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Abstract

During development, cells consume energy, divide, rearrange, and die. Bulk proper-
ties such as viscosity and elasticity emerge from cell-scale mechanics and dynamics.
Order appears, for example in patterns of hair outgrowth, or in the predominately
hexagonal pattern of cell boundaries in the wing of a fruit fly. In the past fifty years,
much progress has been made in understanding tissues as living materials. How-
ever, the physical mechanisms underlying tissue-scale behaviour are not completely
understood. Here we apply theories from statistical physics and fluid dynamics to
understand mechanics and order in two-dimensional tissues. We restrict our atten-
tion to the mechanics and dynamics of cell boundaries and vertices, and to planar
polarity, a type of long-ranged order visible in anisotropic patterns of proteins and
hair outgrowth.

Our principle tool for understanding mechanics and dynamics is a vertex model
where cell shapes are represented using polygons. We analytically derive the ground-
state diagram of this vertex model, finding it to be dominated by the geometric
requirement that cells be polygons, and the topological requirement that those poly-
gons tile the plane. We present a simplified algorithm for cell division and growth,
and furthermore derive a dynamic equation for the vertex model, which we use to
demonstrate the emergence of quasistatic behaviour in the limit of slow growth.
All our results relating to the vertex model are consistent with and build off past
calculations and experiments.

To investigate the emergence of planar polarity, we develop quantification meth-
ods for cell flow and planar polarity based on confocal microscope images of de-
veloping fly wings. We analyze cell flow using a velocity gradient tensor, which
is uniquely decomposed into terms corresponding to local compression, shear, and
rotations. We argue that a pattern in an inhomogeneously flowing tissue will neces-
sarily be reorganized, motivating a hydrodynamic theory of polarity reorientation.
Using such a coarse-grained theory of polarity reorientation, we show that the quan-
tified patterns of shear and rotation in the wing are consistent with the observed
polarity reorganization, and conclude that cell flow reorients planar polarity in the
wing of the fruit fly. Finally, we present a cell-scale model of planar polarity based
on the vertex model, unifying the themes of this thesis.
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1 Introduction

1.1 Biophysics of tissues

Tissues are materials formed from groups of cells, for example muscles, blood, bones,
epithelia such as skin, and brain tissue [3, 4]. Relevant length scales are that of in-
dividual cells (µm) up to the scale of whole tissues, varying from, e.g., < 1 mm
for the wing of a developing fly up to meters for the skin of a large mammal. Tis-
sues are active materials, i.e. they consume energy, typically in the form of ATP
(adenosine triphosphate), in order to perform their various functions. This leads to
material properties not normally observed in inanimate materials. For example, cell
division in tissues causes the generation of local force dipoles [5]. Thus, anisotropic
cell division can lead to an active anisotropic stress, which can in turn induce shear
flow in tissues. In this way a tissue can flow and shear spontaneously, i.e. without
necessarily having any external body act on it. Further properties arise from fluc-
tuations accompanying such active processes. For example, fluctuations induced by
cell division can relieve strain energy in an otherwise elastic tissue, causing it to
behave as a viscous fluid [5]. In the remainder of this section we review specific
concepts dealing with the biophysics of tissues relevant for this thesis.

1.1.1 Continuum descriptions

It is now standard practice to describe tissues on large length scales as continuous
materials. However, the appropriate continuum description has been significantly
debated. In the 1960s and 1970s, M. S. Steinberg wrote a series of papers pio-
neering a fluid model of tissues [6–11]. This fluid model was motivated by three
related experimental phenomena: the sorting out of mixtures of distinct cell types,
the spreading of one tissue over another, and the preferential adhesion of tissue
fragments. As early as 1907, H. V. Wilson observed that “cells and cell clusters
obtained by squeezing a sponge through the meshes of fine, silk, bolting cloth could
reunite, and that aggregates obtained this way could reconstitute themselves into
functional sponges” [9, 12]. Later, in 1944 J. Holtfreter directly observed cell-sorting
in tissues dissociated using basic solution and subsequently allowed to reassociate
under neutral pH [9, 13]. Additional experiments in vertebrates confirmed that in-
termixed cell types can spontaneously sort [9, 14–19]. In these experiments, as well
as in normal development, it was typical to observe one tissue type spreading over
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the surface of another. These experiments [13–19] were performed in the context
of previous results by Holtfreter [20, 21], and later Weiss [22], which demonstrated
preferential adhesion between tissue types [9, 23]. Ultimately, all these phenomena
were explained in a seminal paper by Steinberg in 1963 [9], wherein different cell
types were described as immiscible liquids, with surface tension resulting from pref-
erential adhesion the dominant interaction. Early fluid models focused primarily
on equilibrium arguments [9, 10], and thus made no mention of viscosity. Most
real fluids are viscous, so a viscous fluid theory of tissues is a natural development
following the early work of Steinberg et al. [24–27].

A simple fluid description of tissues is compelling and has predictive power, and
the experiments that motivate such a description are remarkable. However, the fluid
description of Steinberg and coworkers is incomplete. Clearly blood behaves as a
fluid. Bone, however, usually does not. In fact, tissues including bone, cartilage,
and muscle have been routinely described as nonlinear elastic solids since at least
the 1960s [28]. This is consistent with the experimental fact that tissues generate a
restoring force when deformed, even over long periods of observation. Stated more
bluntly, “While it is possible that for very large times of observation, the stress
could relax to zero, it is highly unlikely for were it to be true, tissue cannot retain
its shape and our body would eventually ‘flow’ and would cease to have form” [29].

A more complete picture is that all tissues are viscoelastic materials, and different
tissues may show liquid, solid, or intermediate behaviour depending on the tissue
and environment. Extreme examples are blood and bone. Viscous behaviour in
bone and other solid-like tissues is observed as a time-dependent stress following
deformation; this stress subsequently relaxes to a constant nonzero value at long
times [28]. Thus even bone exhibits viscosity, behaviour typical of a liquid. In the
opposite limit, at vanishing shear rate even blood behaves elastically [28]. It is easy
to simply lump all tissues into a grey-zone of viscoelastic materials. However, there
remains an important qualitative distinction: In the long-time limit, will a given
tissue behave as a fluid or a solid? In the terminology of Y. C. Fung, this is the
difference between a viscoelastic fluid and a viscoelastic solid [28]. On timescales
longer than mechanical relaxation, viscoelastic fluids flow and can be treated as
viscous fluids [5, 26, 27]. Viscoelastic solids, however, maintain nonzero stress in
response to a deformation even in the long time limit [29]. This distinction helps
clarify the debate of elastic-solid versus viscous-fluid models of tissues. Bones and
muscles fall into the category of viscoelastic solids [28]; sea sponges and embryonic
tissues are well described as viscoelastic fluids. Finally, it is worth noting that
tissues may undergo plastic deformation: if sufficiently large strain is induced, a
viscoelastic solid may be forced to flow. Conversely, for sufficiently small strain a
viscoelastic fluid behaves as a solid [28]. Thus, one might describe all tissues as
visco-elastic-plastic materials, which behave as viscoelastic fluids at stresses below
a given yield stress and viscoelastic solids above it [30]. Further generalization is
possible by describing a biological tissue as composed of multiple components, which
may themselves have distinct rheological properties [31–33].
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Figure 1.1: Left: Schematic representation of four columnar, hexagonal cells in an
epithelium. Here adhesive “adherens” junctions are represented in green. Right:
Cells in vertex models are represented in two-dimensions as networks of polygons.
Labels indicate a cell α, a vertex i, and a boundary k. Based on Fig. A of [69].

Continuum descriptions have also been developed and applied to problems on
shorter length scales such as cell migration in the extracellular matrix [34–37] and
mechanics of the cell cytoskeleton [38–47].

1.1.2 Discrete models

Three-dimensional models coarse-grained at the single-cell scale have been used as
standard tools in the group of D. Drasdo et al., in particular to study the physics of
tissue growth and cancer [48–64]. In these models, cells are represented as spheres
obeying simple rules: cells adhere to each other, obey volume exclusion, divide, die,
and follow Langevin dynamics. Recently, related three-dimensional coarse-grained
models have appeared based on dissipative particle dynamics (DPD) [5, 65]. One
way in which DPD simulations differ from previous Langevin-dynamic models is that
they allow the possibility for internally generated dissipative forces, i.e., exchanged
between cells, to dominate over dissipation with respect to a background medium.

Owing to their primarily two-dimensional morphology, epithelia are particularly
well suited to theoretical studies at the single-cell level. For example, some ep-
ithelial properties such as polygon distributions can be described using topological
arguments alone [66–68]. However, in order to understand the biomechanics of
such tissues at the single-cell level, it is necessary to develop physical models de-
scribing stresses and forces on constituent cells. One type of discrete model for
two-dimensional tissues are vertex models, which describe epithelia as networks of
polygons at the level of the adherens junctions.

1.2 Vertex models

We define “vertex model” as a coarse-grained model describing mechanical forces
on a network of polygons. Such a definition is experimentally motivated as follows.
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Figure 1.2: Left (A): Confocal microscope image of a developing Drosophila wing
(E-cadherin labelled with green fluorescent protein in a wing disc epithelium). Right
(B): Epithelia in vertex models are represented as networks of polygons.

Near the surface of an epithelium, cellular contacts are tightly controlled in a net-
work of so-called adherens junctions. These junctions are enriched with cell adhesion
proteins called cadherins, which promote cell adhesion via homophilic interactions
[70]. At the level of the adherens junctions, the wing epithelium resembles a net-
work of polygons, see Fig. 1.2a. Thus, an epithelium can be described at this level
using a set of vertex positions and the connections between them. During devel-
opment, the biophysical properties of cells and their contacts generate mechanical
forces. These forces act in turn on the epithelial network, driving topological changes
and the relative motion of vertices. Here topological changes include cell division,
cell boundary rearrangement, and cell extrusion via apoptosis. Conversely, such
topological changes can be active processes, themselves inducing forces on cells and
their neighbours. Thus, mechanical forces and network dynamics undergo a subtle
interplay as the cellular network evolves dynamically.

In a vertex model, force balance must be satisfied for any stable and stationary
network, irrespective of the nature of the forces acting on the network. However, it
is necessary to dictate an explicit form for the forces acting on the network in order
to make closer contact with experiment. These forces are typically written as the
gradient of a potential energy or work function [69, 71]. Such a choice is valid in the
quasistatic limit, i.e., on timescales long compared to local mechanical relaxation
in the tissue. The choice of forces is one property that differentiates two vertex
models from one another. Recently, Farhadifar et al. described a vertex model that
can account for the geometrical and mechanical properties of the wing disc [69, 71],
which is the precursor structure that ultimately forms the fly wing.

Vertex models have been used to discuss tissue morphology [72], dynamics [73,
74], and, more recently, to study detailed problems such as the dynamics of wound
closure [75], cell sorting [76], the mechanical regulation of cell division and growth
[77], the emergence and reorientation of planar polarity [2], and the dynamics of
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growth control and morphogen scaling [78, 79]. Early models were evoked in dis-
cussions of foam [80–84] and grain boundaries [85, 86] rather than living tissue, and
these parallels continue today [87, 88]. Similar models have also been used to to
study wound closure [89] and the geometric structure of ommatidia in the Drosophila
eye [90]. Vertex models can be made computationally efficient in two dimensions,
however it is not straightforward to generalize vertex models to three dimensions.
An important method has been to use a modification of the many-states Potts model
[91–95] in order to represent complex cell shapes in two and three dimensions. A
slightly different approach is to treat cells exclusively using cell-centers (see [96] and
references therein); such calculations are typically less detailed but more computa-
tionally efficient. Tissues have also been recently treated on large length scales using
continuum descriptions [39, 97, 98], see Sect. 1.1.

Vertex models in their simplest forms help one to understand geometry, mechan-
ics, and dynamics of the cellular arrangements in epithelia. Vertex models gain
further significance in their extensions: details can naturally be incorporated in or-
der to understand higher biochemical and biophysical properties of epithelia, such
as the emergence and reorientation of planar polarity in the fly wing.

1.3 Planar cell polarity

1.3.1 Hair patterns and proteins

Planar polarity refers to broken symmetries in the plane of an epithelium [99–105].
These broken symmetries are most visible in the outgrowth of external structures.
For example, in the pattern of hair outgrowth on the human arm, hairs tend to align
over the length of the arm. Similarly, near the end of development of the fly wing,
a single hair grows from each cell on the wing and points in the distal direction,
see Fig. 1.3. Hairs can therefore be used to define a pattern of planar polarity
at the end of development in the fly wing. However, the mechanisms governing the
emergence and dynamics of planar polarity are not well understood. Planar polarity
is an example of long-range order in biological systems. In this context “long-range”
refers to the scale of complete tissues or organisms. Many physical systems exhibit
long-range order, for example in ferromagnetic transitions. However, no physical
analogue to magnetism is apparent in the wing of the fruit fly.

The pattern of hair outgrowth is determined by the distribution of certain pro-
teins called planar cell polarity (PCP) proteins [100–102]. Although the pattern
of hair outgrowth provides a straightforward and intuitive measure of planar po-
larity, hair outgrowth occurs at a single time point at the end of development. It
is thus necessary to investigate the distribution of PCP proteins in order to probe
the dynamics of planar polarity prior to hair outgrowth. These PCP proteins are
distributed anisotropically in the plane of the epithelium, and evolve dynamically
during development. At the time of hair outgrowth, PCP proteins are localized in
complexes at proximal and distal cell boundaries, see Fig. 1.4. Naming only the
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Figure 1.3: (A) Hair pattern on the adult wing of the fly exhibiting large-scale order
with wing hairs pointing towards the distal end of the wing. Arrows indicate the hair
orientation in different regions. (B) Higher magnification of region in (A) reveals
individual wing hairs. Experimental images courtesy of Suzanne Eaton, MPI-CBG.

so-called “core” PCP proteins, complexes containing the proteins Flamingo (Fmi),
Strabismus (Stbm), and Prickle (Pk) are found on proximal cell boundaries at the
end of development, see Fig. 1.4. These proximal protein complexes interact across
cell boundaries with distal complexes containing the proteins Flamingo (Fmi), Friz-
zled (Fz), Dishevelled (Dsh), and Diego (Dgo); here the protein Flamingo (Fmi)
localizes to both distal and proximal cell boundaries. Thus, PCP proteins in indi-
vidual cells align with the proximal-distal axis (PD-axis, the long axis of the wing)
during development prior to hair outgrowth.

1.3.2 How do cells coordinate polarity?

How can individual cells align to form a long-ranged polarity pattern? Possible
mechanisms can be divided into two categories: (i) global signals, where each cell
polarizes independently from its neighbours in response to some global spatial cue
or cues, and (ii) local signals, where cells polarize in response to spatial cues that
are received from a limited number of neighbours. Over twenty years of genetic
experiments show that PCP is controlled locally, via spatial information transmitted
between neighbouring cells [101]. Nevertheless, we review here the evidence for and
against both of these two classes of mechanisms, (i) and (ii), in order to form a more
complete picture of the mechanisms controlling PCP in the fly wing.

Chemical species often form concentration gradients in tissues. In the wing, the
proteins Four-Jointed (Fj) and Dachsous (Ds) form opposing concentration gradi-
ents: Ds is found in high levels in proximal regions of the wing that give rise to the
wing hinge and at lower levels in the wing blade. Fj is expressed in an opposite gra-
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Figure 1.4: Planar cell polarity (PCP) proteins localize in complexes across proximal
(blue) and distal (red) cell boundaries. At the end of development, a single hair
grows from the distal vertex of each cell, pointing in the distal direction.

dient, with levels highest in the wing blade. Such gradients could theoretically act
as global spatial cues in the wing, with individual cells polarizing along the axis of a
gradient. In support of this idea, Ds and Fj are necessary for the proper functioning
of the PCP system, together with another protein called Fat (Ft), which is expressed
uniformly in the wing. Ds is a ligand for Ft, and Fj is proposed to regulate Ft/Ds
activity. It is thus reasonable to propose that the combined Ft/Ds/Fj system pro-
vides global spatial cues for planar polarity in the wing. This is, however, certainly
not the case in the abdomen, where the core PCP proteins including Fmi and Fz
polarize independently from Ft/Ds [106]. Even in the wing, mutants flies uniformly
expressing Ds in the wing still orient PCP correctly, even in the absence of Fj [107].
Furthermore, there is a temporal problem with the theory that Ft and Ds lead to the
polarization of PCP proteins: Ft and Ds act at earlier developmental stages prior to
pupation [107], while PCP proteins do not align with the PD-axis until later times
prior to hair outgrowth [108]. Such statements about the temporal action of Ft/Ds
follow from experiments on mutant flies with temperature-dependent misexpression
of Ds [107]: here the experimentalist controls the temperature in a time-dependent
fashion, in order to determine during which times the normal expression of Ds is
necessary for the proper formation of PCP. It is clear that Ft, Ds, and Fj are some-
how necessary for PCP. However, gradients of these molecules cannot explain the
spatial pattern of PCP in the wing via global cues. It is of course still possible that
the gradient of some other protein or chemical species provides a global cue for PCP.
This is the mysterious “factor X” invoked in past models of polarity. However, after
two decades of failing to observe a gradient necessary for PCP, it is now time to
focus on other possible mechanisms.

The polarization of PCP protein complexes seen in the wing relies on all core
PCP proteins. In mutants lacking any one PCP protein the distribution of the
other PCP proteins and the resulting hair outgrowth are perturbed. However, the
perturbed hair patterns in such mutant animals are not completely random: rather,
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hair patterns in animals misexpressing PCP proteins show characteristic defects such
as swirls [101]. In particular, hairs in mutant patterns align with their neighbours,
although they do not align over the scale of the complete tissue. It is hard to
imagine how such behaviour could result in a system governed by global rules.
Rather, such behaviour is characteristic of local interactions: even if a system fails
to attain global order, local interactions cause groups of cells to align with one
another, and this alignment decays over some correlation length. Local signals are a
robust mechanism for establishing global order in general. For example, in a flock of
birds or a school of fish, animals successfully coordinate movement in large groups
without centralized control, and without knowledge of the activity of every member
of the flock or school. For the coordination of complete organisms, one expects senses
such as sight to function as local cues. For the coordination of individual cells in
the fly wing, PCP protein concentrations are a clear candidate. In particular, Fmi,
Fz, and Stbm are transmembrane proteins: the concentration profiles of Fmi, Fz,
and Stbm in a given cell directly influence the accumulation of PCP proteins in
neighbouring cells. This influence is visible in experiments where clones of mutant
cells misexpressing PCP proteins are introduced in wild-type tissue or vice-versa.
The effects are well summarized by J. A. Zallen [101]: “When clones of frizzled
mutant cells are generated in otherwise wild-type tissue, the hairs made by wild-
type cells near the clone point toward the frizzled mutant cells [[109, 110], Fig. 3B
in [101]]. Conversely, wild-type hairs point away from mutant cells that lack the
Strabismus transmembrane protein [[111], Fig. 3C in [101]].”

It is now the status quo to explain PCP as being dominated by the local interac-
tions of cells and their neighbours, rather than responses of cells to a global cue such
as a chemical gradient. The complete picture is likely to be more complicated than
that outlined here. For example, in addition to the Ft/Ds/Fj pathway, microtubules
in the wing have been shown to align preferentially with the PD-axis, and it has
been proposed that microtubules are involved in the formation of anisotropic PCP
protein distributions, for example via directed transport of PCP proteins along the
microtubule axis [112].

1.3.3 Theory of planar cell polarity

In the past ten years, mathematical models of PCP have appeared that attempt
to account for the complex interactions of many molecular species [113–119]. Such
detailed models can be used to show that a proposed mechanism is consistent with
experimental observations. However, detailed models of biological systems have
their shortcomings. Firstly, the chemical reactions at work in biological organisms
are complex and typically not known in complete detail. Multiple assumptions
are necessary to formulate a model describing such details, and the likelihood of a
model being correct in detail falls exponentially with the number of independent
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model assumptions 1. This implies that a model involving on the order of thirty
free parameters is almost certainly incorrect at the most detailed level. Further-
more, the individual assumptions necessary to construct a detailed model are more
error prone due to their more precise nature, as compared to the rough assumptions
necessary to construct a coarse-grained model 2. Models involving, e.g., ten cou-
pled nonlinear partial differential equations (PDEs) [115] are typically intractable
analytically and thus difficult to understand in detail. It is difficult to know which
of thirty parameters or ten PDEs is critical for the proper functioning of a model.
Nevertheless, such models are highly flexible and thus capable of reproducing the
wild-type PCP pattern and also patterns characteristic of PCP mutants [113, 115].
A pessimistic explanation would be that reproducing wild-type and mutant PCP
patterns is not contingent on the knowledge or correctness of details at the molec-
ular level. Such a position is supported by the fact that the specific models being
discussed [113, 115] rely on a global biasing signal, “factor X”, which is not sup-
ported by experimental evidence, see Sect. 1.3.2. Despite the arguments presented
here, detailed mathematical models are one type of tool that can be used to help
understand biophysical systems, for example by motivating and providing clues for
future experiments. Simplified models are a different type of tool, with different
strengths and weaknesses.

It is desirable to define a simple model whose behaviour mimics that of the real
system, with the hope to determine underlying physical mechanisms also present in
the real system. We identify three theoretical studies of planar cell polarity that
follow this philosophy [120–122]. In [120], Burak and Shraiman develop a coarse-
grained model describing PCP in analogy to ferromagnetism. Their study highlights
the effect of noise, and investigates the dynamics of polarity formation both in the
presence and absence of an unknown global biasing signal. In [121], H. Zhu presents
a phenomenological model of planar polarity via an analogy to the interactions of
polarized dielectric molecules. The results of that study [121] are strongly dependent
on the presence of a global biasing signal, and much of the paper is devoted to the
effects of varying the global biasing signal. In [122], Schamberg, Houston, Monk,
and Owen develop simplified models describing PCP as resulting from intracellular
reorganization of PCP proteins combined with an intercellular inhibition in the
form of a negative feedback loop. The authors consider a one-dimensional network
of cells, with each cell coupled to its two neighbours. PCP activity is captured via
dimensionless dynamic variables, lj and rj describing PCP activity on the left and
right sides of cell j, respectively. Explicit choices for dynamic equations dlj/dt and
drj/dt ∀j allow the authors to compute steady states, linear stability analyses, and

1If the probability of detailed model assumption i being correct is pi, then the probability of
multiple independent model assumptions being simultaneously correct is the product

∏
i pi.

2For example, in a highly coarse-grained model one might assume that two proteins inhibit one
another’s accumulation, and investigate the consequences. In a more detailed model, one might
assume that two proteins inhibit one another’s accumulation in a specific way, which is a stronger
claim.
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Figure 1.5: Examples of pattern formation in complex systems. Left (A): Turbu-
lent flow in water visualized using laser-induced fluorescence [123]. Here the field
of view is 45×45 mm2. The false-colour scheme represents the concentration of a
fluorescent dye, with red representing the highest concentration and blue the lowest.
Image reproduced with the permission of J. Westerweel. Center (B): Spiral patterns
in the oxidation of carbon-monoxide on platinum revealed via photoemission elec-
tron microscopy [124, 125]. Here dark regions are covered in oxygen, and bright
areas are covered in carbon-monoxide. The dimensions of the image are approxi-
mately 445×410 µm2. Image reproduced with the permission of G. Ertl. Right (C):
Pattern formation in a butterfly wing. Photograph used with permission from the
photographer, Muhammad Mahdi Karim [126]. Images from panels (A) and (C)
appeared on Wikipedia in addition to the given original citations [127].

numerical simulations.

1.4 Basic questions and ideas

In this section I address some basic scientific and philosophical questions and ideas
that are implicitly present in this thesis. Here the objective is twofold, firstly to
introduce fundamental concepts such as the rationale behind coarse-grained mod-
elling, and secondly to explain the author’s motivation for the research presented
here, revealing personal bias. By nature, this section is more subjective than the
strictly scientific content of the rest of this thesis. Nevertheless, references are pro-
vided where possible in order to stimulate further reading and substantiate the
arguments presented here.

1.4.1 Why study development?

Understanding growth and development is a classic problem in biology, and develop-
mental biology contains questions of both epistemological and immediate practical
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Figure 1.6: Left: The fruit fly Drosophila melanogaster. Photograph used with
permission from the photographer, Götz Grambow [136]. Right: Fruit fly wing with
labelled veins. Experimental image courtesy of Suzanne Eaton.

importance [128]. For instance: How does a single cell give rise to a complex multi-
cellular organism? Connections between biology, chemistry, and physics have both
stimulated the application of physical and chemical theories to problems in biology,
and also driven the development of the theories themselves. For example, nonlinear
dynamics are ubiquitous in chemistry, physics, and biology and are linked with com-
plex pattern formation [129–131]. Turbulent flow in fluids is associated with nonlin-
earity in the Navier-Stokes equation [132, 133], and oscillatory patterns in reacting
and diffusing chemicals result from instability and nonlinearity in the underlying ki-
netics [129], see Fig. 1.5. Along these lines, A. Turing applied the theory of reacting
and diffusing chemical species to pattern formation during development [134] 3. The
general problems of nonlinear dynamics and pattern formation are thus closely linked
between physics, chemistry, and developmental biology. Furthermore, living organ-
isms are open thermodynamic systems far from equilibrium [129]. Indeed, no living
matter would survive the long-time limit, or thermodynamic isolation. Rather, ther-
modynamics requires that living systems consume energy to establish and maintain
order [129]. Describing ordered systems in far-from-equilibrium conditions, Nicolis
and Prigogine stated: “structures that appear in this way are radically different
from the ‘equilibrium structures’ studied in classical thermodynamics” [129].

3Note that nonlinear terms were not included in Turing’s original paper [134]. Indeed, the
Turing instability can be derived using linear stability analysis alone. However, nonlinearities are
necessary to bound the exponential growth of unstable modes, and also in order to determine which
pattern is selected or favoured following an instability [134, 135].
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1.4.2 The fly wing as a model system

This thesis deals in general with the biophysics of tissues. Epithelia are thin tissues
such as mammalian skin or the wing of a fruit fly 4. In this thesis we choose the
wing of the fruit fly Drosophila as a model system, see Fig. 1.6. The motivation for
restricting our attention to epithelia is twofold: Firstly, the formation of epithelia
is in itself an important situation. Secondly, choosing a primarily two-dimensional
model system results in significant simplifications in the resultant theories of cell
division, death, mechanics, and dynamics. From a theoretical point of view, any
particular model organism is equally well suited for forming a general understanding
of tissue mechanics and dynamics. We choose the Drosophila wing as a model
system in order to benefit from and to contribute to the wealth of genetic knowledge
surrounding this organism.

1.4.3 Simplified models as tools

Coarse-grained descriptions are used throughout this thesis: we do not attempt to
capture the intricacies of a real fly wing. The purpose of building simplified models
is to identify and understand underlying physical processes that are also present in
real systems. For example, continuum mechanics operates by shedding the burden
of discrete structure on the atomic scale. Such simplified models are not improved
by the introduction of additional details. Indeed, the notion of improving such a
model is in itself ill-defined. Success or failure is defined with respect to a particular
set of goals, and the objective of science as presented in this thesis is to understand
physical systems.

1.4.4 Multi-scale theories

Multi-scale modelling is a key concept for understanding tissues. Here the idea is
to formulate descriptions of tissues at different length scales, with the objective to
form a consistent picture bridging all scales. On smaller length scales cells are iden-
tifiable as discrete units, and must be treated so theoretically. Although microscopic
dynamics can be seen to give rise to macroscopic phenomena, microscopic theories
are often not the best way to understand macroscopic phenomena. Understanding
cell flow by individually discussing the motions of thousands of individual cells is
probably not the most economic or enlightening approach. Rather, theory at longer
length scales provides additional insights by discarding irrelevant details. Thus, it
is helpful to describe tissues on large length scales as continuous materials, aver-
aging out heterogeneity on the scale of single cells. In general, different models
may be helpful for understanding different aspects of a given system. Models at

4More specifically, mammalian skin is composed of multiple layers including the so-called hy-
podermis, dermis, and epidermis; the epidermis is a prototypical epithelium. The Drosophila wing
is composed of two epithelial layers.
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small length scales are helpful for understanding microscopic details and discrete
events, and also for understanding how discrete behaviour at the cell-scale gives rise
to large-scale behaviour. Conversely, models at large length scales are helpful for
studying collective phenomena, and for determining the continuum limits expected
in small-scale models. A complete understanding of the system is obtained by re-
quiring that small- and large-scale models be consistent, for example by deriving
large-scale models from small-scale counterparts [32]. In this way, the maximum
information about a system is obtained at each level of detail, without sacrificing
the scientific rigour or conceptual advantage of possessing a single, complete picture
describing the system at all scales.

1.4.5 Collective phenomena, self-organization, and emergence

Collective phenomena, self-organization, and emergence are general concepts con-
necting biology, chemistry, physics, and the present thesis. Collective phenomena
result from the combined behaviour of many agents, for example, the collective mo-
tion of a school of fish [137], or a collective excitation of electrons (plasmon) in a
solid [138]. Self-organization refers to processes where parts of the overall system
are not centrally controlled [137, 139, 140]. For example, the aforementioned school
of fish is probably self-organized [137], in a mechanism where individual fish move
in coordination with their neighbours, as opposed, e.g., to having all the fish in the
school follow a leader. Emergence is an extremely broad idea described by the Stan-
ford Encyclopedia of Philosophy as “a notorious philosophical term of art” [141].
The essential idea behind emergence is that parts of a system can combine to give
rise to some behaviour that is not obvious from looking at the parts themselves. In
the context of the mechanics and dynamics of tissues, tissue-scale behaviour emerges
from the collective behaviour of individual cells. Tissue-scale properties may or may
not be self-organized, depending on whether cells coordinate using some external
global cue, or strictly using interactions internal to the tissue. The ideas of col-
lective phenomena, self-organization, and emergence are not directly employed as
scientific theories in this thesis. However, these related concepts should explain to
the reader why biology can indeed be tackled using the tools of theoretical physics,
albeit with some difficulty. Furthermore, these concepts provide the general context
to understand the necessity and utility of using simplified and multi-scale models.

1.5 Contents of this thesis

In this thesis we present a theoretical analysis of the vertex model, and a theoretical
description of planar cell polarity (PCP). These theoretical analyses build off and
contribute to the literature surrounding the vertex model and PCP. The remainder
of this thesis is structured as follows: In Chapter 2 we present a definition of the
vertex model and an analytical derivation of the ground state diagram. In Chap-
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ter 3 we discuss topological processes in the vertex model, such as cell-boundary
rearrangements and cell division, and present methods and results for simulating
tissue growth. We present in Chapter 4 an extension of the vertex model designed
to go beyond the so-called quasistatic approximation, which is used in Chapter 3
and in other vertex-model studies. In Chapter 5 we shift our focus to make closer
contact with experiment, presenting theoretical methods and results for quantifying
and subsequently visualizing experimental data. In particular, we present in Sect.
5.1 a quantification for cell flow fields and their derivatives, and we present in Sect.
5.2 a quantification for planar cell polarity (PCP). In Chapter 6 the ideas motivated
by the quantifications of Chapter 5 are developed into a consistent PCP theory,
including in Sect. 6.1 a theoretical analysis of the interaction between cell flow and
polarity reorientation. All topics of this thesis are unified in Sect. 6.2 in a cell-scale
model of PCP based on the vertex model. The thesis concludes in Chapter 7 with
a discussion of what has been achieved and suggestions for future work.



2 Vertex model for mechanics and
dynamics of epithelia

In the present chapter, we introduce a vertex model in terms of a potential energy
or work function and subsequently derive the ground states of the model using
analytical arguments. We discuss the effects of external pressure on the ground
state diagram, and present elastic properties of the ground states including shear
and compression moduli. Knowledge of the ground state diagram and analytical
methods for its determination help to understand the forces acting on real tissues.
The specific vertex model introduced in this chapter, and used throughout this
thesis, first appeared in [69] and [71]. The results presented here build off are refine
those presented in [69, 71]. In the remainder of this thesis, we refer to the particular
vertex model under study as “the vertex model”. For a discussion of other vertex
models, see Sect. 1.2.

2.1 Potential energy or work function

The geometry of the polygonal network is described by a set of vertex positions
ri, with i = 1, . . . , NV , where NV denotes the number of vertices, together with
bonds k that connect pairs of vertices. Each polygon describes one cell, indexed
by α = 1, . . . , N , where N is the number of cells in the system. The mechanical
properties of the network in stationary conditions are described by a potential or
work function:

F (ri) =
∑
α

Kα

2
(Aα − A(0)

α )2 +
∑
k

Λklk +
∑
α

Γα
2
L2
α. (2.1)

Here, Aα denotes the area of cell α, Lα is the cell perimeter and lk is the length of
bond k. The first term describes area elasticity, where the sum is over all cells α. If
the polygonal area Aα of a cell with constant volume V = Aαh is changed, the cell
height h adjusts. Under such a deformation the elastic energy can be described by an
area elastic modulus Kα and a preferred area A(0). The second term describes bond
tension Λk, where the sum is over all bonds k. This tension results from actomyosin
contractility in the cortical bundles associated with the adherens junctions, and
also from the mechanics of cell-cell adhesion. In a general expansion of the work
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function in terms of vertex positions, higher order terms in bond lengths appear. We
introduce as a specific choice of a quadratic term the perimeter elasticity described
by the coefficient Γα. This terms accounts for changes in bond tension due to
a change in cell perimeter. It is motivated by the fact that an actomyosin ring
underlies the adherens junctional network, which is in general expected to exert a
tension depending on cell perimeter.

Of particular theoretical interest is the case where all cells have the same prop-
erties, i.e., they all have a common preferred area A

(0)
α = A0, perimeter stiffness

Γα = Γ, area stiffness Kα = K, and all bonds have the same line tension Λk = Λ.
This special case is still relevant to comparisons with experiment [69, 71], is some-
what tractable analytically, and serves as the reference for situations with inhomo-
geneous tissue parameters. In this situation the dimensionless potential energy per
cell F = F/(NKA2

0) can be written as

F =
1

N

∑
α

e(aα, pα) (2.2)

with

e(a, p) =
1

2

[
(a− 1)2 + Λp+ Γp2

]
(2.3)

=
1

2

[
(a− 1)2 + Γ(p− p0)2

]
+ e0, (2.4)

where aα = Aα/A0 and pα = Lα/
√
A0. Dimensionless bond lengths are similarly de-

fined as `k = lk/
√
A0. The model parameters are represented as p0 = −Λ/2Γ, which

is a dimensionless preferred perimeter and e0 = −Λ
2
/8Γ, where Λ = Λ/(KA

3/2
0 )

and Γ = Γ/(KA0). In writing Eq. 2.4 we have made use of the choice that all
bonds have the same line tension Λk = Λ, so that line tension can be absorbed in
the perimeter term by introducing p0. Changes in area δa and perimeter δp imply
a change in potential:

δe = (a− 1)δa+ Γ(p− p0)δp+
1

2
(δa2 + Γδp2). (2.5)

If a cell has a = 1 and p = p0 then the potential of that cell e = e0 is at the absolute
minimum of e.

2.2 Ground states

Here we systematically determine the ground states of the vertex model. Ground
states can be interpreted as being the most relaxed network configurations. They
are the absolute minima of F for a given number of cells N , using periodic boundary
conditions for simplicity. The size of the periodic box is given by the lengths Lx and
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Perimeter Area Properties of e(a, p) Geometric constraint on (a, p)

p > p0 a < 1
potential minimum
is a regular polygon

none

p = p0 a = 1
this is the absolute
potential minimum

Λ ≤ −4Γ
√
n tan (π/n)

p = 0 a = 0
potential minimum
is a collapsed cell

Λ ≥ (2/c)[(2c− Γ)/3]3/2 (Γ < 2c)

Λ ≥ 0 (Γ ≥ 2c)

p < p0 any a
potential can be reduced
by increasing perimeter

none

p = p0 a 6= 1
potential can be reduced

by uniform scaling
none

p > p0 a ≥ 1
potential can be reduced
by uniform compression

none

Table 2.1: Geometric constraints limit the values of the dimensionless perimeter p
and area a that are possible for a polygonal cell. These constraints are listed in the
rightmost column. Given a set of (a, p) (first and second columns), a corresponding
polygon may or may not be a minimum of e, as indicated in the third column.

Ly. We consider the case where all cells have the same properties, and represent the
potential F using the dimensionless potential energy per cell F .

First, we determine minimal potential configurations of single polygons. We then
construct lower bounds of F for arbitrary polygonal lattices and compare them to
F = e6 for hexagonal lattices and to the value F = 1/2 of a collapsed network
(aα = 0, pα = 0). In this way we determine regions in parameter space where
different types of ground-state networks exists, see Fig. 2.1.

2.2.1 Polygons of minimal potential

First we determine the shape corresponding to the global minimum of the potential
e(a, p) of a single polygon with a fixed number of sides n. We identify several cases
depending on the values of a and p, see Table 2.1. An optimal polygon with a > 0
must obey ∂e′/∂χ|χ=1 = 0, where

e′ =
1

2

[
(χ2a− 1)2 + Γ(χp− p0)2 + e0

]
(2.6)

is the potential of a polygon rescaled by a factor χ = 1 + ε. This condition implies

2a(a− 1) + Γp(p− p0) = 0. (2.7)
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Thus, we distinguish three cases of possible minima of e: (i) p < p0 and a > 1,
(ii) p = p0 and a = 1, and (iii) p > p0 and a < 1. The first case (i) is unstable
with respect to shear, because ∂e/∂p|a = Γ(p − p0) < 0 and it is always possible
to increase the perimeter of a polygon at fixed area. Case (ii) corresponds to an
absolute minimum of e, at which both area and perimeter take their preferred values.
This is possible only if p0 is equal to or larger than the minimal perimeter of an
n-sided polygon of unit area, which leads to the condition:

Λ ≤ −4Γ

√
n tan

(π
n

)
. (2.8)

In the limit of large n Eq. 2.8 becomes:

Λ < −4
√
πΓ. (2.9)

In case (iii), the optimal shape is either a regular n-sided polygon or a collapsed
cell (a = 0, p = 0). For p > p0, ∂e/∂p|a > 0, thus reducing the perimeter at fixed
area reduces the potential. A regular n-sided polygon has a smaller perimeter than
any irregular n-sided polygon with equal area. Thus if p > 0 the optimal shape is
a regular n-sided polygon. A special case is a collapsed cell with a = 0, p = 0, and
e = 1/2. For regular polygons a = cp2 where c = cot(π/n)/4n. The potential is

e(p) =
1

2

[
(cp2 − 1)2 + pΛ + p2Γ

]
; (2.10)

the stationarity condition de(p)/dp = 0 provides the relation

4c2p3 + (2Γ− 4c)p+ Λ = 0. (2.11)

Combining Eq. 2.11 with the inequality e > 1/2, we obtain the condition for
polygonal collapse:

Λ ≥ 2

c

(
2c− Γ

3

)3/2

(Γ < 2c)

≥ 0 (Γ ≥ 2c). (2.12)

In the limit of large n Eq. 2.12 becomes:

Λ ≥ 8√
π

(
1− 2πΓ

3

)3/2

(2πΓ < 1)

≥ 0 (2πΓ ≥ 1). (2.13)

Note that, as will be shown in Sect. 2.2.2, Eq. 2.8 and Eq. 2.12 define characteristic
boundary lines in the ground-state diagram of the vertex model, see Fig. 2.1a.
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Figure 2.1: (a) The ground-state diagram of the vertex model. In region (I) (orange)
the ground states are degenerate and correspond to primarily irregular networks, in
which all cells have equal perimeter p = p0 and equal area a = 1. Within this
region, dashed lines (described by Eq. 2.8 for n = 3, 4, and 5) separate subregions
with varying degrees of degeneracy. In these subregions the ground state is composed
of irregular polygons with (from left to right) n ≥ 3 sides, n ≥ 4 sides, n ≥ 5 sides,
and n = 6 sides, respectively. The solid line separating region (II) where the regular
hexagonal lattice is the ground state is described by Eq. 2.8 with n = 6. Within the
hatched region the ground state is a collapsed lattice of cells with zero area. (b) The
region enclosed by the two dotted lines in (a) is magnified. Two additional regions
(III) (red) and (IV) (blue) can be identified, where a “4-8” lattice and “3-12” lattice,
respectively, have lower energies than the regular hexagonal lattice. The violet line
indicates where the hexagonal lattice becomes locally unstable. In the region outside
of the two dotted lines the nature of the ground state can be shown rigorously. (c)
Diagrams of the potential energy per cell ∆F = F−e0−1/2 of different lattices, as a
function of normalized line tension Λ for Γ = 0.15. Intersections of ∆F for different
lattices are marked by dotted lines. The lowest energy (orange) corresponds to soft
lattices, which exist in region (I) for Λ . −1.12. The energy of the hexagonal
lattice (green) has minimal energy in region (II). The energy of collapsed lattices
with zero area is indicated by the black line, and minimizes the energy in the hatched
region. Furthermore, the energies of 4-8 and 3-12 lattices are indicated in red and
blue, respectively. (d) Magnification of a small region of line tension of the energy
diagram shown in (c), highlighting the regions where new periodic lattices have
minimal energy.
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2.2.2 Networks of minimal potential

In Sect. 2.2.1 we showed that the potential energy e(a, p) of an individual cell is
minimized by regular n-sided polygons. Here we determine ground-state networks,
defined as the configurations of polygons that minimize the potential F for a given
set of parameter values Λ and Γ with periodic boundary conditions. The size of
the periodic box is also varied in the minimization. This minimization problem is
solved by using the minimal energy polygons described in the last section together
with the fact that the average neighbour number is less than or equal to six. Note
that in periodic networks containing only threefold vertices the average neighbour
number is exactly six. In periodic networks containing manyfold vertices, the average
neighbour number is less than six. Details of the determination of ground states and
the corresponding ground-state diagram are presented in App. A.

In Figs. 2.1a and 2.1b we present the ground-state diagram of the vertex model.
We find four distinct regions of parameter space (Λ and Γ): (I) irregular networks
are the (degenerate) ground states, (II) the ground state is a hexagonal lattice, and
two further regions (III) and (IV), where other periodic lattices are the ground state.
In the hatched region the ground state is a collapsed network of cells with zero area.
Region (I) is bounded by a straight line described by Eq. 2.8 for n = 6. Region
(I) can be further divided into four subregions (separated by dashed lines in Fig.
2.1a), characterized by the degree of degeneracy of the ground states. From right
to left the ground states in the four subregions are composed of irregular n-sided
polygons with n = 6, n ≥ 5, n ≥ 4, and all n, respectively. They are obtained
from Eq. 2.8 for n ≤ 6. The region inside of the dotted lines is highlighted in
Fig. 2.1b. Outside of this region, the state diagram is known exactly, see App. A.
The dotted line within the hatched region is given by Eq. 2.13, while the dotted
line within region (II) is determined in App. A. Between these dotted lines we find
two small regions (III) (red) and (IV) (blue) where two new periodic lattices have a
lower energy than the hexagonal lattice, see Fig. 2.1. These regions were identified
numerically by comparing the minimized energies of various periodic tilings of the
plane. Furthermore, we show in Fig. 2.1b a violet line, showing the limit of local
stability of the hexagonal network.

The energy of different periodic network configurations is shown in Figs. 2.1c
and 2.1d as a function of Λ for Γ = 0.15. The energy of soft lattices in region (I) is
constant and the corresponding line (orange) exists for Λ . −1.12, up to the dotted
line in Fig. 2.1c. The energy of hexagonal lattices is indicated in green, while those
of periodic “4-8” and “3-12” lattices are shown in red and blue, respectively. Note
that the blue line only exists for Λ & −0.20. The black line shows the energy of
collapsed cells of zero area. The energy branch of soft lattices (orange) meets the
energy of the hexagonal lattice (green) at a point where the energy of the hexagonal
lattice has zero slope, indicative of a second order transition, see Fig. 2.1c. The
transitions between regions (II), (III), and (IV), however, are first order transitions
because the different branches have different slopes, see Fig. 2.1d.
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2.3 Effects of external pressure

The effects of external pressure σ can be incorporated into the dimensionless po-
tential energy per cell F by adding a dimensionless potential energy aσ to the the
potential of an individual cell e(a, p). Under this modification, Eq. 2.4 becomes:

e(a, p) =
1

2

[
(a− 1)2 + Λp+ Γp2

]
+ aσ. (2.14)

Completing the square and renormalizing, the effect of external pressure aσ can be
combined with the other terms in Eq. 2.14 yielding the equation:

ẽ(ã, p̃) =
1

2

[
(ã− 1)2 + Λ̃p̃+ Γ̃p̃2

]
+ ∆ẽ, (2.15)

where ẽ = e/(1−σ)2, ã = a/(1−σ), p̃ = p/
√

1− σ, Λ̃ = Λ/(1−σ)3/2, Γ̃ = Γ/(1−σ),
∆ẽ = [1/(1− σ2)− 1] /2, and we have assumed Λ 6= 0. Thus, external pressure
can be accounted for in a rescaling of model parameters Λ and Γ, together with a
rescaling of the dimensionless areas a and perimeters p, leaving the ground-state
diagram otherwise unchanged. As dimensionless pressure σ is changed, the system
moves on a path in the ground-state diagram with effective parameters Λ̃ and Γ̃

Λ̃ =
Λ

(1− σ)3/2
(2.16)

Γ̃ =
Γ

1− σ
, (2.17)

where Λ and Γ are the dimensionless line tension and dimensionless perimeter elas-
ticity in the absence of external pressure as defined in Sect. 2.1.

Eq. 2.16 points out that as external pressure σ is increased, the magnitude of
the effective line tension Λ̃ increases. If Λ < 0 this suggests that for sufficiently
large σ it might be possible to force a transition from the region where a hexagonal
lattice is the ground state of the vertex model (green region of Fig. 2.1a) to the
region where irregular lattices are the ground states of the vertex model (orange
region of Fig. 2.1a). Such transitions are indeed observed in simulations, see Fig.
2.2. Conversely, if Λ > 0 then increasing pressure will eventually force a transition
to the region where a collapsed lattice of zero area is the ground state of the vertex
model (hatched region in Fig. 2.1a).

2.4 Shear and compression moduli

Here we discuss the shear and compression moduli of the ground states of the vertex
model. For fixed cell number N and box dimensions Lx and Ly we define the
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(a) (b)

(d)(c)

Figure 2.2: Calculation results showing a forced transition from a hexagonal state to
an irregular lattice via the application of external pressure. In all panels, parameter
values Λ = −0.25, Γ = 0.04 were chosen to be close to the transition line. (a) For
zero pressure, σ = 0, the potential F is minimal for a network of regular hexagons.
(b) For dimensionless pressure σ = 0.3, the potential is still minimal for a network
of regular hexagons, although the size of hexagons in the ground state has been
reduced. (c) Increasing the pressure slightly further, to σ = 0.302, forces a transition
to a network of deformed hexagons. (d) For σ = 0.5 the network is massively
deformed and contains convex cells.
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minimum of the potential F by the function F (Lx, Ly). The shear modulus µ can
then be obtained as:

µ =
1

2A

∂2F (Lx, Ly)

∂γ2

∣∣∣∣
γ=0

, (2.18)

where A = LxLy, Lx = L
(0)
x (1+γ), and Ly = L

(0)
y /(1+γ). Here, L

(0)
x and L

(0)
y define

the size of a reference box and γ is a dimensionless rescaling parameter. Similarly,
the compression modulus λ can be obtained as

λ =
1

4A

∂2F (Lx, Ly)

∂ε2

∣∣∣∣
ε=0

, (2.19)

where Lx = L
(0)
x (1 + ε) and Ly = L

(0)
y (1 + ε). In the region where the ground state

is a hexagonal lattice the network has both nonzero shear and compression moduli:

µ = (
√

3/16)p2 + 2
√

3Γ− 1/2

λ = 6
√

3Γ + 3
√

3Λ/p, (2.20)

where λ = λ/(KA0) and µ = µ/(KA0).
As line tension and perimeter elasticity are reduced the shear modulus of the

network decreases; when the equilibrium perimeter of cells in the hexagonal ground
state reaches p = p0 the shear modulus vanishes, yielding a transition line at Λ =
−25/231/4Γ. This is exactly the transition line where the ground state changes from
a network of regular hexagons to a degenerate network where all cells have a = 1,
p = p0, and e = e0, see Sect. 2.2.2. For line tensions and perimeter elasticity
below this transition line, small shear deformations can be performed with no work
required, indicative of a transition from a solid to a soft network.

For sufficiently high perimeter elasticity and tension the compression modulus
vanishes. Setting λ = 0 in Eq. 2.20 yields an instability line for the hexagonal
lattice:

Λ = 23/23−5/2(
√

3− 12Γ)3/2 (Γ <
√

3/12)

= 0 (Γ ≥
√

3/12). (2.21)

This line lies primarily in the hatched region of the state diagram, see the violet line
in Fig. 2.1. For points in the phase diagram beyond this line hexagonal networks
are unstable. This instability is reflected in Eq. 2.11, which has no real positive
roots p ≥ 0, p ∈ R for hexagonal lattices (n = 6, c =

√
3/24) beyond the violet line.

2.5 Summary

In this chapter we presented a vertex model for cell mechanics based on a potential
energy or work function. We chose for a potential energy the same form as was pre-
sented in [69, 71], with the motivation that this specific version of the vertex model
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is being applied to study processes such as cell packing [69, 71], cell sorting [76],
planar cell polarity [2], and the dynamics of growth control and morphogen scaling
[78, 79]. However, the analytical arguments presented in this chapter do not depend
on the specific functional form chosen for the potential energy. The derivation of the
ground-state diagram could be repeated for different vertex models, and the meth-
ods presented here are general in this sense. In particular, we find that the ground
state diagram of the vertex model is dominated by the geometric requirement that
cells be polygons, and the topological requirement that these polygons must form a
contiguous network. We find that external pressure can be incorporated as a rescal-
ing of model parameters, leaving the ground state diagram otherwise unchanged.
Finally, we present shear and compression moduli for the hexagonal lattice, relating
critical values of these elastic moduli to transitions in the ground-state diagram of
the vertex model.



3 Topological processes and tissue
growth

The ground state is an important reference state for cellular networks, representing
the most relaxed configuration. Network configurations that correspond to cell pack-
ings in tissues in general do not correspond to ground states. Active processes such
as cell division and morphogenetic movements perform mechanical work, and thus
generate network configurations that are of higher potential energy than the ground
state. However, these configurations are force-balanced, and thus local minima of
the potential F [69]. The large number of such local minima are physiologically
relevant, and are generated via topological rearrangements of the network. Such
topological changes are often associated with energy barriers. Here we discuss three
types of topological transitions, namely T1 transitions, T2 transitions, and cell di-
vision. A T1 transition occurs when a cell boundary shrinks to zero length, forming
a fourfold vertex, which subsequently decomposes, creating a new cell bond [142].
This process changes neighbourship relationships, see Fig. 3.1. A T2 transition
occurs when a n-sided polygon shrinks to a point and is replaced with an n-fold
vertex, see Fig. 3.2. Such a T2 transition corresponds to cell extrusion from an
epithelium, typically associated with cell death (apoptosis).

3.1 Energetics of manyfold vertices

The energetics of manyfold vertices in the vertex model are relevant for the dynamics
of boundary rearrangements, i.e. T1-transitions. A manyfold vertex is unstable if

Figure 3.1: Schematic of a network rearrangement called a T1 transition. Two
threefold vertices combine to form a fourfold vertex, which subsequently decomposes
into two new threefold vertices. The overall topology of the network is changed
during this process, and cells change their neighbourship relation.
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Figure 3.2: Schematic of a network rearrangement called a T2 transition. A cell
shrinks to zero area and is removed from the lattice. This process corresponds to
the extrusion of a cell from an epithelium (apoptosis).

there exists a decomposition into infinitesimally separated threefold vertices that
lowers the potential F of the network. For example, a fourfold vertex can be replaced
by two threefold vertices in two topologically different ways, see Fig. 3.1. Our work
suggests that manyfold vertices are unstable if all cells are equivalent (common
values of A0, Λ, Γ, and K), unless a = 1 and p = p0. A general proof of this
statement is lacking, but it holds true for any case investigated.

Consider for example the case where cells meeting at a fourfold vertex have equal
area a 6= 1 and equal perimeter p 6= p0. If a fourfold vertex decomposes into two
threefold vertices then the total energy change is:

δF =
1

N

∑
α

[
(aα − 1)δaα + Γ(pα − p0)δpα

]
, (3.1)

plus terms of order δa2α and δp2α. Substituting aα = a and pα = p, Eq. 3.1 reduces
to

δF =
Γ(p− p0)

N

∑
α

δpα. (3.2)

Thus the change in potential during decomposition of a fourfold vertex is propor-
tional to the total perimeter change in this case. There are two topologically distinct
ways to decompose a fourfold vertex into two threefold vertices, see Fig. 3.1. For
each of these two topologically distinct decompositions, there is a continuum of pos-
sible variations, assuming that infinitesimal movements of the resulting threefold
vertices are permitted. As a consequence, there always exist many decompositions
of a fourfold vertex into threefold vertices, some of which increase and some of which
decrease the total perimeter. Thus it is possible to lower the potential of the net-
work by decomposing the fourfold vertex, and the fourfold vertex is always unstable
in this case. Finally, if cells are unequal in their mechanical properties then stable
manyfold vertices can occur.

3.2 Cell extrusion by T2 transitions

Cell extrusion can be discussed in a simple scenario where triangular cells of dimen-
sionless side length ` = l/

√
A0 are introduced at the vertices of a hexagonal network.
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Figure 3.3: Diagrams of the potential energy per cell ∆F = F − e0 − 1/2 of “3-
12” lattices, which are hexagonal lattices into which triangular cells are periodically
introduced, see Fig. 2.1b. Different parameter values reveal three possible situations:
(a) no barrier to cell extrusion (b) a finite barrier to cell extrusions and (c) stable
3-12 lattices in region (IV). Parameter values are (Λ,Γ) = (0.12, 0.04), (0, 0.1), and
(−0.005, 0.15), corresponding to (a), (b), and (c), respectively.

The resulting lattice consists of three- and twelve-sided cells, as in region IV of Fig.
2.1. We show in Fig. 3.3 the potential energy per cell of the lattice as a function
of the side length ` of the triangles. Depending on parameter values we find three
distinct behaviours: (a) instability of triangles with respect to spontaneous cell ex-
trusion, (b) locally stable triangles with a barrier to cell extrusion, and (c) globally
stable triangles in region IV of Fig. 2.1.

3.3 Cell division in the vertex model

In the vertex model, cell division can be introduced by the following steps [69] (al-
gorithm I): (i) Initially the network is in a force-balanced state, i.e. a local minimum

of F . (ii) A cell α is selected to divide. (iii) The preferred area A
(0)
α of cell α is

doubled quasistatically. (iv) A new cell boundary is introduced bisecting the cell α
into two daughter cells. In the case of isotropic cell division, the new cell bond has
a random orientation. We choose it to pass through the center of cell α, defined
as the average of the vertex positions of that cell. (v) The preferred areas A

(0)
α of

the daughter cells are reset to the original preferred area of cells. (vi) The system
is relaxed to a force-balanced configuration 1. This relaxation introduces network
rearrangements by T1 and T2 transitions. A detailed discussion of the algorithms
used to account for topological changes are given in App. B.1.

For simplicity and to improve computational performance, the steps described
above can be reduced as follows (algorithm II): (i) Initially the network is in a force-
balanced state. (ii) A cell α is selected to divide. (iii) The cell α is bisected into

1Both here and in Ref. [69] force-balanced states are obtained using the Polak-Ribière variant
of the conjugate gradient algorithm [143], e.g., as implemented in the GNU Scientific Library [144].
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two daughter cells by inserting a new cell bond. This new cell bond has a random
orientation and passes through the geometric center of cell α. (iv) The system is
relaxed to a force-balanced state. We show in App. B.2 that algorithm I and II
give very similar results, and that for practical purposes algorithm II is sufficient to
describe tissue morphology.

3.4 Tissue morphologies generated by growth

Growth simulations are performed by randomly selecting cells with equal probability
to divide. A single cell division is performed using algorithm II and the next cell
is subsequently selected at random. This implies a quasistatic representation of
growth. This process can be related to real time by assigning times to each cell
division event. This can be done such that the probability per unit time of each
cell to divide, the cell division rate kd, is constant. Alternatively, one can describe
the process as a function of generation number g = log2(N/N0), where N is the cell
number and N0 is the cell number in the original generation of cells.

We show in Fig. 3.4a polygon class distributions resulting from vertex model
simulations using algorithm II (solid line). These data were obtained by performing
104 simulations, each starting from 16 cells and having 102 subsequent cell divisions.
The errors are smaller than the line width and are thus not indicated. Note that
neighbour numbers in the simulations were determined without a cutoff for minimal
bond length and therefore the average neighbour number is 6. This data is compared
to experimental estimates of neighbour number distributions in the developing wing
of the fruit fly Drosophila (data from Ref. [69]).

In a series of studies spanning from 1928 to 1950, F. T. Lewis reported an
approximately linear relationship between the number of sides and the area of cells
of various organisms [145, 146]. This maxim is commonly referred to as Lewis’s Law.
We present in Fig. 3.4b the area of polygons resulting from simulated growth in the
vertex model (algorithm II, solid line) and values reported experimentally (dashed
line). Note that our simulations show that the average area exhibits nonlinear
behaviour. However, if the same data were presented over a limited range of n
(e.g. 4 ≤ n ≤ 8) and with larger error bars, then one might mistakenly identify
a linear relationship. Nonlinearities can have several causes, for instance because
cells cannot have arbitrarily large areas while the number of neighbours can become
large. These nonlinearities are accessible in simulations, where precise statistics are
possible. Lewis’s Law therefore represents an approximation that is valid for limited
ranges of n.

We also present in Figs. 3.4c and 3.4d the full distributions of polygon area and
perimeter. The mean areas 〈a〉n presented in Fig. 3.4b are the first moments of the
distributions shown in 3.4c.
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Figure 3.4: (a) Fraction of n-sided polygons as a function of cell neighbour number n.
Neighbour number distributions are obtained in growth simulations with algorithm
II for (Λ,Γ) = (0.12, 0.04) without a length cutoff (black) and with a length cutoff
of 20% of the average bond length (blue). Experimental data (red) of the wing of
the fruit fly from Ref. [69] is shown for comparison. The length cutoff defines a
distance, below which two threefold vertices are considered to be a single fourfold
vertex. For each polygon containing one or more edges shorter than the length
cutoff, the neighbour number n is reduced appropriately. (b) Average area of n-
sided polygons, normalized by the average area of cells in the network, for the same
simulations and experiments shown in (a). (c) Stationary probability distributions
of the areas of n-sided polygons in the growth simulations with algorithm II that
are indicated by solid lines in (a) and (b). (d) Stationary probability distributions
of the perimeters of n-sided polygons in the simulations shown in (c).
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3.5 Summary

In this chapter we investigated topological changes present in real tissues, includ-
ing T1 and T2 transitions, cell division, and growth. Here T1 and T2 transitions
correspond to cell-boundary rearrangement and cell extrusion, respectively. These
transitions arise naturally in vertex model simulations, in the situations where either
a bond or a cell vanishes to zero length or area, respectively. During a T1 transition,
a four-way or many-way vertex is formed in an intermediate state, see Fig. 3.1. Here
we find that four-way vertices are unstable in the vertex model in the case where
all cells have identical parameters. With regards to T2 transitions, we find three
distinct situations: no barrier to cell extrusions, a finite barrier to cell extrusions,
and stable triangular cells in region (IV) of the ground state diagram, see Fig. 3.3.

We presented in Sects. 3.3 and 3.4 an algorithm for simulating tissue growth in
the vertex model. This algorithm is a simplified version of that presented in Ref.
[69], which gives the same results as that algorithm in the present simulations, see
Appendix B.2. These algorithms for tissue growth allow a connection to be made
with experiments, see Figs. 3.4a and 3.4b, and can make predictions for future
experiments, see Figs. 3.4c and 3.4d and Refs. [2, 69, 76, 78, 79].



4 Dynamics beyond the quasistatic
approximation

The growth simulations presented in Chapter 3 made use of quasistatic dynamics,
which are valid on timescales longer than the mechanical relaxation of the network.
However, there are specific situations where the choice of dynamics plays a critical
role. In this chapter we discuss the limitations of the quasistatic approximation,
and develop an alternative dynamic description based on the balance between reac-
tive and dissipative (frictional) forces. Relaxation modes emerging in this dynamic
description are derived analytically using a lattice of square cells. We apply our
dynamic description to study the effects of friction on tissue growth, demonstrating
that the quasistatic results of Chapter 3 can be obtained in a dynamic calculation
in the limit of low friction or slow growth rate.

4.1 Limitations of the quasistatic approximation

In simulated laser ablation [69] the network is subjected to an instantaneous per-
turbation and the response is measured. These simulations are designed to mimic
experiments where single cell boundaries are cut with a laser. By definition, the
response to such a local perturbation occurs on timescales of mechanical relaxation
of the network. Thus, quasistatic simulations of laser ablation cannot capture the
dynamics of the process, and can only be compared to experiments in terms of long-
time behaviour. Simulations of laser ablation would directly benefit from a dynamic
implementation of the vertex model valid outside the quasistatic approximation.

The quasistatic approximation causes other, more subtle problems in simulations
of large systems. For sufficiently large tissues, one expects the emergence of a hy-
drodynamic limit, which permits tissues to be treated using continuum descriptions
[39, 97, 98]. Such a continuum limit is accompanied by the emergence of tissue
viscosity on long timescales. In vertex model simulations, this hydrodynamic limit
manifests itself in the structure of the potential energy F . For large systems, F
becomes a high-dimensional potential landscape. This high-dimensionality is ac-
companied by long-length scale motions involving many vertices, which we refer to
as “slow modes”. These slow modes are characterized by shallow gradients in the
potential energy F . From a numerical point of view, because F becomes increasingly
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flat for large systems, the minimization of F via a conjugate gradient method be-
comes increasingly numerically difficult. From a physical point of view, these slow
modes relax on long timescales, and relaxing these modes is likely an unrealistic
representation of the dynamics in a real tissue.

Related to the emergence of slow modes in large networks, in practice one finds
length-correlations on the order of the size of the network in quasistatic simulations
of the vertex model. For example, in the quasistatic growth simulations presented
in Chapter 3, single cell divisions cause all vertices in the network to move 1. These
long-length correlations are related to the quasistatic approximation: relaxing the
network potential energy is equivalent to the infinite-time limit, such that pertur-
bations have time to be transmitted to the entire network.

Finally, quasistatic dynamics can cause inhomogeneities in the effective time
evolution of simulations. For example, when simulating simple shear, the imposed
shear-rate sets a timescale based on which the “rates” of other processes can be
evaluated [2]. During shear simulations, strain builds up in the tissue resulting in
shear stress. Eventually the tissue undergoes a topological change, such as a T1-
transition. Following a T1-transition, the cells involved in the transition reorganize
significantly, as the stored strain relaxes in response to the internal shear stress.
Thus, quasistatic shear simulations involve continuous phases, where strain builds
up in the tissue, and discontinuous changes, where T1-transitions occur and are
followed by instantaneous network remodelling [2].

4.2 Dynamic description of the vertex model

In the vertex model, conservative forces are generated by the gradient of the potential
energy F ; we call such forces “reactive”. In a dynamic description obeying Newton’s
Second Law, these reactive forces must be balanced by dissipative (frictional) and
inertial forces. Considering the relevant length, time, density, and viscosity scales,
inertial forces in, e.g., the developing wing, are small compared to viscous friction
forces and are thus neglected here. In this section we show that the resulting force
balance between reactive and dissipative forces can be used to construct a dynamic
equation for the vertex model, Eq. 4.11.

4.2.1 Generalized coordinates

In the simulations presented in this thesis, which make use of periodic boundary
conditions, forces act both on the vertices and on the system boundaries. In order
to define force-balance on all these variables, we introduce generalized coordinates qi,
which are typically the x- and y-coordinates of each vertex in the network, together

1A cell division anywhere in the network typically causes all vertices to move by numerically
measurable amounts. However, rearrangement far from the site of a cell division is small compared
to that in the neighbourhood of the cell division.
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with the size of the periodic box Lx and Ly in the x and y dimensions. Thus, there
are typically Ng = 2NV + 2 generalized coordinates qi in a network containing NV

vertices. The generalized reactive force f
(r)
i acting on the ith generalized coordinate

qi is then:

f
(r)
i = −∂F

∂qi
, (4.1)

and the force balance condition is

f
(r)
i + f

(d)
i = 0. (4.2)

Depending on the physical situation being described, it may be helpful to choose
different generalized coordinates qi than the 2NV + 2 variables given here. For
example, in Sect. 4.4 vertex displacements are used as generalized coordinates,
rather than vertex positions. Furthermore, calculations can be performed in an
ensemble where the periodic box dimensions Lx and Ly are fixed, or where open
boundary conditions are used. In such situations the variables Lx and Ly can be
excluded from the generalized coordinates.

4.2.2 Choices of dissipative forces

Dissipative forces represent both internal viscous forces, as well as external friction
forces, for example between the the network and a substrate or a fluid medium.
In general, these dissipative forces f

(d)
i could depend on the past history of the

network, on external parameters such as pressure, or on other system variables.
Here we restrict our attention to a simplified case where the system possesses no
“memory”, i.e., the f

(d)
i at any time depend only on the state of the system at

that time. In writing the potential energy for the vertex model, we included terms
dependent on cell area, bond length, and cell perimeter, see Eq. 2.1. This motivates
us to consider friction forces corresponding to changes in these variables: we consider
bond friction, area friction, and perimeter friction, which oppose changes in bond
lengths, cell areas, and cell perimeters, respectively. We also consider friction forces
that directly oppose changes in vertex position due to friction with a substrate or
fluid medium. However, the physical interpretation of substrate friction becomes
complicated when periodic boundary conditions are used. It is unclear whether
changing the size of a periodic simulation box involves moving with respect to a
fixed substrate. If so, then which of the vertices move, and by how much? These
subtleties do not arise if the size of the periodic box is fixed during a simulation,
or if open boundary conditions are used. Even when periodic boundaries are used
and change during a simulation, using some nonzero but numerically small substrate
friction ξr is helpful in solving the dynamic equations of the vertex model; this point
is discussed in detail in Sect. 4.3. For generality, we include substrate-friction ξr
in the dynamic description to follow; physical issues relating to periodic boundaries
can be solved by working in the case ξr = 0.
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4.2.3 Area friction

A plausible functional form for area friction can be derived in the situation where
the only reactive and dissipative forces present are those relating to the areas Aα of
all cells α. The potential energy of the network can then be written as:

F = F ({Aα}) =
∑
α

Kα

2
(Aα − A(0)

α )2. (4.3)

In this case, a phenomenological equation describing the time evolution of cell areas
Aα is:

− ∂F

∂Aα
− ξA

dAα
dt

= 0, (4.4)

where ξA is a generalized friction coefficient and t is time. Here the first term
represents a generalized reactive force acting on the cell area Aα, and the second
term represents a balancing generalized dissipative (friction) force. Even in this
simplified case, there is some freedom in writing Eq. 4.4. The specific choice given
here is motivated by an analogy to Stokes’ law, where the friction force on a body
moving in a viscous fluid is linear in the velocity of that body relative to the fluid.
Alternatively, Eq. 4.4 can be derived by supposing ∂F/∂Aα is a function of Aα and
its time derivatives such that ξAdAα/dt is the first nonzero term in a systematic
expansion. Eq. 4.4 gives:

− ∂F

∂Aα

∂Aα
∂qi
− ξA

dAα
dt

∂Aα
∂qi

= 0, (4.5)

where summation over α is implied. We identify the reactive and dissipative forces
acting on a generalized coordinate qi:

− ∂F

∂Aα

∂Aα
∂qi

= f
(r)
i (4.6)

−ξA
dAα
dt

∂Aα
∂qi

= f
(d)
i , (4.7)

and identify Eq. 4.5 as the force balance condition f
(r)
i + f

(d)
i = 0. Rewriting f

(d)
i ,

we find

f
(d)
i = −Mij

dqj
dt
, , (4.8)

where summation over j is implied and the friction matrix Mij is given by

Mij = ξA
∂Aα
∂qi

∂Aα
∂qj

, (4.9)

for the case where area friction is the only dissipative force present in the system.
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4.2.4 Dynamic equation for the vertex model

The same arguments as given in Sect. 4.2.3 can be used to derive friction matrices
Mij corresponding to bond, perimeter, and substrate friction. Assuming that the
friction forces add linearly, we obtain the following friction matrix for the vertex
model:

Mij = ξA
∂Aα
∂qi

∂Aα
∂qj

+ ξL
∂Lα
∂qi

∂Lα
∂qj

+ ξl
∂lk
∂qi

∂lk
∂qj

+ ξr
∂rn
∂qi
· ∂rn
∂qj

(4.10)

Here rn is the position of a vertex n, summations are implied over cells α, bonds k,
and vertices n, and ξA, ξL, ξl, and ξr are friction coefficients describing dissipative
forces generated in response to changes in cell areas, cell perimeters, bond lengths,
and vertex positions, respectively. Using Eq. 4.10 together with the force-balance
condition f

(r)
i + f

(d)
i = 0, we obtain a dynamic equation for the vertex model:

Mij
dqj
dt

= −∂F
∂qi

. (4.11)

In order to solve Eq. 4.11 for dqj/dt, it is necessary that Mij be invertible; this point
is the subject of the next section.

4.3 Numerically solving vertex model dynamics

In practice, it may be that the friction matrix Mij has eigenvalues that are zero,
precluding the solution of Eq. 4.11. Physically speaking, zero eigenvalues in Mij

represent frictionless modes. In particular, in the case of periodic boundary condi-
tions in two dimensions with no substrate friction (ξr = 0), the matrix Mij has two
zero eigenvalues, with eigenvectors corresponding to translational invariance in each
of the two dimensions.

Zero eigenvalues of Mij arising from translational invariance can be dealt with
in several different ways. For example, the translational invariance can be broken
by adding a friction coefficient that couples to the collective motion of all vertices.
However, it turns out that these are not the only zero eigenvalues that can occur. For
example, in the case where friction on bond-lengths is the only dissipative process
(ξA = ξL = ξr = 0), the friction matrix Mij will have one zero eigenvalue per cell, for
each of the N cells in the network. What are the frictionless modes corresponding
to these zero eigenvalues? In this case, cells can have their areas changed with
zero dissipative force generated, as long as all bond lengths remain fixed, see Fig.
4.1. Ultimately, even for general ξA, ξL, and ξl it is possible to have eigenvalues
of Mij become numerically small, at least transiently. It is useful to be able to
simulate systems with zero eigenvalues of Mij, for example in order to perform the
calculation presented in Fig. 4.1. Thus, we need a general solution to the problem
of zero eigenvalues of Mij.



46 4 Dynamics beyond the quasistatic approximation

(a)
(b) (c)

Figure 4.1: Results of a dynamic calculation in the vertex model, showing the instan-
taneous relaxation of frictionless modes, followed by the relaxation of other modes
in finite time. (a) The initial condition for the simulation: a hexagonal network
of sixteen cells, where individual cells have been compressed along the x-axis. (b)
In an infinitesimal time in the future, the network relaxes to an intermediate state
shown here. All bond lengths in panels (a) and (b) are numerically identical. This
panel is obtained by integrating the dynamic equation Eq. 4.11 for a time interval
∆t = 0.01ξl/(KA0). (c) In the long-time limit, bond lengths relax to their equi-
librium configuration shown here. The resultant network is force-balanced and is a
hexagonal network with all bond lengths identical. This panel is obtained by inte-
grating Eq. 4.11 for a time interval ∆t = 100ξl/(KA0). Parameters common to all
panels: Λ = 0.12, Γ = 0.04, and ξA = ξL = 0.
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i i+1

i i+1 i+2i−2 i−1

ui

Figure 4.2: Schematic representation of a lattice of square cells. Cells in the cen-
tral row and horizontal cell boundary displacements ui are indexed with the same
variable i.

Including substrate friction (ξr > 0) is a simple way to ensure that Mij is in-
vertible 2. However, physical arguments were given in Sect. 4.2 that ξr should be
set to zero for systems with moving periodic boundaries. In order to ensure that
Mij is invertible, while avoiding issues related to periodic boundary conditions, it
is helpful to choose ξr to be small but nonzero. If ξr is chosen infinitesimally small
then ξrdqj/dt is infinitesimal for finite dqj/dt. This leads to a system of dynamic
equations where zero eigenvalue modes are relaxed instantaneously. Physically, fric-
tionless modes relax on timescales fast compared to the other modes in the system.
Numerically, ξr should be chosen sufficiently small that results are unchanged when
ξr is further decreased; meanwhile ξr should be sufficiently large that the eigenvalues
of Mij are numerically nonzero.

4.4 Relaxation rates

The vertex model can be treated quasistatically on timescales longer than mechanical
relaxation times τr = k−1r . In order to estimate the relaxation rates kr, we consider
a network of square cells with bond length l0 =

√
A0. For simplicity, we consider

2If the generalized coordinates qi are simply the x- and y- coordinates of the vertices in the
network, then ξr > 0 implies that Mij is positive definite and thus invertible. If the size of the
periodic boundaries Lx and Ly are included in the generalized coordinates qi, then it is necessary
that at least one other friction coefficient (ξA, ξL, or ξl) be nonzero in order for Mij to be invertible.
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the case where all cells have common preferred area A
(0)
α = A0, perimeter stiffness

Γα = Γ, and area stiffness Kα = K, and where all bonds have the same line tension
Λk = Λ = −8Γl0. Such lattices are among the degenerate ground states in region
(I) of the phase diagram (Λ = −8Γ), see Fig. 2.1. To perturb the system away
from the ground state, we introduce horizontal displacements ui on one row of cell
boundaries, see Fig. 4.2. A cell i in such a network has area Ai = A0 + l0(ui− ui−1)
and perimeter Li = 4l0 + 2ui − 2ui−1. The potential energy of the network can be
written as

F = F0 +
1

2
(KA0 + 4Γ)

∑
i

(ui − ui−1)2, (4.12)

where F0 = −8NΓA0. The derivative of the network potential energy with respect
to the displacement is then:

∂F

∂ui
= (KA0 + 4Γ)∆ui (4.13)

where ∆ui = 2ui−ui−1−ui+1. Using the displacements ui as generalized coordinates,
we obtain for the friction matrix:

Mij = (ξA + 2ξL)(2δij − δn,j−1 − δn,j+1) + (4ξl + 2ξr)δij, (4.14)

where δij is the Kronecker delta. Substituting Eqs. 4.13 and 4.14 into 4.11 yields a
system of coupled differential equations for the displacements ui:

(A0ξA + 2ξL)
d∆ui
dt

+ (4ξl + 2ξr)
dui
dt

= −(KA0 + 4Γ)∆ui. (4.15)

The system of equations Eq. 4.15 is similar to the one that arises in the derivation
of the normal modes of a one-dimensional monatomic lattice [147]. By analogy, we
choose the ansatz:

ui(t) = u0e
(2πImi/Nx)−kmt, (4.16)

where u0 is the initial amplitude of a perturbation, km is the relaxation rate, Nx ≈√
N is the number of cells in the x-direction, m is an integer, and I =

√
−1, not

to be confused with the index i. Substituting Eq. 4.16 into Eq. 4.15 yields an
expression for km:

km =
2(KA0 + 4Γ) sin2

(
π m
Nx

)
2ξl + ξr + 2(A0ξA + 2ξL) sin2

(
π m
Nx

) . (4.17)

For m = 0 the relaxation rate km vanishes; this corresponds to the trivial solution
where cell boundaries are displaced by a constant amount ui(t) = u0. The slowest
nonzero relaxation rate is obtained for m = 1, yielding:

kmin ≈
2π2(KA0 + 4Γ)

(2ξl + ξr)N
, (4.18)

where we have approximated Nx ≈
√
N and neglected terms of order O(1/N2).
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Figure 4.3: Fraction of n-sided polygons as a function of cell neighbour number n
computed in growth simulations of the vertex model. Results are presented for three
different values of the ratio kd = kdξl/(KA0) namely kd = 10−1, 10−2, and 10−3.
The black curve represents the result of a quasistatic calculation, and is identical to
the black curve shown in Fig. 3.4a. These calculations show that in the limit of low
friction (equivalently, slow growth) the quasistatic result is recovered. Parameters:
Λ = 0.12, Γ = 0.04, ξL = 0, ξA = ξl/A0, and ξr = 10−5ξl

4.5 Effects of friction on tissue growth

In order to simulate tissue growth using the dynamic description presented here, it is
necessary to choose the time between cell divisions ∆t appropriately. Two dominant
effects determining ∆t are: (i) As the number of cells N increases, more cells are
available to divide, and the time between single cell divisions thus decreases. (ii) Cell
division is a fluctuating process, so times ∆t should be drawn from a distribution of
possible waiting times. Here we assume that single cells divide as a Poisson process
with rate kd. We assume furthermore that distinct cells divide independently from
one another, such that the collective process of cell division in a tissue of N cells is
a Poisson process with rate Nkd. Under these assumptions, the time between cell
divisions ∆t has an exponential probability density function Pd:

Pd(∆t) = Nkd exp(−Nkd∆t). (4.19)
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Values of ∆t can be stochastically drawn from this distribution using the so-called
inversion method [148, 149]:

∆t =
− lnu

Nkd
, (4.20)

where u is a random number chosen uniformly from the interval [0, 1]. The statistics
of tissue growth in real organisms are not completely known and are certainly non-
Poissonian in nature. Nevertheless, we make use of a Poissonian growth rule here
for simplicity; different growth rules can be used when greater detail or realism is
required [78].

We present in Fig. 4.3 polygon distributions obtained in growth simulations
analogous to those presented in Sect. 3.4. Cell division is performed using the
simplified algorithm described in Sect. 3.3, with the exception that, rather than re-
laxing via a conjugate-gradient method between cell divisions, the system is evolved
forward in time according to Eq. 4.11. The numerical procedure is as follows: After
the system is initialized, or following a cell division, the time until the next cell
division ∆t is stochastically computed via Eq. 4.20. dqi/dt is then integrated over a
time interval ∆t, using an explicit Runge-Kutta method of second and third order
with adaptive step-size control [144]. At each step of the numerical integration,
dqi/dt is computed via the numerical solution of Eq. 4.11, obtained using Gaussian
elimination with partial pivoting [144, 150]. Overall, each cell division requires that
the system be evolved forward in time by a stochastically determined time unit ∆t,
each time evolution step ∆t involves up to hundreds of integration steps dt, and
each integration step requires the solution to an Ng×Ng system of linear equations,
where Ng = 2NV + 2 is the dimension of Mij.

We see in Fig. 4.3 that as the friction coefficients ξl and ξA are decreased at a
fixed growth rate kd, the resulting polygon distributions (dotted blue, dashed purple,
and solid red curves) converge to the results obtained using a quasistatic algorithm
(black curve). A priori, we expected the quasistatic result to emerge in cases where
cell division is slow compared to the internal relaxation time of the tissue. In Sect.
4.4, we estimated that the slowest relaxation mode in the vertex model relaxes at a
rate:

kmin ≈
2π2(KA0 + 4Γ)

(2ξl + ξr)N
. (4.21)

Performing an order-of-magnitude comparison between the time between cell divi-
sions ∆t ≈ (Nkd)

−1 and k−1min for N ≈ 100, we find that the quasistatic limit should
be obtained for kd < 10−3, where kd = kdξl/(KA0), consistent with Fig. 4.3.

4.6 Summary

In this chapter a dynamic description for the vertex model is developed based on a
balance between reactive and dissipative (frictional) forces. A dynamic equation was
presented, describing the time evolution dqj/dt of the system variables qj in terms of
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a friction matrix Mij and the gradient of the potential energy, see Eqs. 4.10 and 4.11.
Relaxation modes in this model were derived in a simplified scenario using a network
of square cells. This dynamic description was applied in Sect. 4.5 to study the effects
of friction on tissue growth, demonstrating the emergence of the quasistatic result
in the limit of low friction, i.e., the limit of slow growth. The focus of the present
chapter was on constructing a dynamic description of the vertex model that was
physically motivated, could be used to perform simulations, and could be used to
understand the emergence of the quasistatic limit. In future work, the methods
presented here would be well applied for understanding laser-ablation experiments
where single cell boundaries are cut using a laser.





5 Quantifying tissue dynamics in
experiments

Here we turn our attention to experimental data, developing quantification methods
for cell flow and planar polarity based on theoretical definitions. We define in
Sect. 5.1 an algorithm for quantifying cell flow in experimental images based on
correlations between subsequent frames in time-lapsed confocal microscope images.
The resultant velocity fields are then analyzed using a unique decomposition of
the velocity gradient tensor into terms corresponding to local rotation, shear, and
compression. In Sect. 5.2 we describe a theoretical definition and quantification
method for planar cell polarity (PCP). The analysis presented here motivates a
hydrodynamic theory of polarity reorientation, presented in Sect. 6.1 of the next
chapter. That hydrodynamic theory is subsequently compared to a cell-scale model
of polarity, presented in Sect. 6.2, based on the same vertex model presented in
Chapters 2–4. Thus the quantifications presented here connect to a theory of planar
polarity, which itself connects with the vertex model of the preceding chapters,
unifying the themes of this thesis. It is worth pointing out to the interested reader
that, while the research presented in this chapter was in the publication process, a
related paper was published on morphogenetic strain rates [151].

15h30' 24h00' 33h30'

A B C *

80 µm

*

ubi-Ecad:GFP

Figure 5.1: The wing hinge contracts during development. The wing hinge (blue)
and blade (red) are shown at three times during development (A) 15h30’ after pu-
parium formation (APF), (B) 24 hours after puparium formation (APF), and (C)
33h30’ APF. Figure by B. Aigouy reproduced from [2].
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Figure 5.2: Quantified cell flow velocity field (A-C), shear field (D-F), and rotation
field (G-I) in a Drosophila wing at three indicated times during development. Times
are measured in hours after puparium formation (hAPF).

5.1 Cell velocity and derivative fields

During development, cells divide, cells die, and processes such as differential adhe-
sion drive cell rearrangement. In the wing of the fly, the hinge (the region where
the fly wing attaches to the fly body) contracts significantly, see Fig. 5.1. These
active processes cause cells to flow, highlighting the fact that tissues can behave as
viscoelastic fluids during development.

5.1.1 Cell flow

As raw data for quantifying cell-flow in the fly wing during development, we obtain
videos of developing fly wings courtesy of our experimental collaborators 1. These
videos are obtained as series of time-lapsed confocal microscope images. The flies
being imaged are transgenic, having the transmembrane protein E-Cadherin fluores-
cently labelled with green fluorescent protein (GFP). A typical experimental data
set surveyed fifteen to seventeen hours of development, with images taken every five
to seven minutes. These developmental videos show dramatic cell flow, see Fig. 5.2.

1B. Aigouy, A. Sagner, and J.-C. Röper, and S. Eaton at MPI-CBG, Dresden.
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Given these raw data sets, spatiotemporal velocity fields are quantified using
correlations between subsequent time-lapsed images. Firstly, images are divided into
a Cartesian grid. For each square region τ(ti) in each time frame i, we minimize the
function

χ2(∆r) =
1

Aτ

∫
τ

dxdy [I(r; ti)− I(r + ∆r; ti+1)]
2

+η|∆r2 −∆r2τ (ti−1)| (5.1)

with respect to ∆r, extracting the displacement ∆rτ (ti) over which the region τ
moved during a time interval ∆t = ti+1−ti. Here I(r; t) is the experimental intensity
profile, Aτ is the area of a single square region, and η is a parameter that disfavours
rapid changes in the displacement ∆rτ . We then define the average velocity vτ (ti)
of the region τ over Nf = 10 images before and after the time ti:

vτ (ti) =
1

ti+Nf
− ti−Nf

i+Nf−1∑
j=i−Nf

∆rτ (tj)

 . (5.2)

Resulting from this analysis is the complete spatiotemporal velocity field, which
we present for one wing and three specific time-points in Fig. 5.2A-C. The complete
spatiotemporal field is presented as a video in Supplemental Movie S3 of Ref. [2].
At earlier stages of development (Fig. 5.2A), we find that the cell velocity field
contains a significant inward (anterior-posterior) component, as well as a significant
component in the distal direction (towards the base of the wing). Later in devel-
opment (Fig. 5.2B), the inward component of the velocity field is no longer visible,
although significant flow is still visible in the distal direction. Cell flow ultimately
drops to zero at the end of development, around 32 hAPF (hours after puparium
formation, Fig. 5.2C).

5.1.2 Local rotation, shear, and compression rates

For the analysis of experimental flow fields we define spatial derivatives of velocity,
namely local compression, shear, and rotation rates. We start by defining the veloc-
ity gradient tensor, ∂ivj, which we separate into a trace, a traceless symmetric part,
and a traceless antisymmetric part:(

∂xvx ∂xvy
∂yvx ∂yvy

)
=

(
C 0
0 C

)
+

(
S1 S2

S2 −S1

)
+

(
0 ω
−ω 0

)
. (5.3)

We identify in this decomposition the local compression rate C = (∂xvx+∂yvy)/2 and
the local rotation rate ω = (∂xvy − ∂yvx)/2. The components S1 = (∂xvx − ∂yvy)/2
and S2 = (∂xvy + ∂yvx)/2 form a traceless symmetric tensor that describes the local
shear rate ks = (S2

1 + S2
2)1/2 and axis θs, where

cos 2θs = S1/ks,

sin 2θs = S2/ks. (5.4)
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Figure 5.3: Average shear and vorticity in four Drosophila wings. In each panel,
solid curves represent averages over the region anterior to the third longitudinal
vein (L3), and dashed curves represent averages posterior to L3. Black and red
curves correspond to wild-type wings, while yellow and blue curves correspond to
mutant wings misexpressing the protein Ds. (A) Average shear rate anterior to L3.
(B) Average shear rate posterior to L3. (C) Average shear angle anterior (solid
curves) and posterior (dashed curves) to L3. (D) Average vorticity (rotation) rates
anterior and posterior to L3. The black curves in this figure correspond to the same
wing as presented in Fig. 5.2. Average shear was computed by averaging the tensor
components S1 and S2. The posterior region for one Ds wing (blue) was not analyzed
because the flow field could not be determined in the posterior region of that wing.
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Thus, the spatiotemporal velocity field can be used to define spatiotemporal
compression, shear, and rotation fields for a given developmental video. Shear and
rotation fields for three specific time points are presented in Fig. 5.2D-F and Fig.
5.2G-I, respectively. The complete spatiotemporal patterns are given in Supplemen-
tal Movie S3 of Ref. [2]. The shear field (Fig. 5.2D-F) shows a fan-like pattern
roughly symmetric around the third longitudinal vein (L3) 2. Most dramatic, how-
ever, is the rotation field (Fig. 5.2D-F), which shows a clear antisymmetry around
L3, with clockwise rotations anterior to L3 and counter-clockwise rotations posterior
to L3.

The observed symmetries around the vein L3 suggest computing averages of S1,
S2 and ω separately in these two regions of the wing. The results of such an analysis
are presented in Fig. 5.3 for two different wild-type wings (red and black curves), as
well as for two mutant wings misexpressing the protein Ds (yellow and blue curves).
Averages computed over anterior and posterior regions are represented as solid and
dashed curves, respectively. Average shear rates show large fluctuations (Fig. 5.3A-
B), and it is difficult to make conclusive statements based on Fig. 5.3A-B. Much
clearer signals, however, are visible in the angle of average shear (Fig. 5.3C) and
the average vorticity (Fig. 5.3D). Indeed, wee see from Fig. 5.3C that shear angles
anterior to L3 are predominantly positive with respect to the proximal-distal axis
(in the range [0, 90◦]). Conversely, shear angles posterior to L3 are negative (in
the range (−90◦, 0]), corroborating the impression of a “fan-like” pattern in Fig.
5.2D-E. The rotational asymmetry between anterior and posterior compartments is
similarly captured in Fig. 5.3D, which clearly demonstrates clockwise (negative)
vorticity in the region anterior to L3 and counter-clockwise (positive) vorticity in
the region posterior to L3.

In order to better elucidate the data presented in Fig. 5.3, we define the total
shear and rotation at a time t:

S
(t)
1 =

∫ t

0

S1dt
′

S
(t)
2 =

∫ t

0

S2dt
′

ω(t) =

∫ t

0

ωdt′, (5.5)

where S1 = S1(t
′), S2 = S2(t

′), and ω = ω(t′) are the local time-dependent shear and
rotation rates. The total shear is then characterized by an axis and a magnitude,
and is represented by a traceless symmetric tensor with components S

(t)
1 and S

(t)
2 .

Total shear and rotation are calculated for average regions by averaging each of the
rates S1, S2, and ω in the region of interest before calculating the integrals in Eq.
5.5. The results of this analysis are presented in Fig. 5.4. As expected, the relative
fluctuations in Fig. 5.4 are much smaller than those seen in Fig. 5.3, although the

2See Fig. 1.6 for a description of wing veins.
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Figure 5.4: Total shear (a-b), angle of total shear (c) and total rotation or vorticity
(d) in regions anterior and posterior to the third longitudinal vein in four different fly
wings. All colours and symbols are consistent with those presented in Fig. 5.3: Solid
curves represent totals for anterior regions, dashed curves for posterior regions; black
and red curves are values for two different wild-type wings, while blue and yellow
curves are values for two different mutant wings.
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5 µm
Stbm:YFP
16 hAPF 5 µm

Stbm:YFP
16 hAPF

Figure 5.5: Confocal microscope image of cells in a Stbm:YFP expressing wing at
an earlier time in development 16 h after puparium formation (hAPF). (a) Without
quantification, it is not obvious if there is an anisotropy (polarity) in the intensity
profile of Stbm:YFP in this image. (b) The same image in (a) overlaid with yellow
bars representing the quantified polarity pattern. Yellow bars are placed at the angle
of nematic order φn, and have length proportional to the magnitude of nematic order
Q for a given cell.

message of the two figures is the same. Note that the total rotation or vorticity
(Fig. 5.4D) is simply the integral of the rotation or vorticity rate presented in 5.3D,
although this is not the case for the total shear 3.

The patterns of shear and rotation presented in this section are necessary for
the proper functioning of planar polarity in the fly wing, as will be demonstrated
in the remainder of this thesis. This connection between cell mechanics and planar
polarity, yet to be established, is a unifying theme of this thesis.

5.2 Planar cell polarity

In order to calculate and subsequently visualize planar cell polarity (PCP) in the
wing of the fruit fly Drosophila, we developed a quantification method based on
the cell-perimeter intensity of a particular PCP protein (Stbm) labelled with yellow
fluorescent protein (YFP). Here the raw data provided by the experimentalist are
time-lapsed confocal microscope images of cells in Stbm:YFP expressing wings, see
Fig. 5.5.

3The total shear is [(S
(t)
1 )2 + (S

(t)
2 )2]1/2, which is not the same thing as the integral of the shear

rate ks = (S2
1 + S2

2)1/2.
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5 µm

I(φ)

φ

Figure 5.6: Coordinate system for quantifying polarity in a single cell. Here I(φ) is
the intensity measured on the cell perimeter at an angle φ with respect to the cell
center.

5.2.1 Quantitative definition of planar cell polarity

For a given cell in a confocal microscope image, we define the cell perimeter intensity
I(φ) as the intensity measured on the cell perimeter at an angle φ with respect to
the cell center, see Fig. 5.6. At the end of development, Stbm is found in higher
concentrations at the proximal boundaries of cells, see Sect. 1.3. Thus, at the end
of development one expects a peak in I(φ) around an angle φn corresponding to
the proximal localization of Stbm within that cell. Furthermore, due to the limited
resolution of confocal microscope images, it is not possible from the cell perimeter
intensity to tell on which side of the cell boundary proteins are localized, i.e., the
localization of Stbm on both sides of a given cell boundary contribute to I(φ). Hence,
if there is a peak in I(φ) around an angle φn, then one also expects a peak in I(φ)
at φn + π corresponding to the proximal localization of Stbm within the distally
neighbouring cell, i.e. the function I(φ) is π-symmetric.

The cell perimeter intensity I(φ) can be uniquely decomposed via a Fourier
expansion. Because the function I(φ) is π-symmetric, the first nonzero terms in a
Fourier expansion of I(φ) are those in cos(2φ) and sin(2φ):

Q1 =

∫ 2π

0

I(φ) cos 2φdφ (5.6)

Q2 =

∫ 2π

0

I(φ) sin 2φdφ. (5.7)
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Using the Fourier coefficients Q1 and Q2, we define the magnitude of nematic order
for a single cell Q and the axis of nematic order for that cell as the angle φn, where

Q =
(
Q2

1 +Q2
2

)1/2
(5.8)

φn = atan2(Q2, Q1)/2. (5.9)

Here atan2 is the two-argument arctangent function 4; equivalently, the angle φn
satisfies the two equations:

cos 2φn =
Q1

Q
(5.10)

sin 2φn =
Q2

Q
. (5.11)

The magnitude Q and axis φn serve as a quantitative measure of polarity for
a single cell. This choice of quantification fulfils several important requirements.
Firstly, if the function I(φ) is constant, then the magnitude of polarity Q is zero
independently from the shape of the cell. This allows one to disentangle the effects
of cell shape from that of an anisotropic protein distribution. In the context of
experiment, if the Stbm:YFP intensity I(θ) is homogeneous around a cell periphery,
then that cell has zero nematic order using this definition. Similarly, the magnitude
of nematic order Q is independent of cell size for fixed I(θ). Here the concept is that
physically larger cells should not be declared more strongly polarized than smaller
cells.

5.2.2 Methods for application to experimental data

In practice, experimental data are rasterized (pixelated) confocal microscope images.
Considering this, the following steps are taken in order to apply Eq. 5.6 and 5.7 to
experimental data:

(i) Cell-segmentation software is used to identify cells and their boundaries 5.
Each cell α is recorded as a set of pixel coordinates (xj, yj) together with the
corresponding pixel intensity Ij. This procedure simultaneously identifies a
set of boundary pixels for each cell, defined as pixels shared between two or
more cells.

4 The two-argument trigonometric function atan2(y, x) returns the polar angle of the point (x, y)
in the x–y plane relative to the origin. This function corrects problems with the “grammar-school”
arctangent function tan−1(y/x). In particular, atan2(y, x) is defined on the complete codomain
(−π, π], whereas tan−1(y/x) is defined only in the half unit-circle [0, π). Additionally, atan2(y, x)
is well defined for x = 0.

5Cell-segmentation software based on a Watershed algorithm was written by others (not the
present author) [69].
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(ii) The geometric center (x, y) of each cell is computed directly via the definitions:

x =
1

Np

Np∑
j=1

xj, (5.12)

y =
1

Np

Np∑
j=1

yj, (5.13)

where the sum is over all pixels belonging to the cell and Np is the total number
of such pixels.

(iii) For each cell, the set of boundary pixels {(xj, yj)} and corresponding intensities
Ij are sorted by the angle of the jth pixel with respect to the cell center (x, y),
such that φj+1 ≥ φj, where

φj = atan2 (yj − y, xj − x) . (5.14)

(iv) The components of the nematic tensor corresponding to cell α are computed
via discretized versions of Eq. 5.6 and 5.7:

Q1 =

Nb∑
j=1

Ij cos 2φj∆φj (5.15)

Q2 =

Nb∑
j=1

Ij sin 2φj∆φj, (5.16)

where the sum is over all boundary pixels j belonging to cell α, Nb is the
total number of pixels in the boundary, and ∆φj = (φj+1 − φj−1) /2 is the
midpoint difference of the angles, taking care of the periodic boundaries in
our definitions of φi+1 and φi−1:

φNb+1 ≡ φ1 + 2π

φ0 ≡ φNb
− 2π. (5.17)

(v) Once Q1 and Q2 are computed for each cell α, the discreteness of the ex-
perimental images no longer plays a role, and the procedure for quantifying
planar cell polarity proceeds as described in Sect. 5.2. Each cell in an image
is assigned a magnitude of nematic order Q and an axis of nematic order φn.
These nematics are represented on the original images as yellow bars, with
length proportional to Q and bars placed passing through the cell center at
an angle φn.

(vi) Finally, it is also interesting to visualize polarity on the scale of groups of cells.
In order to accomplish this, cells are divided into groups in a Cartesian grid.



5.2 Planar cell polarity 63

Cells are defined to belong to the “square” of the grid into which their center
falls. In each such square, the magnitude of average nematic order In and the
axis of average nematic order θn are computed as described in Sect. 5.2.3. The
average nematic order for each group of cells are then represented as yellow
bars of length proportional to In, placed at an angle θn passing though the
center of the Cartesian cell.

5.2.3 Average nematic order

Given the components Q1 and Q2 for individual cells, we define the average nematic
order for a group of Nc cells:

〈Q1〉 =
1

Nc

Nc∑
α=1

Qα
1

〈Q2〉 =
1

Nc

Nc∑
α=1

Qα
2 , (5.18)

where Qα
1 and Qα

2 are the components of the nematic tensor corresponding to cell
α, the summation is over all cells in the patch of tissue to be averaged, and Nc is
the number of cells in that patch. We then define the magnitude of average nematic
order In = (〈Q1〉2 + 〈Q2〉2)1/2 and the axis of average nematic order θn, where

cos 2θn =
〈Q1〉
In

sin 2θn =
〈Q2〉
In

. (5.19)

The average nematic order reflects both how well proteins are sorted within
individual cells, as well as the degree to which different cells align their polarity. In
order to separate these two effects we define the “cell polarization” as a measure of
how well proteins are sorted within cells:

〈Q〉 =
1

Nc

Nc∑
α=1

Qα, (5.20)

where Qα = [(Qα
1 )2 + (Qα

2 )2]
1/2

is the magnitude of nematic order of cell α. We then
define the correlation between the PCP nematics of cells α and β:

Gαβ =
QαQβ

〈Q〉2
cos 2(φαn − φβn), (5.21)

where Qα, Qβ, φαn, and φβn are the magnitudes and angles of nematic order for cells
α and β, respectively. Finally, we define the nematic correlation function g(r), a



64 5 Quantifying tissue dynamics in experiments

measure of the correlation between the PCP nematics of cells separated by a distance
r:

g(r) =
1

n(r)

∑
α 6=β

GαβB(rαβ, r,∆r), (5.22)

where the summation is over all pairs of cells, rαβ is the distance between the centers
of cells α and β,

n(r) =
∑
α6=β

B(rαβ, r,∆r), (5.23)

is the number of cells separated by a distance r ±∆r/2, and

B(rαβ, r,∆r) = Θ(rαβ − r +
∆r

2
)−Θ(rαβ − r −

∆r

2
) (5.24)

is the boxcar function, defined in terms of the unit step function Θ.

5.2.4 Quantified polarity patterns at cell and tissue scales

Coarse-grained polarity patterns for Drosophila wings at two different stages of
development are presented in Figs. 5.7A-B. Here red dots indicate the vectorial
nature of polarity, and are determined via separate experiments (clonal analyses).
Fig. 5.7A demonstrates that, at an earlier stage of development 15 hAPF, the
Drosophila wing already possesses a coherent polarity pattern. Polarity at 15 hAPF
is oriented in a fan-like pattern, differently in anterior and posterior compartments.
At later times prior to hair outgrowth, around 30 hAPF, polarity is oriented along
the proximal-distal axis. In addition to these snapshots of the polarity pattern, we
can also quantify the complete time-dependence of the polarity pattern. This is
shown in Figs. 5.7C-E for three time-points in a region of the anterior compartment
between the first and third longitudinal veins (L1 and L3). Averaging the polarity
over this region for many time-points yields the time-dependent average nematic
order for the region, plotted in Fig. 5.7F.

We present in Fig. 5.8 an alternative representation of the data in Figs. 5.7C-E,
namely the average polarity in a region of the anterior compartment. The lengths
and angles of the bars “PCP order” in Fig. 5.7F are given by the magnitude and
angle of average nematic order presented in Figs. 5.8A and 5.8B, respectively. We
further present in Figs. 5.8C and D the cell polarization 〈Q〉 and Nematic Corre-
lation Function g(r), which respectively capture the degree to which proteins are
sorted within individual cells and the degree to which polarity is aligned between
cells.

5.2.5 Connection with nematic liquid crystals

The quantification of planar cell polarity given here is inspired by an analogy to
liquid crystals. Liquid crystals are composed of ellipsoidal or rod-like molecules [152].
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Figure 5.7: Quantified polarity pattern in wild-type Drosophila wings. The length
and angle of yellow bars represent the magnitude and angle of nematic order, respec-
tively. (A-B) Coarse-grained pattern of average polarity (A) earlier in development
(15 hAPF) and (B) later in development prior to hair outgrowth (30 hAPF). Green
ellipses represent the anterior crossvein and can be used as a marker of position.
Red dots indicate the vectorial nature of the polarity pattern, and are determined
in separate experiments (clonal analyses). (C-E) Cell-scale polarity pattern at three
times during development, in a region between the longitudinal veins L1 and L3.
The fluorescently labelled protein in panels (A-E) is Stbm:YFP. (F,left) Magnitude
and axis of average nematic order averaged in the region shown in (C-E). (F,right)
Magnitude (arbitrary units) and angle of cell elongation, a quantification of cell
shape shown for comparison. Collaborative figure taken from [2].
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Figure 5.8: Average nematic order computed in a region between veins L1 and L3,
shown as a function of time. (A-B) The magnitude and angle of average nematic
order (same data as presented in Fig. 5.7F). The angle of nematic order is measured
with respect to the proximal-distal axis, i.e., the horizontal axis in Fig. 5.7C-E. (C)
Cell polarization 〈Q〉 = 〈Q2

1 + Q2
2〉1/2, indicating the degree to which proteins are

sorted within cells. (D) Nematic correlation function g(r) for there different times
in development, namely 16 hAPF (black), 21 hAPF (red), and 32 hAPF (blue). All
panels are computed for the same data presented in Fig. 5.7C-E.
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In the “nematic” phase, these ellipsoidal molecules align parallel to one another.
Such rod-like molecules have a mirror symmetry: rods can be perpendicular or
parallel, but there is no concept of antiparallel rods because there is no vectorial
asymmetry. In this sense, ellipsoidal molecules in a nematic liquid crystal have the
same π-symmetry as the cell perimeter intensity I(φ) introduced in Sect. 5.2.

The nematic phase of a liquid crystal can be characterized using a traceless-
symmetric tensor Qij = 〈pipj〉− δij/d, where pi is a vector parallel to the ellipsoidal
axis of a given molecule, 〈. . .〉 denotes an ensemble average, δij is the Kronecker
delta, and d is the dimensionality of the liquid crystal (e.g. d = 2 or 3). In two
dimensions, the traceless-symmetric tensor Qij with components Q1 = Qxx = −Qyy

and Q2 = Qxy = Qyx can be written in matrix notation as:(
Q1 Q2

Q2 −Q1

)
. (5.25)

The eigenvalues of Qij are ±Q, where Q = (Q2
1 +Q2

2)
1/2

is the magnitude of nematic
order. The eigenvector corresponding to the positive eigenvalue Q points at the angle
φn, where φn = atan2(Q2, Q1)/2 as defined previously. The remaining eigenvector,
corresponding to the negative eigenvalue −Q, points in the perpendicular direction
at angle φn + π/2.

5.3 Summary

In this chapter we developed methods for quantifying cell flow and planar polarity in
the Drosophila wing. We showed in Figs. 5.2 and 5.7 that cell flow, shear, rotation,
and polarity each form coherent spatiotemporal fields in the developing wing. Figs.
5.7 and 5.8 demonstrate that polarity reorients during development between 15–30
hAPF. This observation motivates the question: What mechanisms reorient polarity
during development? The comparison between polarity reorientation (Fig. 5.7) and
the spatiotemporal shear and rotation fields (5.2D-I) is highly suggestive towards
answering this question, which we address in Chapter 6.





6 Theoretical framework for planar
cell polarity

In this chapter we formulate theoretical models of planar cell polarity with the aim
to extract the underlying physical mechanisms present in the real system. Along
these lines we present in Sect. 6.1 a hydrodynamic theory of polarity reorientation
on the scale of groups of cells, based on the quantifications presented in Chapter 5.
We further present in Sect. 6.2 a model of polarity at the cell scale based on the
vertex model presented in Chapters 2–4.

6.1 Hydrodynamic theory of polarity reorientation

In general, any pattern in a moving medium will move together with the medium.
If a pattern is embedded in an inhomogeneously flowing medium, then the pattern
will necessarily be reorganized. These effects are captured in a hydrodynamic theory
of polarity reorientation; such theories are well established in the context of liquid
crystals [152]. Here we apply these ideas to investigate whether or not cell flow plays
a role in reorienting polarity.

6.1.1 Theoretical background

A velocity vector-field can be decomposed into a homogeneous translational vector
component, together with the pattern of velocity gradients. The tensor-field of
velocity gradients can be subsequently decomposed into patters of compression C,
shear S1 and S2, and rotation ω, corresponding to the trace, traceless-symmetric
part, and traceless-antisymmetric part of the velocity gradient tensor, see Sect.
5.1.2. In general each of these components couples to polarity [42, 152]. In order to
describe this coupling we define a local polarity vector p with components pi, where
i = x or y, together with the co-rotational derivative of the polarization vector [42]:

Pi =
Dpi
Dt

= ∂tpi + vj∂jpi + ωijpj. (6.1)

Here t is time, vj is the jth component of the velocity field v, and ωij = (∂ivj−∂jvi)/2.
Several factors can contribute to Pi. These can be divided as Pi = P r

i + P d
i into
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reactive components P r
i , which change sign under time inversion, and dissipative

components P d
i , which are unchanged under time inversion. The reactive component

P r
i can be described using the phenomenological equation [42]:

P r
i = −νpjvij − νpivjj, (6.2)

where vij = (∂ivj + ∂jvi)/2 is the strain-rate tensor, ν is a parameter describing the
coupling between shear and polarity, and ν is a parameter describing the coupling of
compression and polarity. Eqs. 6.1 and 6.2 define a dynamic equation for polarity
reorientation:

∂tpi = −vj∂jpi − ωijpj − νpjvij − νpivjj,+P d
i , (6.3)

where the five terms on the right-hand side account for convection, local rotation,
shear, compression, and dissipative effects, respectively.

6.1.2 Simplified dynamic equation for polarity reorientation

Eq. 6.3 can be significantly simplified for the purposes of applying it to experimental
data. Firstly, we note that the term accounting for compression, νpivjj, couples only
to the magnitude of the polarity vector p. Recall our motivation for formulating
the present hydrodynamic theory: a polarity pattern embedded in a flowing tissue
will be reorganized. Here we envision shearing, locally rotating tissues reorienting
polarity. Such a hypothesis does not give any insight as to how flow should influence
the local magnitude of polarity. This suggests that we should restrict our attention
to the angle θv of the polarity vector p, rather than the magnitude |p|. Along these
lines, we can treat the phenomenological coefficient ν as a Lagrange multiplier,
assigning the value necessary to fix the magnitude of the polarity vector p2 = 1, but
leaving the polarity angle θv unchanged.

The second simplification that can be made to Eq. 6.3 is to ignore the dissipative
component P d

i of polarity reorientation. Physically, we expect polarity to corotate
with a moving reference frame and thus do not expect a large dissipative compo-
nent opposing patterns of local rotation. Furthermore, the terms contributing to
a dissipative component include active terms and direct coupling between polarity
reorientation and a conjugate external field [42]. Active terms could include the
natural tendency of polarity domains to align. Terms conjugate to an external field
are reminiscent of global cues for PCP, see Sect. 1.3.2. Here we purposefully neglect
such terms in order to investigate mechanisms for polarity reorientation that do not
rely on global cues. Similarly, we neglect the natural tendency of polarity domains
to align in order to highlight the role of hydrodynamics in reorienting polarity. The
final simplification that we make here is to neglect the contribution of convection
vj∂jpi to polarity reorientation. This is motivated by calculation results: the calcu-
lations to follow were performed both accounting for and neglecting convection, and
no differences relevant to the present discussion were observed. For the purposes of
simplicity, convection was neglected in the final calculations presented here.
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Ignoring dissipative terms and convection, Eq. 6.3 implies the following dynamic
equation for the polarity angle θv:

∂θv
∂t

= −ν (S2 cos 2θv − S1 sin 2θv) + ω, (6.4)

where the polarity angle θv is time and space dependent, and where θv is measured
with respect to a fixed reference frame. Rewriting this equation in terms of the local
shear rate ks and the angle of polarity with respect to the local axis of pure shear,
θ = θv − θs, we find:

∂θ

∂t
= νks sin 2θ + ω. (6.5)

Here, ω is the local rotation rate, and ks is the rate of pure shear. Eq. 6.5 reveals
how the coefficient ν influences polarity reorientation. For ω = 0, Eq. 6.5 has fixed
points at θ = 0 and θ = π/2. The stability of these fixed points depends on the sign
of the coefficient ν: for ν < 0 the fixed point at θ = 0 (polarity parallel to shear)
is stable and the fixed point θ = π/2 is unstable; for ν > 0 the opposite situation
holds. In the absence of shear, ks = 0, only the trivial action of local rotations on
polarity is present, ∂θ/∂t = ω.

6.1.3 Application to observed polarity reorientation

The patterns of rotation presented in Fig. 5.2G-I are consistent with the rotation
of polarity shown in Fig. 5.7: anterior groups of cells collectively rotate counter-
clockwise, while posterior groups of cells rotate clockwise, which is the pattern of
rotations that would be necessary to reorient the fan-shaped polarity pattern of Fig.
5.7A to obtain that of Fig. 5.7B. Order of magnitude considerations agree with this
assessment: local rotations in the pattern of cell flow amount to ∼ 0.25 radians in
each of the two compartments, see Fig. 5.4.

In order to quantitatively determine the extent that hydrodynamics accounts
for the polarity reorientation observed in experiments, we solved Eq. 6.4 using
initial conditions, shear and rotation fields measured from experiments. The initial
condition, shown in Fig. 6.1A, was generated using the same data as Fig. 5.7A with
two exceptions: (i) the pattern was differently coarse-grained in order to fit onto
the wing for which the flow patterns were obtained, and (ii) the resulting polarity
vectors were renormalized to have equal length, because the present hydrodynamic
theory does not describe the local magnitude of polarity. Given the initial condition
in Fig. 6.1A, Eq. 6.4 was solved numerically, separately for each of the polarity
vectors presented in Fig. 6.1. For each of the polarity vectors with angle θv, the
local time-dependent shear and rotation rates S1, S2, and ω were taken from the
experimentally quantified spatiotemporal fields, presented for two times in Fig. 5.2.

Solving Eq. 6.4 for the 17 h developmental window under study here causes the
fan-shaped initial condition of Fig. 6.1A to reorient, yielding the pattern in Fig.
6.1B at the end of the calculation. The only free parameter in such a calculation is
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A B

Figure 6.1: Reorientation of polarity in a hydrodynamic model. Starting from an
initial condition based on experiments (A), Eq. 6.4 is solved using the parameter
value ν = −3 and the spatiotemporal patterns of shear S1 and S2 and rotation ω
measured from experiment. After integrating Eq. 6.4 for an equivalent of 17 h of
development, we obtain the final polarity pattern (B). The initial polarity pattern
(A) is based on the pattern in Fig. 5.7A, with the exceptions that: (i) The pattern
in (A) was differently coarse-grained than that in Fig. 5.7A, owing to the different
shapes of the wings. (ii) All polarity vectors were normalized to constant length for
the present figure. Collaborative figure taken from [2].
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Figure 6.2: Quantification of polarity reorientation in a simple hydrodynamic model.
(A-B) Magnitude (A) and angle (B) of average polar order averaged separately
in anterior and posterior compartments for ν = −3. Here dashed (red) curves
represent the average polarity in the anterior to the third longitudinal vein and
dotted (blue) curves represent polarity posterior to that vein. The solid black curve
in (A) represents the magnitude of polar order for the complete wing, which increases
to a maximum value of 0.90 at the end of the calculation. The data presented here
is from the same calculation as Fig. 6.1.

Figure 6.3: Magnitude of final polar order plotted as a function of the phenomeno-
logical coefficient ν, as well as the magnitude of random white noise δ added to
the polarity initial condition. Calculations were computed using experimentally
determined shear and rotation fields from a wild type wing, see Fig. 5.2.
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the coefficient ν. For ν = 0, i.e. ignoring any influence of shear on polarity, polarity
reorients, obtaining a final average polar order of 0.76, which is ∼ 77% of the exper-
imental value at the end of development (0.98). Thus, local rotation makes up for a
significant fraction of the reorientation observed in experiment. In order to investi-
gate whether shear might contribute to reorientation, we repeated the calculations
with nonzero ν. We found that ν ≈ −3 gives the maximum value of polar order
at the end of the calculation, 0.90, or ∼ 92% of the experimentally observed value.
The final polarity pattern and quantification of the computed dynamics for ν = −3
are presented in Figs. 6.1B and 6.2.

In order to test robustness with respect to noise, we performed calculations where
random white noise in an interval ±δ/2 was added to the initial condition prior to
solving Eq. 6.4. The results of this analysis are presented in Fig. 6.3. We find that,
within a range −10 < ν < −1, polarity reorientation achieves an average polarity
order ≥ 0.85, and that this reorientation is stable in the presence of noise.

6.1.4 Testing the model: Severed wings

The calculations shown in Figs. 6.1–6.3 provide strong evidence that cell flow reori-
ents planar polarity in the Drosophila wing, together with the theoretical arguments
of Sects. 6.1.1–6.1.2. According to the theory, altering the pattern of flow in the
wing should alter the polarity reorientation, ultimately leading to a perturbed polar-
ity pattern at the end of development. In order to test this prediction, we repeated
the analysis of Chapter 5 on a fly wing that had been cut between the hinge and
the blade during development. By removing the effects of hinge contraction on the
blade, and potentially adding additional stresses due to wound healing, the pattern
of cell flow in such mutant wings is seriously altered, see Fig. 6.4. Indeed, the pat-
tern of cell flow is inverted, with net transport of cells from the proximal to the distal
direction, compare Figs. 6.4A and 5.2B. The corresponding patterns of shear and
rotation are presented in Figs. 6.4B-C. Most remarkable is the pattern of rotation
in the severed wing, which is inverted with respect to the wild-type pattern, with
clockwise rotation in the posterior compartment and counterclockwise rotation in
the anterior compartment, see Fig. 6.4C.

The quantified polarity pattern for a severed wing at the end of development
is shown in 6.4D. Indeed, the polarity pattern in severed wings is perturbed as
compared to the wild-type pattern. We asked whether or not our hydrodynamic
theory could consistently account for the change in polarity pattern in severed wings,
given the measured change in cell flow. The first calculation which we performed
along these lines was solving Eq. 6.4 using the spatiotemporal flow field measured
for the wounded wing presented in Fig. 6.4, with an initial condition based on the
known wild-type pattern. Once again, the dimensionless coefficient ν is the only
adjustable parameter in such a calculation. Using ν ≈ −3, such a calculation does
not realistically reproduce the experimentally observed polarity pattern at the end
of development. However, we found that a value of ν = 2 gave rise to a final polarity
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Figure 6.4: Flow (A), shear (B), rotation (C), and polarity (D) in a wing that was
severed between the hinge and the blade during development. Collaborative figure
taken from [2].
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A B

Figure 6.5: Predicted reorientation of polarity in a severed wing. Using an initial
condition (A), and the spatiotemporal shear and rotation fields measured from ex-
periment, Eq. 6.4 was solved to obtain the predicted pattern (B), using parameter
value ν = 2. Collaborative figure taken from [2].

Figure 6.6: Magnitude of final polar order plotted as a function of the phenomeno-
logical coefficient ν, as well as the magnitude of random white noise δ added to the
polarity initial condition. Calculations were computed using experimentally deter-
mined shear and rotation fields from a wing severed between the wing hinge and the
blade, see Fig. 6.4.
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pattern qualitatively consistent with that observed in experiment, see Fig. 6.5 and
compare Fig. 6.5B with Fig. 6.4D.

We furthermore asked whether flow patterns in wounded wings could concievably
reorient polarity parallel to the PD-axis, for any value of ν. The answer to this
question is ‘no’, see Fig. 6.6. Indeed, the magnitude of final polar order remains
below ∼ 0.7 for all values of ν. Furthermore, we find in Fig. 6.6 that the highest
magnitude of final polar order is obtained for small positive values of ν, consistent
with the value of ν = 2 used in the calculation of Fig. 6.5.

6.2 Planar cell polarity in the vertex model

We described in Sect. 6.1 a hydrodynamic description of polarity reorientation, valid
on the scale of groups of cells, where the tissue behaves as a continuous material.
Here we show that this hydrodynamic description of PCP emerges naturally in a
cell-scale description of PCP based on the vertex model. This cell-scale PCP model
first appeared in the doctoral thesis of R. Farhadifar [71] 1. Such a model describes
cell mechanics and growth using the methods described in Chapters 2–3.

PCP protein levels are described using dimensionless variables σαi and σβi , see Fig.
6.7A. In this coarse-grained description, two types of PCP proteins are represented
using the variables σαi : “proximal proteins” are represented as positive values of σαi
and “distal proteins” are represented using negative values of σαi . Large magnitudes
|σαi | represent high protein concentrations on bond i of cell α. We are able to
represent two protein concentrations (proximal and distal) using a single variable
σαi because the acculuation of the two types of proteins are assumed to be mutually
exclusive on a single bond. Proximal proteins in this simple theory correspond
roughly to complexes involving Fmi, Stbm and Pk in the real experimental system;
conversely, distal proteins correspond to complexes containing Fmi, Fz, Dsh, and
Dgo, see Sect. 1.3.1. The interactions of PCP proteins with themselves and their
environment are described using a potential:

EPCP = J1
∑
i

σαi σ
β
i − J2

∑
{i,j}

σαi σ
α
j − J3

∑
α

εα ·Qα, (6.6)

where the first summation describes interactions of PCP proteins between adjacent
cells α and β across a common cell boundary i, the second summation describes
interactions between adjacent boundaries i and j within cells α, and the third sum-
mation describes the interaction between cell shape εα and PCP nematic order Qα.

1The simulations presented in Sect. 6.2 were performed by R. Farhadifar, not by the present
author. Those calculations were part of a collaboration between R. Farhadifar, F. Jülicher, the
experimental group of S. Eaton at MPI-CBG Dresden, and the present author. The entire group
discussed and developed the model. The present author recommended specific parameter values
for use in these calculations, and performed the data analysis presented in Figs. 6.8–6.9. For more
information on the details of collaborative work presented in this thesis, see Appendix C.
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Figure 6.7: (A) PCP in the vertex model is represented using variables σαi , which
describe the level of PCP proteins on bond i of cell α. Each cell boundary i is
shared by two cells α and β; the variables σαi and σβi describe the protein levels on
the two sides of the single cell boundary i. Here and in all panels proximal proteins
corresponding to positive σβi are represented by blue and distal proteins are shown
in red. (B) Simulation of tissue growth in a vertex model including PCP dynamics.
Arrows represent the direction of polarity. Parameter values: kdτ = 0.01, J2/J1 =
0.5 and J3 = 0. (C) Reorientation of polarity caused by externally-imposed tissue
shear. Parameter values: kdτ = 0.01 and J3/J1 = 0.05. (D) Reorientation of polarity
by oriented cell division. Parameter values: kdτ = 0.01, J3 = 0. Collaborative figure
taken from [2].
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Figure 6.8: Magnitude of polar order in Vertex model simulations of polarity for-
mation during growth, for three cell division rates kdτ = 0.01 (black), kdτ = 0.1
(blue), and kdτ = 1 (red). Starting from a network of 36 cells with random polarity
variables σαi , the magnitude of polar order increases within one cell-generation k−1d
to reach its maximum value. For kdτ < 1, long-ranged polar order is maintained
throughout development. Parameter values: J2/J1 = 0.5 and J3 = 0.

J1, J2, and J3 are parameters describing the strength of the three respective in-
teractions. In addition to the potential EPCP , the variables σαi are subjected to
contraints. Firstly, the total number of proteins on cell boundaries is not expected
to vary widely from cell to cell, and this fact is represented here using the constraint:∑

i

(σαi )2 = c, (6.7)

where c is a constant. Secondly, each cell is assumed to have both types of proteins,
in roughly equal amounts. This assumption is motivated by the fact that proximal
and distal proteins play conjugate roles, with proteins of one type interacting accross
cell boundaries with proteins of the other type. This is captured here using the
constraint: ∑

i

σαi = 0. (6.8)

The time-evolution of PCP proteins is then described using a simple dynamic equa-
tion:

dσαi
dt

= −kPCP
∂EPCP

∂σαi
. (6.9)

Here−kPCP is a kinetic coefficient related to the PCP relaxation time τ = 1/(kPCPJ1)
and

EPCP = −
∑
α

ψα1
∑
i

σαi −
∑
α

ψα2
∑
i

[
(σαi )2 − c

]
, (6.10)

where ψα1 and ψα2 are Lagrange multipliers used to impose the constraints.
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Figure 6.9: Simulations of polarity reorientation due to externally imposed shear
and oriented cell division. (A-C) Starting from an initial condition with polarity at
∼ 45 degrees to the shear axis, Fig. 6.7B, external shear was applied by changing
the aspect ratio of the periodic simulation box at fixed area. Curves are shown for
three different couplings between polarity and cell elongation: J3 = 0 (red curves),
J3/J1 = 0.05 (blue curves) and J3/J1 = 0.5 (black curves). Each set of curves is
shown for three different shear rates: ksτ = 0.01 (A), 0.1 (B) and 1 (C). Here ks is
the shear rate, τ is the characteristic time for PCP relaxation, and only the product
ksτ enters the present calculations. (D) Starting from the same initial condition as
(A-C), shear induced by oriented cell division can also cause polarity reorientation,
in this case with J3 = 0. Three cell division rates are presented, namely kdτ = 0.01
(black), kdτ = 0.1 (blue) and kdτ = 1 (red). Parameter common to all panels:
J2/J1 = 0.5.
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We present in Fig. 6.7 a vertex model calculation including PCP dynamics.
Starting from an initial condition of 36 cells with random polarity variables, tissue
growth was simulated using the methods of Chapter 3 while numerically solving
PCP dynamics as described by Eq. 6.9. We see in Fig. 6.7B that a tissue grown in
such a fashion results in global polar order free from polarity defects such as swirls.
The magnitude of polar order as a function of time is presented in Fig. 6.8. Polar
order is established first at the 36-cell stage, when the system is too small to support
defects in the polarity pattern. This order is then maintained during development,
resulting in the defect-free pattern in Fig. 6.7B. This is to be contrasted with a
situation where polarity variables are assigned randomly to a tissue that has already
been grown: in such a situation polarity patterns attain defects including swirls [71].
Note that there is no global biasing signal in these calculations: the emergent global
polarity direction is determined randomly from fluctuations including stochastic cell
divisions and the random initial condition. In the real experimental system the early
polarity pattern could be determined by boundary conditions or any other symmetry
breaking phenomenon.

We present in Fig. 6.7C-D two methods for reorienting polarity in vertex model
simulations. In the first of these, shear is applied along the horizontal axis in Fig.
6.7C (∼ 45 degrees to the initial polarity axis). Such shear is applied at a constant
rate ks by changing the aspect ratio of the periodic simulation box while maintaining
constant area. This is performed in a quasistatic approximation, where the mechan-
ical forces on the network were relaxed instantaneously throughout the calculation.
In Fig. 6.7D, shear is generated by oriented cell division: new cell boundaries are
drawn preferentially along the vertical axis, which results in shear along the hori-
zontal axis. In both types of simulations polarity reorients parallel to the shear axis,
see Fig. 6.7C-D. This behaviour depends on parameter values, as shown in Fig. 6.9.

6.3 Summary

Any pattern in a moving medium will move together with the medium. This simple
idea can be used to derive hydrodynamic theories of polarity reorientation, which
are well known in the context of liquid crystals [42, 152]. Here we develop a hydro-
dynamic theory of polarity reorientation in the fly wing. Due to the simplicity of
the underlying arguments, hydrodynamic effects will be present in the real system,
even if other biophysical mechanisms are also at work. This is most clear in the
trivial coupling of PCP to patterns of local rotation. Here we find that that the
magnitude and pattern of local rotation found in the wing accounts for PCP reori-
entation on the order of 77% of that observed in the real wing, measured in terms
of the magnitude of final polar order. Coupling of PCP to patterns of shear may in
general be nontrivial. However, due to symmetry arguments, any coupling between
PCP and shear will have two fixed points, one parallel and one perpindicular to the
shear axes. Only one of these fixed points can be stable, a fact captured by the
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sign of the coefficient ν in our hydrodynamic theory. In the real system as well as
in hydrodynamic calculations, moving towards a stable fixed point can provide a
robust mechanism for reorientation. By combining the effects of rotation and shear,
we find that cell flow can account for over 90% of the reorientation observed in the
fly wing. Finally, we present in Sect. 6.2 a cell-scale model of planar polarity in the
vertex model. We find that shear in the vertex model is able to reorient polarity
either parallel or perpindicular to the shear axis, consistent with the hydrodynamic
theory of Sect. 6.1.

The hydrodynamic calculations presented in Sect. 6.1 are intentionally incom-
plete. In particular, we omit in our hydrodynamic equations the natural tendency
for PCP to align, which could account for the remaining reorientation observed in
the wing. Such a natural tendency would appear as terms involving the gradient
of the polarity field. Here we omitted such terms in order to highlight the role of
hydrodynamics in reorienting polarity.

While the research presented here was under review, a related paper discussing
a different connection between hydrodynamic flow and polarity was published [153].
In that paper, Guirao et al. do not discuss the connection of cell flow and polarity
during development, but rather hydrodynamic forces in the medium surrounding
mammalian motile cilia coupling with planar polarity in those systems.



7 Conclusions

In this thesis we present a theoretical analysis of the vertex model for tissue mechan-
ics and dynamics, and a theoretical description of planar cell polarity (PCP). The
vertex model describes epithelia as networks of polygons, motivated by experimental
images at the level of the adherens junctions. Here we analytically determine ground
states of the vertex model, and derive a dynamic description of the model based on
a balance between reactive and dissipative (frictional) forces. In order to determine
tissue dynamics in experiments, we develop quantification methods for cell flow and
planar polarity. Motivated by an analogy to the physics of liquid crystals, we show
that cell flow reorients planar polarity in the developing wing of the fruit fly.

We present a wide range of methods and results throughout the thesis, includ-
ing mathematical derivations, physical theories, and quantifications of experimental
data. Firstly, in Chapter 2 we use the topological requirement that cells tile the
plane to prove that the ground state of the vertex model is a hexagonal lattice in a
region of parameter space, assuming tissue properties are homogeneous. This result
demonstrates that topological requirements not only restrict the possible lattices
that can be formed, but can actually determine the ground state of a cellular model.
Our result extends and refines past work [69], which identified the key features of
the phase diagram based on a combination of physical arguments and simulations.

Transition lines in the ground-state diagram coincide with changes in elastic
properties including shear and compression moduli. In the region of parameter
space where a hexagonal lattice is the ground state, cell shape is set by a balance
between the cell’s Young’s modulus, elastically preferred shape, cell-cell adhesion,
and stresses generated by a contractile actin-myosin ring. However, as cells are
made sufficiently adhesive, it becomes possible to perfectly satisfy this balance, cor-
responding to an absolute minimum of the network potential or work function. This
qualitative change is marked by a second-order phase transition to a region of degen-
erate ground states of irregular cells. This ground-state degeneracy allows the tissue
to be continuously reshaped without increasing the potential energy, resulting in a
vanishing shear modulus. This could be one mechanism among others [5] explain-
ing why some real tissues show fluid-like behaviour, and others show predominantly
solid-like behaviour. In one scenario, dominant contractile forces could push cells
toward a hexagonal shape, minimizing cell-cell contact. However, if cells are suffi-
ciently adhesive then other shapes with larger cell-cell contacts would be favoured
over the hexagonal lattice. Such lattices are degenerate, allowing the possibility for
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zero shear modulus and fluid-like behaviour.

In Chapter 3, we find that manyfold vertices are typically unstable in the ver-
tex model employed in this thesis, in the case of homogeneous tissue parameters.
Surprisingly, vertices formed from junctions of as many as eleven cells are observed
experimentally [101]. These manyfold vertices or “rosettes” are associated with
anisotropic, inhomogeneous distributions of actin-myosin contractility; our vertex
model calculations imply that this inhomogeneous contractility is critical for their
formation. Rosette formation is a striking, qualitative difference between cell net-
works in tissues and networks of foams, which only show threefold vertices in two
dimensions [80]. It would be interesting to perform a detailed study of rosette for-
mation using a combination of theory and experiment, in order to determine if inho-
mogeneous contractility is the sole mechanism for the formation of these seemingly
paradoxical objects.

In addition to the formation and decomposition of manyfold vertices, other topo-
logical processes are investigated in Chapter 3 including cell extrusion, cell division,
and tissue growth. In previous work [69], tissue growth simulations were presented
where cells would double in area, divide, and quasistatically relax to a force-balanced
state. Here, in Chapter 3, we show that a simplified algorithm that omits the area-
doubling phase gives very similar results. We furthermore introduce simplified rules
for cell-boundary rearrangement (T1 transitions), finding indistinguishable results
as compared to the previous algorithm. These simplifications hint towards a sepa-
ration of timescales: if growth simulations are performed quasistatically, then one
does not expect the reaction pathway on the timescale of single cell divisions to
significantly affect the results. In order to go beyond the quasistatic approximation,
in Chapter 4 we develop a dynamic description of the vertex model based on the
balance of reactive and dissipative (frictional) forces. This description allows friction
coefficients to be incorporated into the vertex model that couple to different types
of motion, for example changes in cell bond lengths or areas. Here we use this dy-
namic description in order to determine relaxation modes and predict the emergence
of the quasistatic limit, which is verified in numerical calculations. This dynamic
description would also be well suited to investigating laser ablation experiments,
where tissues are cut using a laser and the relaxation is observed [69, 154, 155].

In order to investigate the dynamics of tissues in experiments, we present in
Chapter 5 quantification methods for determining cell flow and planar polarity based
on confocal microscope images of the wing of the fruit fly. Noting that a polarity
pattern in an inhomogeneously flowing tissue will necessarily reorganize, we develop
a hydrodynamic theory of polarity reorientation in Chapter 6. Such theories are well
known in the physics of liquid crystals, which order in response to shear flow. Using
this combination of quantification and theoretical calculations, we show that cell flow
is a key mechanism for reorienting polarity patterns during development. In general,
polarity is ubiqutous is cells and tissues [102]. For instance, epithelial cells typically
display polarity both in the apical-basal direction (perpindicular to the plane of the
epithelium), and also in the plane of the epithelium (PCP). In humans, defective
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PCP signalling has been implicated in polycystic kidney disease, possibly due to
improper ciliary function [102]. The hydrodynamic theory of polarity reorientation
presented in this thesis is highly general, being based on simple physical arguments.
Thus, we hope that the present theory will be applied to diverse systems in order
to understand tissue polarity in a broader context.





A Ground states of the vertex
model

A.1 Networks of identical cells

We first determine the ground state of networks of identically shaped cells. Networks
of identically shaped cells can only be n-sided polygons with n = 3, 4, 5 or 6. Note
that, due to the restriction of average neighbour number, networks of identically
shaped cells with n = 3, 4 or 5 must contain fourfold or manyfold vertices. As shown
in Sect. 2.2.1, for Λ < −25/231/4Γ the lowest potential energy of individual polygons
corresponds to irregular polygons with preferred area and perimeter. Similarly, it
was shown that if

Λ ≥ 2 · 3−5/2(
√

3− 12Γ)3/2 (Γ <
√

3/12) (A.1)

or

Λ ≥ 0 (Γ ≥
√

3/12) (A.2)

then the lowest potential of individual polygons corresponds to collapsed cells with
a = 0. These results also apply for networks of identical polygons. For values of Λ
between these two cases, a regular hexagon of minimal e has a lower potential than
any other n-sided polygon with n ≤ 6. Interestingly, for Λ ≥ 0 this fact also follows
directly from the so-called “Honeycomb Conjecture”, which states that a network
of regular hexagons has the smallest perimeter of any periodic tiling of equal area
regions [156]. These arguments define the ground states of networks of identical
cells, depending on the values of Λ and Γ, see Table A.1.

A.2 General networks of cells

We now consider all possible networks and determine the ground states of F . For
Λ < −25/231/4Γ any state for which all cells have area a = 1 and perimeter p = p0
is a ground state of the system. In the following we only consider parameter values
with Λ ≥ −25/231/4Γ.

The ground state of all networks composed of n-sided polygons with n ≤ 6 is a
perfect hexagonal network with optimized areas. This follows because an optimal
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Parameter Values Ground State (Identical Cells)

Λ < ΛI −

ΛI ≤ Λ < ΛII Γ <
√

3/12

ΛI ≤ Λ < 0 Γ ≥
√

3/12

Λ ≥ ΛII Γ <
√

3/12

Λ ≥ 0 Γ ≥
√

3/12

irregular polygons (a = 1, p = p0)}
hexagonal lattice

}
collapsed lattice (a = 0, p = 0)

Table A.1: Ground states of the potential energy F of networks of identically shaped
cells as a function of the dimensionless line tension Λ and perimeter elasticity Γ. For
Λ < ΛI the ground states are degenerate, consisting of identical irregular polygons
with a = 1 and p = p0. For Λ ≥ ΛII the ground state is a collapsed network of cells

with zero area. Here ΛI = −25/231/4Γ and ΛII = 2 · 3−5/2
(√

3− 12Γ
)3/2

.

hexagon has a lower potential than any other n-gon with n ≤ 6. The problem is
nontrivial in the case where some polygons have n > 6 sides. Because for periodic
boundary conditions the average neighbour number 〈n〉 in an arbitrary network is
〈n〉 ≤ 6, any n-gon with n > 6 must be balanced by a number of n-gons with
n < 6. We use this fact to determine a lower bound ∆net(n) + e6 of the potential of
networks containing cells with n > 6, where e6 denotes the optimal energy of regular
hexagons.

For a network containing an n > 6-sided cell, the average neighbour number can
be less than or equal to 6 if the network also contains n − 6 pentagons, (n − 6)/2
quadrilaterals, or (n−6)/3 triangles. Combinations of triangles, quadrilaterals, and
pentagons are also possible. A lower bound on the potential difference between such
a network and one containing only regular hexagons is given by:

∆net(n) = ∆n + (n− 6) min

[
∆5,

∆4

2
,
∆3

3

]
, (A.3)

where ∆n = en − e6. Here en is the lowest energy e of an n-sided polygon given Λ
and Γ. Note that as shown in Sect. 2.2.1, the corresponding optimal polygon shape
is either a regular n-sided polygon, an irregular polygon with a = 1 and p = p0, or
a collapsed cell (a = 0, p = 0). If ∆net(n) > 0, then any network constructed using
cells with six or fewer sides together with cells with n > 6 sides will have a higher
potential than the hexagonal lattice. If ∆net(n) > 0 for all n > 6 then the optimal
hexagonal network is the ground state of the system for the given parameter values.
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We note that en is monotonically decreasing with n, so that

∆net(n
′) ≥ ∆net(n) + e∞ − en (A.4)

for all n′ ≥ n, where
e∞ = lim

n→∞
en. (A.5)

The procedure for showing that the hexagonal lattice is the ground state for a
particular set of parameter values (Λ,Γ) is as follows. Starting at n = 7, we check
the inequality ∆net(n) > 0 for increasing values of n. If ∆net(n) < 0 for any n, the
then hexagonal network may not be the ground state. If for ∆net(n) > 0 we also
find ∆net(n) + e∞ − en > 0 then the hexagonal network is proven to be the ground
state, and larger n do not need to be considered. We continue checking these two
inequalities for increasing values of n, until either ∆net(n) < 0 for some n, and no
conclusions can be drawn, or ∆net(n) + e∞− en > 0, and thus the hexagonal lattice
is shown to be the ground state.

We have applied these arguments numerically at each set of parameter values
(Λ,Γ) in the ranges −1.5 ≤ Λ ≤ 0.5, 0 ≤ Γ ≤ 0.2 in increments of ∆Λ = ∆Γ = 10−4.
We find that the hexagonal lattice is the ground-state network of the vertex model
everywhere in the part of region (II) of Figs. 2.1a and 2.1b that is exterior to the
dotted lines.





B Topological processes and
tissue growth

B.1 Topological changes

When the potential energy F is minimized by a conjugate gradient procedure, a cell
bond can shrink to zero length and the network undergo a T1-transition. Similarly,
a cell can shrink to zero area and induce a T2-transition.

B.1.1 T1 transitions

Method A. Each bond k is assigned a state variable σk, which can take the values
0 or 1. Initially σk = 1 for all bonds. The algorithm consists of the following steps,
applied at each iteration of energy minimization: (i) A T1 transition is performed
whenever a bond with σk = 1 shrinks below a cutoff length lmin, i.e. if lk < lmin. After
the transition this bond no longer exists, and the newly created bond is assigned
σk = 0. (ii) For all bonds with lk ≥ lmin we set σk = 1.

Method B is the algorithm used in Ref. [69]. The algorithm consists of the
following steps, applied at each iteration of energy minimization: (i) For each bond
with lk < lmin we determine F+ and F−, the energies corresponding to network
configurations due to right-handed and left-handed T1 transitions, see Fig. B.1. (ii)
The network with the lowest potential value F0, F+, or F− is chosen, where F0 is
the energy of the initial network, see Fig. B.1. This implies that a T1 transition
occurs whenever F+ or F− is below F0.

Method C is similar to Method B, except that F+ and F− are determined after
an additional relaxation, which keeps all vertices fixed except for the two vertices i
and j involved in the T1 transition, see Fig. B.1.

We find that polygon distributions and cell area variations are indistinguishable
for tissues obtained using these three algorithms (data not shown). The simplest
algorithm presented here (Method A) is more robust to numerical implementation
than methods B and C, because methods B and C require precise computation of
small potential changes F+ − F0 and F− − F0.
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Figure B.1: Schematic representation of T1 transitions as implemented in the nu-
merical algorithm described in App. B.1. Labels indicate vertices i and j, which
are connected by a bond k undergoing a T1 transition (bond not labelled).

B.1.2 T2 transitions

T2-transitions are accounted for by replacing a cell α with Aα < Amin with a vertex,
where Amin is an area cutoff.

B.2 Comparison of growth algorithms

Algorithm II for quasistatic cell division introduced in this paper is a simplified
version of Algorithm I, which was used in Ref. [69], see Sect. 3.3. We show in Fig.
B.2 that these two growth algorithms give very similar results (compare solid and
dashed lines).

Note that the polygon distributions shown in Ref. [69] differ slightly from the
dashed line in Fig. B.2, which is obtained using the same algorithm. Reasons for
this are: (i) A length cutoff was used when defining neighbour numbers in Ref. [69],
which is necessary when comparing with experiment. No such cutoff is used here.
(ii) In Ref. [69] a single network containing 104 cells was used, whereas here we
use 103 networks (dashed line in Fig. B.2) and 104 networks (solid line) containing
∼ 110 cells each. This implies a larger statistical error in Ref. [69] compared to Fig.
B.2. (iii) There are additional numerical inaccuracies in Ref. [69].
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Figure B.2: Comparison of algorithms I (dashed red lines) and II (solid black lines),
which use different rules for cell division, for (Λ,Γ) = (0.12, 0.04). (a) Fraction of
n-sided polygons as a function of cell neighbour number n. (b) Average area of
n-sided polygons, normalized by the average area of cells in the network, for the
same simulations shown in (a). The solid black lines in (a) and (b) are the same as
in Figs. 3.4a and 3.4b.





C Collaborative contributions

The research related to planar cell polarity presented in this thesis would have been
impossible without the combined effort of physicists and biologists working on the
same problem. Such collaboration is a strength of this thesis: because of our aggre-
gate effort, our results were of sufficient quality to warrant publication in the journal
Cell. Due to the degree of collaboration, lines between contributions of different
authors were occasionally blurred. This is partly due to the nature of an interdisci-
plinary field such as biophysics, and partly because of the inherently collaborative
design of the undertaken research. This is at odds with a historical doctoral sys-
tem where a student might have worked alone for several years. Correspondingly,
the author wishes to clarify in this appendix which parts of this thesis benefited
from collaborative work and how. Such clarifications are also made redundantly
throughout the text.

The research presented in this thesis on planar cell polarity was published in
[2]. The author list on that paper was B. Aigouy, R. Farhadifar, D. B. Staple, A.
Sagner, J.-C. Röper, F. Jülicher, and S. Eaton. Of these authors, R. Farhadifar
and myself were theoretical physicists working in the group of F. Jülicher here at
MPI-PKS, Dresden. B. Aigouy, A. Sagner, and J.-C. Röper were experimental
biologists working in the group of S. Eaton at MPI-CBG, Dresden. Theoretical
efforts were roughly divided between R. Farhadifar and myself under the supervision
of F. Jülicher, with R. Farhadifar responsible for vertex model calculations of planar
cell polarity (presented in Sect. 6.2) and myself responsible for the quantifications
and theory of cell flow and planar polarity presented in Chapter 5 and Sect. 6.1.
I contributed analysis of the vertex model simulations performed by R. Farhadifar;
for example the curves plotted in Figs. 6.8 and 6.9 were computed by the present
author based on raw data provided by R. Farhadifar. Such figures were truly a
collaborative effort.

The computations necessary to produce Fig. 5.7 were also highly collaborative.
The present author designed the algorithm presented in Sect. 5.2 based on an early
algorithm developed by R. Farhadifar and F. Jülicher. The present author then
wrote software for implementing the algorithm, and sent this software to B. Aigouy
for integration into cell-segmentation software that was used in previous work [69].
B. Aigouy ran the combined software and prepared the final images presented in
Fig. 5.7A-E.

Work for final figure preparation was distributed throughout the collaborative
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efforts. Final versions of figures that both contained both experimental images
of fly wings and the results of theoretical calculations were typically prepared by
B. Aigouy, even where the author developed the theoretical tools and wrote the
numerical routines used to perform the calculations. For example, in the case of
Fig. 5.2, the author wrote software for computing the cell velocity and derivative
fields. Said software was used to prepare preliminary versions of the panels in
Fig. 5.2 as well as the associated videos. These preliminary versions of the figures
together with figure specifications were sent to B. Aigouy, who prepared the final
version of Fig. 5.2. In total, Figs. 5.1, 5.2, 5.7, 6.1, 6.4, and 6.5 were prepared by B.
Aigouy. Fig. 6.7 was prepared by R. Farhadifar, and 5.5 was created by the present
author based on Fig. 5.2C, which was in turn prepared by B. Aigouy.
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Mechanics and remodelling of cell packings in epithelia. Eur. Phys. J. E, 33
(2):117–127, 2010.

[2] B. Aigouy, R. Farhadifar, D. B. Staple, A. Sagner, J.-C. Röper, F. Jülicher,
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et Leipzig, F. Clemm, 1873.

http://www.nlm.nih.gov/mesh/
http://www.nlm.nih.gov/mesh/


103

[81] J. E. Taylor. The structure of singularities in soap-bubble-like and soap-film-
like minimal surfaces. Ann. Math., 103(3):489–539, 1976.

[82] K. Kawasaki, T. Nagai, and K. Nakashima. Vertex models for two-dimensional
grain growth. Phil. Mag. B, 60(3):399–421, 1989.

[83] K. Nakashima, T. Nagai, and K. Kawasaki. Scaling behavior of two-
dimensional domain growth: Computer simulation of vertex models. J. Stat.
Phys., 57(3):759–787, 1989.

[84] T. Okuzono and K. Kawasaki. Intermittent flow behavior of random foams: A
computer experiment on foam rheology. Phys. Rev. E, 51(2):1246–1253, 1995.

[85] R. L. Fullman. Boundary migration during grain growth. In Metal Interfaces,
pages 179–207. American Society for Metals, Cleveland, 1952.

[86] A. Soares, A. C. Ferro, and M. A. Fortes. Computer simulation of grain growth
in a bidimensional polycrystal. Scripta Met., 19:1491–1496, 1985.

[87] D. Weaire. The Physics of Foams. Oxford University Press, 2000. ISBN
0198505515.

[88] K. Barmak, E. Eggeling, M. Emelianenko, Y. Epshteyn, D. Kinderlehrer,
R. Sharp, and S. Ta’asan. Critical events, entropy, and the grain boundary
character distribution. Phys. Rev. B, 83(13):134117, 2011.

[89] M. S. Hutson, J. Veldhuis, X. Ma, H. E. Lynch, P. G. Cranston, and G. W.
Brodland. Combining laser microsurgery and finite element modeling to assess
cell-level epithelial mechanics. Biophys. J., 97(12):3075–3085, 2009.

[90] S. Hilgenfeldt, S. Erisken, and R. W. Carthew. Physical modeling of cell
geometric order in an epithelial tissue. Proc. Natl. Acad. Sci., 105(3):907–911,
2008.

[91] F. Graner and J. A. Glazier. Simulation of biological cell sorting using a
two-dimensional extended Potts model. Phys. Rev. Lett., 69(13):2013–2016,
1992.

[92] J. C. M. Mombach, Rita M. C. de Almeida, and J. R. Iglesias. Mitosis and
growth in biological tissues. Phys. Rev. E, 48(1):598–602, 1993.

[93] M. Scianna, R. M. H. Merks, L. Preziosi, and E. Medico. Individual cell-based
models of cell scatter of ARO and MLP-29 cells in response to hepatocyte
growth factor. J. Theor. Biol., 260(1):151–160, 2009.

[94] R. Smallwood. Computational modeling of epithelial tissues. Wiley Interdis-
cip. Rev. Syst. Biol. Med., 1(2):191–201, 2009.



104 Bibliography

[95] C. Giverso, M. Scianna, L. Preziosi, N. Lo Buono, and A. Funaro. Individual
cell-based model for in-vitro mesothelial invasion of ovarian cancer. Math.
Model. Nat. Phenom., 5(1):203–223, 2010.

[96] P. Pathmanathan, J. Cooper, A. Fletcher, G. Mirams, P. Murray, J. Osborne,
J. Pitt-Francis, A. Walter, and S. J. Chapman. A computational study of
discrete mechanical tissue models. Phys. Biol., 6(3):036001, 2009.

[97] Y. Hatwalne, S. Ramaswamy, M. Rao, and R. A. Simha. Rheology of active-
particle suspensions. Phys. Rev. Lett., 92(11):118101, 2004.

[98] T. Bittig, O. Wartlick, A. Kicheva, M. González-Gáitan, and F. Jülicher.
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