i(ωct0 + kcx0) + . . . ,

where the dots . . . are a placeholder for terms linear in AL, AR or with different
Fourier components. The coefficients aLL, aRL, bLL, bRL, cLL, cRL can be calcu-
lated in a straightforward but lengthy calculation. This can also be done with
Mathematica, using the command

Fourier11 = Coeff[−K ′
c∂x0

(αXd,1 + βXde,1)(∂x0
Xd,2 + ∂3

x0
Xd,2), 1, 1];

aLL = Coefficient[Fourier11, ALALA∗
L];

aRL = Coefficient[Fourier11, ALARA∗
R];
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The coefficients evaluate to

aLL = 4k4
c (1 − 5k2

c + 4k4
c )K

′
c
2vd|αvd + βvde|2U2,2,d,

aRL = 4k4
c (1 − 5k2

c + 4k4
c )K

′
c
2(αvd + βvde)U0,2,d(vd(2αv∗

d + βv∗
de) + βvdev

∗
d),

bLL = −2k4
c (−1 + k2

c )
2K ′

c
2vd(αvd + βvde)(αU2,2,d + βU2,2,de)v

∗
d,

bRL = −2k4
c (−1 + k2

c )
2K ′

c
2vd(αU0,2,d + βU0,2,de)(βvdev

∗
d + vd(2αv∗

d + βv∗
de)),

cLL = γk2
c (−1 + k2

c )K
′
cv

2
d(v

∗
d + v∗

de),

cRL = 2γk2
c (−1 + k2

c )K
′
cvd(vd + vde)v

∗
d.

Thus, we obtain as second solvability condition on AL

∂t2AL = −〈w, (vd, 0)〉
〈w, v〉 K ′

2(k
4
c − k2

c ) AL +
〈w, (vd, 0)〉

〈w, v〉 4K ′
ck

2
c ∂2

x1
AL

+
〈w, (1, 0)〉
〈w, v〉 (aLL + bLL + cLL)AL|A2

L|

+
〈w, (1, 0)〉
〈w, v〉 (aRL + bRL + cRL)AL|A2

R|

= −1

2
(1 − i

ωc
)K ′

2(k
4
c − k2

c ) AL + 2(1 − i

ωc
)K ′

ck
2
c∂

2
x1

AL (C.3)

+
1

2iωc
(aLL + bLL + cLL)AL|A2

L| +
1

2iωc
(aRL + bRL + cRL)AL|A2

R|.

The same equations holds for ∂t2AR, if we exchange AR and AL in the above
equation. As first solvability condition, we had

∂t1AL = 0, (C.4)

with the equivalent relation for AR. Thus, multiplying equation (C.4) by ǫ2 and
(C.3) by ǫ3 and adding the two relations, we obtain

(ǫ∂t1 + ǫ2∂t2)ǫAL = −1

2
(1 − i

ωc
)ǫ2K ′

2(k
4
c − k2

c ) ǫAL + 2(1 − i

ωc
)K ′

ck
2
cǫ

2∂2
x1

ǫAL

+
1

2iωc
(aLL + bLL + cLL)ǫALǫ2|A2

L|

+
1

2iωc
(aRL + bRL + cRL)ǫALǫ2|A2

R| + O(ǫ4).

Using expansions (3.8) and rescaling AL such that AL → ǫAL, we get

∂tAL = −1

2
(1 − i

ωc

)△K ′(k4
c − k2

c ) AL + 2(1 − i

ωc

)K ′
ck

2
c∂

2
xAL

+
1

2iωc
(aLL + bLL + cLL)AL|A2

L|

+
1

2iωc
(aRL + bRL + cRL)AL|A2

R| + O(ǫ4).

This is the amplitude equation for AL. The respective equation holds for AR

exchanging AR and AL in the above equation. Rescaling of AL, AR, time and
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space yields equations of the form of (3.2). The coefficient g1 is then given by

g1 =
Re
(

1
2iωc

(aRL + bRL + cRL)
)

Re
(

1
2iωc

(aLL + bLL + cLL)
) =

Im
(

aRL + bRL + cRL

)

Im
(

aLL + bLL + cLL

) . (C.5)

.

C.2 The case of k1, k2 6= 0

Here, we derive the amplitude equations for the dynamical system given by Equa-
tions (3.6) for arbitrary choices of k1, k2. To this end, we perform a perturbation
calculation substituting the Expansions (3.8) into the Equation (3.15) which de-
scribes the time evolution of deflections from the homogeneous state.

The second order equation is here

(∂t0 −L)X2 = −∂t1X1 (C.6)

−K ′
c

(

1
0

)

δ(2∂x0
∂x1

Xde,1 + ζ4∂3
x0

∂x1
Xde,1)

−K ′
1

(

1
0

)

(∂2
x0

Xd,1 + ∂4
x0

Xd,1 + δ(∂2
x0

Xde,1 + ζ∂4
x0

Xde,1))

−K ′
c

(

1
0

)

∂x0
(αXd,1 + βXde,1)(∂x0

Xd,1 + ∂3
x0

Xd,1 + δ(∂x0
Xde,1 + ζ∂3

x0
Xde,1)).

The solvability condition of this equation yields

∂t1AL = −K ′
1

〈w, (1, 0)〉
〈w, v〉 ((k4

c − k2
c )vd + δ(ζk4

c − k2
c )vde)AL

+K ′
c

〈w, (1, 0)〉
〈w, v〉 2ikcδ(ζ2k2

c − 1)vde∂x1
AL. (C.7)

To avoid the exponential growth, or decay of AL, K ′
1 has to be zero again. The

remaining part evaluates to

∂t1AL = K ′
c

kc

ωc
δ(ζ2k2

c − 1)wE∂x1
AL, (C.8)

where we have used that

〈w, (1, 0)〉
〈w, v〉 =

〈w, 1/(2iωc)(v − v∗)〉
〈w, v〉 =

〈w, v〉
2iωc〈w, v〉 =

1

2iωc
.

Thus the group velocity is s0 = K ′
c

kc

ωc
δ(ζ2k2

c − 1)wE. The analogous equation to
(C.8) for AR yields ∂t1AR = −s0∂x1

AR. The form of X2 is thus

X2 = −K ′
cδwE

2ω2
c

v∗(2ζk2
c − 1)∂x0

∂x1
(ALei(ωct+kcx) + ARei(ωct−kcx))) + c.c.

+C2,2U2,2 exp 2i(ωct + kcx) + C2,−2U2,−2 exp 2i(ωct − kcx)

+C−2,2U−2,2 exp−2i(ωct − kcx) + C−2,−2U−2,−2 exp−2i(ωct + kcx)

+C0,2U0,2 exp−2ikcx + C0,−2U0,−2 exp−2ikcx,
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where

C2,2 = −2A2
Lk2

c ((k
2
c − 1)vd + δ(ζk2

c − 1)vde)K
′
c(αvd + βvde)

C2,−2 = −2A2
Rk2

c ((k
2
c − 1)vd + δ(ζk2

c − 1)vde)K
′
c(αvd + βvde)

C−2,2 = C∗
2,−2, C−2,−2 = C∗

2,2

C0,2 = −2ARk2
cK

′
cA

∗
L((k2

c − 1)(β(vdev
∗
d + vdv

∗
de) + 2αvdv

∗
d)

+δ(ζk2
c − 1)(β2vdev

∗
de + α(vdev

∗
d + vdv

∗
de)))

C0,−2 = −2ALk2
cK

′
cA

∗
R((k2

c − 1)(β(vdev
∗
d + vdv

∗
de) + 2αvdv

∗
d)

+δ(ζk2
c − 1)(β2vdev

∗
de + α(vdev

∗
d + vdv

∗
de))).

Note, that the first order Fourier contributions to X2 do not affect the value of
the coefficients of the nonlinear terms in the amplitude equation. Lets consider
the third order equation: Since we are only interested in the nonlinear terms of
the amplitude equation, we need to take into account only terms cubic in the Xi.

(∂t0 − L)X3 = linear and quadratic expressions in Xi

−K ′
c

(

1
0

)

∂x0
F1(∂x0

Xd,2 + ∂3
x0

Xd,2)

−K ′
c

(

1
0

)

∂x0
F2(∂x0

Xd,1 + ∂3
x0

Xd,1).

Similar to the above section, we define the coefficients aLL, aRL, bLL, bRL, cLL, cRL

by

−K ′
c∂x0

(αXd,1 + βXde,1)(∂x0
Xd,2 + ∂3

x0
Xd,2 + δ(∂x0

Xde,2 + ζ∂3
x0

Xde,2))

=: (aLLAL|AL|2 + aRLAL|AR|2) exp i(ωct0 + kcx0) + . . .

−K ′
c∂x0

(αXd,2 + βXde,2)(∂x0
Xd,1 + ∂3

x0
Xd,1 + δ(∂x0

Xde,2 + ζ∂3
x0

Xde,2))

=: (bLLAL|AL|2 + bRLAL|AR|2) exp i(ωct0 + kcx0) + . . .

−K ′
c∂x0

(−γXd,1(Xd,1 + Xde,1))(∂x0
Xd,1 + ∂3

x0
Xd,1 + δ(∂x0

Xde,2 + ζ∂3
x0

Xde,2))

=: (cLLAL|AL|2 + cRLAL|AR|2) exp i(ωct0 + kcx0) + . . . ,

where dots . . . are a placeholder for linear terms in AL, AR or terms with different
Fourier components. An easy but lengthy calculation yields then

aLL = 4k4
cK

′
c
2((k2

c − 1)vd + δ(ζk2
c − 1)vde) (C.9)

(U2,2,d(4k
2
c − 1) + U2,2,deδ(4ζk2

c − 1))|αvd + βvde|2,
aRL = 4k4

cK
′
c
2(αvd + βvde)(U0,2,d(4k

2
c − 1) + U0,2,deδ(4ζk2

c − 1))

((k2
c − 1)(β(vdev

∗
d + vdv

∗
de) + 2αvdv

∗
d) + δ(ζk2

c − 1)(β2vdev
∗
de + α(vdev

∗
d + vdv

∗
de))),

bLL = −2k4
cK

′
c
2(αvd + βvde)(vd(k

2
c − 1) + vdeδ(ζk2

c − 1))(αU2,2,d + βU2,2,de)

(v∗
d(k

2
c − 1) + v∗

deδ(ζk2
c − 1)),

bRL = −2k4
cK

′
c
2(vd(k

2
c − 1) + vdeδ(ζk2

c − 1))(αU0,2,d + βU0,2,de)

((k2
c − 1)(β(vdev

∗
d + vdv

∗
de) + 2αvdv

∗
d) + δ(ζk2

c − 1)(β2vdev
∗
de + α(vdev

∗
d + vdv

∗
de))),

cLL = γk2
cK

′
c(v

2
d(v

∗
d + v∗

de)(k
2
c − 1) + (2vdvdev

∗
d + v2

dev
∗
d − v2

dv
∗
de)δ(ζk2

c − 1)),

cRL = 2γk2
cK

′
cvd(vd + vde)(v

∗
d(k

2
c − 1) + v∗

deδ(ζk2
c − 1)).
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For the value of g1 again equation (C.5) holds. This follows in an analogous way
as in the preceding section.
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Appendix D
Particle-based version of the
aggregation current model

For the computational analysis of the stochastic switching of short “newborn”
E.coli cells (see Section 6.1), we used a particle-based version of the aggregation
current model introduced in Section 2.3.2. This stochastic particle-based descrip-
tion has been derived as part of the PhD thesis of G. Meacci [75] and a short
summary will be given here for completeness. The model incorporates mutual
interactions of membrane-bound MinD proteins thereby inducing aggregation of
MinD on the membrane. Furthermore, it takes into account the exchange of MinD
and MinE between the membrane and the cytoplasm, where MinE only binds to
membrane-bound MinD and where MinD detaches from the membrane only in
the presence of MinE. We consider the limit of large cytoplasmic diffusion which
effectively leads to homogeneous cytoplasmic concentrations. Measurements of
the cytoplasmic diffusion constants of MinD and MinE yielded values larger than
10µm2/s [46] and support this assumption.
The description considers a one-dimensional lattice with N sites. The lattice
spacing lb is chosen such that it is much larger than the protein size and much
smaller than the characteristic length of the Min pattern. Each site can contain
at most nmax proteins. We assume diffusional mixing such that proteins are in-
distinguishable on a site. For site j, the probability of attachment of cytoplasmic
MinD and MinE during a sufficiently small time step ∆t is given by

PD→d = ∆t ωD

(

ND

N

)

(1 − nd,j + nde,j

nmax
) (D.1)

PE→de = ∆t ωE

(

NE

N

)

nd,j

nmax
, (D.2)

respectively. Here, ωD, ωE are the corresponding attachment rates and ND and
NE are, respectively, the numbers of cytoplasmic MinD and MinE. The numbers
of membrane-bound MinD and MinDE complexes on site j are nd,j and nde,j .
The detachment probability is

Pde→E+D = ∆t ωdende,j , (D.3)

where ωde is the detachment rate. The exchange of particles between sites is
governed by

Pj→j±1 =
Dd∆t

l2b
nd,j(1 −

nd,j±1 − nde,j±1

nmax
)Ij→j±1 , (D.4)

where

Ij→j±1 =

{

1 if ∆Ej < 0

exp(−∆Ej

kBT
) if ∆Ej > 0

(D.5)
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with ∆Ej = Vj±1−Vj . The potential V describes the interaction strength between
Min-proteins on the membrane. We assume a square hole potential

Vj = −
[

gd

(2Rd + 1)nmax

Rd
∑

j=−Rd

nd,j −
gde

(2Rde + 1)nmax

Rde
∑

j=−Rde

nde,j

]

. (D.6)

Here, the integers Rd and Rde relate to the ranges rd of the MinD-MinD interac-
tion and rde of the MinD-MinDE interaction through Rd ≃ rd/lb and Rde ≃ rde/lb.
The parameters gd and gde tune the interaction strength. The diffusion constant
of membrane-bound MinD is Dd.



Appendix E
Glossary

Mitotic spindle A cytoskeletal structure formed by microtubules prior
to division in eukaryotic cells. The mitotic spindle sep-
arates the sister chromatides of the chromosomes and
pulls them to opposite sides of the cell. For further
reading see [78].

Contractile ring A cytoskeletal structure which forms during the process
of cell division in eukaryotic as well as in prokaryotic
cells. This ring forms typically in the equatorial plane
of the cell beneath the cytoplasmic membrane and is
constituted from polymerized proteins. To accomplish
cell division, the ring constricts and shrinks in radius.

DIC Differential interference contrast microscopy (DIC) is an
optical microscopy illumination technique using trans-
mitted light. It enhances the contrast in unstained,
transparent samples.

Micrograph An image taken with a microscope.

Kymograph An image that shows the time evolution of light intensity
along a fixed line in the image of a sample. It can be
obtained from a time series of micrographs.

Yeast two hybrid system A technique from molecular biology which can be used
to discover protein-protein interactions. The two pro-
teins under study are expressed in yeast cells fused to
either of two parts of a transcription factor. These parts
are called the binding and the activating domain. The
protein fused to the binding domain of the transcrip-
tion factor is called the bait protein, while the protein
fused to the activating domain is called the prey protein.
If now the binding domain locates to the transcription
site of the respective gene, interactions of bait and prey
proteins enhance the probability that the activating do-
main is in close proximity and thus that transcription
can start. The transcription level of the gene gives then
information about the interaction level of bait and prey
protein.
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ATP Adenosine triphosphate (ATP) is an energy-rich organic
compound that serves as chemical fuel in cells. Hydrol-
ysis of ATP releases energy.

Hydrolysis of ATP Decomposition of ATP into Adenosine diphosphate and
a hydrated inorganic phosphate.

ATPγS A non-hydrolyzable ATP analog.

ATPase An enzyme that catalyzes ATP hydrolysis.

Mini cells Small cells void of DNA which can form in E.coli by
division at the cell poles if the Min system is defective.

TIRF Total internal reflection fluorescence microscopy. Mi-
croscopy technique used to observe structures in thin
layers of a sample adjacent to the glass-water interface
between cover slip and specimen.
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