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M. Göpfert Referee
P. Martin
J.-F. Joanny





i

Acknowledgments

The first third of this Ph.D. project took place at the Institut Curie, Paris,
while the rest of it was accomplished at the Max-Planck-Institut für Physik kom-
plexer Systeme, Dresden.

I would like to thank my supervisor, Frank Jülicher, for his guidance and
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Résumé

L’oreille interne est un des organes sensoriels les plus important chez les verté-
brés. Elle fait preuve d’une performance extraordinaire, avec une grande gamme
dynamique, une excellente discrimination fréquentielle et une grande sensibilité.

Il s’agit d’un système qui fait preuve d’activité : l’oreille interne peut émettre
des ondes sonores, un phénomène appelé émissions spontanées oto-acoustique.

Le sens d’audition est basé sur la transformation de stimuli mécaniques en
stimuli électriques, tâche accomplie par la cellule sensorielle de l’oreille interne, la
cellule ciliée. L’organelle mécanosensible de la touffe ciliée est la touffe ciliaire. Les
touffes ciliaires du saccule de la grenouille peuvent osciller d’une manière spon-
tanée. Ces oscillations spontanées sont donc un candidat naturel pour la source
d’activité de l’oreille interne. Ce travail est une étude théorique des propriétés
mécaniques de la touffe ciliaire.

Nous discutons les principes physiques qui sous-tendent la détection d’oscil-
lations basée sur des oscillateurs critiques, ainsi qu’une description détaille de
mécanismes spécifiques qui peuvent mener a un comportement actif et des oscil-
lations spontanées de touffes ciliaires. Nous présentons un diagramme d’états et
nous montrons que des fluctuations ont une influence majeure sur les fonctions
de réponse du système. Nous discutons des sources différentes de fluctuations et
estiment leurs influences sur les propriétés mécaniques de la touffe ciliaire. Les
fonctions de réponse linéaire et non-linéaire calculées numériquement sont en ac-
cord quantitatif avec des expériences.
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Abstract

The inner ear is one of the most important sensitive organs of all vertebrates. It
shows an extraordinary performance, with a large dynamic range, high sensitivity
and an exquisite frequency selectivity.

The inner ear is not simply a passive detector, but a nonlinear active ampli-
fier. The most striking manifestation of this activity is the fact that the ear does
not only detect sound, but it can also emit one to several tones: the so-called
spontaneous oto-acoustic emissions.

The auditory sense is based on the transformation of mechanical stimuli into
electrical signals, which is done by the sensory cells of the inner ear, the haircells.
The mechanosensitive organelle of the haircell is the hair-bundle.

Hair-bundles are active structures, they are namely displaying spontaneous
oscillations. These spontaneous oscillations are a natural candidate for the active
process underlying the activity of the inner ear. This work is a theoretical study
of the mechanical properties of the hair-bundle.

We discuss the physical principles underlying detection based on critical os-
cillations as well as specific mechanisms that can lead to oscillations and active
behavior by hair-bundles. We present a simple description of active hair-bundle
mechanics. We calculate the state diagram and show that fluctuations fundamen-
tally change the mechanical response functions. We discuss different sources of
fluctuations and estimate their influence on the hair-bundle’s mechanical proper-
ties. Furthermore, the linear and nonlinear response functions calculated numeri-
cally account for the observed properties of active hair-bundles.
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Chapter 1

Introduction

The human ear is a fantastic organ. Its dynamic range stretches over 6 orders
of magnitude of sound-pressures, from ∼ 0 - 120 dB, and the audible frequencies
cover three orders of magnitude from ∼ 20 Hz - 20 kHz, with a frequency dis-
crimination of ∼ 0.2 % at ∼ 2 kHz. In the inner ear, specialized sensory cells,
the haircells, translate the mechanical stimuli of sound waves into nervous signals.
The mechanically sensitive organelle of the hair cell is the hair-bundle, a tuft of
stiff finger-like structures, called stereocilia, which protrudes from the surface of
the cell. This work studies the mechanical properties of the hair-bundle. It is a
theoretical and numerical approach to questions that concern some of the physical
principles underlying hearing.

1.1 Hearing in vertebrates

All vertebrates have developed structurally similar hearing organs for the detection
of sound [48, 75]. Inside the inner ear, several organs are dedicated to different
tasks. One is the detection of sound, but the inner ear also hosts the sense of
balance, i.e. structures devoted to the detection of the head’s posture as well as
its linear and angular accelerations. In mammals, the organ specialized in the
detection of sound is the cochlea [20]. Lower vertebrates have developed organs
resembling the cochlea. In all of the organs of the inner ear, the hair cells trans-
late mechanical stimuli into electrical signals, a process called mechanoelectrical
transduction [46].

In mammals, the outer ear works as a kind of hearing horn that collects envi-
ronmental sound, and concentrates the oscillating air pressure onto the eardrum
(fig. 1.1). The middle ear translates the vibrations of the eardrum into an oscilla-
tory pressure difference in the fluids of the inner ear [86]. The last of the bones of
the middle ear (the stapes or stirrup) stimulates the oval window, a membrane in
the side of the membranous labyrinth. The pressure waves created by the vibra-
tions of the oval window finally enter the cochlea itself, creating a pressure gradient

1
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A

B

Figure 1.1: Sketch of the human ear. A, Overview of the human ear. Sound waves arrive at the
pinna and are transmitted, via the ossicles of the middle ear, to the cochlea. Inside the cochlea,
hair cells transform this mechanical signal into an electrical signal which is sent to the central
nervous system. B, Schematic drawing of the ear and the cochlea stretched out. Taken from [95].

across the basilar membrane, an elastic membrane inside the cochlea, which is a
bone-enclosed spiral with a linear length of about 3.5 cm in humans [20, 93]. This
initiates a wave of displacement of the basilar membrane, which travels from its
base, the end of the membrane in vicinity to the oval window, to its apex, the end
of the membrane situated in the tip of the cochlea’s spiral [11, 98, 94].

The organ of Corti, the mechanically sensitive organ of the cochlea , is located
on the basilar membrane and consists of sensory cells (hair cells) and supporting
cells (fig. 1.2). A human cochlea contains approximately 16000 hair cells in the
organ of Corti. Two specialized types of hair cells have developed: the outer hair
cells (OHC) and the inner hair cells (IHC). There are three rows of outer hair
cells, and one row of inner hair cells. The tips of the hair-bundles of the outer hair
cells are attached to the tectorial membrane, a structure which is situated above
the organ of Corti. The oscillation of the basilar membrane leads to a shearing
displacement of the tectorial membrane with respect to the reticullar lamina (the
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B

Figure 1.2: Hair cells in the inner ear. A, schematic drawing of the organ of Corti and
electron micrograph. The inner hair cells (IHC) and outer hair cells (OHC) are embedded in the
elaborate structure of the organ of Corti, which is situated on the basilar membrane (BM). The
three separated fluid-filled chambers of the basilar membrane are indicated: Scala Media (SM),
Scala Vestibuli (SV), Scala tympani (ST). The tectorial membrane (TM) covers the hair cells.
There are three rows of outer hair cells and one row of inner hair cells. B, top view of the organ
of Corti. Three rows of W-shaped OHCs and one row of IHCs can be seen. Taken from [20]

apical surface of the hair cells), which is detected by the hair cells and transduced
into an electrical signal [46, 48, 92, 29].

Every hair cell has its own characteristic frequency, which is decreasing towards
the apex of the basilar membrane [92, 88] . The highest frequencies are located
close to the base whereas the lowest frequencies are detected close to the apex of
the basilar membrane, in the tip of the spiral which forms the cochlea.

1.2 Active amplification in hearing

More than 100 years ago, von Helmholtz described the cochlea as a series of
independent passive resonant elements [38]. He separated the process of sound
detection into two processes: he assumed a nonlinear process in the middle ear,
while the cochlea was assumed to be a linear sound detector, the analog of a
Fourier-Analyzer, resembling a set of strings each with a different characteristic
frequency, excited by the sound wave entering the cochlea.

Von Békésy’s experiments on the cochleae of dead humans and animals de-
scribed the passive mechanics of the cochlea [11]. He found that vibrations of the
stapes induce a traveling wave of displacements of the basilar membrane, beginning
at the base and then going to the apex. The frequency selectivity at a given point
on the basilar membrane was found to be very poor, which was inferred from the
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width of the curve described by the amplitude of basilar-membrane displacements
for varying frequencies, called the tuning curve.

Measurements of the motion of the basilar membrane in living animals, how-
ever, showed a very different situation [98, 97, 94]. In contrast to von Békésy’s
results, the response of the basilar membrane was highly localized, and strongly
frequency-dependent. A hint concerning activity of the cochlea was given by the
following facts. During the experiment, the condition of the cochlea deteriorated,
and that coincided with the observation that the thresholds1 increased and the
tuning curves broadened [86]. The observation that the cochlea’s performance is
greatly decreased when the animal dies, has led to the assumption that there is in-
deed an active amplification mechanism at work: the cochlear amplifier [21, 19, 93].

The proposal of an active process underlying the remarkable performances of
the cochlea was not new: as early as 1948, Thomas Gold proposed that the ear is
an active amplifier and detector [34]. He postulated the presence of a regenerative
element in cochlear mechanics, an active element able to overcome the damping
effect of hydrodynamic friction.
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Oto-acoustic emissions

Figure 1.3: Spontaneous oto-acoustic emissions from individuals of different species. Taken
from [75]

The most striking manifestation of an active process in the inner ear is given
by the spontaneous oto-acoustic emissions [7, 95]. This term refers to the fact that
the ears of a variety of vertebrates do not only detect sound, they also emit sound
waves at varying frequencies and amplitudes (fig. 1.3). It has been proposed that

1threshold: the stimulus intensity necessary to produce a certain amplitude of vibration



1.2. ACTIVE AMPLIFICATION IN HEARING 5

spontaneous oto-acoustic emissions are the signature of the inner ear’s activity
[33, 51, 72, 74, 71, 93, 25].

But what is the origin of the active process in the cochlea? Two phenomena at
the cellular scale have been identified, which might be at the origin of the active
process of the cochlear amplifier. The first one is the observation of somatic elec-
tromotility, the electrically induced longitudinal deformation of outer hair cells [9].
Somatic electromotility consists of a rapid elongation and shortening of outer hair
cells in response to hyperpolarization or depolarization of their transmembrane
potentials [59, 2, 19]. The second possible origin is the activity of the hair-bundle
itself. Already in 1985, the turtle cochlear hair cells were proposed to be able to
generate forces and show spontaneous oscillations [18]. More recently, it has been
demonstrated that spontaneous oscillations of the hair-bundle can amplify its re-
sponse to sinusoidal stimuli [79]. Furthermore, the spontaneous oscillations of the
hair-bundle have been shown to result from an active process in the cell [81]. It has
been proposed that myosin motors are involved in the activity of the hair-bundle
[100, 50, 10, 32, 41, 5]. These molecular motors are able to generate forces by
interaction with actin filaments at the core of the stereocilia of the hair-bundle.
In this work, we will study the implications of such an active force-generating
mechanism on the mechanics of the hair-bundle.

Spontaneous oto-acoustic emissions (see fig. 1.3) have been found in very dif-
ferent vertebrates, such as frogs [24], lizards [64, 73], birds [105], and humans
[95]. Since frogs do not have the elaborate structure of the cochlea, and only
mammals possess the outer hair cells which show somatic electromotility, the uni-
versal feature of the hearing organs of all these organs is the hair-bundle. It
has been proposed that active hair-bundle motility could be involved in the ac-
tive process underlying the hearing process both in mammals and non-mammals
[51, 85, 29, 108]. In order to address general questions concerning the active am-
plification process involved in hearing, it is therefore useful to study the active
mechanics of the hair-bundle.

In the following, we will discuss the activity of the cochlea in more detail. This
will help us to compare the observations concerning cochlear mechanics to the
observations concerning hair-bundle mechanics.

The cochlea displays four essential properties which can be explained by an
active process involved in the hearing process:� Spontaneous oto-acoustic emissions� Amplification of weak stimuli� Frequency-selective amplification� Compressive nonlinearity of the response to sinusoidal stimuli with varying

amplitude, which is well characterized by a power law
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To determine the response to weak stimuli and its frequency dependence, the
amplitude vibrations or velocities of the basilar membrane are measured. The
amplitude of the velocity of this oscillation can be measured as a function of the
stimulus sound-pressure amplitude at a given frequency. Every point on the basilar
membrane will typically display a behavior as in fig. 1.4, which shows clearly
the frequency-dependent response of the basilar membrane. The characteristic
frequency of this point of the basilar membrane is about 8 kHz. Another position
on the basilar membrane would show a maximum of the sensitivity, defined as the
basilar-membrane velocity divided by stimulus pressure, at another frequency.
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Figure 1.4: Basilar-membrane responses to sound stimuli in the chinchilla cochlea. A, Family of
iso-intensity curves showing the sensitivity (basilar-membrane velocity divided by stimulus pres-
sure) as a function of frequency at different stimulus magnitudes. Note the amplitude-dependent
location of the most responsive frequency. B, Sensitivity as a function of stimulus pressure, for
frequencies between 8 and 10 kHz, which is close to the characteristic frequency of the location of
measurement along the axis of the cochlea. The red line indicates a slope of -2/3. The different
symbols correspond to different cochleae. Taken from [96].

The characteristic frequency for this position of the basilar membrane, i.e. the
frequency which shows the greatest sensitivity for a given stimulus amplitude, is
slightly shifting with the magnitude of the stimulus. The sensitivity difference
between low-and high level stimuli at the characteristic frequency, often referred
to as the gain of the cochlear amplifier, can be as much as 3 orders of magnitude.
The compressive nonlinearity of the cochlear amplifier is shown in fig. 1.4 B.
For about four orders of magnitude, the sensitivity shows a nonlinear decay as
a function of the stimulus amplitude, well characterized by a power-law with an
exponent -2/3.

The intrinsic nonlinear character of the cochlea’s response also leads to inter-
ferences of two pure tones of different frequency. This leads to the appearance of
new frequencies in the response of the cochlea, called combination tones. It also
leads to a phenomenon called two-tone suppression: the response of the cochlea
to a stimulus containing two pure tones reveals systematically lower amplitudes
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at the stimulus frequencies than the response to each of the tones would be in the
absence of the second tone [95, 56].

All cited properties have been recognized as signatures of a dynamical sys-
tem operating near an oscillatory instability, the Hopf bifurcation [13, 14]. In
the following, some of the generic aspects of amplification by such a system are
discussed.

1.3 Amplification by critical oscillators
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Figure 1.5: Schematic representation of the Hopf bifurcation. Stable solutions of the generic
equation 1.1 for the order parameter are indicated by solid lines. For a dynamical system
like the hair-bundle, the order parameter would be the dominant Fourier-mode of the bundle-
displacement. A, Supercritical bifurcation. For values of the control-parameter θ < θc, the system
oscillates spontaneously. B, subcritical bifurcation. The dotted line is an unstable branch. Spon-
taneous oscillations of non-vanishing amplitude occur for θ < θc,in every case. The hysteresis of
the bifurcation is indicated. For θ < θc, two stable solutions, one quiescent and one oscillating,
exist.

Consider a dynamical system, governed by a control parameter θ. If such a
system is quiescent, i.e. only has stable solutions for a certain range of values of θ >
θc, but displays spontaneous oscillations for a range of values θ < θc, we say that
the system undergoes a supercritical Hopf bifurcation at the critical point θc (if the
amplitude of the oscillations vanishes at this point; otherwise, we have a subcritical
Hopf bifurcation displaying a hysteresis cycle). This bifurcation is characterized by
the fact that two complex conjugated eigenvalues of the dynamical system change
the sign of their real parts, whereas all other eigenvalues have negative real parts
[104]. At the critical point, such a system shows generic response and amplification
properties, independent of the physical mechanisms producing such a bifurcation.
Close to this bifurcation, the dynamics of the system can be described by the
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normal form [63]:

d

dt
Z = −(r + iω0)Z − (u + iui)|Z|2Z + O(|Z|5) , (1.1)

where Z is a complex variable and the parameters r, ω0, u, ui are real. Note that
the parameters in general depend on the control parameter θ, see chapter 4 for
details. Exactly at the Hopf bifurcation, r = 0. The system allows the trivial
solution Z(t) = 0, which becomes unstable for r < 0. Another solution Z(t) =√

−r/ue−iωst is possible, with ωs = ω0−rui/u ; this solution exists for r < 0 if u >
0, and for r > 0 if u < 0. This allows us to distinguish supercritical and subcritical
bifurcations. The first case u > 0 describes the supercritical bifurcation. The
oscillating solution exists and is stable on the oscillating side of the bifurcation r <
0. This solution is called the limit cycle solution. The second case u < 0 describes
the subcritical bifurcation. The oscillating solution exists for r > 0 and is unstable.
In this case, higher-order non-linearities in Z can stabilize another oscillating
solution, as shown in fig. 1.5.

We are especially interested in the response X(t) of a physical system to a
sinusoidal stimulus force F (t) = F̂ eiωt + F̂ ∗e−iωt , where the star denotes com-
plex conjugation. In the absence of spontaneous oscillations, all Eigenvalues
have negative real part, and X(t) can be expressed by a Fourier Series of the
form X(t) =

∑
Xneinωt. The dominant Fourier mode X1 = X̂ obeys the follow-

ing generic equation [13]:

F̂ = X̂A + B|X̂|2X̂ + O(|X̂ |5) . (1.2)

The coefficients A(ω, θ) and B(ω, θ) are complex values depending on the order
parameter as well as on the stimulus frequency ω. At the Hopf bifurcation, the
linear term A vanishes:A(ωc, θc) = 0, and the response of the system can be
written:

|X̂ | = |B|−1/3|F̂ |1/3 . (1.3)

Therefore, the sensitivity, defined as |X̂ |/|F̂ |, is proportional to F̂−2/3 at the
bifurcation point. This nonlinear regime only exists for very small stimuli, if
the system is exactly at the bifurcation point θ = θc and ω = ωc. Frequency-
mismatch ω 6= ωc, or parameter mismatch θ 6= θc leads to a linear regime for small
stimuli. A system which is close to the Hopf bifurcation will therefore display
three different regimes in response to stimuli of varying amplitude. For small
enough stimuli, we expect the linear regime to be dominant, |X̂| ∝ |F̂ |. For
larger stimuli, the cubic term becomes dominant, and we expect the compressive
nonlinearity |X̂|/|F̂ | ∝ F̂−2/3.

The hearing organs of vertebrates display many of the essential nonlinear prop-
erties of a system close to a Hopf bifurcation (see section 1.2), which has therefore
been proposed to be the basis of the remarkable performances of the inner ear
[13, 27, 70, 26]. The sensory cell of the inner ear, the hair cell, is likely to play a
crucial role in this process [48, 13, 93, 85].
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1.4 Biophysics of hair cells

Despite the widely varying size and geometry of hair cells, some general features
can be observed. All hair cells are embedded in an epithelial layer separating
two distinct kinds of fluids. Most of the hair-bundles are connected to an over-
lying structure, and hair-bundle deflection leads to the generation of electrical
signals[46].

Hair cell physiology In all the sensory organs of the inner ear, the hair cell’s
body is sunk into the epithelium, and only the hair-bundle protrudes on one side,
which is called the apical side, the opposite side being called basal (fig. 1.6 and
fig. 2.1). Size and geometry of hair cells vary greatly, many specialized types
have developed. Inside a hearing organ, hair-bundles of hair cells of the same type
generally show a systematic variation of morphology, which is correlated with their
position in the organ [106]. The hair cell’s apical surface forms tight junctions with
surrounding supporting cells of the epithelium, thereby effectively separating the
apical side from the basal one. The apical side is in contact with endolymph,
which has a composition close to intracellular fluid. It is characterized by a high
concentration of potassium and a low concentration of calcium and sodium as
compared to perilymph. The basal side is in contact with perilymph, which is a
typical extracellular fluid, with a high concentration of sodium and calcium and a
low concentration of potassium. On the basal side, the body of the hair cells are
innervated by both efferent and afferent nerve fibers [20, 54].

The membrane overlying the epithelium typically creates a shear force acting
on the hair-bundles upon appropriate stimulation. If the tips of the bundles are
not connected to an overlying membrane, as for example are the bundles of the
inner hair cells in the mammalian cochlea [20], they are presumably deflected by
hydrodynamic coupling to the endolymph. In vivo, the plasma membrane of hair
cells is held at a negative potential with respect to the surrounding environment
[20]. Deflection of the hair-bundle opens ion-channels, which allows the influx
of K+ and Ca2+ inside the hair cell. The influx of ions depolarizes the cell’s
membrane potential, which controls the release of neurotransmitters at the basal
end of the cell, where the synapses of the innervating neurons are found [20].
Therefore, a mechanical stimulus influences the firing rate of the axons leading to
the central nervous system.

Hair-bundle anatomy The hair-bundle itself consists of 10 to 300 hair-like, stiff
protrusions from the apical surface, called stereocilia. The cell’s plasma membrane
encloses them like fingers in a glove. In addition to the stereocilia, many hair-
bundles possess one additional hair-like protrusion, the kinocilium (see fig. 1.6)
[46, 92].

The dominant structural feature of the stereocilium is its rigid, microfilamen-
tous cytoskeleton. The diameter of stereocilia ranges from 100 to 800 nm, their
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E

F

Figure 1.6: The hair cell of the bullfrog’s sacculus. E, cut through the hair
cell of the bullfrog’s sacculus. The hair-bundle with kinocilium and the kinociliary
bulb connected to the otolythic membrane can be seen in the top half. Taken from
http://www.rockefeller.edu/labheads/hudspeth. F, electron micrographs and schematic view of
the bullfrog’s sacculus. Taken from [40].

height from 1 to 15 µm. They contain between 50 and 3000 actin filaments, de-
pending on their diameter. Although they are isodiametric along most of their
length, they taper over a distance of about 1 µm before their insertion into the
apex of the cell. In this region, most of the filaments terminate on the cell’s plasma
membrane. Only a few dozens central filaments extend into the apex of the cell,
forming tiny rootlets anchoring the stereocilia to the cell. The rootlets of the
stereocilia are anchored into a structure which is called the cuticular plate. It is
a dense structure which provides a stable platform upon which the stereocilia are
able to tilt. The actin filaments are extensively cross-linked inside the stereocilia,
which gives them an exceptional rigidity. They do essentially behave like stiff rods
pivoting around their insertion point in the cuticular plate. The bending stiffness
of the stereociliary rootlet confers an angular stiffness to the stereocilium [45].

In contrast to the stereocilia, the kinocilium is a true cilium, which means that
it contains a structure called the axoneme at its core. The axoneme is composed
entirely of microtubules and accessory proteins. In the axoneme, the microtubules
form a structure composed of nine doublet microtubules in a circle, surrounding
a pair of two single microtubules. The most important accessory protein is ciliary
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dynein, whose heads interact with adjacent microtubules to create a sliding force.
The kinocilium, which is typically one of the largest cilia in the bundle, is attached
to the nearest stereocilia by a set of filaments, and is itself connected directly or
by filaments to the overlying membrane.

The stereocilia are generally arranged in a hexagonal pattern with approx-
imately constant center-to-center spacing, while the shape of the hair-bundle’s
cross-section can have different forms. This shape is typically round in the case
of hair-bundles of the vestibular system (fig. 1.6). The kinocilium is placed at
one end of the hair-bundle. It is approximately mirror-symmetric with respect to
a plane which runs through the kinocilium. The intersection of this plane with
the apical surface of the bundle is called the line of bilateral symmetry. Typically,
the stereocilia are arranged in rows of constant height which are perpendicular
to the line of bilateral symmetry. The highest stereocilia are found close to the
kinocilium, and the height decreases monotonically in the opposite direction (fig.
2.1). The decrements in height from row to row are approximately equal [46].

Numerous lateral links connect the stereocilia with their direct neighbors. In
general, three kind of links are present. The most interesting kind of link between
stereocilia are the tip-links. These filaments connect the tip of one stereocilium
with its longest neighbor. This thin filament is thought to play a major role in
signal transduction, see 1.5. They are about 5 nm in diameter and about 150
nm in length[60]. It has recently been proposed that Cadherin 23 is an essential
component of the tip-link [102, 101]. Closer to the the apical surface, additional
links between adjacent stereocilia can be found [46].

The non-stimulated hair cell exhibits a constant current of inflowing ions, called
receptor current, indicating that some of the channels are open even in the resting
state of the hair-bundle. It exhibits a strong directional sensitivity. Stimuli in the
direction of the kinocilium, the excitatory direction, increases the current, thereby
depolarizing the membrane potential. Stimuli in the opposite direction reduce the
current, hyperpolarizing the membrane. Stimuli perpendicular to the excitatory
axis have little or no effect on the receptor current (see for example [47, 43]).

1.5 The Gating-Spring model

The gating spring model reflects the results of a large body of evidence obtained
by experiments conducted on the hair-bundle ([15, 44, 3]; reviewed in [49, 52]; see
fig. 1.7).

In the formulation of this model, each of the stereocilia bear 1-2 transduction
channels[42, 46], which are situated at the distal end of the stereocilia, [67], where
the tip-links are found in fig. 1.7. The channel’s molecular gate is attached to
an elastic element, the gating-spring. This element connects the channel complex
of one stereocilium with the top of its shorter, adjacent neighbor. Tension of the
gating spring increases the open probability of the ion channel. The tip-link, or
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Figure 1.7: Gating-spring model of transduction. Ion-channels are connected to an insertional
plaque carrying approximately 50 myosin motors, which are interacting with the actin filaments
at the core of the stereocilium. The molecular gate of the channel is attached to the gating-spring,
which connects a stereocilium’s channel to the tip of the adjacent, smaller stereocilium. Part of
the gating-swing distance as inferred from experiments [82] might stem from a conformational
change of the Ion-channels, indicated by the change of the lever arm. The motor complex is
thought to slide down the stereocilium if the tension in the gating-spring is too high. Taken from
[41]

any compliant element in series with it, is thought to be an essential element of
the gating-spring [45].

When a channel opens, the gating-spring relaxes, which corresponds to a reduc-
tion of its length by a certain distance, called the gating-swing. The gating-swing is
the effective shortening of the gating-spring upon opening [44]. This phenomenon
can have several origins: A conformational change of the channel between open
and closed state can account for part of the gating-swing. If the spring is at-
tached via a kind of lever to the channel, the observed swing might be larger than
can be expected from a simple conformational change. Provided that part of the
gating-spring stiffness is determined by elements at the intracellular side of the
ion-channel, it is also possible that the inflowing Ca2+-Ions change the properties
of these elements (stiffness, length at rest or attachment point)2 .

The relaxation of the gating-spring upon opening of the channels gives rise
to the phenomenon called gating-compliance: the stiffness of the bundle depends
upon the magnitude of the deflection [44]. For small deflections, this stiffness has
been shown to be smaller than for larger displacements. In recent experiments,

2Because the channel complex is connected to an ensemble of myosin motors (see below), the
internal calcium concentration might influence the stiffness of their tails or the state of their
heads [82, 41].
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this stiffness has been found to be negative in a narrow range around the greatest
slope of the open probability curve . Inside this region of negative stiffness, the
position of the hair-bundle is instable. A stationary force is not sufficient to fix
the bundle’s position in this region; a feedback mechanism has to be applied [82].

The channel complex is connected to approximately 50 myosin motors, which
are concentrated on an insertional plaque [52]. The myosin motors are constantly
pulling on the gating-spring, creating a tension in the gating-spring. The force
which is necessary to stall the molecular motors therefore determines the tension
of the gating-spring. The stronger the molecular motors, the higher the tension
in the gating-spring, and therefore the higher the open probability.

The activity of the myosin motors gives rise to the phenomenon called adapta-
tion: after deflection of the bundle in the excitatory direction, the stereocilia pivot
around their insertion points in the cuticular plate, leading to a shearing move-
ment between adjacent stereocilia (fig. 1.8). The increased tension in the gating
spring induces the channels to open, and the motors to slide down the stereocil-
ium, restoring the tension of the gating spring to a value close to the one which
has been observed before the deflection. Because the bundle restores thereby its
sensitivity for a new deflection in the excitatory direction, this process is called
adaptation [3].

It has been observed, that the open probability of the channels is different
before a prolonged stimulus, as it is at the end of the stimulus [99]. In the case of
stimuli in the excitatory direction, the open probability after the deflection is larger
than in the resting bundle. This shows that adaptation is incomplete: the bundle
restores its sensitivity, but not to its full extent. To explain this observation,
another elastic element is thought to connect the insertional plaque to the actin
filaments of the same stereocilium: the extent spring [99]. Upon deflection in the
excitatory direction, the molecular motors are unable to relax the tension of the
gating-springs completely, because both the force of the molecular motors and the
higher tension of the extent spring have to be counterbalanced by the tension of
the gating-spring.

In order to summarize the gating-spring model, fig. 1.8 shows the effect of a 60
nm step displacement applied to the tip of a hair-bundle for 0.2 seconds. Part A of
this figure corresponds to the external stimulus applied to the top of the bundle,
part B and D are theoretical curves calculated with the help of a description of the
hair-bundle based on the gating-spring model, and part C represents the different
states of the bundle according to the gating-spring model. These curves are in
accordance with experimental observations [37, 3, 99].

In this example, the channels’ open probability at its resting position is approx-
imately 15% (i), corresponding to values which have been measured in experiments
with a high external calcium concentration [15].

The positive stimulus first opens the ion-channels, increasing the transduction
current of ions entering through the channels. The peak value of the current
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Figure 1.8: The gating-spring model of transduction: Adaptation and displacement-response
curve. A, the diagram depicts a hair-bundle under the influence of a 60 nm, 200 ms stimulus step.
B, evolution of the transducer current during the stimulus. C, sketch of the hair-bundle before
(i), immediately after the onset of the stimulus (ii), immediately before the end of the stimu-
lus (iii), and immediately after the end of the stimulus (iv). D, displacement-open probability
curves relating the displacement of the tip of the hair-bundle and the open probability reached
immediately after the onset of the step, before adaptation has set in. Curves are calculated for
the model of the hair-bundle presented in chapter 2, with parameter values given in column A of
table B.1 in appendix B. Modified from [52].

at (ii) is proportional to the open probability of the channels immediately after
deflection, before adaptation has set in. Using stimuli of varying amplitude, one
can therefore measure these curves sketched in fig. 1.8 D, relating the amplitude
of the step to the open probability. This curves have a sigmoidal shape, which is
explained in chapter 2. Due to the incomplete adaptation, this displacement-open
probability curve is not shifted by the 60 nm given by the step amplitude, but by
only 48 nm (see section 2.4.3 for details).

After the application of a positive stimulus (see fig. 1.8, left column), the
molecular motors begin to slide down the stereocilia, decreasing the tension in the
gating-spring and closing the channels, resulting in an open probability slightly
larger than the original one (iii). This phase of slow adaptation can be described
by a single exponential with a time constant of the order of tens of milliseconds
[43]. The end of the stimulus reduces the tension of the gating-springs so that
the channels close (iv), before the motors begin to adapt to the new situation to
restore the original open probability and tension.
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A negative stimulus (see fig. 1.8, right column) first closes the channels, before
the adaptation of the motors sets in to restore an open probability (iii) slightly
below the original open probability (i). The end of the stimulus opens the channels,
before the motors restore the original open probability.

1.6 Spontaneous oscillations of hair-bundles of the sac-

culus of the bullfrog

A

B

Figure 1.9: Spontaneous oscillations observed in vitro using the two-compartment technique.
A, noisy oscillations of an individual hair cell. B, spectral density of noisy oscillations. This
particular hair-bundle displayed spontaneous oscillations of a characteristic frequency around 8
Hz. Taken from [81].

The first in vitro experiments using the hair cells from the bullfrog’s saccu-
lus, a vestibular organ which is involved in the detection of ground-borne seismic
waves and of the detection of low-frequency sound waves [62, 110], were done using
a standard saline solution to bathe the hair cells. In these experiments, sponta-
neous oscillations were seldom observed , although the adaptation motors in this
environment were active and restored the tension in the gating-springs (see for
example [43]).

This situation is changed when the in vivo environment is approximately re-
stored, including a different solution for the apical and the basal aspects of the hair
cell. Using this two-compartment technique, a large portion of the experimentally
observed bundles displayed spontaneous oscillations [78].

The fluctuation-dissipation theorem asserts that the autocorrelation function
and the linear response function of a system at thermal equilibrium are related.
By measuring both the linear response function of the hair-bundle and its auto-
correlation function, it has been shown that the movements which can be seen
in fig. 1.9 are not due to thermal fluctuations [81]. Activity must therefore be
present in this hair-bundle.

These active oscillations are noisy and they clearly show a bimodal distribution
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of bundle positions: the bundle spends most of its time in the extreme positions.
Using the two-compartment preparation, hair-bundles of the bullfrog’s sacculus
have been reported to oscillate at frequencies varying from ∼ 5 to ∼ 40 Hz [79].
This particular bundle had a characteristic frequency of around 8 Hz, as can be
seen from the power-spectrum in fig. 1.9.

A

B

Figure 1.10: A, Compressive nonlinearity of a hair-bundle stimulated close to its characteristic
frequency. The red line corresponds to a slope of -2/3, which is the slope expected from a system
close to a Hopf bifurcation. Plotted is the sensitivity x1/f1 of the hair-bundle for sinusoidal
stimulations of the tip of the hair-bundle via a flexible fiber attached to the tip of the hair-
bundle, as a function of the base-displacement amplitude of the fiber. 1 nm of base-displacement
corresponds to a force-amplitude of 0.25 pN. Taken from [80]. B, distribution of the hair-bundle’s
position during spontaneous motion. This motion shows a clear bimodal distribution. Taken
from [81].

This bundle displays all of the four essential characteristics of the cochlear
amplifier. It amplifies weak stimuli in a frequency-dependent manner, being most
sensitive close to its characteristic frequency of oscillations. It shows compressive
nonlinearity for varying stimulus-amplitudes. It even reproduces the characteristic
slope |X̂ |/|F̂ | ∝ F̂−2/3 for approximately one order of magnitude, see fig. 1.10. It
also displays the analog of oto-acoustic emissions, the spontaneous oscillations.



Chapter 2

Physical description of

hair-bundles

In this chapter, we are going to present a physical description of the dynamics
of the hair-bundle. First, we will describe the geometry of the hair-bundle in
greater detail, especially focusing on the geometry of those found in the bullfrog’s
sacculus, on which many experiments have been performed. We will then discuss
the dynamical variables used in the rest of this work. The role of the gating-
springs and the Ion-channels is explained, and a model for the dynamics of the
adaptation-motors is introduced. In particular, a simple description of the role of
the calcium-concentration as a regulator of motor activity is presented.

2.1 Geometry and displacement variables

A hair-bundle of the bullfrog’s sacculus consists of ∼ 50-70 stereocilia and one
kinocilium [54], see fig. 2.1. Before describing the interactions between individual
stereocilia, we will first introduce the important quantities of a single stereocilium.
As explained in the introduction, stereocilia behave essentially like stiff rods, due
to the cross-linked actin-filaments at their core. In the following, stereocilia are
only regarded as stiff cylinders, whose only degrees of freedom consist in a pivoting
movement around their insertion point in the cuticular plate.

One stereocilium is characterized by its height, h, and its radius, r, see fig. 2.2.
The typical height of the stereocilia inside a bundle ranges from ∼ 3-8 µm, their
diameter is about 450 nm [54]. At the insertion point in the cuticular plate, the
stereocilia taper to a diameter of about 100 nm, and the number of actin-filaments
decreases from about 600 in the bulk of the stereocilia to about 30 at its insertion
point. The smaller number of actin filaments in the rootlet makes them more
flexible than the bulk of the stereocilia, allowing the stereocilium to pivot around
its base, and leading to an angular stiffness.

17
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A
B

Figure 2.1: The hair-bundle of the sacculus of the bullfrog. A, scanning electron micrograph
of a hair cell in a bullfrog’s saccular epithelium from which the otolithic membrane has been
dissected. S, stereocilium; KB, kinociliary bulb; calibration bar, 1µ m. Taken from [46]. B,
schematic drawing of the constituents of a representative hair-bundle. Each stereocilium is filled
with cross-linked actin-filaments, a few of which extend as rootlets into the cuticular plate. Three
types of filaments connect the stereocilia, the basal connections, lateral links (denoted as Lateral
contact), and the tip-links. Taken from [92]

The position of one stereocilium is therefore characterized by the angle Φ which
it forms with the apical epithelial surface. Due to the polarity of the hair-bundle,
the excitatory direction is the one of interest for us, and Φ defines the inclination
of the stereocilia with respect to this direction. Alternatively, we can characterize
the angle of inclination by the projection of the tip of the hair-bundle on the apical
epithelial surface1, X. Furthermore, due to the hollow shape of the cuticular plate,
a single stereocilium is also characterized by its elevation Q above the ground level
of the cuticular plate.

As explained in section 1.5, the tip-links are supposed to be connected to Ion-
channels, most probably situated at both ends of the gating-springs [22]. They
are thought to be an essential component of the gating-springs. The tension of the
gating-spring influences the open probability of the Ion-channels it is connected
to: the higher the tension, the higher the probability of a given channel to be
in an open state. To first order, we describe the elasticity of a gating-spring
as a hookean spring of stiffness kGS . Due to the elastic nature of the tip-link,
the gating springs can only bear forces in the form of stress. If both ends of

1In the equations derived below, we will use a certain convention concerning the use of capital
and small letters. Two different reference frames are of importance in the hair-bundle. The
direction parallel to the apical epithelial surface is the reference frame in which motion of the
bundles is observed, and experimental data is acquired. Quantities measured with respect to this
reference frame are denoted with capital letters. A different reference frame is the one parallel
to the axis of the stereocilia. Motor-displacements take place relative to that reference frame.
Quantities described in the stereocilium-reference frame are denoted with small letters.
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Figure 2.2: Idealized geometry of stereocilia, not to scale. A, the important components of
a single stereocilium. These are its height, h, its radius, r, its elevation above the ground level
of the cuticular plate, Q, its inclination angle with respect to the apical epithelial surface, Φ,
and the position of the molecular motors on the actin-filaments, xa. B, schematic drawing of two
adjacent stereocilia, not to scale. The tip-link is indicated (thick red line), and its extension, l; the
distance from one stereocilium to its larger neighbor, P ; the projection of the tip of a stereocilium
on the apical epithelial surface, X; the shear s when the stereocilium moves from the dashed-line
position to the solid-line position.

the tip-link are brought into closely adjacent positions, the tip-link slackens, see
[60]. However, several independent measurements indicate that this “slackened”
regime only occurs for very large displacements of the bundle’s tip in the inhibitory
direction [49]. but they do not transmit compressive forces. Instead, if the bundle’s
tip is deflected for less than 100 nm in this direction, the gating-spring seems to
be under tension. Spontaneous oscillations displayed by hair-bundles do not have
that large amplitudes, and none of the phenomena discussed in the rest of this
work rely on displacements exceeding 100 nm. Therefore, we have not included
this behavior in the model discussed in the following.

The position of the motor-channel complex with respect to the actin-filaments,
introduced in section 1.5, is denoted with xa. The extension of the tip-links due
to the position of the motors and the position of the stereocilia is denoted with l.

Due to the numerous lateral links connecting individual stereocilia, the hair-
bundle behaves as a unit [46]: deflection of the kinocilium or of a stereocilium leads
to a rocking movement of the whole bundle. This phenomenon might be reinforced
by the curvature of the cuticular plate, which is concave in the direction of bilateral
symmetry (see fig. 1.6): it forces stereocilia together along this axis [46]. The
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various lateral links and the angular stiffness of the rootlets (stereociliary pivots)
lead to a combined stiffness of the hair-bundle, the stereociliary pivot stiffness,
which we will describe as a hookean spring of stiffness KSP .

The observation that the bundle behaves essentially as a unit also leads to
the consequence that the gating-springs must be treated as parallel springs: a
force applied to the tip of the hair-bundle is instantaneously applied to all of the
gating-springs.

It is useful to number the ranks of stereocilia, every rank corresponding to
the stereocilia of equal height perpendicular to the line of bilateral symmetry,
see section 1.4. The largest stereocilium is labeled 1, its direct smaller neighbor
is number 2 and so forth, see fig. 2.2. A typical bundle contains 16 ranks of
stereocilia, every rank being shorter than the preceding one by approximately 325
nm [54].

Upon stimulation, the stereocilia are forced to slide on the back of their direct
neighbors, leading to a shear which changes the extension of the tip-links. For a
given pair of stereocilia in adjacent ranks, for example k and k + 1 in fig. 2.2, the
shear s of a stereocilium in rank k is defined as the distance which the top of its
smaller neighbor, k + 1, slides down on the side of stereocilium n upon deflection
of the hair-bundle. Given the geometry described above and depicted in fig. 2.2,
we can calculate the angle of a smaller stereocilium Φk+1 if we know the angle of
its larger neighbor, Φk [54]:

Φk+1 = Φk−
π

2
+arctan

rk+1

hk+1
+arccos

Pk+1 sin Φk + (Qk+1 − Qk) cos Φk − rk+1√
h2

k+1 + r2
k+1

,

(2.1)
where Pk+1 is the distance between the shorter stereocilia k + 1 and its larger
neighbor. Given a set of {Pk, hk, rk, Qk}, we can then calculate all the angles Φk

as a function of Φ ≡ Φ1, the angle of the rightmost, largest stereocilium. We
can therefore describe the shear sk as a function of the angle Φ. Because we
can measure X experimentally, we are interested in the evolution of the sk as a
function of X. We can expand the sk as a function of the difference δX = X−Xr,
the displacement of the bundle’s tip from its resting position Xr:

sk = γkδX + O(|δX|2) . (2.2)

When the bundle is at the position Xr, sk = 0 by definition. In the following,
we will only keep the first order term, ignoring nonlinearities in this relation2.
The factor γk is called a projection-factor, relating the experimentally observable
motion to a change of extension of the tip-link.

2Here and in the following, we will mostly keep only the linear terms in the expansions. This
may be justified by the fact that physiological responses of the bundle saturate at displacements
of ∼ ±100 nm [44]. Spontaneous oscillations do not exceed these values. Measurements of the
stiffness of the hair-bundle show a linear behavior for displacements of up to ∼ ±100 nm [82].
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To linear order and for small angle approximation3, we can find a simple ex-
pression for the projection-factors:

γk =
Pk+1

h
, (2.3)

with h the height of the longest stereocilium.

For an experimentally determined set of parameters describing the hair-bundle,
the γk have been calculated and it has been found that their values are sufficiently
close over the range of physiological displacements to describe them by a single
projection factor [54]:

γk = γ . (2.4)

In the following, we will derive general expressions for the open probability
of the ion-channels as a function of the position X and the motor-positions xa

for a given stereocilium. In later chapters, we will simplify the equations using
the approximation γ = γk. For a given position X, all the sk are equal, and the
gating-springs function then operate as parallel springs.

2.2 Ion-channel gating

In order to understand quantitatively how the hair-bundle works as a signal trans-
ducer, it is important to know the dependence of the open probability of the Ion-
channels in dependence of the different dynamic variables which characterize the
hair-bundle. The idea which will be presented here can be found for example in
[15, 44, 49, 76].

If the position of the hair-bundle is fixed, the open probability of a given
channel can be calculated using equilibrium statistical mechanics.

If, however, the hair-bundle displays spontaneous oscillations or is deflected
by a stimulus probe, this approach can only by justified if the relevant timescales
of the bundle movement are much slower than the transition rates of the chan-
nel from open to closed state, characterized by the channels’ dwell times in either
state. Recent single channel measurements indicate that the channels’ characteris-
tic timescale is of the order of one millisecond [88], whereas adaptation timescales
of the hair-bundle are of the order of tens of milliseconds [43], and spontaneous
oscillations of the hair-bundle of the bullfrog’s sacculus are of the order of tens of
Hz [78]. It seems therefore reasonable to apply equilibrium statistical mechanics
also to moving hair-bundles of the bullfrog’s sacculus.

In the simplest case, a mechanosensitive channel can have two states, open
or closed. Both states of the channel are energetically different, the open state
being separated from the closed one by an intrinsic free-energy difference Eo−Ec =

3and some additional approximations: |Qk+1 − Qk| ≪ hk, P
2
k ≪ h2

k, r
2
k ≪ h2

k, |rkΦk| ≪ Pk,
which are all reasonably small for the hair-bundle
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∆G > 0. In the following, we will calculate the open probability of a given channel
in dependence of the position X of the hair-bundle’s tip in the framework of this
two-state model of gating in hair cells [76]. We will furthermore assume that there
is only one gating-spring associated to each of the N stereocilia of a hair-bundle.

The energy of the hair-bundle is then:

E (X, {xa,n}, {σn}) =

N∑

n=1

En (X,xa,n, σn) +
1

2
KSP (X − XSP )2 , (2.5)

where XSP is the rest-length of the spring associated with the stereociliary
pivot elements, i. e. the position to which the bundle would relax if the gating-
springs were absent. En is the mechanical energy of the n-th channel-gating-spring
complex4. This energy depends on the state of the channel (σn = 1 for a channel
in open state, σn = 0 for a channel in closed state), and on the energy stored in the
elastic elements connected with the channel complex, the gating-spring and the
extent spring, characterized by the stiffness kE . The energy of the gating-spring
is given by its stiffness kGS and its extension ln , which is influenced both by
the shearing movement between adjacent stereocilia, and the displacement of the
molecular motors. In linear approximation, the change of the length δln under the
influence of a displacement of the molecular motors δxa,n and a displacement of
the bundle’s tip δX is therefore:

δln = γnδX − δxa,n . (2.6)

This equation uses the approximation that the gating-springs are quasi-parallel
with respect to the axis of the stereocilia, which has been found experimentally,
see for example [60]5.

As described in section 1.5, the gating-spring model of hair-bundle transduction
stipulates the gating-swing of magnitude d, by which the extension of the gating-
spring is shortened upon opening of the channels. Therefore, the energy of the
n-th channel-gating-spring complex can be written as:

En (X,xa,n, σn) =
1

2
kGS (γnX − xa,n − xGS,n − σnd)2+σn∆G+

1

2
kE (xa,n − xE,n)2 .

(2.7)
In this equation, kE is the stiffness of the extent spring introduced in section
1.5, and xGS,n and xE,n are the rest-lengths of the corresponding springs. The
partition function of the hair-bundle reads

Z (X, {xa,n}) =
∑

{σn}

e
−

E(X,{xa,n},{σn})

kBT , (2.8)

4The subscript n = 1 . . . N is now used to address every individual stereocilium n and its
channel-gating-spring complex. Therefore, γn is to be understood as the γk associated with the
rank k in which the n-th stereocilium is found.

5A more correct equation would be δln = (γnδX− δxa,n)/ cosψ, where ψ is the angle between
the axis of the stereocilium’s actin filaments and the orientation of the tip-link lk. If ψ ≪ 1, eq.
2.6 is a reasonable approximation.
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which can be rewritten as

Z (X, {xa,n}) = e
−

KSP (X−XSP )2

2kBT
∏

n

zn (2.9)

under the assumption that all channel-gating-spring complexes are indepen-
dent of each other, with the individual partition function

zn = e−En(x,xa,n,1)/kBT + e−En(x,xa,n,0)/kBT (2.10)

= exp

[
−kGS (γnX − xa,n − xGS,n)2 + kE (xa,n − xE,n)2

2kBT

]
zσ
n , (2.11)

where

zσ
n = 1 + exp

[
kGSd (γnX − xa,n − xGS,n) − ∆G − 1

2kGSd2

kBT

]
. (2.12)

The open probability Po,n of an individual channel in thermal equilibrium is
determined by the Boltzmann relation:

Po,n (X,xa,n) =
e−En(X,xa,n,1)/kBT

zn

=
1

1 + exp

[
−kGSd(γnX−xa,n−xGS,n)−∆G− 1

2
kGSd2

kBT

] . (2.13)

The mean open probability of the hair-bundle is then

Po (X, {xa,n}) =

N∑

n=1

Po,n (X,xa,n) /N . (2.14)

As already discussed above, this calculation corresponds to the simplest case,
attributing one channel to every gating-spring, which can have one open and
one closed state. The result is the sigmoidal shape of the Po,n with respect to X
displayed by 2.13. This sigmoidal shape has been found repeatedly in experimental
displacement-open probability curves [42, 43, 44].

However, these curves do not always display this symmetric shape [15, 42].
Under the assumption that there are two channels per stereocilium, one at each
end of the tip-link, or if there were two closed states and one open state, the shape
of the Po,n is changed and loses its symmetry. Nonetheless, the situation does
not change fundamentally. In these more complicated cases, the Po,n have still
the same qualitative features: The largest slope is situated around Po = 0.5 and
this slope increases with d and kGS . For simplicity, we will only use the two-state
model of channel gating in our model of the hair-bundle.
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The force acting on the position of the tip of the hair-bundle X is given by :

F =
∑

n

Fn − KSP (X − XSP ) (2.15)

with

Fn = kBT
∂ln zn

∂X
= −γnkGS (γnX − xa,n − xGS,n − dPo,n) , (2.16)

whereas the force acting on the insertional plaque xa,n is given by

fmot,n = kBT
∂ ln zn

∂xa,n
= kGS (γnX − xa,n − xGS,n − dPo,n) − kE (xa,n − xE,n) .

(2.17)

Several of the constants appearing in the equations can be eliminated by choos-
ing appropriate origins for the xa,n - and the X - axes. We define the origin of
the axes by the position of the hair-bundle and the motors at the point where a
hair-bundle with vanishing extent-spring stiffness kE = 0 is at rest, and the motors
do not exert forces on the insertional plaque (i. e. this position corresponds to the
hypothetical position of the hair-bundle, if the molecular motors are not active).
This point corresponds to F = 0 and fmot,n = 0. As the energy which is necessary
to open an individual channel is very high, ∆G ∼ 10kBT [49], all channels are
closed at this point: Po,n ∼ 0. Therefore, xGS,n = 0 and XSP = 0. We then
express the open probability of an individual channel in these new coordinates as:

Po,n(X,xa,n) =
1

1 + Ae
−

kGSd(Xγn−xa,n)
kBT

(2.18)

A = e
∆G+ 1

2 kGSd2

kBT . (2.19)

2.3 Adaptation motors and calcium-feedback

We have described the passive part of hair-bundle mechanics. We will now in-
troduce specific equations describing the dynamics of the molecular motors. The
adaptation motors are able to restore the tension in the tip-links by moving ac-
tively on the actin-filaments of the stereocilia in the direction of the tip of the
stereocilium, i. e. in the negative direction of the xa-axis. Here, we assume that
the ensemble of motors on one stereocilium can be described by a simple linear
force-velocity relation for the Ns motors in one stereocilium under the influence
of the external load fl:

fl = ξaẋa + f0 . (2.20)

Fig. 2.3 B schematically depicts this relation. The coefficient ξa can be seen as
the friction coefficient of the motor complex on the actin filament of the stereocil-
ium. In the absence of an external force fl = 0, the motors are moving at constant
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ẋ
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Figure 2.3: Molecular motors and the force-velocity curve. A, schematic view of a motor
complex xa under the influence of an external force fland linear force-velocity curve. In the
absence of the external force fl, the motors are running towards the top of the stereocilium,
which is found on the right hand side of the figure. Increasing the external force fl slows down
the motors. At fl = f0, the motors do not move anymore. For forces fl > f0, the motors are
forced to slide down the stereocilium, to the left hand side of the figure. B, linear force-velocity
curve. The motors are at stall if fe = f0, and the motors are running with velocity −f0/ξa in
the absence of an external force.

speed −f0/ξa, while the slope of the force-velocity relationship is characterized
by ξa > 0. The average force generated by the motors at stall, i.e. when they do
not move , is f0 = Nsfp, where f is the average force of an individual motor at-
tached to the filament, Ns is the number of molecular motors in one stereocilium,
and p the probability that a given motor is bound to the filament. The external
force fl acting on the motors of one stereocilium has been calculated before (eq.
2.17):

fmot,n = ξaẋa,n + Nsfp . (2.21)

The external calcium-concentration is known to influence the activity of the
motors [37]; reviewed in [28]. The lower the concentration, the faster is the adapta-
tion time constant, thus the motors increase their activity when [Ca2+] is lowered.
This fact can be accounted for in a number of ways. A simple way is to assume
that the probability of attachment p depends on the local [Ca2+] C at the motor
site. We expand the attachment probability in terms of C:

p(C) = p0 + p′C + O(p2) . (2.22)

For the rest of this work, we will just consider the linear term of this expansion.

The calcium entering the stereocilium upon the opening of the channels rapidly
diffuses inside the stereocilia. The plasma-membrane of the stereocilia also con-
tains Ca2+-pumps, which continuously extrude Ca2+from the endolymphatic fluid
of the stereocilium, maintaining [Ca2+] at a low level. In principle, the mecha-
nisms governing [Ca2+] at a given point are complicated ([68]). For simplicity, a
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single time-constant for the calcium-regulation τ is introduced, and the calcium-
dynamics of the n-th stereocilium reads:

τĊn = C0 − Cn + CMPo,n . (2.23)

Here, C0 is the [Ca2+] which the cell is maintaining with the help of the calcium-
pumps at closed channels, and CM + C0 is the maximal [Ca2+] at the location
of the adaptation motors. This value is proportional to [Ca2+] in the endolymph
[78].

2.4 A simple model of the hair-bundle

As described in section 2.1, the values of the different γn are reasonably close to
one another in the range of physiological displacements of the hair-bundle. We
will therefore assume from now on that γn is the same for all stereocilia. For
simplicity, we also assume xE,n = xE. This choice means that the extent-springs
are the same for all stereocilia. This results in the fact that all N equations for
the motor-positions are strictly the same, and all the xa,n can be described by the
single dynamical variable Xa = xa,n/γ, the motor displacement in the reference
frame parallel to the apical epithelial surface. The mean open probability in this
reference frame reads (cf. eq. 2.13 and 2.18):

Po(X,Xa) =
1

1 + Ae−
X−Xa

δ

, (2.24)

with

δ =
kBTN

KGSD
(2.25)

D = d/γ (2.26)

KGS = kGSNγ2 (2.27)

In order to facilitate the discussion in the rest of this work, we will introduce
some abbreviations which will help in the following. The force of the motors will
be described by one parameter corresponding to the maximal total force of all
motors, fmax, and the feedback strength, characterized by the first derivative of
the attachment probability p′, will be described by the dimensionless feedback-
strength S:

fmax = Nafp0 (2.28)

S = −CM
p′

p0
(2.29)
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The equations defining the active dynamics of the hair-bundle read:

λẊ = −KGS(X − Xa − DPo) − KSP X + Fext (2.30)

λaẊa = KGS(X − Xa − DPo) − KE(Xa − XE) + γfmax(S
C

CM
− 1) .(2.31)

τĊ = C0 − C + CMPo , (2.32)

where Na = NsN is the total number of motors and

KE = kENγ2 (2.33)

XE = xE/γ (2.34)

λa = ξaNγ2 (2.35)

have been used for the projection into the reference frame where the measurements
take place. Here, λ is the hydrodynamic friction of the hair-bundle, and inertial
terms have been neglected.

2.4.1 Stationary solutions

We can write the stationary solutions of the simplified model eqs. 2.30 - 2.32 in
the following form:

C − C0 =
CM

1 + Ae−(R′C+R)/δ
(2.36)

X − Xa = R′C + R (2.37)

Xa =
−γNafp(C) + Fext + KEXE − KSP (X − Xa)

KSP + KE
, (2.38)

with the abbreviations

R′ =
KSP

KP
Nafγp′ +

(
1 − KEKSP

KP

)
D

CM
(2.39)

R =
KEKSP

KP

(
−XE +

Fext

KSP
+

DC0

CM

)
+ Fmax

KSP

KP
− DC0

CM
(2.40)

KP = KSP KGS + KSP KE + KEKGS . (2.41)

The abbreviation for the permutations of the stiffnesses, KP , will be used
frequently in the subsequent parts of this work.

A graphical solution to equation 2.36 is depicted in fig. 2.4.

The system has either one or three stationary solutions, in marginal cases it
can have two solutions. Later on, we will see that the existence of three fixed
points normally coincides with bistability, the extreme solutions being stable and
the intermediate one being an instable fixed point. Two general cases can be
distinguished dependent on the sign of R′: First, R′ < 0 only allows for the
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Figure 2.4: Graphical solution to the equation giving the stationary points of the simple model
of hair-bundle dynamics, eqs. 2.30 - 2.32. Intersections of the lines indicate the solution, the ordi-
nate indicates the stationary open probability, the abscissa the stationary calcium-concentration.
Two cases arise in depending on the sign of R′: A, R′ < 0 , which allows for exactly one solution;
B, R′ > 0, which can result in either one, two (marginal case), or three solutions. The latter case

can only occur if CM R′

4δ
> 1.

existence of one solution, whereas R′ > 0 allows for up to three solutions. A
necessary condition for this to occur is CMR′/(4δ) > 1. For not too strong feed-
back and for KGS/KE + KGS/KSP ≪ 1, the dominant term of this expression
is D/(4δ) = KGSD2/4kBTN . This expression corresponds to the ratio between
the energy of the gating-springs and thermal energy. Around the region of greatest
slope 1/(4δ) of the open probability Po, it is sufficient to displace the bundle for
the distance of 4δ in order to open or close the channels. Because the transition
from the open to the closed state corresponds to the relaxation of the gating-spring
by the distance D, the quantity D/(4δ) also quantifies the degree of nonlinearity
in the system. Furthermore, with the help of eq. 2.39, we can see that strong
feedback γfmaxS > DKGS(1 + KE/KSP ) leads to only one stationary solution.

In the following, we will compare the stationary state of this system to some
experiments.

2.4.2 Dependence of stationary states on the external calcium-

concentration

It has been observed that the external calcium-concentration influences the open-
ing probability of the mechanically unperturbed hair-bundle [15]. This experiment
is done by stimulating several hundred of hair cells simultaneously, by moving a
patch of the otolithic membrane which overlies the hair-bundles in the sacculus of
the bullfrog, via a glass probe, see [15] for details. A displacement-current curve
is recorded for different values of the external calcium-concentration in which the
hair-bundles are immersed. As the inflowing current is proportional to the open
probability of the bundle Po, the displacement-current curve can be viewed as a
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displacement-open probability curve. The displacement necessary for an opening-
probability of 0.5 is recorded as a function of the external calcium-concentration,
see fig. 2.5 .

A B

µm [Ca2+] (mM)
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n
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S
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Figure 2.5: Shift of the current-displacement curve in dependence on the apical calcium-
concentration, experiments from [15] and comparison to numerical simulations. A, Receptor
current as function of the displacement of the hair-bundle. Note the decrease of maximum cur-
rent at high calcium-concentrations. This reduction does not mean that the maximum calcium-
concentration inside the hair-bundle decreases in the same way, see [69]. The curve both shifts to
the right and has a smaller maximum slope for higher Calcium concentrations. Note the strongly
non-symmetrical form of these curves. B, Plot of the shift XS necessary to activate half the max-
imum current as a function of the Calcium concentration (hollow circles), reported from figure
A. Two curves are indicated showing the value of XS for our model eqs. 2.30 - 2.32. Black lines:
stationary points with parameters from column B of table B.1 in appendix B, with fmax chosen
so that the maximum open probability is 0.6. Grey lines: same as before, but fmax chosen so that
the maximal open probability is 0.99, see column C of table B.1 in appendix B. The solid parts
of the lines correspond to 0.075 < Po < 0.53, the range which is covered by the experimental
points. This range of open probabilities corresponds to 3.24 < S < 0.045 and 5.7 < S < 0.58
for the maximal open probabilities 0.6 and 0.99, respectively. Both curves have been vertically
aligned, so that XS = 0 corresponds to Po = 0.53, matching the values obtained by the ex-
periment. Both curves have additionally been shifted horizontally. Note that a horizontal shift
corresponds to a rescaling CM → CM/a, C → C/a, p′ → p′a. The dashed line corresponds to

the slope δ(KGS+KSP )
KSP

, to which both lines are parallel for large CM .

In this experiment, it has been observed that the displacement XS required
to activate half the maximum current depends logarithmically on the external
calcium-concentration, XS ∼ DS ln [Ca2+], with a slope DS ∼ 37 nm. Addi-
tionally, the maximum slope of the displacement-current curve diminishes with
increasing [Ca2+] . Note also that the curves are strongly non-symmetrical. How-
ever, as several hundreds of cells have been measured simultaneously, with the
excitatory directions not strictly parallel, this might be an artifact of the mea-
surement.

The stationary motor-position Xa in our model corresponds to the shift XS :
a change of Xa in eq. 2.24 implies a change of the displacement X necessary
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to obtain a given open probability. The value of the maximal motor force fmax

determines the maximal open probability of the channels. Because this maximal
open probability cannot be deduced from the data in the experiments, two different
values of fmax have been used in fig. 2.5 to illustrate the different shapes of the
curves relating the stationary value of Xa and the external calcium-concentration
[Ca2+] which can be expected.

The experiment shows that reduced [Ca2+] leads to an increased open prob-
ability Po. The displacement-current curves can be used to estimate the gating
force KGSD: using eq. 2.25 and eq. 2.24, the maximum slope of the curve corre-
sponds to 1/(4δ). Using N = 50, the gating force varies between 8 and 2 pN. With
an estimate of KGS = 600µNm−1 [82], the value of the gating-swing is D ∼ 3− 13
nm. This indicates of course, that the parameters KGS or D, or both, depend on
the apical calcium-concentration. Note that the decrease of the maximum slope
of the displacement-current curve corresponds to decreasing KGS and D with in-
creasing [Ca2+]. This phenomenon has not been included in the model so far. We
will come to that point in chapter 6. For the moment, we discard the possibility
of calcium-dependent KGS and D.

Our model, eqs. 2.30-2.32, allows for the calculation of the stationary motor-
position Xa in dependence on the maximum [Ca2+] at the location of the mo-
tors, CM . There is a regime in which Xa ∝ ln CM holds. Under the assumption
that CM ∝ [Ca2+], we do therefore have a regime in which our model recovers the
behavior observed in the experiment, Xs ∝ ln [Ca2+].

Indeed, if CM is large enough6 , so that the terms in 1/CM can be neglected
in the expressions for R and R′, and Po ≪ 1, 2.36 becomes:

C = − δ

R′
(ln CM − ln (C − C0)) −

R

R′
. (2.42)

For |C| ≪ | − δ/R′|, we see that C ∼ −(δ/R′) ln CM . Note that C ∼
−(δ/R′) ln CM also implies that R′ < 0 in order to reproduce the experimental
observation that Po = (C − C0)/CM decreases with increasing CM . This implies
therefore p′ < 0 (see eqn. 2.39): the binding-probability of the molecular motors
increases when the calcium-concentration decreases. Therefore, active force gen-
eration increases when the calcium-concentration decreases, an observation which
has also been made in other experiments [37].

In this case (C ∼ −(δ/R′) ln CM ), the stationary solution of the motor position
becomes

Xa ≃ δ ln CM
(KGS + KSP )

KSP
(2.43)

This linear regime is only achieved for small opening probabilities, and under
the assumption that CM ∝ [Ca2+] . Therefore, our model will not yield Xa ∝
ln CM for Po ≃ 0.5.

6CM ≫ DC0KGS(KE+KSP )

Fmax+KSP +KEKSP (XE+
Fext

KSP
)

and CM ≫ DC0KGS(KE+KSP )
KSP Fmaxp′/p0
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Note that C ∼ −(δ/R′) ln CM also implies that R′ < 0 in order to reproduce
the experimental observation that Po = (C − C0)/CM decreases with increasing
CM . This implies therefore p′ < 0 (see eqn. 2.39): the binding-probability of the
molecular motors increases when the calcium-concentration decreases. Therefore,
active force generation increases when the calcium-concentration decreases, an
observation which has also been made in other experiments [37].

As a comparison to the experiment, fig. 2.5 B shows both the dependence of the
stationary motor-positions Xa calculated for our model, and the experimentally
observed displacement XS . Two different sets of curves have been plotted, differing
only by the value of Fmax, which determines the maximum open probability of the
stationary state of the hair-bundle: the higher fmax, the higher the maximum open
probability. The value of D = 17 nm has been chosen, in order to fit approximately
the slope of the experimental points. The value of fmax has been chosen to yield
a maximum open probability of respectively 0.6 (black curves) and 0.99 (grey
curves). The solid portions of the curves correspond to the opening probabilities
observed in the experiment, 0.075 < Po < 0.53. The dashed line represents the
slope δ(KGS + KSP )/KSP , to which both lines are parallel for large CM . Note
that the range in Xa covered by the experimental data is much larger than the
corresponding range given by the theory, for a given range of Po. It is not possible
to adjust both values with our simple model, equations 2.30-2.32, because with C−
C0 = CMPo, we have ln C ∼ lnPoδ/R

′ under the same condition |C| ≪ |δ/R′|,
and therefore we can estimate Xa ∼ − ln Poδ(KGS + KSP )/KSP .

We have seen that our model provides a partial agreement with the experi-
mentally observed effects of the variation of [Ca2+] . It is clear that a dependency
of KGS and/or D on C has to be taken into account for better agreement. The
experiments, however, have been performed simultaneously on several hundreds of
cells, which were not perfectly aligned, and do therefore not perfectly reflect the
properties of a single hair-bundle, which has been discussed theoretically.

2.4.3 The extent spring KE

The observation of incomplete adaptation (see 1.5) has lead to the introduction
of the gating-spring KE in the description of the hair-bundle presented in equa-
tions 2.30-2.32. The extent of adaptation has been measured for hair cells of the
bullfrog’s sacculus [99]. In these experiments, displacement-current curves of the
hair-bundle are recorded to measure the shift of these curves as a function of the
magnitude of static deflections of the hair-bundle. If a hair-bundle shows com-
plete adaptation, the shift of the displacement-current curve is expected to have
the same value as the static deflection of the hair-bundle: after adaptation, the
bundle would have restored the same open probability as it had in its resting po-
sition. This is not the case, and the extent of adaptation can be seen in fig. 2.6.
Note the nick in the slope, which can be interpreted as the maximum displacement
of the motors towards the tip of the stereocilia. The stationary motor position Xa
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in our model corresponds to the adaptive shift Xe in this measurement.

X (nm)

X
e

(n
m

)

A B C

Figure 2.6: Shift of the displacement-current curve in dependence of a statically imposed
deflection, experiments from [99] and comparison to numerical simulations. A , displacement-
current curves before (solid circles, solid lines) and after a static deflection XS (hollow circles,
long dashes) as well as the displacement-current curve shifted by XS(short dashes). The adaptive
shift is denoted by Xe. B, superimposed results for 11 cells and 15 measurements. The nicks of
the measurements have been aligned. These nicks correspond to a maximum motor position −Xe

beyond which the motors cannot climb. The slope of this curve is 0.8. The dotted line has
a slope of 1, which the system would display if complete adaptation occurred. C, Stationary
values yielded by equation 2.44. Two sets of parameter values have been used: Dashed line,
weak nonlinearity, D = 10 nm, see column D of table B.1 in appendix B. Solid line, strong
nonlinearity,D = 40 nm, see column E of the same table. As a comparison, the line corresponding
to complete adaptation (slope 1) is indicated (dotted line). The curves have been aligned so
that Po = 0.5 corresponds to X = Xe = 0, and values for 0.001 < Po < 0.999 (D = 40 nm)
respectively 0.1 < Po < 0.9 (D = 7 nm) have been plotted

These results thus suggest a roughly linear relation between the stationary
positions of Xa and X, with ∆Xa/∆X ≃ 0.8. Using equation 2.31, we can obtain
the stationary value of X as a function of the stationary value of Xa without
explicitly including the external force Fext:

X = Xa
KGS + KE

KGS
+ DPo(1 − γfmaxS

KGSD
) +

γfmaxS

KGS

C0

CM
+

Fmax

KGS
(2.44)

∂X

∂Xa
= 1 +

KE

KGS(1 − DP ′
o(

γfmaxS
KGSD − 1))

. (2.45)

The latter expression is the derivative of eq. 2.44 with respect to Xa under varia-
tion of the external force Fext, by fixing all other parameters.

Therefore, non-vanishing feedback γfmaxS and gating-swing D lead to nonlin-
earities of the relation between X and Xa, localized around Po = 0.5. However,
this will not be noticeable if D2 ≪ |(4kBTN/KGS)(KGSD)/(γfmaxS − KGSD)|.
Note that this condition is similar to the condition of having the negative stiff-
ness introduced in section 1.5 and described in 3.2.1, which occurs if D2 >
(4kBTN/KGS)(KGS − KSP )/KGS .
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This experiment does not show a marked nonlinearity in the relation between
the displacement X and Xa. However, this preparation was not done by using the
two-compartment technique described in 1.6. The largest values of D have been
observed in experiments using this special technique, see for example [82]. We can
again estimate the gating-force KGSD for this experiment, as described in 2.4.2.
The slope of the displacement-current curve yields KGSD ≃ 4 pN, and with KGS =
600µNm−1 we obtain D ≃ 7 nm. Therefore, without a value of γfmaxS/KGSD ≪
1, we cannot resolve this nonlinearity in the plot of fig. 2.6.

Fig. 2.6 C shows a typical plot of the relation between X and Xa for our model.
The parameter values are chosen so that they are close to the values which can
be inferred from this experiment. The resulting curve corresponds to the dashed
line. As a comparison, another curve has been plotted, with a much larger value
of D (solid line).
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Chapter 3

Theory of hair-bundle

oscillations

3.1 State Diagram

To explore the dynamic behaviors of the system described by eqs. 2.30-2.32 and
eq. 2.24, we first ignore the effects of fluctuations and assume Fext = 0. Linear
stability analysis of these steady states reveals conditions for stability as well as
for oscillating instabilities that lead to spontaneous oscillations via a Hopf bifur-
cation [104]. As the calcium-dynamics at the motor site is expected to be much
faster than the hair-bundle oscillations observed in the bullfrog’s sacculus [68], we
determine the state diagram for τ = 0 (fig. 3.1). The state diagram is a function
of two parameters: the maximal force fmax produced by adaptation motors along
their axis of movement, and the dimensionless feedback strength S of the Ca2+-
regulation. We assume that Ca2+-feedback reduces active force generation by the
motors (S > 0, see subsection 2.4.2).

The state diagram exhibits different regimes (fig. 3.1). If the force fmax

is small, the motors are not strong enough to pull transduction channels open.
In this case, the system is monostable with most of the channels closed. In-
creasing fmax leads to channel opening. For intermediate forces and weak Ca2+-
feedbacks, the system is bistable, i.e. open and closed channels coexist. For strong
Ca2+-feedbacks, however, the motors can’t sustain the forces required to maintain
the channels open. In this case, the system is again monostable with most chan-
nels closed. Spontaneous oscillations occur in a region of both intermediate forces
and feedback strengths. The boundary between a stable state and an oscillatory
state corresponds to a Hopf bifurcation. This bifurcation is subcritical near the
bistable region (broken line in fig. 3.1) but becomes supercritical at larger motor
forces (solid line in fig. 3.1). Note that there is no oscillation in the absence of
Ca2+feedback, i.e. for S = 0. Close to the subcritical Hopf bifurcation, regions of
coexistence between the oscillating and one or two stable states exist only in a very

35
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Figure 3.1: State diagram of the hair-bundle as a function of the maximal force fmax of the
motors along the axis of the stereocilium, and the dimensionless feedback strength S. Lines of
constant opening probabilities are drawn in A, indicated by the numbers. They are drawn in steps
of Po = 0.1. All figures show the same state diagram. A, global view. B, blowup of the region
indicated by the rectangle in A. C, blowup indicated by the green point in B. Three different states
can be distinguished: a bistable state (BI, delimited by the red line), an oscillating state (OSC,
shaded region in A), a monostable state (MO: open state, Po > 0.5; MC: closed state, Po < 0.5).
In C, two coexistence regions between stable states and an oscillating state can be seen: B-O,
coexistence between an oscillating state and two stable states; with two stable and one oscillating
state. M-O, coexistence between a monostable and an oscillating state. Hopf bifurcations occur
along the line separting oscillating from stable states. For small fmax, the bifurcation is subcritical
(broken line), whereas it becomes supercritical for larger forces (solid line). Parameter values are
given in column F of table B.1 in appendix B. The dashed-dotted line in A corresponds to the
Hopf bifurcation for the same parameters as before, but with τ = 0.1 ms.

small region around the subcritical bifurcation (fig. 3.1 C). The dashed-dotted line
in fig. 3.1 A corresponds to the Hopf bifurcation for a finite value of τ = 0.1ms.

This state diagram has been drawn under the assumption of a very fast calcium-
relaxation time τ. The model described by eqs. 2.30-2.32 does exhibit regimes of
spontaneous oscillations for a variety of parameter values. In the following, we
will analyze some limiting cases and discuss the physical origin of the different
mechanisms of spontaneous oscillations the bundle displays in each of them.
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3.2 Physical mechanisms of oscillations

It is useful to use a simple two-dimensional system of linear differential equations
to describe the essence of hair-bundle motion. On the one hand, it allows to
understand the different states present in the state diagram, and helps to extract
more clearly the mechanism which leads to the oscillating solution. On the other
hand, it helps to explain other mechanisms of oscillations, which are presented in
the following. This system can be written as follows [81]:

λeff
dX(t)

dt
= −kX(t) + FA(t) + Fext(t) (3.1)

β
dFA(t)

dt
= −kX(t) − FA(t) , (3.2)

where k denotes the stiffness of the hair-bundle, FA is the force produced by active
elements inside the hair-bundle, Fext is the externally applied force, and λeff is
an effective drag coefficient. The description of the active force with the help
of the coefficient β reflects the observation that the speed of adaptation decays
exponentially in hair-bundles subject to a constant force. k is an approximation
to linear order of the coupling between active elements and the movement of the
hair-bundle.

The dynamical state of the fixed point of this system X = 0 and FA = 0 at
zero external force is determined by its eigenvalues :

s1 = −Tr

2
−

√
Tr2

4
− ∆ (3.3)

s2 = −Tr

2
+

√
Tr2

4
− ∆ , (3.4)

where Tr = 1/β + k/λeff denotes the trace of the matrix determining the
system 3.1-3.2, and ∆ = (k + k)/(λeffβ)denotes its determinant.

If Tr < 0 and ∆ > 0, the real part of the eigenvalues is negative and the system
is quiescent. If, however, one of the eigenvalues has a positive real part (Tr > 0
or ∆ < 0), the system is linearly unstable. It undergoes a Hopf bifurcation at the
critical point Tr = 0 with the characteristic angular frequency ω =

√
∆ if ∆ > 0

at the critical point. If nonlinearities restrict the values of X and FA, the system
undergoes limit-cycle oscillations around the fixed point if 1/β < −k/λeff in the
vicinity of this critical point.

In the following, we will discuss several physical mechanisms of oscillation for
the system presented in 2 by analyzing several limiting cases. We will apply the
resulting two-dimensional equations to the simple description 3.1-3.2 in order to
have a general description for the different cases.
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Useful shortcuts in the following discussion are the following quantities:

KGP = KGS(1 − DP ′
o) (3.5)

P ′
o =

dPo

dX
=

Po(1 − Po)

δ
(3.6)

KPP = KSP KGP + KSP KE + KGP KE . (3.7)

With these notations, we see that a fixed point verifying CMR′P ′
o > 1 implies

that this is an intermediate fixed point. In this case, two other solutions with
different Po coexist with this intermediate solution.

In all cases analyzed below, the condition ∆ < 0 is identical with the condition
for the existence of an intermediate fixed point, CMR′P ′

o > 1 (see subsection 2.4.1).
This implies that the Hopf bifurcation can occur in regions with only one fixed
point, and in regions with three fixed point. In the latter case, the bifurcation can
only occur on solutions situated on either the left or the right branch of the three
solutions which are depicted in fig. 2.4 B. Although the unstable solution of the
intermediate fixed point can possess a stable limit cycle1, a coexistence of such a
solution with another stable solution would result in the possibility of the system
being attracted to the stable fixed point. Therefore, the condition ∆ < 0, although
corresponding to an unstable solution, does not necessarily represent an oscillating
solution. On the other hand, an oscillating solution exists if there is only one fixed
point, or if all three fixed points are unstable. Therefore, for all the cases discussed
below, an oscillating solution is found for the two conditions Tr > 0 and ∆ > 0,
because this corresponds to unstable solutions in a region with one fixed point. In
order to explore the system’s ability to display oscillations, we will therefore test
if the system allows for solutions with Tr > 0 and ∆ > 0.

3.2.1 Fast calcium-feedback

The state diagram fig. 3.1 corresponds to this limit. The oscillation mechanism
discussed here concerns the dynamics of the bundle if the time constant deter-
mining the dynamics of the calcium-concentration, τ , is very small. This limit
may be justified by the observation that calcium-dynamics takes place on a sub-
millisecond scale, as proposed by different authors [68], whereas typical oscillations
take place at a timescale of tens of milliseconds. This mechanism of oscillation
is powered by the adaptation motors, which constantly push the bundle into an
unstable position, as explained below.

In the limit τ → 0, we can rewrite the linearized system (eqs. 2.30 - 2.32) in

1The intermediate fixed point (∆ < 0) is a saddle point. As a consequence of the index
theorem [104] a hypothetical limit cycle in a system including two stable states and a saddle
point would have to enclose all three fixed points.
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the form of the simplified system (eqs. 3.1 - 3.2) with

Fa = KGP Xa (3.8)

k = KGP + KSP (3.9)

k = −KGP
KGP + P ′

oγfmaxS

KGP + P ′
oγfmaxS + KE

(3.10)

β =
λa

KGP + P ′
oγfmaxS + KE

(3.11)

λeff = λ . (3.12)

Note that there is no Hopf bifurcation without calcium-feedback in this limit
(S = 0)2.

We can see that Tr = −k/λ − KGP /λa − KE/λa − γfmaxSP ′
o/λa, and ∆ =

KPP /λaλ + KSP γfmaxSP ′
o/λaλeff. Note that k < 0 is a sufficient condition

for KPP < 0. At the bifurcation, we find

ωc =

√
KGP KEλ

λa
− KSP k

λ
∼

√
−KSP k

λ
, (3.13)

the latter expression becoming exact for KE/λa ≪ KSP /λ. The frequency at
the bifurcation is therefore dominated by the relaxation rate associated with the
negative stiffness and the relaxation rate associated with the stereociliary pivot
elements.

Unstable solutions in regions with one fixed point, with Tr > 0 and ∆ > 0, are
found for k < (λ/λa)(KGP KE/KSP ). Therefore, k has to be reasonably small. In
the limit KE → 0, or if KGP < 0, we see that k < 0 is a necessary condition for the
existence of an unstable solution. This kind of oscillation is therefore created by
the existence of a negative stiffness, k < 03. Negative stiffness has been observed
experimentally [82]. This mechanism of oscillation has already been studied, see for
example [78, 82]. However, the model used in these studies was more complicated,
and these studies did not include the influence of noise.

In order to explain this mechanism, we can plot the free energy of the hair-
bundle, −kBT ln Z, as a function of the position X, as well as the displacement-
force relation at given motor position, eq. 2.15, for fixed motor-position Xa. The
fig. 3.2 shows this situation for three different positions of the motors Xa. Minima
of the energy curves in the top row correspond to stable states of the system.

The left column corresponds to a high value of Xa, which is achieved for
example if fmax is low. The tension of the tip-links is low, and the channels are

2Tr = 0 implies either k < 0 or KGP +KE < 0, which implies that KPP < 0, so that ∆ < 0
3if KGP > 0, we see that KSP < (λ/λa)KE in order to allow for the unstable solution Tr > 0

and ∆ > 0. Estimates of the friction constants indicate however that λ ≪ λa [23, 44, 37]. The
stiffnesses KSP and KE are of the same order of magnitude [43, 99, 82]. Therefore, this case is
unlikely to occur in the hair-bundle.
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Figure 3.2: Free energy landscape of the hair-bundle and associated force F , eq. 2.15, for
different motor-positions Xa. Minima of the energy-curves correspond to stable states. From
left to right: decreasing motor-position Xa, corresponding to increasing motor force fmax. Left
column: high motor-position Xa, i. e. the motors are found far from the tip, cf. fig. 2.2.
The tension in the tip-links is low, and the system exhibits one stable state with low Po. This
corresponds to a low value of fmax. Middle column: intermediate values of Xa and fmax result
in a bistable state, with an unstable intermediate position. Right column: low values of Xa

corresponding to high fmax increase the tension in the tip-links and force the channels to open,
resulting in a high value of Po. Bottom row: displacement-force relation F . The solid line
corresponds to the energy depicted above every figure, the two dashed lines to the other values.
Intersections with the zero-line (dotted line) with negative slope correspond to stable states,
whereas positive slopes represent unstable states. Varying the motor-position Xa results in a
shift of the displacement-force curves characterized by the slope −KSP (grey lines).

closed. The middle column is drawn for intermediate values of Xa and fmax. This
results in an unstable fixed point and two stable fixed points, cf. fig. 2.4 B. The
last column, finally, corresponds to a high value of fmax and a low value of Xa.
The tension of the tip-links is high and the channels tend to be open. The bottom
row of the figure depicts the displacement force curves for the three values of Xa.
The solid line corresponds to the value of the Xa which has been used in the figure
just above it, while the dashed curves correspond to the other two values of Xa.

Oscillations become possible when the position of the motors is no longer fixed,
but becomes a dynamic variable according to eq. 2.31. If the position of the mo-
tors corresponds to the situation depicted in the left column, the negative feedback
will increase their activity due to the low open probability and consequently low
internal calcium-concentration. The motors will begin to climb up the stereocil-
ium, thereby decreasing the value of Xa, pushing the system in the direction of
the state depicted in the middle column.

If the position of the motors corresponds to the situation depicted in the right
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column, the negative feedback will decrease their activity due to the high open
probability and consequently high internal calcium-concentration. The weak mo-
tors will not be able to stand the high tension of the tip-links and slide down
the stereocilium, pushing the system in the direction of the state depicted in the
middle column.

The negative calcium-feedback has therefore the effect to shift the system’s
open probability closer to the open probability Po = 0.5.

If the feedback is strong enough, the movement of the motors will shift the
systems state from the situation depicted in the left column directly to the one
depicted in the right column, with the bundle’s position being given by the left
hand side minimum. When the left hand side minimum of the energy curve be-
comes unstable (right column), the bundle’s tip will rapidly assume the position
given by the right hand side minimum, thereby displaying a rapid movement in
the positive direction.

Once the bundle has assumed the right hand side minimum depicted in the
right column, the cycle restarts in the opposite direction.

We can also follow the movement of the bundle with the help of the displacement-
force curves, drawn in the bottom row of the figure. Stable positions correspond
to F = 0, with F having a negative slope at this point. It is furthermore quite
easy to see that the open probability is larger than 0.5 for one half of the cycle,
and smaller than 0.5 for the other half. Only the jumps from the left hand side
stable point to the right hand side stable point and vice versa change the value of
the sign of Po − 0.5, because Po = 0.5 corresponds to the point of maximal slope
in the displacement-force curves.

A

0 0.2 0.4
-20

-10

0

10

20

X
(n

m
)

Time (s)

B

Figure 3.3: Spontaneous oscillations of a hair bundle, experiment and numerical simulation. A,
spontaneous oscillations of the tip of a hair-bundle of the bullfrog’s sacculus. Taken from [81].
B, numerical simulations for our system eqs. 2.30-2.32 under the assumption of fast calcium-
relaxation. Note the similar shape of the oscillations. Parameters are given in column G of table
B.1 in appendix B.

The shape of the oscillations, which can be seen in fig. 3.3 B, is similar to
the shape of oscillations of hair-bundles from the sacculus of the bullfrog [80], see
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fig. 3.3 A. The bundle displays swift strokes followed by longer periods in which
it shows a more erratic movement. Note that the bundle’s slow phase of motion
includes the maxima of displacement; the rapid phase of the movement does not
begin when the bundle is situated in one of its extremal positions. This feature is
faithfully reproduced by our simulations, fig. 3.3 B.

This peculiar shape of oscillations is generic for the limit of small calcium-
relaxation times. A change of the motor-position changes the expression for the
displacement-force relationship eq. 2.15. The displacement force relation is anti-
symmetric with respect to X in the following way:

F (X − Xoff ) − F (Xoff ) = −F (−X + Xoff ) − F (Xoff ) (3.14)

with Xoff given by

Xoff =
N∆G

KGSD
+ Xa + D/2 (3.15)

for the simple model presented in section 2.4. For the displacement X = Xoff ,
the system displays the open probability Po = 0.5. In response to a change of the
motor position Xa → Xa + ∆Xa, the displacement-force relationship will change
its position by

∆Xoff = ∆Xa (3.16)

∆F (Xoff ) = −KSP ∆Xa . (3.17)

Therefore, changing the value of Xa shifts the displacement-force relationship on
a slope given by −KSP , which is indicated by the grey lines in the bottom row
of fig. 3.2. In the case of a spontaneously oscillating hair-bundle, the external
force is zero. We assume a rapid relaxation of the hair-bundle’s tip to the stable
position given by F = 0. Following the trajectory of the position F = 0 during
the shift of the displacement-force relation allows us to predict the direction of
movement: as long as the slope of F at the position F = 0 has a larger magnitude
than the slope −KSP , the displacement of the bundle’s tip has the same direction
as the shift of Xoff . If, however, the slope of F at this position has a smaller
magnitude than the slope −KSP , the direction of movement of the hair-bundle
has the opposite sign of the direction of movement of Xoff .

We can therefore predict the shape of hair-bundle oscillations using fig. 3.2.
Consider the situation depicted in part D of the figure. The position of the bundle
is given by the position F = 0 on the left hand side of the figure. The motors
will now begin to climb up the stereocilia, shifting the displacement-force relation
along the slope indicated by the grey lines. This slow movement will continue
until the motors reach the position which is depicted in part F of the figure, where
the slope of F at the position given by F = 0 is zero. Therefore, the bundle’s
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tip is first displaced parallel to the movement of Xoff , because the slope of F
has a larger magnitude than −KSP at the onset of this phase of the movement.
However, as soon as the slope of F has a smaller magnitude than −KSP , the
direction of movement of the bundle is inverted, corresponding to the extremal
positions of X which can be seen in fig. 3.3.

Therefore, the shape of hair-bundle oscillations for fast calcium-relaxation is
given by swift strokes connected by arc-like movements of slower phases of dis-
placement, which contain the extremal displacements, similar to the shape of
oscillations which has been observed in experiments.

3.2.2 Fixed motor position

Another useful limit is the case where λa → ∞, i. e. the motors are considered
to be immobile [107]. This limit may be justified by the observation that the
dynamics of the adaptation motors λa/(KGP + KE), is very slow with respect to
the other time-constants in the system, see B. The authors of [107] use nearly
the same equations as the ones presented here, eqs. 2.30-2.32. There are two
differences between their treatment of the problem and the discussion presented
in this subsection. First, the probability used by the authors is governed by a
three-state channel dynamics, one open and two closed states; this difference,
however, is of no particular importance, the model showing similar behavior for
a two-state channel dynamics. The second difference is more substantial: the
authors introduce a calcium-dependent open probability function Po, based on
the experimentally observed shift of the displacement-current curve described in
subsection 2.4.2. The shift of the open probability curve Po introduced by them
is identical with a calcium-dependent free energy difference ∆G(C) ∝ ln C. As
shown in subsection 2.4.2, we do not necessarily need a dependence of ∆G on C
to observe a shift of this curve which is qualitatively similar to the experiment.
However, the basic model, eqs. 2.30-2.32 does not allow for a Hopf bifurcation
in the limit of fixed Xa, λa → 0, whereas such a bifurcation can occur under the
assumption of a calcium-dependent ∆G(C).

By using the first term of the development of a calcium-dependent free energy
change ∆G(C) = ∆G0 + ∆G′C, the parameters of the simplified system (eqs. 3.1
- 3.2) read:

Fa = −KGSDµC/CM (3.18)

k = KGP + KSP (3.19)

k =
KGSDP ′

oµ

1 + µ
(3.20)

β =
τ

1 + µ
(3.21)

λeff = λ (3.22)

with µ = −CM
∂Po
∂C = CMP ′

oδ∆G′/kBT a dimensionless parameter measuring the
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feedback-strength. Note that the stationary solutions still have the same form
2.36 - 2.38, with R′ → R′ − δ∆G′/kBT . This leads to Tr = −k/λ − (1 + µ)/τ
and ∆ = (k/λτ)(1 + µ) + KGSDP ′

oµ/(λτ). Again, we can see that there is no
Hopf bifurcation for the case without calcium-feedback, in this case mediated by
the dependence of ∆G on calcium4.

Unstable solutions for the case without feedback are only possible for ∆ < 0,
so that these solutions only exist for the intermediate fixed point. Therefore, it
is unlikely that an oscillating solution for this case exists: regions with one fixed
point are always stable, and regions with 3 fixed points have 2 stable fixed points
coexisting with the unstable intermediate one. However, if ∆G′ 6= 0, the situation
is changed, and we can see that ∆ = −(k/λ)2 − KGSDP ′

o(1/τ + k/λ)/λ at the
Hopf bifurcation. We see that ∆ > 0 is possible, if k < −λ/τ − k2/(KGSDP ′

o).
Therefore, a necessary condition for a Hopf bifurcation is again the negative stiff-
ness, k < 0. Rewriting ∆ = −(k/λ)2 + KGSDP ′

oµ/(λτ) at the bifurcation allows
for the conclusion that µ > 0 and therefore ∆G′ > 0 is necessary to allow ∆ > 0
at the bifurcation. The frequency at the bifurcation,

ωc = −k

λ

√
−1 − KGS

k
DP ′

o(1 +
λ

kτ
) , (3.23)

is dominated by the relaxation rate associated with the negative stiffness.

Unstable solutions in regions with one fixed point, with Tr > 0 and ∆ > 0, are
found for −kτ/λ > DP ′

oKGS/(KGS +KSP ), showing that the ratio of chemical to
mechanical time constants, −kτ/λ, has to be larger than a certain value, thereby
forbidding too fast chemical relaxation rates.

Both this mechanism and the previous one exhibit oscillations due to strong
nonlinear effects, which lead to a region of negative stiffness, k < 0. If the
timescales of the passive component, −λ/k, and the active component, β, are
sufficiently separated, the system exhibits relaxation oscillations. In both cases,
the time-constant associated with the negative stiffness, −λ/k, has to be smaller
than the time-constant associated with the active component, β, in order to per-
mit Tr > 0.

Both systems exploit the regions of negative stiffness. The difference is the
way in which they reach these regions. In the first case, the calcium-dependent
motor-activity shifts the motor-position Xa in such a way that the stiffness of
the hair-bundle becomes negative. In the second case, at fixed motor-position,
the calcium directly influences the shape of the energy landscape describing the
passive mechanics of the hair-bundle, and so forces the system periodically into
regions of negative stiffness.

The discussion of the oscillating mechanism using fig. 3.2 can be done in
exact analogy to 3.2.1. However, the displacement-force relation depends no more
on Xa, but on ∆G. Therefore, the slope of the migration of the displacement-force

4For ∆G′ = 0, we have k/λ = −1/τ if Tr = 0, and therefore ∆ = −1/τ 2 < 0
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relation of fig. 3.2 is no more given by −KSP , but by the value −(KGS + KSP ).
This means that the shape of oscillations has changed with respect to the situation
discussed in 3.2.1. Now, the swift strokes begin at the extremal positions of hair-
bundle displacements, unlike the situation observed experimentally (fig. 3.4).
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Figure 3.4: Spontaneous oscillations of a hair bundle, experiment and numerical simulation. A,
spontaneous oscillations of the tip of a hair-bundle of the bullfrog’s sacculus. Taken from [81]. B,
numerical simulations for our system eqs. 2.30-2.32 under the assumption of fixed motor position
and calcium-dependent ∆G. Note the dissimilar shape of the oscillations. Parameters are given
in column H of table B.1 in appendix B.

Note that this is only one possibility for a calcium-induced oscillation in this
limit. If the gating-swing distance, D, is calcium-dependent, the system can also
undergo a Hopf bifurcation. Another modification, which will be used in the
next subsection, leads also to oscillations: a calcium-dependence of the rest-length
of the gating-swing xGS . The slope of the migration of the displacement-force
relation for this case is given by −KSP (see section 6.4 ), exactly the same value
as in the case discussed in subsection 3.2.1. The shape of the oscillations for this
case is therefore similar to the one found in subsection 3.2.1, see fig. 3.5.

Given the typical relaxation time of molecular motors, ∼ 30ms, this oscillation
mechanism cannot be applied to oscillation frequencies below ∼ 30Hz. Addition-
ally, the slow phase of oscillation is dominated by the timescale of the calcium-
dynamics. Therefore, in order to achieve low frequency oscillations (∼ 10Hz), a
value of τ ≫ 1ms has to be chosen. Experimental observations indicate calcium-
relaxation times of 1 ms or below. It seems therefore unlikely that this mechanism
of oscillation is of importance for the low-frequency oscillations of hair-bundles
from the bullfrog’s sacculus. This oscillation mechanism might nonetheless be of
importance for hair-bundles which are sensitive to higher frequencies.

3.2.3 Fast mechanical relaxation

In this subsection, we analyze the situation which occurs if the hair-bundle shows
a very fast mechanical relaxation, λ → 0. This mechanism might be important
for a bundle with a mechanical relaxation rate ∼ λ/(KGS +KSP ) which is shorter
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Figure 3.5: Spontaneous oscillations of a hair bundle, experiment and numerical simulation. A,
spontaneous oscillations of the tip of a hair-bundle of the bullfrog’s sacculus. Taken from [81]. B,
numerical simulations for our system eqs. 2.30-2.32 under the assumption of fixed motor position
and calcium-dependent xGS . Note the similar shape of the oscillations. Parameters are given in
column I of table B.1 in appendix B.

than the other typical time-scales, τ and λa/(KGS + KSP ). This might occur in
short bundles with many stereocilia. Because both KGS and KSP scale as 1/L2,
short hair-bundles exhibit a much shorter relaxation time5. We will therefore
analyze the system consisting of eqs. 2.31 and 2.32, under the assumption that
the position of the hair-bundle is slaved with respect to Xa and C. Eq. 2.30
therefore implicitly defines the dependence of X on the dynamical variables Xa

and C:
−KGS(X − Xa − DPo) − KSP X + Fext = 0 . (3.24)

Note that this limit is only well defined if eq. 2.30 is linearly stable:

KGP + KSP > 0 . (3.25)

If this were not the case, the basic assumption of the fast relaxation of X to the
value given by 3.24 would not be true. At the very first glance, we can suspect that
this system will not show a Hopf bifurcation if we restrict ourselves to the basic
system 2.30-2.32: the system does not show negative stiffness due to the condition
3.25, and the calcium-equation is always linearly stable, with the relaxation time τ .
Indeed, the calculation results in Tr = −KP /((KGS+KSP )α)−1/τ . As in the case
of fixed motor position, we can recalculate the trace with the help of a calcium-
dependent ∆G. The result is

Tr = − KP

(KGS + KSP )α
− 1

τ
(1 + CMP ′

o

δ

kBT
∆G′(1 +

P ′
oKGSD

KGP + KGS
)). (3.26)

As the calcium-feedback, S, has no influence on the value of the trace, we
will ignore its contribution and set S = 0 in the following. We see that Tr > 0

5The stereociliary pivot stiffness KSP is thought to be linked to the angular stiffness of the
bundle. Therefore, the stiffness measured at the top of the bundle scales as 1/L2. The stiffness
of the gating-springs KGS scales with γ2, and therefore also with 1/L2.
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can only be brought along by ∆G′ < 0. However, it can be shown that Tr > 0
implies R′Po′CM > 1 (if S = 0), the condition for the intermediate fixed point.
Therefore, a possible Hopf bifurcation always takes place on the intermediate fixed
point. It is impossible to find a single fixed point undergoing a Hopf bifurcation.
It is thus unlikely to find an oscillating regime for this limit, with S = 0.

However, the situation changes if we consider another calcium-dependent el-
ement. For example, if the rest-length extension of the gating-swing depends on
calcium, we can have a Hopf bifurcation in the one fixed point region. There is no
proof that such a dependence exists. Still, the large value of D, which has to be as-
sumed in order to explain recent experiments showing negative stiffness [82], might
result from an additional relaxation of elements connected to the channel-complex
under the influence of calcium, see for example [78]. Starting from the simple
model 2.4, we assume that the rest-lengths xGS,n = 0 at the stationary position.
Because all equations describing the state of the motor-positions are identical, we
write xGS = xGS,n for all gating-spring stiffnesses. In first order, xGS = x′

GSC,
which becomes XGS = X ′

GSC for the simple model in the reference frame paral-
lel to the apical epithelium, with XGS = xGS,n/γ. We rewrite eq. 2.30 and the
equation for the open probability, 2.24:

λẊ = −KGS(X − Xa − X ′
GSC − DPo) − KSP X + Fext (3.27)

Po(X,Xa, C) =
1

1 + Ae−
X−Xa−X′

GS
C

δ

(3.28)

With these modifications of our basic model, the system can show spontaneous
oscillations. The parameters of the simplified system (eqs. 3.1 - 3.2) read:

Fa = −(KGP + KSP )(λa − KEτ)

CMP ′
o(λa + KGP τ/µ)

C (3.29)

k =
KSP (KGP + KSP )(λ + KPP

KSP
τ/µ)

KGP (λa + KGP τ/µ)
(3.30)

k = −KSP (KGP + KSP )(λa − KEτ)

KGP (λa + KGP τ/µ)
(3.31)

β = τ (3.32)

λeff =
(KGP + KSP )2τ/µ

KGP (λa + KGP τ/µ)
λa . (3.33)

The last line corresponds to the fact that the hair-bundle position now has to
be calculated via the implicit definition 3.24, and µ = CMP ′

oX
′
GS , a dimensionless

parameter measuring the feedback strength. The external force now couples to
both the position of the hair-bundle and to the internal force FA:
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λeff
dX(t)

dt
= −kX(t) + FA(t) + f(t) (3.34)

β
dFA(t)

dt
= −kX(t) − FA(t) − λa − KEτ

λa + KGP τ/µ
f(t) . (3.35)

We can see that ∆ > 0 corresponds to µ < −KPP /(KSP KE). Therefore, Hopf
bifurcations only occur for X ′

GS < 0. In this case, increasing calcium reduces
the rest-length of the gating spring, increasing the tension in the tip-links. The
frequency at the bifurcation,

ωc =

√
KGP KSP

(KGP + KSP )τλa
− KEKPP

(KGP + KSP )λ2
a

∼
√

KGP KSP

(KGP + KSP )τλa
,

the latter expression becoming exact if λa/KE ≫ τ , is a combination of the
chemical relaxation rate 1/τ and a mechanical one, λa(KGP + KSP )/(KGP KSP ).

Unstable solutions in regions with one fixed point, with Tr > 0 and ∆ > 0,
are found for KPP KEτ/(KGSKSP λa) < 1 − DP ′

o, showing that there is no lower
limit for the value of the chemical time constant, τ, whereas a mechanical time
constant, KGSKSP λa/(KPP KE), should not be too small.

This oscillation mechanism is driven by an instability of the calcium-dynamics6,

∂Ċ

∂C
= −1

τ

(
1 +

µKSP

KGP + KSP

)
> 0 . (3.36)

The molecular motors drive the system periodically into regions in which the
system is linearly unstable. In contrast to the mechanism consisting of negative
stiffness and a calcium-dependent motor-activity driving the system to regions
of negative stiffness of the hair-bundle, as described in section 3.2.1, the motor
activity need not be calcium-dependent.

A cycle of oscillation (see fig. 3.6) begins with a state of low open probability,
low tension of the tip-links, low [Ca2+] , and therefore high rest-length (X ′

GS < 0).
In this state, the tension of the tip-links is low, and therefore the molecular motors
move up the stereocilia, increasing the tension of the tip-links and increasing the
open probability. This slow phase of the oscillation is accompanied by the bundle
moving the negative direction, because of the growing tension in the tip-links. The
increasing tension of the tip-links leads to a higher open probability, and in turn to
an increase of [Ca2+] , which shortens the rest-length of the tip-links, leading to a
greater tension in the tip-links and opening the channels. As the [Ca2+] -dynamics

6This is true if KE = 0: in this case, the condition ∆ > 0 assures that KPP > 0. Be-
cause ∂Ẋ/∂X = −KPP /((KGP + KSP )λa) < 0, the condition Tr > 0 can only be achieved
if ∂Ċ/∂C > 0 . For KE 6= 0, there are parameter ranges for which an oscillatory regime exists
with KPP < 0 and KGP + KSP > 0; because the condition for this regime are quite restrictive
(0 < KGP < −KSP is a necessary condition), we will not discuss this case.
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Figure 3.6: Spontaneous oscillations of a hair bundle, experiment and numerical simulation. A,
spontaneous oscillations of the tip of a hair-bundle of the bullfrog’s sacculus. Taken from [81]. B,
numerical simulations for our system eqs. 2.30-2.32 under the assumption of fixed motor position
and calcium-dependent xGS . Note the dissimilar shape of the oscillations. Parameters are given
in column J of table B.1 in appendix B.

is faster than the motor-dynamics, the opening of the channels via the shortening
of the rest-length happens rapidly, exploiting the linear unstable state, without
changing the motor-position. This rapid part of the oscillation is accompanied by
a rapid movement of the bundle in the negative direction and the opening of the
channels. After this rapid movement, the situation is characterized by high tension
in the gating-springs, high [Ca2+] , high open probability and low rest-length of
the gating-springs. Now, the tension of the gating-springs will be strong enough to
pull the motors back and down the stereocilium. This movement continues, until
the tension relaxes to moderate values, so that the channels begin to close again,
reducing the [Ca2+] , and increasing the rest-length of the tip-links. This slow
phase is accompanied by the bundle moving in the positive direction, because of
the reduced tension in the tip links. When the system once again encounters the
region of linear instability of the calcium-equation, the rest-length grows rapidly,
which reduces the tension and is accompanied by a rapid movement of the bundle
in the positive direction. After this rapid phase of the oscillation, the cycle starts
again.

Note that this mechanism is not an analog of the oscillations mediated by
calcium-induced channel reclosure, as proposed by [14], in which an increase of
[Ca2+] directly leads to a closure of the channels, thereby pulling the bundle in
the negative direction and reducing the open probability. Here, the increase in
[Ca2+] mediates an increase of tension in the tip-links, pulling the bundle in the
negative direction while opening the channels. As explained in chapter 6, this kind
of behavior is not the one observed in most experiments using step-displacements:
the jump of the bundle in the negative direction is accompanied by the closure of
channels, not their opening.



50 CHAPTER 3. THEORY OF HAIR-BUNDLE OSCILLATIONS

3.2.4 Collective motor oscillations

All the mechanisms of oscillation discussed above are based on a linear force-
velocity curve, eq. 2.20, in combination with a calcium-feedback which modifies
the motor activity or other parameters. This approach is of course just a first ap-
proximation to the complex system represented by the approximately 3000 motors
distributed on 50 insertional plaques in the hair-bundle.

Nonlinearities in the force-velocity relations of myosin motors have been ob-
served experimentally [91]. The two-state model of molecular motors [57] is an ex-
ample of a theory of molecular motors resulting in nonlinear force-velocity curves.

This theory assumes that the periodicity of the filaments or microtubules, on
which the motors are running, is translated into a periodical energy-landscape. It
is furthermore assumed, that motors can be in either one of two states: attached to
the filament, and therefore under the influence of this potential, or detached from
the filament, a state with constant energy. Transitions from one state to another
are possible, and transition rates are a function which displays the same periodicity
which show the filaments. When observing an infinite number of motors, strictly
coupled to each other, it can be shown that the force-velocity relation of the motor-
complex exhibits nonlinearities and even can display a region of negative slope,
allowing motors to show bidirectionality: for a given external force, the collection
of motors can assume either of two velocities of different signs [57].

Fig. 3.7 shows a schematic plot of such a nonlinear force-velocity relation,
and numerical simulations with a nonlinear force-velocity curve explained below.
Both the upper and lower branch of velocities correspond to stable fixed points,
whereas the portion of the curve with negative slope corresponds to unstable fixed
points. The curve need not be symmetrical. Bidirectional motion of microtubules
interacting with mutants of Ncd, a kinesin-related molecular motor of Drosophila,
has been observed experimentally [39]:

If the collection of molecular motors are coupled to an elastic element, the
ensemble of motors can undergo spontaneous oscillations [55, 12, 4]. An oscillation
cycle of the motors corresponds to an excursion around the negative slope of the
force-velocity curve depicted in fig. 3.7 on the stable branches, if these branches
correspond to velocities with opposite sign.

In order to use a nonlinear force-velocity relation for the molecular motors in
our model, we can start with eq. 2.20, but this time using an additional third-
order term, so that we can provide the region of negative friction which can be
seen in fig. 3.7.

This leads to

fl = ξaẋa + ξa,3ẋ
3
a + f0 , (3.37)

with a linear friction coefficient ξa which can now become negative and a stabilizing
positive cubic coefficient ξa,3. While 2.20 presented a bijective map between the
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Figure 3.7: Nonlinear force-velocity curve and numerical simulations for the model of the hair-
bundle. A, schematic view of a nonlinear force-velocity curve. For a given force (dotted line)
three different velocities are possible, but only the extremal positions are stable. Oscillations for
a collection of collective motors coupled to a spring can be seen as follows: We start at fl < fmin,
on the bottom branch. ẋa < 0, the system increases the tension of the spring while moving in the
negative direction. Therefore, we are moving up the bottom branch, until we reach fl > fmax.
Now, the only stable solution is situated on the top branch, and the motors change the sign
of the velocity, moving in the opposite direction now, reducing the tension of the spring. We
are therefore moving down the top branch, until we reach fl < fmin. Now, the only solution is
situated on the bottom branch, and the cycle begins once again. This leads to a sawtooth-like
movement of the molecular motors. B, numerical simulations for the model eqs. 2.30 -2.32, but
with a nonlinear force-velocity curve as explained in the text. Numerical simulations are done
with the parameters listed in column K of table B.1 in appendix B.

velocity and the external force, we could ignore inertial terms in the formulation
of eq. 2.31, assuming that the velocity of the motors relaxes very rapidly to
the value given by the force-velocity curve. As we are now in the presence of a
surjective map, with two values for the velocity for a given external force, the
simplest approach is to add the inertial term to the formulation of the model.
We still assume that the velocity relaxes very rapidly towards the corresponding
stable branch, and therefore the value of the inertial term Γ is not important in
the framework of this model. It assures only the relaxation of the velocity towards
a stable branch upon change of the external force.

Reformulation of 2.31 therefore leads to:

ΓẌ = −λaVa − λa,3V
3
a +

KGS(X − Xa − DPo) − KE(Xa − XE) − Fmax +
γfmaxS

CM
C (3.38)

Ẋa = Va . (3.39)

with λa,3 = ξa,3γ
4N . This additional equation, does not change the equation

for the stationary states.

In the limit of λ → 0 and τ → 0 , we can now write the simplified system (eqs.
3.1 - 3.2) as:
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FA =
KGP λa

KGP + KSP
Va (3.40)

k = 0 (3.41)

k =
KPP + KSP γfmaxSP ′

o

KGP + KSP
(3.42)

β =
Γ

λa
(3.43)

λeff = λa (3.44)

λeff
dX(t)

dt
= −kX(t) + FA(t) (3.45)

β
dFA(t)

dt
= −kX(t) − FA(t) +

KGP λa(KGP + γfmaxSP ′
o)

(KGP + KSP )2λaτ
f(t) . (3.46)

Note that the definition of the the friction constant λeff → λa is an arbitrary
choice, because no external force is coupling to X. Note also that Ẋ does not
couple directly to itself, but only via the interaction with FA.

The stability of the system is given by the sign of λa; negative values correspond
to an oscillating regime with

ωc =

√
KPP + KSP γfmaxSP ′

o

(KGP + KSP ) Γ
. (3.47)

The frequency of the spontaneous oscillation depicted in fig. 3.7 B, which is
far away from the Hopf bifurcation, is determined by the speed of the molecular
motor on the stable branches of the system. Note the difference of the shape of
the oscillations in comparison with fig. 1.9. This mechanism of oscillation, due
to its very different shape of oscillation, cannot be suspected to play a role in
the experimentally observed low-frequency oscillations of the bullfrog’s sacculus.
However, for hair-bundles sensitive to higher frequencies, this mechanism might
be of importance [12].

3.2.5 Conclusion

We have presented several mechanisms of oscillations, some of which showing very
similar shapes of oscillations as compared to experimentally observed oscillations.
In particular, the oscillating mechanism exploiting a regime of negative stiffness of
the displacement-force yields both amplitudes and frequencies close to the exper-
imentally observed oscillations of hair-bundles from the bullfrog’s sacculus. This
oscillation mechanism relies on a calcium-dependent motor activity, which peri-
odically shifts the bundle into regions of negative stiffness. From all the analyzed
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oscillation mechanisms, this was the only one to present low-frequency oscillations
similar to experimentally observed ones, for parameter values close to the ones
which can be obtained from experiments.

Another oscillation mechanism, which also depends on regions of negative stiff-
ness, yields similar shapes of oscillations, too. This mechanism depends on a
calcium-dependent rest-length of the gating spring, and on a fixed motor-position
(see subsection 3.2.2, xGS(C)). Although the shape of the oscillations is similar
to the experimentally observed ones, parameter values have to be chosen which
do not agree with experimental observations in order to achieve frequencies of the
order of 10 Hz, as observed in experiments (τ ≫ 1ms). However, it might be of
some importance for hair-bundles sensitive to higher frequencies.

Two other mechanisms of oscillation have been analyzed, one depending on a
nonlinear force-velocity curve characterizing the molecular motors, the other one
on a linear instability in the calcium-equation. These oscillations do not display
the same features as those observed in experiments. However, for hair-bundles
sensitive to higher frequencies than the one observed in the sacculus of the bullfrog,
they might be of importance.
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Chapter 4

Generic properties of critical

oscillators

As discussed in the introduction, many of the nonlinear properties of the hair-
bundle are displayed by a system close to a Hopf bifurcation. In this chapter,
we will study the generic properties of a system close to a Hopf bifurcation. We
will especially focus on the linear and nonlinear responses of such a system to
sinusoidal stimuli. At the end of the chapter, we will discuss the behavior of the
system in the presence of noise.

4.1 Hopf bifurcation

In general, we are interested in the real response X(t) of a nonlinear system in
response to a real, periodic stimulus force F (t). If there is only one frequency ωf

present in the system, we can write these variables using the Fourier expansions
[13]:

F (t) =
n=∞∑

n=−∞

Fne−inωf t (4.1)

X(t) =

n=∞∑

n=−∞

Xne−inωf t . (4.2)

Using this expansion means that we ignore all transient phenomena, focusing
only on the limit cycle solution. We can express the Fourier amplitudes Fn as a
systematic expansion of the Fourier amplitudes Xn [13]:

Fi = A
(1)
i Xi + A

(2)
ij Xi+jX−j + A

(3)
iklXi+k+lX−kX−l + O(X4) . (4.3)

Consider this system in the absence of an external force, Fi = 0. Inspection of

55
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eq. 4.3 for i = 2 reveals that X2 ∝ X2
1 , if we consider the expansion up to third

order. This allows us to write [13]:

0 = A(ωf , θ)X̂ + B
∣∣∣X̂

∣∣∣
2
X̂ + O(

∣∣∣X̂
∣∣∣
5
) (4.4)

where X̂ = X1, see also eq. 1.2. In general, the complex coefficients A and B
depend both on the frequency ωf and a control parameter which we denote by θ.
A Hopf bifurcation occurs if the linear coefficient vanishes, A(ωc, θc) = 0. Indeed,

spontaneous oscillations exist, if X̂ satisfies
∣∣∣X̂

∣∣∣
2

= −A/B . At the bifurcation

point, A/B = 0, and the amplitude of spontaneous oscillations vanishes. For A/B
real and negative, spontaneous oscillations of finite amplitude exist [13]. In the
vicinity of the bifurcation, we propose to develop the coefficient A to linear order
[13]:

A(ωf , θ) = a(ωf − ωc) + b(θ − θc) . (4.5)

In the presence of a sinusoidal stimulus F (t) = F̂ e−iωf t + F̂ ∗eiωf t, eq. 4.4 be-
comes eq. 1.2, and we can now discuss the connection between the latter equation
and eq. 1.1. The complex variable Z is in general a nonlinear function of the
displacement X. Close to the bifurcation,

Z ≃ X̂e−iωt . (4.6)

If we focus on the limit cycle solutions, neglecting transient relaxation phe-
nomena, d

dtZ ≃ −iωfX̂e−iωf t. Inserting eq. 4.5 and eq. 4.6 into eq. 1.2 and com-
parison to the normal form eq. 1.1 with an additional external stimulus term f(t),
which reads:

d

dt
Z = −(r + iω0)Z − (u + iui)|Z|2Z + f(t) , (4.7)

can be used to obtain the relations

r = ℑ
(

b

a

)
(θ − θc) (4.8)

ω0 = ωc −ℜ
(

b

a

)
(θ − θc) (4.9)

f = − i

a
F̂ e−iωf t (4.10)

u + iui = i
B

a
, (4.11)

where ℑ(z) and ℜ(z) denote the imaginary and the real part of a complex
value z, respectively. In the following, we will discuss the response of a system
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close to the Hopf bifurcation, eq. 1.2, under the influence of a periodic stimulus
force. We define the sensitivity of the system at the stimulus frequency as:

χ̃(ω = ωf ) =
X̂

F̂
. (4.12)

For small forces F, the linear term A(ωf , θ)X̂ of eq. 1.2 dominates and the sensi-
tivity becomes the linear response function: χ0 = limF→0 χ. In the linear regime,
the sensitivity χ does not depend on the external force and the displacement X(t)
can be written as

X(t) ≃
∫ t

−∞
χ0(t − t′)F (t′)dt′ . (4.13)

In general, we will have to distinguish if the system is in an oscillating state, r < 0,
or in a quiescent state, r > 0. We will see that both cases lead to fundamentally
different response functions.

4.2 Response of stable states

On the quiescent side of the bifurcation, all eigenvalues have negative real parts.
The only frequency present in the system therefore is the driving frequency ω
of the external stimulus and higher harmonics. We can therefore use eq. 1.2 in
order to deduce the linear response function in the vicinity of ωc and θc on the
quiescent side of the bifurcation. Because F̂ = F1 and X̂ = X1 correspond to
the Fourier amplitudes of frequency ω, eq. 1.2 in connection with 4.5 describes
the linear response function at the frequency ω in the vicinity of the characteristic
frequency ωc:

χ̃−1
0 (ω) ≃ a(ω − ωc) + b(θ − θc) . (4.14)

For a system displaying the characteristic frequency ωc , the Fourier components
around both ωc and −ωc are of interest. By taking the complex conjugate of eq.
1.2, we determine the linear response function for frequencies close to −ωc:

F−1 ≃ A∗(ω, θ)X−1 . (4.15)

Here, we have used the fact that both F (t) and X(t) are real, which implies
that F−1 = F̂ ∗ and X−1 = X̂∗. Eq. 4.15 therefore determines the response
function χ̃0 for the frequency −ω:

χ̃−1
0 (−ω) ≃ a∗(ω − ωc) + b∗(θ − θc) . (4.16)

The linear response function concerning the force F (t) = F̂ e−iωt + F̂ ∗eiωt is given
by the linear superposition of the two expressions 4.14 and 4.16:

χ̃0(ω) ≃ 1

a(ω − ωc) + b(θ − θc)
+

1

a∗(−ω − ωc) + b∗(θ − θc)
. (4.17)
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This expression now satisfies χ̃0(ω) = χ̃∗
0(−ω) , as is mandatory for the real

function χ0(t), and in the vicinity of the characteristic frequencies ±ωc its value
is close to the expressions given in in eqs. 4.14 and 4.16.

We rewrite this expression as

χ̃0(ω) ≃ 1

2

(
e−iα

iΛ(ω0 − ω) + K
+

e+iα

−iΛ(ω0 + ω) + K

)
, (4.18)

where ω0 is given by eq. 4.9, Λ = |a| /2, K = Λℑ(b/a)(θ − θc) and eiα = ia/ |a|.
Note that this expression also describes the linear response function of the linear
system eqs. 3.1 - 3.2 [81]1. The phase α describes the phase lag of the velocity
of displacement with respect to the stimulus, see eq. 4.7 and eq. 4.10. Fig. 5.1
shows such a response function for an experiment conducted on a hair-bundle of
the sacculus of the bullfrog. The experimental data could well be fitted with eq.
4.18 (red line).

The phase factor α also determines the shape of the response-function. For
example, α = 0 results in χ̃0(ω) having a positive real part for all frequencies,
whereas the imaginary part is negative for ω <

√
ω2

0 − K2/Λ2, and positive oth-
erwise. The parameters Λ and K can be viewed as effective friction and stiffness
coefficients, respectively.

Nonlinear response As long as A 6= 0, i. e. as long as the system is not exactly
at the bifurcation point, there is always a regime of linear response for small
enough stimuli, the linear term of eq. 1.2 being dominant for |F̂ |2 ≪ |A|3/|B|.
For larger stimuli, |F̂ |2 ≫ |A|3/|B| , the nonlinear term is dominant, leading to the
compressive nonlinearity described by |X̂ | = |B|−1/3|F̂ |1/3, see eq. 1.3. Therefore,
the sensitivity χ̃ scales as

χ̃(ω) ∝ |F̂ |−2/3 (4.19)

in the nonlinear regime.

Exactly at the bifurcation point, the linear term vanishes A = 0, and the
nonlinear behavior eq. 4.19 is true even for vanishing stimuli amplitudes |F̂ | → 0.
The shape of the response function in the nonlinear regime is no more determined
by the linear expression eq. 4.18, but by a combination of the parameters A, B
and higher order terms.

1Close to the Hopf bifurcation, the eigenvalues µ1,2 of this system are com-
plex conjugated and can be written as µ1 = −r − iω0, where r = (k/λeff +

1/β)/2 and ω0 =
q`

k/(λeffβ) − (k/λeff − 1/β)2/4
´
. The parameters are Λ =

λeff/
`
1 + ((k/λeff − 1/β)/(2ω0))

2
´
, K = Λr and α is the phase of the expression Λeiα =

(1 − i(k/λeff − 1/β)/(2ω0))
−1.
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4.3 Response of oscillating states

In the case of a spontaneously oscillating state, the response function can also be
defined. In the absence of a stimulus force, the oscillatory state exhibits sponta-
neous periodic motion with angular frequency ωs:

X(t) =

n=∞∑

n=−∞

Xne−inωst . (4.20)

In the presence of the stimulus of angular frequency ωf , the displacement contains
both the Fourier components of the stimulus and the Fourier components of the
spontaneous oscillations:

X(t) =
∑

nm

Xnme−i(nωf t+mωst) . (4.21)

The response at the frequency of stimulation is characterized by the amplitude X̂f =

X10, whereas the amplitude of spontaneous oscillations is dominated by X̂s = X01.
The sensitivity of this system for ωf 6= ωs can be defined as

χ̃(ω = ωf ) =
X̂f

F̂
. (4.22)

We calculated this sensitivity in the linear regime for our model eqs. 2.30-2.32. The
system displayed spontaneous oscillations of angular frequency ωs/(2π) = 7.92 Hz
(see fig. 4.1 A). When stimulated with a sinusoidal stimulus close to this frequency,
the linear response diverged and showed the behavior:

|χ̃(ω)| ∼ 1

|ω − ω0|
, (4.23)

as can be seen in the log-log plot depicted in fig. 4.1 B. The red line corresponds
to a slope -1.

We can attempt to explain this behavior in the following way. By analogy with
eq. 4.3 and eq. 1.2, we can write:

F̂ = A(ωf )X̂f + B(ωf)
∣∣∣X̂f

∣∣∣
2
X̂f + B(ωs, ωf )

∣∣∣X̂s

∣∣∣
2
X̂f (4.24)

0 = A(ωs)X̂s + B(ωs)
∣∣∣X̂s

∣∣∣
2
X̂s + B(ωf , ωs)

∣∣∣X̂f

∣∣∣
2
X̂s . (4.25)

Using eq. 4.25, we find:

∣∣∣X̂s

∣∣∣
2

= −
A(ωs) + B(ωf , ωs)

∣∣∣X̂f

∣∣∣
2

B(ωs)
(4.26)
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Figure 4.1: Numerical simulation showing spontaneous oscillations of a hair bundle and its
linear response function. A, spontaneous oscillations are displayed at ωs/(2π) = 7.92Hz. B,
log-log plot of the modulus of the linear response function eχ0 in dependence of the modulus
of the frequency mismatch between stimulus frequency ωf and frequency of spontaneous oscil-
lations, ωs/(2π). C, real part of the linear response function. D, imaginary part of the linear
response function. The model is defined by eqs. 2.30 - 2.32. Parameters used are those given in
column L of table B.2 in appendix B.

Inserting this expression in eq. 4.24 allows us to calculate the effective linear
coefficient F̂ ≃ Aeff (ωs, ωf )X̂f as:

Aeff (ωs, ωf ) = A(ωf ) − B(ωs, ωf )A(ωs)

B(ωs)
. (4.27)

Assuming that B/B = 1 for ωf → ωs, Aeff vanishes for ωf = ωs, and we
recover the behavior which has been found in the numerical simulations. In the
vicinity of ωf ≃ ωs, we can then write Aeff in terms of a systematic expansion in
powers of ωf −ωs. For values of ωf close enough to ωs, the linear term is dominant
and the linear response function diverges according to eq. 4.23.

The linear response function χ̃0(ω) = χ̃′
0(ω)+ iχ̃′′

0(ω), where χ̃′
0 and χ̃′′

0 denote
the real and imaginary part respectively, exhibits a sharply localized, singular
behavior at the oscillation frequency (Fig. 4.1 C and D). Such a response function
differs qualitatively from those measured experimentally in the bullfrog’s sacculus
[81], see fig. 5.1. There, the linear response remains finite and is of significant
magnitude over a relatively large range of frequencies.
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4.4 Response of noisy oscillators

A complex physical system consists of a large number of degrees of freedom. The
effect of a large number of rapidly changing degrees of freedom can sometimes be
captured by introducing fluctuation terms and the use of Langevin equations [61].

In the case of the Hopf bifurcation, a simple way to introduce fluctuations is
to write the normal form eq. 4.7 with an additional noise term:

d

dt
Z = −(r + iω0)Z − (u + iui)|Z|2Z + f(t) + ξ(t) , (4.28)

where ξ(t) denotes a stochastic process. As the normal form is characterized by
the condition of phase invariance, the noise term ξ(t) must also satisfy phase
invariance. A simple choice is given by:

〈ξ〉 = 0 (4.29)

〈ξ(t)ξ(t′)〉 = 0 (4.30)

〈ξ(t)ξ∗(t′)〉 = 4Iδ(t − t′) , (4.31)

where I describes the intensity of the noise.

We are interested in the displacement variable X(t), which can be viewed as
proportional to the real part of Z in first approximation. For an oscillating sys-
tem, the Fourier spectrum is of special interest in order to characterize the system’s
response and the spontaneous oscillations. In a noisy system, interesting quan-
tities are the autocorrelation function C0(t

′ − t) = 〈X(t)X(t′)〉 and the spectral
density C̃0(ω) = |X̃(ω)|2(see ref. [103]).

The noiseless system’s spectral decomposition is characterized by a set of
Fourier amplitudes at discrete frequencies nωs, with n ∈ Z. The effect of the
noise leads to a loss in phase coherence of these oscillations, “smearing” out the
formerly discrete peaks. Fig. 4.2 shows the discrete peaks of the Fourier spec-
trum of a spontaneously oscillating system, and the spectral density of the same
system with the addition of a noise term. The peak at ω = ωs widens, and its
position shifts to a higher frequency while the peaks representing higher harmonics
completely disappear.

In the presence of noise, the critical point characterized by the appearance of
discrete peaks in the Fourier spectrum no longer exists. The system’s spontaneous
movements can be characterized by C0(0) = 〈|X|2〉. In contrast to the noiseless
system, this quantity never becomes zero, but shows a continuous variation with
the control parameter, while the Hopf bifurcation of the noiseless system is char-
acterized by a discontinuity in the relation between X̂ and the control parameter,
see fig.4.3.

Fig. 4.3 A shows the order parameter X̂ for numerical simulations of a noise-
less system, fig. 4.3 B shows the autocorrelation 〈|X|2〉 for the same system under
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Figure 4.2: Spectral decomposition of a system with and without noise. The black dots cor-

respond to the spectral density eC0(ω) of a numerical simulation using eqs. 5.1-5.3. The red line
is proportional to the modulus of the Fourier transform of the corresponding noiseless system.
Parameter values are given in column L of table B.2 in appendix B. The description of the noise
terms can be found in chapter 5.

the influence of noise. The discontinuity has disappeared, 〈|X|2〉 is varying con-
tinuously with the control parameter (in fig. 4.3, we used fmax as the control
parameter).

400 500 600 700 800 900 10000

10

fmax (pN)

|X̂
|(

n
m

)

A

400 500 600 700 800 900 10000

100

200

300
B

fmax (pN)

〈|X
|2 〉

(n
m

2
)

Figure 4.3: Numerical simulations showing a system undergoing a Hopf bifurcation, with and
without noise. A, a noiseless system defined by eqs. 2.30-2.32. B, a noisy system using the same
parameters, but with noise terms according to eqs. 5.1-5.3. All the points correspond to different
points along the line Po = 0.5 which can be found in the state diagram 5.2. Parameters are given
in column M of table B.2 in appendix B. Noise terms have been added as explained in chapter 5.

Under the influence of a sinusoidal force F = F̂ e−iωf t + F̂ ∗eiωf t, the spectral
density will show additional discrete peaks at the frequency of stimulation and
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higher harmonics:

C̃(ω) = C̃0(ω) + 2π
∞∑

n=−∞

|Xn|2 δ(ω − nωf ) . (4.32)

The sensitivity of the noisy system can be defined in the same way as before:

χ̃(ω) =
X̂

F̂
, (4.33)

where X̂ = X1 is the Fourier amplitude of the fundamental mode.

The absence of the critical point and the absence of coherent spontaneous os-
cillations implies that the linear response of this system χ0 = limF→0 χ behaves
effectively as the response function of stable states, discussed in section 4.2. The
expression 4.18 can therefore be used to characterize the linear response of a noisy
system both in regions where the noiseless system would be quiescent and in re-
gions where the noiseless system would display spontaneous oscillations. However,
the response of the noisy system will not be characterized by the same parameters
in eq. 4.18. The noise renormalizes these parameters [58].

Finally, the spectral density of the system can be approximated by the generic
equation [81]:

C̃0(ω) =
I

K2 + Λ2(ω − ω0)2
+

I

K2 + Λ2(ω + ω0)2
. (4.34)

The parameters in this equation are to be understood as effective parameters.
For simple cases, in the vicinity of the Hopf bifurcation of the noiseless system,
these parameters can be estimated from the parameters given in eq. 4.28 [58].
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Chapter 5

Spontaneous movements and

response of hair-bundles in the

presence of fluctuations

5.1 Experimental observations: linear and nonlinear

response

In the experiments conducted to calculate the response of the bundle to external
sinusoidal stimuli, a flexible fiber is attached to the tip of the bundle. As the fiber
adheres firmly to the bundle, this kind of measurement creates a new system: a
combination of hair-bundle and attached fiber. When measuring the spontaneous
oscillations of the system, it is not the hair-bundle alone which shows the oscilla-
tions, but this combined system consisting of bundle and attached fiber, with its
base fixed.

Experimentally, the linear response function χ̃0(ω) and the sensitivity χ̃(ω)
of this combined system in response to external stimuli F (t) have been studied.
Fig. 1.10 shows some results for a spontaneously oscillating hair-bundle, with a
typical frequency of ∼ 8 Hz. The sensitivity |χ̃(ω)| is plotted as a function of
the stimulus amplitude ∆, which is the amplitude of displacements of the base
of the flexible fiber. In the linear regime, the bundle’s response function has also
been determined. The generic response function 4.18 and spectral density 4.34 fit
well the experimental data with the values K ≃ 100µN/m, Λ ≃ 6.5µNs/m, I ≃
0.14pN2s and α ≃ 0, see fig 5.1 and 1.10.

The shape of the function, with its real part strictly positive and the imaginary
part changing its sign, is determined by the phase factor α ≃ 0. Negative values for
the imaginary part also indicate negative dissipation in linear response theory [65],
and therefore indicate activity. Furthermore, α = 0 is equivalent to the diagonal
entries of the matrix describing the linearized system eqs. 3.1-3.2 being equal.

65
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Figure 5.1: Experimentally determined linear response function eχ0(ω) for 2 different hair-
bundles. Full circles correspond to a hair-bundle which displayed oscillations at ∼ 8 Hz, empty
circles correspond to a hair-bundle which did not show spontaneous oscillations. Fits of the generic
response-function 4.18 are indicated. Resulting parameter values for the oscillating bundle: α ≈
0, Λ = 6.5 µNs/m, K = 104 µN/m, f0 = 8Hz, α = 0. These values indicate similar relaxation
times for active and passive elements of the hair-bundle. Taken from [81].

The diagonal entries in the matrix can be considered as time constants describ-
ing passive elements (k/λ), and active elements (1/β), respectively. The conclusion
is that α = 0 indicates a similar relaxation time for active and passive elements
in the hair-bundle. Additionally, by measuring the power-density C̃0(ω) of the
spontaneous oscillations, it has been shown that this spontaneously oscillating

system violates the fluctuation-dissipation theorem C̃0(ω) = 2kBT
eC′′
0 (ω)
ω [81]. The

hair-bundle is therefore not in thermal equilibrium and energy can be subtracted.
This system can therefore be classified as active.

We will now come to the nonlinear response of this spontaneously oscillating
hair-bundle. As already explained in the introduction, its sensitivity χ̃ shows
three different regimes as a function of the amplitude of the external force 1.10.
Two approximately linear regimes, for either large or small forces, are joined by
a nonlinear regime. The slope expected for the nonlinear regime for a system
close to a Hopf bifurcation, χ̃ ∝ F̂−2/3 is indicated as a red line in the plot. The
third-order term B of eq. 1.2 has been found to verify |B| ≃ 1.5 1012N/m3 for
this particular hair-bundle.

5.2 Noise sources in the hair-bundle

Spontaneous hair-bundle oscillations are noisy [81]. As shown in section 4.3, the
model presented in 2.4 cannot explain the qualitative features of the experimen-
tally observed response function. We have therefore performed numerical simula-
tions using the model presented in 2.4, but with additional noise terms:
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λẊ = −KGS(X − Xa − DPo) − KSP X + Fext + η (5.1)

λaẊa = KGS(X − Xa − DPo) − KE(Xa − XE) + γfmax(−1 + S
C

CM
) + ηa(5.2)

τĊ = C0 − C + CMPo + δc , (5.3)

Noise terms η, ηa and δc in eqs. 5.1-5.3 formally take into account the effects
of various sources of fluctuations that destroy the phase coherence of hair-bundle
movements. The stochastic forces η and ηa act respectively on X and Xa. The
consequences of these forces have been analyzed for non-oscillating hair-bundles
[30]. The fluctuations δc of the Ca2+concentration in the stereocilia result from
stochastic transitions between open and closed states of the transduction channels
[84]. Noise terms are zero on average. Their strengths are characterized by au-
tocorrelation functions 〈η(t)η(0)〉, 〈ηa(t)ηa(0)〉 and 〈δc(t)δc(0)〉 respectively. We
assume that different noise sources are uncorrelated and that noise is Gaussian.

Assuming that the motors are deactivated (f = 0), we first discuss thermal
contributions to the noise. The noise term η in eq. 5.1 then results from Brown-
ian motion of fluid molecules which collide with the hair-bundle and from thermal
transitions between open and closed states of the transduction channels. By chang-
ing the gating-spring extension, this channel clatter generates fluctuating forces
on the stereocilia. The fluctuation-dissipation theorem implies that

〈η(t)η(0)〉 = 2kBTλδ(t) . (5.4)

The friction coefficient λ = λh+λc results from the two contributions already men-
tioned: λh ≃ 1.3 10−7Ns/m accounts for hydrodynamic friction, which depends on
bundle geometry and fluid viscosity [23, 44], whereas λc results from channel clat-
ter. The contribution λc can be estimated from the autocorrelation function of
the force ηc that results from stochastic opening and closing of N transduction
channels

〈ηc(t)ηc(0)〉 ≃
D2K2

gsPo(1 − Po)

N
e−|t|/τc (5.5)

≃
D2K2

gsPo(1 − Po)

N
2τcδ(t) . (5.6)

This expression shows that noise is correlated in time with a correlation time given
here by the characteristic dwell time τc of the transduction channels’ open and
closed states. However, channel clatter is fast compared to hair-bundle oscillations
and we can focus on the low-frequency limit of friction. With

〈ηc(t)ηc(0)〉 ≃ 2kBTλcδ(t) , (5.7)

eq. 5.5 yields

λc ≃
K2

gs D2Po(1 − Po)τc

NkBT
. (5.8)
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Recent single-channel recordings indicate that τc ≃ 1ms [88]. Using parameter
values listed in column L of table B.1 in appendix B, and Po = 0.5, we find that
channel clatter dominates friction and λ ≃ 3 10−6Ns/m.

The noise term ηa in eq. 5.2 describes fluctuating forces acting on the motors.
In the case of deactivated motors (f = 0), thermal binding and unbinding of
molecular motors respectively to and from actin filaments generates friction with a
coefficient λ0 ≃ γ2Napkτ1 [66]. Here, p = τ1/(τ1+τ2) is the probability for a motor
to be attached to an actin filament, where τ1 and τ2 denote the lifetimes of the
attached and detached states respectively, and k is the stiffness of a single motor.
Using p ≃ 0.05, k ≃ 500µN/m and τ1 ≃ 10ms, we estimate λ0 ≃ 1.5 10−5Ns/m.
The strength of the thermal contribution η0 to ηa is

〈η0(t)η0(0)〉 ≃ 2kBTλ0δ(t) . (5.9)

We now turn to the more interesting situation of active motors (f 6= 0). Mea-
surements of the initial adaptation rate as a function of the magnitude of step
stimuli [37] imply that λa ≃ 1.3 10−5Ns/m, in agreement with the value of the
friction coefficient λ0 estimated above for deactivated motors. We thus neglect
the effect of motor activity on motor friction. However, the stochastic activity of
motors generates an active contribution ηm to ηa with

〈ηm(t)ηm(0)〉 ≃ γ2Nap(1 − p)f2e−|t|/τa (5.10)

≃ γ2Nap(1 − p)f22τaδ(t) . (5.11)

Here we have assumed that motors fluctuate independently and that relevant
timescales for a hair-bundle oscillation are longer than τa, where τa ≃ (τ−1

1 τ−1
2 )−1 ≃

τ1 is the characteristic time of force production by the motors. This noise strength
can be described by introducing an effective temperature Tm defined by

〈ηm(t)ηm(0)〉 ≃ 2kBTmλaδ(t) . (5.12)

With f ≃ 1pN, τa ≃ 10ms and p ≃ 0.05, we find

Tm/T ≃ Naγ
2p(1 − p)f2τa

kBTλa
(5.13)

≃ 0.5 .

Writing

〈ηa(t)ηa(0)〉 = 2kBTaλaδ(t) , (5.14)

we thus get Ta ≃ 1.5T .

Assuming that channel dynamics equilibrates rapidly enough, we neglect the
effect of motor activity on channels’ statistics. In this case, the fluctuations in eq.
5.1 remain thermal and satisfy a fluctuation-dissipation relation.
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The calcium-dynamics is also subjected to fluctuations that are described by
the noise term δc in eq. 5.3. In analogy to eq. 5.10, the autocorrelation function
of δc is approximated by

〈δc(t)δc(0)〉 ≃ C2
MN−1Po(1 − Po)e

−|t|/τc . (5.15)

We can assess the significance of these fluctuations in the limit where C relaxes
instantaneously. The system is in turn reduced to eqs. 5.1 and 5.2, with

C = C0 + CMPo + δc . (5.16)

The fluctuations of the calcium-concentration can then be written as

〈δC(t)δC(0)〉 ≃ 〈δc(t)δc(0)〉 . (5.17)

As the probability p of motor binding to actin filaments depends on the calcium-
concentration, fluctuations of C result in the generation of fluctuating forces ηc by
the motors. We estimate this random force as:

ηc ≃ γNafp′δC . (5.18)

For times large compared to τc, we find:

〈ηc(t)ηc(0)〉 ≃ 2(γNafp′CM )2N−1Po(1 − Po)τcδ(t) . (5.19)

Introducing an effective temperature Tc, with

〈ηc(t)ηc(0)〉 = 2kBTcλaδ(t) , (5.20)

we find

Tc/T ≃ (γfmaxS)2Po(1 − Po)τc

NkBTλa
(5.21)

≃ 0.13

for Po = 0.5 and parameter values from column L of table B.1 in appendix B.
This suggests that fluctuations of the motor force evoked by calcium-fluctuations
are below the unavoidable thermal fluctuations.

In our simulations of eqs. 5.1-5.3, we used the noise strengths

〈η(t)η(0)〉 = 2kBTλδ(t) (5.22)

〈ηa(t)ηa(0)〉 = 2kBTaλaδ(t) (5.23)

〈δc(t)δc(0)〉 = 2C2
MN−1Po(1 − Po)τcδ(t) , (5.24)

with parameter values listed in column L of table B.1 in appendix B. Note that
it is not necessary to know the value of CM if S and fmax are given.
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5.3 Numerical results

We have performed numerical simulations on the system presented in eqs. 5.1-
5.3 [83]. Due to the fluctuation-dissipation theorem, the friction coefficient λ is
assumed to be much larger than the hydrodynamic estimates. This difference in
the friction coefficient is the main difference between the state diagram fig. 3.1
and the state diagram 5.2. The state diagram, drawn with parameters which can
be found in column M of table B.1 in appendix B, now presents a significantly
smaller oscillating state than the one found in fig. 3.1: using the approxima-
tion for fast calcium-relaxation described in 3.2.1, stable solutions corresponding
to Tr = −k/λ − KGP /λa − KE/λa − γfmaxSP ′

o/λa < 0 can now be found only for
significantly lower values of S.

Figure 5.2: State diagram of a hair-bundle as a function of the maximal force fmax and of
the strength of calcium-feedback S. BI, bistable region; MO , monostable region with channels
mostly open; MC, monostable region with channels mostly closed. The oscillating region is
shaded. Hopf bifurcations take place along the line separating monostable states from oscillating
ones. The broken line indicates subcritical Hopf bifurcations. This diagram is drawn assuming
that the Calcium dynamics is very fast, τ = 0. For the numerical simulations, a value of τ = 0.1ms
has been used; in this case, the oscillatory region expands towards regions of larger motor forces.
For fmax = 352pN and S = 0.65 with Po = 0.5(◦), the system closely matches the behavior of a
hair-bundle studied experimentally. For fmax = 439pN and Po = 0.5(△), the system displays a
global maximum of sensitivity. Parameters used are listed in column M of table B.1 in appendix
B.

We have performed numerical calculations on a number of points with param-
eter values given by column M of table B.2 in appendix B, only changing the
feedback strength S and the maximal motor force fmax, the rest of the parame-
ters being fixed in the range given by experimental observations. In endolymph
containing Ca2+ at a concentration of 250µM, the open probability for which the
adaptation motors reach steady state is between 0.25 and 0.5 [37, 15].

Along a line of constant open probability Po = 0.5 in the state diagram (fig.
5.2), we determined the parameters in eq. 4.18 as a function of fmax in the presence
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of noise. For Po = 0.5, the characteristic frequency of spontaneous oscillations
varied between a few Hertz and about 50Hz in the range fmax = 330−800pN within
which a peak was detected in the spectral density of spontaneous movements (fig.
5.3) .
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Figure 5.3: Spontaneous movements as a function of the hair-bundle’s operating point. A,
frequency of spontaneous oscillations for P0 = 0.1 (�), 0.2(H), 0.3(N), 0.4(�), 0.5 (•), 0.6 (�),
0.7(△) , 0.8(▽) and 0.9 (♦). B, Spectral densities of spontaneous movements along the line Po =
0.5 for the different values of fmax indicated in red. Here and in the subsequent figures, error bars
correspond to the standard deviation obtained for ten successive realizations of the simulation.

As α ≃ 0 ensures that the linear response function has the same shape as
that observed experimentally [81], we elected the value of the motor force fmax ≃
352pN at which this condition was satisfied for Po = 0.5 (fig. 5.2). At this
operating point, the system displayed noisy spontaneous oscillations X(t) that
were strikingly similar to the hair-bundle oscillations observed in the bullfrog’s
sacculus (fig. 5.4 A, see fig. 1.9).

Their spectral density was peaked at a characteristic frequency ν0 = ω0/2π =
8.7 Hz and had a width at half the maximal value of δν = 3.7 Hz, corresponding
to a quality factor Q = ν0/δν = 2.4 (fig. 5.4 B, see also fig.1.9). The observation
that the power density goes to zero for small frequencies in fig. 1.9 is an artifact
of the measurement: because the whole experimental setup shifted slowly in time,
a baseline-subtraction has been applied, subtracting the mean corresponding to
0.5 seconds of measurement.

We calculated the linear response function χ̃0 as a function of frequency (fig.
5.5 A and B) and found that it agreed quantitatively with the experimental obser-
vations [81]. At the characteristic frequency of the spontaneous oscillations, the
sensitivity |χ̃| of the system to mechanical stimulation exhibited the three regimes
observed experimentally [80] as a function of the stimulus amplitude |F̂ | (fig. 5.5
C): a linear regime of maximal sensitivity |χ̃0| = 8.5km/N at ω = ω0 for small
stimuli, a compressive nonlinearity for intermediate stimuli and a linear behavior
of low sensitivity for large stimuli.

The maximal sensitivity as well as the breadth of the nonlinear region were
also in quantitative agreement with experiments. An important parameter that
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Figure 5.4: Spontaneous noisy oscillations for parameters corresponding to the operating point
(◦) in fig. 5.2 . A, Spontaneous hair-bundle movements X(t) as a function of time. This
oscillation has a root-mean-squared magnitude of 15 nm. B , Spectral density of the movements
depicted in A. The spectrum has been fitted (red line) by eq. 4.34 with I = 0.105 pN2s, K =
74 µN/m, Λ = 6.3 µNs/m and ν0 = 2πω0 = 8.7 Hz. The hair-bundle oscillation measured in [81]
is strikingly similar to that simulated here, see fig. 1.9. Parameters can be found in column L of
table B.1 in appendix B.

influenced the system’s maximal sensitivity was the stiffness of the load to which
the hair-bundle is coupled. For fmax ≃ 352 pN, power spectra of spontaneous
oscillations and response functions were not significantly affected by varying Po in
the range 0.2-0.8. Thus, agreement between simulations and experiments did not
qualify a particular value of Po.

As has been shown in in vitro experiments, the stiffness of the load to which
the hair-bundle is coupled influences the bundle’s spontaneous oscillations [78]. In
these experiments, this stiffness is that of an attached glass fiber, whereas in the
ear it is given by the stiffness of an ancillary structure like the otolithic membrane
for the sacculus. When in our simulations the stiffness of the load was increased,
the oscillation got faster and of smaller magnitude (fig. 5.6), in agreement with
previous experimental observations. The spontaneous movements also became
noisier, as revealed by a 70% reduction of the quality factor Q when the com-
bined stiffness of the load and the stereociliary pivots was raised from 600µN/s
to 1800µN/s. As a result, the sensitivity to small stimuli was significantly reduced,
when the combined stiffness of the load and the stereociliary pivots was increased
(here by 90% ,see fig. 5.6 B). The load thus impeded the ability of an oscillatory
hair-bundle to amplify mechanical stimuli. Significant amplification by a single
hair-bundle was achieved only when the stiffness of the load remained smaller
than the maximum negative stiffness that an oscillatory hair-bundle manifests in
its displacement-force relation.

Is the hair bundle’s operating point optimal? To address this issue, we de-
termined, for different open probabilities of the transduction channels, how the
sensitivity to small stimuli at resonance |χ̃0| varied with the maximal force fmax
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Figure 5.5: Responsiveness to sinusoidal stimulation. A, The real part eχ′
0 of the linear response

function eχ0 displays a peak near the bundle’s frequency of spontaneous oscillation, and is positive
everywhere. B, The imaginary part eχ0” changes sign at a frequency near that of the bundle’s
spontaneous oscillation. The external sinusoidal force has had an amplitude of 2pN. Taken
from the fit (red lines) of the response function eχ0 by eq. 4.18, we have found α ≃ 0, K =
74µN/m, Λ = 4.3µNs/m and ν0 = 2πω0 = 8.6 Hz, in quantitative agreement with the response
function measured for an oscillatory hair bundle [81]. C, The sensitivity |eχ| displays a nonlinear
compression in a regime of intermediate forces 3 − 30pN when the magnitude of an external
sinusoidal force is increased at the frequency of the spontaneous oscillations. This nonlinearity is
consistent with a power law with an exponent of -2/3 (red line). A fit to the relation eχ−1 ≃ eχ−1

0 +

B| bX|2 yielded the nonlinear coefficient |B| ≃ 1.2 1012N/m3. For stimuli smaller than ≃ 1pN,
the sensitivity saturates at |eχ0| ≃ 8.5km/N (green line). For stimuli larger than ≃ 300pN, the
sensitivity approaches a constant, minimal value of 1km/N(green line). The parameters used in
the simulation are the same as in fig.5.4.

that the motors produce (fig. 5.7). We found that this sensitivity was at the
global maximum |χ̃0| = 11.3km/N for Po ≃ 0.5 and fmax ≃ 439 pN, near the
center of the oscillatory region in the state diagram (fig 5.2). At this point, the
spontaneous oscillation displayed a characteristic frequency of ν0 = 24.7 Hz and a
quality factor Q = 5.4 that was also near the global maximum (fig. 5.3 B). This
point was clearly distinct from the operating point of the hair bundle (fig. 5.2).
There, the hair bundle was characterized by a sensitivity to small stimuli that was
25% lower than that at the optimum.
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Figure 5.6: Effect of mechanical load on hair-bundle oscillations. A, Spectral density of spon-
taneous movements as a function of frequency for five values of the combined stiffness KSP of
the combined stereociliary pivots and external load. When KSP has been raised from 600µN/m
to 1800µN/m , the peak has shifted toward regions of higher frequencies and widened. B, Some
measured quantities as a function of KSP . Sensitivity |eχ| in response to strong (•) and to
weak (•) stimuli, both scaled from 13.367km/N, frequency of spontaneous oscillations (N), scaled
from 40.7Hz, and quality factor Q (�), scaled from 2.7 . Maximal sensitivities occur in response
to weak stimuli, whereas intense stimuli result in minimal sensitivities. The frequency of sponta-
neous oscillations increases with the load, whereas the quality factor Q decreases. With parameter
values listed in column L of table B.1 in appendix B, the bundle was characterized by a maximum
negative stiffness of −1180µN/m in its displacement-force relationship.
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Figure 5.7: Sensitivity as a function of the hair-bundle’s operating point. Maximal (black
symbols) and minimal (purple symbols) sensitivity |eχ| as a function of the maximal motor force
fmax for P0 = 0.1 (�), 0.3(N), 0.4(�), 0.5 (•), 0.6 (�), 0.7(△) and 0.9 (♦). The sensitivity displays
a global maximum for Po = 0.5 and fmax ≃ 439 pN. Responses of maximal sensitivity eχ0 are
obtained in response to small sinusoidal stimuli at the characteristic frequency of spontaneous
bundle oscillations, whereas the minimal sensitivity is obtained for intense stimuli. The ratio of
maximal to minimal sensitivities determines the gain of the amplificatory mechanism. Parameters
can be found in column M of table B.1 in appendix B.



Chapter 6

Mechanical response to

step-displacements

When bathed in an extracellular fluid containing a high external calcium-concentration
([Ca2+]≃ 4mM), hair-bundles rarely display spontaneous oscillations [43]. The me-
chanical properties of these quiescent hair-bundles have been investigated with the
help of a flexible fiber, as explained in chapter 5. In this chapter, we will focus on a
kind of stimulus in which the base of the fiber is moved using a step-displacement.

In this kind of experiments, the In this kind of experiments, the bundle’s tip
shows a rapid movement in the negative direction - the twitch - in response to
a step-displacement in the positive direction. Two typical responses of the hair-
bundle’s tip are shown in fig. 6.1. This fast movement in the negative direction
coincides with the reclosure of the transduction channels, which is reflected by
the significant decrease of receptor current in an experimental setup which clamps
the membrane potential (fig. 6.1). As explained in the introduction, the re-
establishing of an open probability close to the initial one is called adaptation,
because it restores the physiological properties of the bundle in its initial position.
After this period of fast adaptation, the bundle relaxes more slowly (tens of mil-
liseconds), before reaching its stationary position under the influence of the step
displacement. When the bundle is deflected in the negative direction, however, no
twitch is observed, and the bundle displays only slow adaptation.

Whereas the model presented in section 3.2.1 and section 5.3 has quantitatively
reproduced the properties of a spontaneously oscillating hair-bundle, which have
been observed consistently at low values of [Ca2+]≃ 250µM, it fails to display the
features of the twitch, as will be shown below. An extension of this simple model
is therefore necessary.

Experimentally, the external calcium-concentration has been shown to have
an effect on several of the properties of the bundle. It affects relaxation times of
adaptation[89, 37], the open probability of channels [37], the stiffness of the bundle
[77], the form of the displacement-response curves [16, 15], and it might also affect

75
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Figure 6.1: Example of the twitch. This figure displays the mechanical response of the bundle’s
tip under the influence of the step-like displacement of the base of a flexible fiber, which is attached
to the tip of the hair-bundle. The experiment is conducted in the presence of standard saline
solution, with 4 mM external [Ca2+]. The arrow indicates a small twitch. Taken from [43].

the length of the gating swing [82] as well as the free energy difference between
open and closed state of the channels (see subsection 2.4.3). Intracellular calcium-
dynamics has been proposed to be at the origin of spontaneous oscillations of the
hair-bundle by inducing the channels to close in the presence of high [Ca2+] [14].

For some of the parameters, experimental evidence indicates the quality of the
calcium-dependence. Several experiments indicate that KGS and D decrease in
response to a higher internal calcium-concentration, while ∆G seems to increase
with increasing [Ca2+], see for example subsection 2.4.2.

A completely different experiment supports the assumption that KGS and
D decrease with increasing [Ca2+]: The spontaneous oscillations of hair-bundles
from the bullfrog’s sacculus decrease in amplitude and increase in frequency in the
presence of increased calcium-concentration [78]. If these oscillations correspond
to a trajectory around the negative stiffness in the displacement-force relation, the
calcium-concentration has to influence the shape of this relation. The fact that
the oscillations decrease in amplitude support the assumption that KGS and D
decrease in response to a higher calcium-concentration.

In this chapter, we will argue that the dependencies of some of the parameters
on calcium are crucial in order to explain a phenomenon which has been observed
in experiments conducted in the presence of a high external calcium-concentration.

We will begin by the analysis of the behavior of the system presented in section
3.2.1 in response to step-displacements. We will thereby introduce a method which
can be applied in the investigation of the effects of step-displacements under the
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assumption of calcium-dependent parameters. From all the parameters which
might influence the properties of the hair-bundle, we propose to focus on the
investigation of the effect of calcium-dependent D, KGS, XGS , and ∆G. We do
not aim at a complete description of hair-bundle mechanics, explaining with one
set of equations both the behavior of the bundle in an oscillating regime and
in the quiescent regime in high calcium-concentrations. The dependence of a
given parameter on the calcium-concentration over the range of 25µM to 4mM
is probably quite complicated. In the following, we will restrict the analysis to
the linear term. The value of a given parameter ζ is therefore assumed to evolve
according to ζ(C) = ζ ′C + ζ0.

To understand this phenomenon, we will first rewrite the model for the specific
situation of a step experiment, where a flexible fiber of stiffness KF undergoes a
step-displacement of its base by a distance ∆. The flexible fiber, attached to the
tip of the bundle, exerts on the bundle the external force

Fext = KF (∆ − X) . (6.1)

Therefore, we can describe a step-displacement with a flexible fiber as the appli-
cation of the constant force KF ∆ to a bundle with the combined effective stiff-
ness Kc = KSP + KF . Under the influence of this external force, the system
will have a new stationary value, to which it is evolving after having received
the stimulus. Due to the adaptation, the open probability of this new state is
close to the one before stimulation, but not exactly the same, see subsection 2.4.3.
For simplicity, we ignore the difference between these two open probabilities by
choosing KE = 0. Using the external force eq. 6.1, eqs. 3.27 and 3.28 can be
rewritten as:

λẊ = −KGS(X − Xa − XGS − DPo) − KcX + KF ∆ (6.2)

Po =
1

1 + e
−

KGSD

NkBT
(X−Xoff )

, (6.3)

where Xoff is the offset of the displacement-force relation in the sense that Po =
0.5 for X = Xoff :

Xoff =
N∆G

KGSD
+ Xa + XGS + D/2 . (6.4)

Since the open probability in the stationary state is small, the friction coefficient λ
is approximately given by the small hydrodynamic component λh, and the relax-
ation time of the hair-bundle’s tip, ∼ λ/(KGS + Kc), is assumed to be the fastest
process in step-displacement experiments. From experiments [44], this timescale
can be considered well below the millisecond. To facilitate the discussion, we in-
troduce the displacement-force relation in the absence of an external force, see eq.
2.15:

FD = −KGS(X − Xa − XGS − DPo) − KcX , (6.5)
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and the short relaxation time of the hair-bundle’s tip will force a rapid relaxation
of the position X to the position given by FD = −KF ∆.

The slowest timescale in the system is attributed to the motion of the molecular
motors, ∼ λa/(KGS +KE) , which is on the order of tens of milliseconds [37]. The
third timescale present in the system is given by the regulation of the internal
calcium-regulation, and corresponds to τ . In the following, we suppose that this
relaxation time has a value of ∼ 1ms, placing it at an intermediate value between
the fast relaxation of the hair-bundle’s tip and the slow movements of the motors.

In this case, the rapid increase of the bundle’s position X directly following the
stimulation is dictated by the relaxation time of the hair-bundle’s tip, which opens
the Ion-channels and therefore changes the internal calcium-concentration C. The
twitch might result from the displacement-force curve changing its shape or po-
sition due to the dependence of one of its parameters on this internal [Ca2+]
[87], which would mean that the phenomenon of fast adaptation is linked to the
timescale of the calcium-dynamics. Additionally, the nonlinear form of FD can also
influence the movement of the hair-bundle, as will be seen in the following. This
nonlinearity is given by the strength of the gating-compliance, characterized by
the term KGSDP ′

o. The displacement-force relation FD can have a positive slope,
if KGSDP ′

o > KGS + Kc. Therefore, the stronger the value of KGSD/(kBTN),
the stronger is the gating compliance and the nonlinearity of FD.

First, we can analyze the situation which arises when all these parameters
are constants, the basic model described in 3.2.1. Note that this model displays
the same shape of the oscillations as the one observed in experiments, see also
subsection 3.2.2. The shift of the displacement force relation in response to a
change of the motor-position Xa can be represented by the shift of the points
Xoff and FD(Xoff ), given by:

∂Xoff

∂Xa
= 1 (6.6)

∂FD(Xoff )

∂Xa
= −Kc . (6.7)

The displacement-force relation shifts therefore with a slope of −Kc, as has already
been stated in 3.2.1. We can visualize the movement of the bundle using the
displacement-force relation.

Fig. 6.2 shows the movement of the bundle in response to a step-displacement
of the base of a flexible fiber. The figure represents the case of the simple model
presented in 3.2.1. A numerical simulation is represented by the cyan points. Part
A of the figure shows FD calculated with a value for Xa corresponding to the
stationary value of the motors before (black) and after (red) deflection. While
the motors move, the curve shifts inside the corridor with the slope Kc, which is
indicated by two grey lines. Intersections of these curves with the constant forces
before (0) and after (−KF ∆) deflection are the stationary values of the bundle
immediately before the movement of the fiber, and at the end of the deflection.
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Figure 6.2: Numerical simulation for the displacement of the tip of the hair-bundle under the
influence of a step displacement of the base of a flexible fiber (cyan points). Every point is
separated by the same time constant, their density thereby indicating the speed of the bundle.
The model used for this plot is the simple case, where the displacement-force relation does not
depend on Calcium. A, displacement-force relation drawn for the motor position before the
displacement (black line), and for the motor position assumed in steady state under the influence
of the deflection (red line). The displacement-force relation shifts inside the corridor of grey
lines, of slope (−Kc), when the molecular motors change their position. The two horizontal
grey lines correspond to the force applied before deflection (0-line), and after deflection −KF ∆.
Intersections of the force-lines and the displacement-force relation correspond to stable stationary
points, if the slope of the fore-displacement relation is negative. Initially, the bundle is found at
point a, no force is applied. After the deflection of the base of the fiber, a new stable stationary
point is found at position e. Before the bundle reaches this point, the direction of movement
is inverted twice, one of which being a rapid movement in the negative direction (b-c), see the
text for more explanations. B, the same numerical simulation, where the bundle-displacement
is plotted as a function of time. The rapid part of the movement in the negative direction can
resemble a twitch (c-d), but only after a certain time of slow relaxation in the positive direction
(b-c). The step of the base of the fiber is indicated. Parameter values can be seen in column
N of table B.2 in appendix B. Here and in the following figures of this chapter, the numerical
simulations have been computed for a stimulus using a flexible fiber of KF = 0.34 mN/m, with
varying amplitudes of ∆, applied for 0.2 seconds.

As KE has been chosen to be zero, the stationary opening probabilities before
and after deflection are the same, corresponding to the same relative position on
the displacement-force curves. The stationary open probability Po = 0.05 has
been chosen quite low, corresponding to experiments in high external calcium-
concentration, cf 2.4.2, see also [15]. The movement of the bundle can be seen in
part B of the figure, the bottom trace denotes the displacement of the base of the
fiber.

As explained before, the first rapid part of the movement (a-b), corresponds
to the fast relaxation of the hair-bundle’s tip in close approximation to the line
given by the initial displacement-force relation, because the molecular motors do
not move during this rapid relaxation. After this rapid movement is concluded,
the bundle is in a state of open channels and high tip-link tension. The motors
slide down the stereocilium, and the position of the bundle follows the migrat-
ing movement of the shift of the displacement-force relation, at the intersection
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of the constant force −KF ∆. This corresponds to a slow (because dominated
by the motors) relaxation in the positive direction, as long as the slope of the
displacement-force relation at the position of the bundle has a larger magnitude
than the slope of the corridor, Kc.

Once the slope of FD at the intersection with −KF ∆ gets equal to the slope
of the corridor, at the turning point s1, the bundle inverts its direction (c) and
begins to move in the negative direction. In this example, the slope of the curve
due to the gating-compliance nearly vanishes, so that the speed of the bundle
movement is more and more dominated by the relaxation time of the hair-bundle.
Therefore, a rapid movement of the bundle in the negative direction occurs, closing
the channels, until the turning point s2 is reached (d).

The displacement-force curve has not yet reached its stationary position under
the influence of the deflection, and so it continues to shift down the corridor.
Therefore, the direction of the movement is inverted, and a phase of slow relaxation
in the positive direction follows, until the stationary state e is reached, or until
the base of the fiber is moved back.

When the base of the fiber is moved back to its original location, only the
fast relaxation to point f and the slow relaxation to point a take place, because
the slope of the displacement-force relation does always have a larger magnitude
than −Kc during this phase of the movement. No strong nonlinear effects or
changes of the direction of motion take place.

Note that the twitch which can be seen in fig. 6.2 B (c-d) can only occur after a
certain time of slow relaxation in the positive direction (b-c). If the bundle shows
a region of negative stiffness, this backward movement occurs approximately with
the time-constant of the hair-bundle, ≃ λ/(Kc + KGS). If the maximum slope
of the displacement-force relation is smaller than zero, the necessary shift of the
curve due to the movement of the molecular motors slows down this movement.

Fig. 6.3 shows a series of steps with increasing amplitude ∆. Note the twitch
which can be seen for base-displacements in the negative direction, just after
the base of the fiber is moved back to its original position. This occurs due to
precisely the same reasons as the twitch described so far: In the case of negative
base displacement, the back-displacement to the original value can be seen as the
beginning of a positive stimulus, covering the nonlinearities of the displacement-
force curve. The amplitude of the twitch is nearly constant, corresponding to the
distance between the two turning points s1 and s2. Larger base-displacements
result in a longer phase of slow positive movement before the onset of the twitch.
The simple model of section 2.4 can therefore not explain the twitch which has
been observed in experiments, as shown in fig. 6.12 A.
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Figure 6.3: Numerical simulations for a series of base-displacements of varying amplitudes,
system with a displacement-force relation which is independent of [Ca2+]: bundle movement
(black line) and open probability (magenta line). Note the twitch-like movement at the onset
of the backward movement of the base for negative base displacements, which is just the mirror
image of the twitch at the onset of the step displacement for positive base displacements. The
step amplitude has been varied from -63 to 87 nm, in steps of 15 nm. For better readability, the
onset of the displacement between successive steps has been delayed by 0.18 s. Parameters as in
fig. 6.2.

6.1 Calcium-dependent free-energy change: ∆G(C)

The assumption of a calcium-dependent value of the free-energy difference between
the open and the closed state of the channels, ∆G(C), will still not change the
form of the displacement-force relation, but merely change the offset Xoff . This
situation is nonetheless different from the one previously described, because of
the calcium-dependence of the curve. Assuming relatively fast calcium-dynamics,
we have now two effects influencing the displacement of the hair-bundle after
the base-displacement: first, the external force will open the channels, and the
bundle will relax to the position given by the intersection of the line given by the
external force KF ∆ and the displacement-force relation FD calculated with a value
of Xa corresponding to the position of the molecular motors before the stimulus.
Second, the increasing internal calcium-concentration will shift the displacement-
force relation, which happens with the relatively short timescale of the calcium-
relaxation time. But the direction of the shift will not have the same slope as
the one given by a change of Xa; this time, the shift oft the displacement-force
relation is given by:

∂Xoff

∂∆G
=

N

KGSD
(6.8)

∂FD(Xoff )

∂∆G
=

(KGS + Kc)N

KGSD
, (6.9)
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resulting in a slope of −(KGS + Kc), which is the same as the slope of the
displacement-force relation for large and small values of Po. If the bundle is
to display a negative twitch, the displacement-force relation for high calcium-
concentrations should be placed in such a way that the same open probability
corresponds to lower values of X as compared to the displacement-force relation
for low calcium-concentrations. This can only occur if ∆G′ > 0. Note that this
behavior (increasing ∆G with increasing [Ca2+]) is indirectly supported by exper-
iments, see for example subsection 2.4.2.
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Figure 6.4: Numerical simulation for a displacement-force relation with calcium-dependent ∆G.
Conventions as in figure 6.2. See text for an explanation of the situation. Parameter values can
be seen in column O of table B.2 in appendix B.

Fig. 6.4 shows this situation. Now, three displacement-force relations are
shown. As before, the black and the red curves show the displacement-force re-
lations calculated using a value of Xa corresponding to the stationary value of
the motors before (black) and after (red) deflection. The dotted curve demon-
strates the influence of the calcium-dependence of this curve: it represents the
displacement-force relation calculated with a value of Xa corresponding to the
position before deflection, but with C having the value of the stationary point
assumed by the system after deflection, while fixing the motor position Xa.

In other words, if Xais fixed, and C is considered a dynamic parameter, the
dotted curve corresponds to the stationary state after deflection. Therefore, if
the timescales of the system were perfectly separated (λ/(KGS + Kc) ≪ τ ≪
λa/(KGS), the system would first relax to the intersection of the force KF ∆and
the black line (b). Then, the slower calcium-dynamics would shift the curve from
the black curve to the dotted one, until the system reaches d, the intersection
of −KF ∆ with the dotted curve. Following this movement, the curve shifts down
in the direction of the red curve, until it reaches e, the intersection of the red curve
with the force −KF ∆. The return to the original position is analogous to the case
described before: because everything takes place in low calcium-concentration, no
important nonlinearities are encountered, and the calcium-dependent shift of the
displacement-force relation is much smaller than the one observed following the
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base-displacement in the positive direction.

However, the parameters of our simulation did not separate the timescales
perfectly (λ/(KGS + Kc) = 0.18 ms, τ = 1 ms, λa/KGS = 30 ms). That is the
reason why the simulation does not entirely follow the black curve up to point
b: the calcium-dependent shift begins to work, before b is reached. This is also
the reason why the simulation actually shows values of X smaller than those
corresponding to d: The motors begin to shift the curve down in the direction of
the red curve, thereby descending the major part of the nonlinearity below the
force −KF ∆, which increases the amplitude of the negatively directed movement,
which finds its extremum at c. Therefore, we see that this twitch comes quite close
to the ones observed in the hair-bundle.

This twitch is dependent on a moderate separation of timescales, its apparent
amplitude additionally depends on an interplay between the applied force and
the timescales: For large forces, the overshoot above point d cannot be observed,
because the major part of the nonlinearity descends below the applied force −KF ∆
only after a phase of slow adaptation; and for a perfect separation of timescales it is
equally absent. Its amplitude is also crucially dependent on the size of the gating-
compliance, which can be seen as follows: a shift due to a change of ∆G shifts the
displacement-force relation with a slope of KGS + Kc. The vertical dimension of
this corridor is KGSD, its horizontal dimension is DKGS/(KGS + Kc), the latter
giving the maximum value of negative-directed movement due to a shift of the
displacement-force relation because of calcium-dependent ∆G.
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Figure 6.5: Numerical simulations for a series of base-displacements of varying amplitudes,
system with [Ca2+]-dependent ∆G: bundle movement and open probability. Larger stimuli
reduce the twitch amplitude, as described in the text. Conventions as in fig. 6.3. Stimulus
amplitudes ranged from -93 to 127 nm, in steps of 21 nm. Parameters as in fig. 6.4.

Fig. 6.5 shows a series of steps-displacement. The decreasing twitch ampli-
tude in response to larger stimuli is clearly visible. We can also see the negative-
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directed movement after a phase of slow relaxation in the positive direction; this is
the same phenomenon as described in the previous section, the gating-compliance
resulting in the slope of the displacement-force relation being momentarily smaller
in magnitude than the slope of the shift of the curve. This bump disappears with
weaker gating-compliance. We conclude this section by stating that a calcium-
dependent ∆G is able to show the mechanical features of the twitch, but its mag-
nitude is varying strongly with the applied force, and for small gating compliance
it is nearly absent. It is also apparent that the open probability in this case can
only decrease in the limits given by the twitch-movement. Therefore, we do not
see an abrupt closure of the extent to be seen in fig. 6.1.

6.2 Calcium-dependent gating-swing distance: D(C)

The shift of the displacement-force relation is given by:

∂Xoff

∂D
= −(

N∆G

KGSD2
− 1

2
) (6.10)

∂FD(Xoff )

∂D
= (KGS + Kc)(

N∆G

KGSD2
− 1

2
) +

KGS

2
, (6.11)

resulting in the slope −(KGS + Kc) − KGS/(2N∆G/(KGSD2) − 1), which now
depends on the actual internal calcium-concentration, via the value of D(C). The
shape of the displacement-force relation now depends also on calcium: increas-
ing D means decreasing δ and therefore a stronger gating compliance. The sign
of the slope now depends on the parameters, especially on the magnitude com-
paring the intrinsic energy difference between open and closed states of the N
channels N∆G with that of the mechanical energy of the channels, KGSD2. In an
environment with high [Ca2+], conservative estimates yield ∆G ≃ 10 kBT , kGS ≃
0.5mN/m, d ≃ 4nm, resulting in a negative sign for eq. 6.10 and a positive sign
for eq. 6.11 (for γ = 0.14and N = 50, N∆G

KGSD2 ≃ 5). For environments with low

[Ca2+], it might be possible that these signs become inverted, as d can become as
large as 8 nm.

However, in the high calcium-concentrations we are interested in, we observe
that the slope of the migration of the displacement-force relation is actually larger
in magnitude than the slopes of the displacement-force relation for large and
small Po, which is −(KGS + Kc), providing us therefore with a large calcium-
dependent shift in the negative direction. This shift only occurs if D′ < 0, with
parameters in the range of the values cited above. Note that this behavior is
consistent with experiments, see subsection 2.4.2.

Fig. 6.6 shows this situation. We have a situation similar to the previous
section, but the twitch being larger due to fact that the slope of the migration
of the displacement-force relation has a slope of larger magnitude than the one
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Figure 6.6: Numerical simulation for a displacement-force relation with calcium-dependent
gating-swing D. Conventions as in fig. 6.4. Parameter values can be seen in column P of table
B.2 in appendix B.

of the previous section 6.1. Additionally, the shape of the displacement-force
relation is altered under the influence of a changing internal [Ca2+] concentration.
This twitch-mechanism seems to provide results which come quite close to the
experimental observations.
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Figure 6.7: Numerical simulations for a series of base-displacements of varying amplitudes, sys-
tem with calcium-dependent gating-swing D(C). Conventions as in fig. 6.3. Stimulus amplitudes
ranged from -53 to 147 nm, in steps of 20 nm. Parameters as in fig. 6.6.

The series of multiple steps in fig. 6.7 shows the evolution of twitch size and
form with increasing amplitude of the base displacement. The twitch itself nearly
disappears, whereas the bump due to the nonlinearity appears for larger stimuli.
The bump can only appear when the force-step covers the nonlinearity region of
the displacement-force relation completely.

As a comparison, fig. 6.8 shows the situation for a bundle with compara-
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Figure 6.8: Numerical simulations for a series of base-displacements of varying amplitudes,
system with [Ca2+]-dependent gating-swing D, but weaker gating compliance and larger calcium-
dependence of D than those which have been used in fig. 6.7. Parameter values can be seen in
column Q of table B.2 in appendix B. Conventions as in fig. 6.3. Stimulus amplitudes ranged
from -173 to 327 nm, in steps of 50 nm.

tively weak gating compliance, but a larger dependency of D on C. Due to the
larger value of δ, larger displacements are necessary to obtain a sizeable twitch.
In both cases, the twitch amplitude decreases with growing forces, though this
phenomenon is less important for the system having weaker gating compliance,
fig. 6.8. Both strong and weak gating compliance provide the system with a bru-
tal decrease in open probability, as seen in the experiments. The strength of this
effect depends, of course, on the amplitude of the twitch.

Note that the amplitude of the twitch shown in fig. 6.8 is much smaller than
the amplitude of the experimental observations [6], see also fig. 6.12. The size of
the twitch depends on several parameters, including the gating-compliance, the
stiffnesses, the gating-swing, and the calcium-dynamics. By varying several of the
parameters, such as KGS ,KSP ,D,D′, τ, the amplitude of the twitch does also vary.
It is therefore possible that the observed twitch amplitudes can be reproduced by
a suitable parameter choice. However, we did not explore the parameter space
sufficiently in order to obtain twitch amplitudes of 25 nm.

6.3 Calcium-dependent gating-spring stiffness: KGS(C)

The shift of the displacement-force relation is given by:
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∂Xoff

∂KGS
= − N∆G

K2
GSD

(6.12)

∂FD(Xoff )

∂KGS
= Kc

N∆G

K2
GSD

, (6.13)

resulting in the slope −Kc, which is the same as the one given by the motion of the
molecular motors. This situation allows a twitch with K ′

GS < 0 in the following
way: increasing calcium-concentration after the displacement leads to a shift of
the displacement-force relation down the slope. Initially, the negatively directed
motion is small, but once the part with the nonlinearity is reached, this movement
is accelerated.
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Figure 6.9: Numerical simulation for a displacement-force relation with calcium-dependent
gating-spring KGS(C). Conventions as in fig. 6.4. Parameter values can be seen in column R of
table B.2 in appendix B.

Fig. 6.9 shows this situation. As can be seen from this figure, the twitch is
mainly due to the gating-compliance descending below the external force −KF ∆,
and the overshoot is due to the motors beginning to shift the displacement-force
relation to the red curve. This is the same phenomenon which has been described
in section 6.1. The shape-change of the displacement-force relation is altered
under the influence of a changing internal [Ca2+] concentration, resulting in a
weaker gating-compliance.

The series of multiple steps in fig. 6.10 shows the evolution of twitch size
and form with increasing amplitude of the base displacement. The twitch itself
nearly disappears, whereas the bump due to the nonlinearity appears for larger
stimuli. Low gating compliance will lead to even lower amplitudes, because the
gating-compliance cannot be used for a fast negatively directed movement. The
twitch is constantly low in magnitude, due to the slope of the migration of the
displacement-force relation, −Kc, being smaller in magnitude than the limiting
slope of the displacement-force relation, −(Kc +KGS). These observations do not
favor the possibility that a calcium-dependent KGS is at the origin of the twitch
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Figure 6.10: Numerical simulations for a series of base-displacements of varying amplitudes, sys-
tem with calcium-dependent gating-springD(C). The bump occurs due to the gating-compliance.
Conventions as in fig. 6.3. Stimulus amplitudes ranged from -70 to 130 nm, in steps of 20 nm.
Parameters as in fig. 6.9.

observed in experiments. However, the positive sign of K ′
GS, which is necessary

to generate this twitching behavior, is consistent with experiments, see subsection
2.4.2.

6.4 Calcium-dependent rest-length of the gating-spring:

XGS(C)

The shift of the displacement-force relation is the same than the one which has
been found at the beginning of the chapter, described by eqs. 6.6 and 6.7.

The situation is, however, slightly changed, because the short calcium-relaxation
time allows the displacement-force curve to shift rapidly down the slope −Kc, al-
lowing the gating-compliance to yield a fast negatively directed motion.

This situation is very similar to the one described in subsection 6.3, with the
only difference that the shape of the displacement-force relation does not change.
With X ′

GS > 0, the system yields very similar twitches as compared to the ones
described in subsection 6.3. Note that this sign is the same as the one which has
been used to obtain the spontaneous oscillations in subsection 3.2.2, see fig. 3.5.
However, this sign of X ′

GS is also the opposite of the one which is necessary to
mediate spontaneous oscillations described in subsection 3.2.3.

A peculiar situation arises if X ′
GS < 0 (or K ′

GS > 0). In this case, the
displacement-force relation shifts up the corridor given by the slope −Kc, yield-
ing finally two twitches: the first is a fast negatively directed movement due to
the fact that the slope of the displacement-force relation has a larger magnitude
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than −Kc, the second one is the twitch due to the gating-compliance, which we
have already described.
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Figure 6.11: Numerical simulation for a displacement-force relation with calcium-dependent
gating-swing XGS(C). Conventions as in fig. 6.4. Parameter values can be seen in column S of
table B.2 in appendix B.

Fig. 6.11 shows this situation. The two backward twitches are nicely visible.
The first twitch begins with the deviation of the trajectory from the black line, in
the direction of point c. Before the system has relaxed to this point, the motors
begin to move and shift the curve down the corridor, leading to the slow positive
movement between the steps. Once the nonlinearity reaches the height −KF ∆,
the second twitch due to the gating-compliance sets in. This kind of twitch has
never been observed. The open probability does not decrease in the course of the
first negatively directed movement, because point c has actually a higher open
probability than point b.

6.5 Conclusion

We have shown that the simple model presented in section 2.4 is not sufficient
to reproduce all of the features displayed by a hair-bundle which is subjected
to step-displacements of the base of a flexible fiber attached to the bundle’s tip.
However, under the additional assumption of a calcium-dependence of the pa-
rameters ∆G, D, KGS and XGS , the system can yield a twitching behavior with
different characteristics. Two mechanisms underly this rapid reaction of the bun-
dle’s tip as described by the model presented in this chapter.

First, a change of the displacement-force relationship due to an altered internal
[Ca2+]-concentration via one of the parameters leads to a shift of the displacement-
force relationship FD in such a way that a new stationary point at the intersection
between FD and the external force −KF ∆ is rapidly assumed by the bundle po-
sition X. This shift, associated with the timescale given by the dynamics of the
intracellular [Ca2+], has to possess a timescale situated between the fast mechan-
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ical relaxation of the bundle and the slow adaptation of the motors.

Second, the nonlinearity of the displacement-force relationship (gating-compliance)
can lead to a small (in magnitude) slope of FD, so that a slow horizontal shift of
this curve results in a fast movement of the bundle position. Both effects are
usually combined in the twitches which we have presented.

From all the parameters analyzed, the assumption of a calcium-dependent
gating-swing distance D(C) results in the most robust twitch which yields results
being closest to the experiments, see fig.6.12. As can be seen in part C of this
figure, the amplitude of the twitch grows with the amplitude of deflection of the
hair-bundle, reaches a maximum and then vanishes. As a comparison, part D of
this figure shows the amplitude of the twitch obtained by numerical simulations.
The simulations are in qualitative agreement with the experiments. However, the
amplitude of the twitch is approximately 5 times lower than the results of the
experiment.

Focusing on the linear term of the dependence of a given parameter on the
calcium-concentration, we were able to determine the sign of the linear dependency.
The signs which have been found necessary for our model to yield a twitching
behavior have been found to be consistent with indirect experimental evidence
concerning the dependence of the parameters KGS , D, and ∆G on the calcium-
concentration.
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Figure 6.12: Comparison of a series of steps: experimental results and numerical simulations.
The twitch varies in amplitude, being larger for intermediate values of displacements, and dis-
appears for large and small displacements. A, Experiments conducted on hair-bundles of the
bullfrog’s sacculus. Taken from [6]. B, numerical simulations. Same data as fig 6.8. C, Twitch
amplitude as a function of hair-bundle displacement. Taken from [6]. D, Twitch amplitude as a
function of hair-bundle displacement, numerical simulations. Same data as fig. 6.8.
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Chapter 7

Discussion and outlook

Active hair-bundle motility. We have presented a physical description of
active hair-bundle motility. Two essential ingredients of hair-bundle spontaneous
oscillations have been identified: First, a nonlinear displacement-force relationship,
which describes the force with which the bundle is responding to displacements of
its tip. Second, a calcium-dependence of the values of some of the parameters de-
scribing the hair-bundle mechanics. For fast calcium-relaxation times, our model
displays spontaneous oscillations under the assumption of calcium-dependent mo-
tor activity. If all of the parameters are independent of the calcium-concentration,
spontaneous oscillations do not take place. This mechanism relies on regions of
negative stiffness in the bundle’s displacement-force relation. These are regions,
in which the bundle responds to deflections of its tip with a force which inclines
the bundle to move even further in the direction of the deflection, instead of de-
veloping a force acting against the deflection. The molecular motors periodically
push the system into regions of this negative stiffness.

Under the assumption of a linear relation between the activity of the molecular
motors and the internal calcium-concentration, our model displayed spontaneous
oscillations which are similar to the low-frequency oscillations (∼ 10Hz) observed
in hair-bundles of the bullfrog’s sacculus. A linear force-velocity curve character-
izing the relation between an external force and the velocity of the motors was
sufficient.

We have also presented other mechanisms of oscillations, including nonlinear
force-velocity curves characterizing the activity of the molecular motors. These
mechanisms are probably not important for the low-frequency oscillations observed
in hair-bundles of the bullfrog’s sacculus. However, for hair-bundles sensitive to
higher frequencies, these oscillations might be of some importance.

The importance of fluctuations. Our description of active hair-bundle
motility emphasizes the role played by fluctuations. The mechanical properties
of oscillatory hair-bundles can be described quantitatively only if fluctuations are
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taken into account. Fluctuations arise in part from Brownian motion of fluid
molecules and from the stochastic gating of transduction channels. By consum-
ing energy, the motors power frequency-selective amplification but also generate
non-thermal fluctuations that add to the inevitable thermal fluctuations. We have
found, however, that the magnitude of fluctuations due to active processes remain
below the level of thermal noise.

In the absence of fluctuations, an operating point on the line of Hopf bifurca-
tions in the state diagram would result in diverging sensitivity, infinite frequency
selectivity and a compressive nonlinearity over many decades of stimulus magni-
tudes. This situation is ideal for detecting oscillatory stimuli [14, 13, 27, 56, 26].
As exemplified by our analysis, fluctuations restrict the system’s sensitivity and
frequency selectivity to oscillatory stimuli. They also restrict the range of stimulus
magnitudes in which the compressive nonlinearity of the bundle’s response occurs.
Despite fluctuations, a single hair-bundle amplifies its response to small stimuli
and, correspondingly, the characteristic compressive nonlinearity that arises near
a Hopf bifurcation remains (fig. 5.5). One can define the gain of the amplifi-
catory process as the ratio of the sensitivity at resonance to small stimuli |χ̃0|
to that to intense stimuli. Both experiments and simulations indicate that active
hair-bundle motility provides a gain of about ten. Our theoretical analysis demon-
strates that significant amplification happens inside the area of the state diagram
where the noiseless system oscillates (fig. 5.2). Interestingly, the global optimum
of mechanosensitivity is obtained at an operating point located near the center of
the oscillatory region in the state diagram, that is far from the line of Hopf bifur-
cations of the noiseless system. Furthermore, the sensitivity is largest if the open
probability of the transduction channels is 0.5. In addition, variations of |χ̃0| to
small stimuli in the state diagram mirror that of the quality factor Q ≃ ω0Λ/2K
(see for example 5.6). In particular, the point at which Q is at a global maximum
is near the global optimum of sensitivity.

Sensitivity and friction. The value of the coefficient λ that character-
izes the friction of the hair-bundle has a significant effect on the sensitivity |χ̃0|
that the system can achieve. Decreasing this friction coefficient to the physical
limit λ ≃ λh ≃ 2 · 10−7Ns/m given by hydrodynamic friction, indeed results in a
threefold increase of sensitivity. This coefficient was estimated previously in exper-
iments where the hair cells were immersed entirely in standard saline solution and
did not, or very rarely, show spontaneous oscillations of their hair-bundles [23]. As
the calcium-concentration in standard saline is 16 times higher than in artificial
endolymph, the feedback strength S = −CMp′/p(0) is probably much stronger in
standard saline. A more efficient calcium-feedback could explain why the system
operates in a monostable state with transduction channels mostly closed (fig. 3.1).
Under these circumstances, experiments suggest that hydrodynamic friction alone
accounts for the observed hair-bundle friction. For hair-bundles immersed in ar-
tificial endolymph, our present analysis indicates instead that the contribution of
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channel clatter dominates friction λ ≃ λc ≃ 3 10−6Ns/m. This apparent discrep-
ancy can be explained by considering the calcium-dependence of the transduction
channels’ open probability Po and of the channels’ gating swing d. In standard
saline, the channel swing and the average open probability are reduced to d ≃ 4nm
[44] and Po ≃ 0.15 [37, 15], which is enough to reduce the contribution of channel
clatter to friction to the level of hydrodynamic friction (see Eq. 5.8). In addition,
the dwell time τc of transduction channels is also probably shorter in standard
saline than it is in artificial endolymph [88]. Faster transduction channels would
yield greater mechanosensitivity than that observed so far in the bullfrog’s sac-
culus. A dwell time of τc ≃ 1ms is probably fast enough for saccular hair cells
to operate in a frequency range of 5 − 130 Hz, but auditory hair cells could have
shorter dwell times, therefore reduced friction λ and increased mechanosensitivity.

Twitching behavior of the hair-bundle in response to mechanical stim-
ulations We have presented a theoretical and numerical analysis of the rapid
movements of the hair-bundle’s tip in response to mechanical stimulations using
a flexible fiber. We have found that the simple model which has been shown to
quantitatively reproduce the characteristic response of the hair-bundles sponta-
neous oscillations does not display all of the properties of the twitch. However,
our model of the hair-bundle displays twitch-like behaviors under the assumption
that some of the parameters are calcium-dependent.

If the hair-bundle is to display a twitching behavior, the timescale of the
calcium-dynamics should be slower than the relaxation time of the hair-bundle’s
tip, but faster than the typical timescale of the molecular motors. Focusing on the
general characteristics of the effects of calcium-dependent parameters, we have re-
stricted our analysis to the linear term of the calcium-dependence, and found that
the value of the gating-spring KGS and of the gating swing D have to decrease
with [Ca2+]in order to allow for the twitch, whereas the intrinsic energy difference
∆G between the open and the closed state of an ion-channel has to increase with
[Ca2+]. These results are consistent with previous experimental findings.

Outlook The hair cells of the sacculus of the bullfrog, which are sensitive to low
frequencies (∼ 5−130 Hz [110]), display spontaneous oscillations with frequencies
of the same order of magnitude. Experiments have shown, that only hair-bundles
displaying spontaneous oscillations display a high sensitivity and frequency selec-
tivity in their response to oscillatory stimuli [81, 80]. In the absence of fluctuations,
the optimal operating point of the hair-bundle is the point where it undergoes the
Hopf bifurcation. In the presence of fluctuations, the optimum of the sensitivity
and of the frequency selectivity (which is characterized by the quality factor Q) are
no longer situated in the vicinity of the Hopf bifurcation of the noiseless system,
but in a region where the noiseless system displays spontaneous oscillations.

We can only speculate about what determines the operating point of the hair-
bundle. It has been suggested that a general self-regulation mechanism adjusts a
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control parameter of the system to bring it close to a point of high sensitivity [13].
Our model displays properties which quantitatively matches the properties of the
experimental observations at a point which represented 75% of the global optimum
of sensitivity. It is an important issue to identify possible parameters that the cell
could regulate to optimize its behavior. Our work suggests that the feedback
strength S and the maximal motor force fmax are natural candidates. If the hair
cell could regulate both parameters, it could achieve high sensitivity by moving
towards the point where the quality factor Q is the largest. For that purpose,
the hair cell might take advantage of a filter [107], such as that provided by an
electrical oscillator in the basolateral membrane of the hair cell [17, 53]. The hair
cell might also control one parameter, for instance if the maximal motor force fmax

were determined only by the intrinsic properties of the adaptation motors and the
number of motors per stereocilium. By regulating S at fixed fmax, the hair cell
could nevertheless find an operating point of high sensitivity if the properties of
the motors were of such a kind that fmax fell in an appropriate range. The hair cell
could regulate the feedback strength S for example by controlling the intracellular
level C0 of calcium. Such a mechanism would also affect fmax.

The ability of a single hair-bundle to detect oscillatory stimuli is limited by
fluctuations. This limitation could be overcome if an ensemble of hair cells with
similar characteristic frequencies were mechanically coupled. Coupled noisy oscil-
lators could approach the ideal case of a critical oscillator near a Hopf bifurcation
[90]. In an intact mammalian cochlea, the gain that characterizes amplification
of basilar-membrane motion is up to 103 [96], which can be compared to a gain
of only about 10 for a single hair-bundle in the bullfrog’s sacculus. This suggests
that in the cochlea the effects of fluctuations of individual hair cells are reduced
by the cooperative action of many oscillatory cells, independent of the oscillation
mechanism.

A similar phenomenon might take place in the sacculus of the bullfrog: al-
though the otolithic membrane probably represents a load on an individual hair
cell and therefore probably decreases its sensitivity and its quality factor (fig. 5.6),
it might also effectively couple several neighboring cells and thereby increasing the
performance of the ensemble.

Our description of active hair-bundle mechanics has used a simplified descrip-
tion. Whenever it has been possible, we have used linear approximations to de-
scribe the interdependence of the parameters of the problem. The only nonlin-
earity in our description is represented by the dependence of the open probability
on the displacement of the hair-bundle. Our hair-bundle consists of N identical
stereocilia, each of them showing an identical motor-position Xa. The fluctuations
present in the system have only been taken into account in their low-frequency
limit, justified by the observation that the typical timescale of the slow oscilla-
tions of hair-bundles of the bullfrog’s sacculus is much larger than the timescale
associated with the major contributions of non-thermal noise, the channel clatter
and the binding process of the molecular motors. Despite these simplifications,
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our model has proven to be able to reproduce quantitatively the properties of
spontaneously oscillating hair-bundles at low frequencies.

Our analysis has been inspired by the properties of the hair cells of the bull-
frog’s sacculus, a low-frequency hearing organ. In particular, the oscillation mech-
anism which has mainly been analyzed (see chapter 5), involves the displacement
of the adaptation motors in order to push the bundle periodically into regions of
negative stiffness. Due to the restricted velocity of the molecular motors, such a
mechanism is probably much less effective at higher frequencies. Hair cells which
are sensitive to frequencies higher than ∼ 100 Hz could present active hair-bundle
motility which relies on other physical mechanisms. Two such mechanisms have
been evoked: a nonlinear force-velocity curve of ensembles of molecular motors,
and a mechanism relying on an instability due to the calcium-dynamics (subsection
3.2.3).

The mechanism underlying the twitching behavior is connected to active move-
ments of the hair-bundle [87]. Recently, it has been proposed that a calcium-
dependent gating-spring stiffness mediates electrically evoked hair-bundle oscilla-
tions in the range of several hundred kHz [8]. A closer investigation of the twitching
behavior, which might rely on calcium-dependent parameters, can therefore result
in a better understanding of hair-bundles which are sensitive to higher frequencies.

The ears of insects do not contain hair cells. Their detection of sound is
based on cuticular mechanoreceptors, where mechanical stimulation results in a
squeezing or pinching of a sensory neuron [31]. Insects have developed different
mechanical means to stimulate these neurons. To detect sound-pressure variations
of environmental sound, some insects have developed eardrum-like flexible mem-
branes connected with the neurons. To detect velocity waves, some insects have
developed specialized antennae. Sound induces vibrations of the antennae, which
is then detected by neurons situated at the base of the antennae [109, 35]. Recent
experiments indicate that these sound detectors might also rely on activity [36].
It would therefore be interesting to investigate this phenomenon theoretically.
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Appendix A

Table of Symbols

Table A.1: List of Symbols
Symbol Description First used

θ control parameter, normal form of Hopf bifurcation section 1.3

θc critical value of θ, normal form of Hopf bifurcation “

Z dynamical variable, normal form of Hopf bifurcation “

r stability parameter, normal form of Hopf bifurcation “

ω0 angular frequency, normal form of Hopf bifurcation “

u cubic coefficient, real part, normal form of Hopf bifur-
cation

“

X dynamical displacement variable “

F external force “

F̂ dominant Fourier amplitude of F “

ω angular frequency of F “

Xi Fourier amplitudes of X “

X̂ dominant Fourier amplitude of X “

A(ω, θ) linear coefficient, generic response of critical oscillators “

B(ω, θ) cubic coefficient, generic response of critical oscillators “

ωc critical value of angular frequency “
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Symbol Description First used

φ angle between a stereocilium and the apical ep-
ithelial surface

section 2.1

Q elevation of the insertion point of a stereocilium
above the ground plate

“

kGS , KGS gating-spring stiffness “

r radius of a stereocilium “

h height of a stereocilium “

P distance between adjacent stereocilia “

l extension of the gating-spring “

xa, Xa position of motors “

γ projection factor relating the extension of the
tip-link to experimentally observable motion

“

KSP bulk stiffness of the hair-bundle section 2.1

s shear between adjacent stereocilia “

Xr resting position of the hair-bundle “

Eo free-energy of a channel complex in open state section 2.2

Ec free-energy of a channel complex in closed state “

∆G intrinsic free-energy difference between open and
closed state

“

En mechanical energy of stereocilium number n “

N Number of stereocilia in a hair-bundle “

xSP , XSP rest-length of the spring associated with the
stereociliary pivot elements, KSP

“

σn state of channel-complex n; 1 for open, 0 for
closed state

“

E mechanical energy of the whole hair-bundle “

d, D gating-swing distance section 2.2

kE , KE extent spring stiffness “

xE , XE rest-length of the extent spring kE “

xGS , XGS rest-length of the gating-spring, kGS “

Z partition function of the hair-bundle “

zn partition function of stereocilia n “

ln extension of gating-spring n “

kB Boltzmann constant “

T Temperature “

Po mean open probability of all the channels of a
hair-bundle

“

F forces acting on the molecular motors due to the
elastic elements of the bundle;

“
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Symbol Description First used

fmot force exerted by the elastic elements on the
molecular motors of a stereocilium

section 2.2

A coefficient used in the expression for Po “

Ns number of molecular motors per stereocilium section 2.3

fl external load applied to an ensemble of molecu-
lar motors

“

f0 stall force: force which stops the spontaneous
motion of an ensemble of molecular motors

“

ξa inverse of slope of force-velocity relation of the
molecular motors; inverse of “friction”

“

f average force of an individual motor attached to
the actin filament

“

C Calcium-concentration inside the cell “

C0 Calcium-concentration inside the cell at closed
channels

“

CM Calcium-concentration inside the cell at open
channels

“

p probability that a given motor is bound to the
actin filament

“

p′ dependence of the attachment probability p on
the Calcium-concentration C

“

p0 maximum attachment probability (i. e. when
C = 0)

“

τ time-constant characterizing the Calcium-
dynamics

“

δ coefficient used for the expression of Po; indi-
cates the strength of the nonlinearity

section 2.4

fmax maximum force of the ensemble of all motors of
the hair-bundle

“

S feedback-strength “

Fext external force applied to the tip of the hair-
bundle

“

λa effective friction coefficient of the molecular mo-
tors

“

R coefficient used for the calculation of stationary
states

subsection 2.4.1

R′ coefficient used for the calculation of stationary
state

“

KP permutation of stiffnesses “
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Symbol Description First used

XS displacement necessary to activate half the max-
imum transduction current

subsection 2.4.2

DS coefficient characterizing the dependence of XS

on the external Calcium-concentration
“

Xe adaptive shift of the displacement-current curve
of the hair-bundle in response to static deflec-
tions

subsection 2.4.3

λeff effective drag coefficient for two-dimensional de-
scription of the hair-bundle

section 3.2

k effective stiffness for two-dimensional descrip-
tion of the hair-bundle

“

FA effective active force for two-dimensional de-
scription of the hair-bundle

“

β coefficient characterizing the time-dependence
of active adaptation for two-dimensional de-
scription of the hair-bundle

“

k coupling between active elements and the move-
ment of the hair-bundle for two-dimensional de-
scription of the hair-bundle

“

s1,2 Eigenvalues of the two-dimensional description
of the hair-bundle

“

Tr Trace of the matrix determining the two-
dimensional description of the hair-bundle

“

∆ Determinant of the matrix determining the two-
dimensional description of the hair-bundle

“

KGP coefficient characterizing the nonlinearity due to
channel gating on the stiffness of the bundle

“

P ′
o dependence of the open probability on the dis-

placement of the bundle’s tip
“

KPP permutation of stiffnesses including nonlinear ef-
fects due to channel gating

“

ωc critical frequency of spontaneous oscillations at
the Hopf bifurcation

subsection 3.2.1

Xoff offset of the displacement-force relation F (X) “

µ parameter measuring the feedback-strength due
to the Calcium-dynamics

subsection 3.2.2

∆G′ dependence of ∆G on the internal Calcium-
concentration

“
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Symbol Description First used

X ′
GS dependence of XGS on the internal

Calcium-concentration
subsection 3.2.3

ξa,3 cubic coefficient characterizing the nonlinear
force-velocity relation for molecular motors

subsection 3.2.4

Γ inertial coefficient for movements of the
hair-bundle

“

Va velocity of the molecular motors “

ωf frequency of stimulation of the hair-bundle section 4.1

a coefficient describing the dependency of A(ω, θ)
on the frequency ω

“

b coefficient describing the dependency of A(ω, θ)
on the control parameter θ

“

ℜ(z), ℑ(z) Real part and imaginary part of a complex
variable z

“

˜ Designates the Fourier transform “

χ Sensitivity of the hair-bundle with respect to
sinusoidal stimuli

“

χ0 linear part of the sensitivity, for small stimuli “

α Phase factor; coefficient of the generic response
function

section 4.2

K Effective stiffness; coefficient of the generic
response function

“

Λ Effective friction; coefficient of the generic
response function

“

ωs frequency of spontaneous oscillations section 4.3

X̂f Fourier mode of the system at the frequency of
the stimulus

“

X̂s Fourier mode of the system at the frequency of
the spontaneous oscillations

“

B cubic coupling coefficient “

Aeff effective linear response “

ξ(t) variable designing stochastic forces section 4.4

I intensity of noise “

C0 autocorrelation function “

∆ stimulus amplitude section 5.1
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Symbol Description First used

η stochastic forces acting on the position of the
bundle

section 5.2

ηa stochastic forces acting on the position of the
molecular motors

“

δc stochastic variable indicating fluctuations in the
Calcium-concentration

“

λc friction coefficient due to channel clatter “

λh friction coefficient due to hydrodynamics “

τc characteristic dwell time of a channel’s open and
closed state

“

τ1,2 lifetimes of an attached respectively detached
motor

“

τa characteristic time of force production by a mo-
tor : τa = (τ−1

1 + τ−1
2 )−1

“

ηm force-fluctuations of the molecular motors due
to stochastic binding/unbinding

“

Tm “effective Temperature” indicating the intensity
of the fluctuations ηm

“

ηc force-fluctuations of the molecular motors due
to variations of the Calcium-concentration

“

Tc “effective Temperature” indicating the intensity
of the fluctuations ηc

“

Ta “effective Temperature” indicating the intensity
of all the force-fluctuations of the molecular mo-
tors

“

Q quality factor of spontaneous oscillations section 5.3

ν characteristic frequency of spontaneously oscil-
lating hair-bundles: ν = ωs/2π

“

δν width of the peak of the spectral density of spon-
taneously oscillating hair-bundles

“

KF stiffness of the fiber used to stimulate a hair-
bundle

chapter 6

Kc combined stiffness of fiber and hair-bundle:
Kc = KSP + KF

“

Xoff offset of the displacement-force relation “

FD displacement-force relation in absence of the ex-
ternal force



Appendix B

Parameter values

Several of the parameters used in the numerical simulations have been measured
by a number of experiments. References to some of the experiments are indicated.
Note that the value of KSP is to be understood as KSP +KF , with KF the stiffness
of the flexible fiber attached to the bundle, in the simulations which reproduce
experiments conducted with the help of such a fiber.

The experimental observations concerning the value of the gating-swing dis-
tance, d, display values from ∼ 2− 9 nm. The highest values have been measured
using the two-compartment technique introduced in the introduction, and in an
environment containing low values of [Ca2+] [82].

The value of τ, the timescale attributed to the dynamics of intracellular [Ca2+],
is generally thought to be below 1 ms [68]. However, the reduction of this complex
dynamics to only one timescale is a very strong simplification.

In this work, the calcium-dependence of the parameters has always been re-
stricted to the linear term. This is not meant to reflect the real dependence of
the parameters on the intracellular [Ca2+], which is a complex problem. Still, this
description allows us to develop an idea of the general effects of calcium-dependent
parameters.

Each column refers to a different numerical simulation, as described in the
text.
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Table B.1: Parameter values for the simulations
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Table B.2: Parameter values for the simulations
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Résumé
L’oreille interne est un des organes sensoriels les plus important chez les vertébrés. Elle
fait preuve d’une performance extraordinaire, avec une grande gamme dynamique, une

excellente discrimination fréquentielle et une grande sensibilité.

Il s’agit d’un système qui fait preuve d’activité : l’oreille interne peut émettre des ondes
sonores, un phénomène appelé émissions spontanées oto-acoustique.

Le sens d’audition est basé sur la transformation de stimuli mécaniques en stimuli
électriques, tâche accomplie par la cellule sensorielle de l’oreille interne, la cellule ciliée.
L’organelle mécanosensible de la touffe ciliée est la touffe ciliaire. Les touffes ciliaires du

saccule de la grenouille peuvent osciller d’une manière spontanée. Ces oscillations
spontanées sont donc un candidat naturel pour la source d’activité de l’oreille interne.

Ce travail est une étude théorique des propriétés mécaniques de la touffe ciliaire.

Nous discutons les principes physiques qui sous-tendent la détection d’oscillations basée
sur des oscillateurs critiques, ainsi qu’une description détaille de mécanismes spécifiques

qui peuvent mener a un comportement actif et des oscillations spontanées de touffes
ciliaires. Nous présentons un diagramme d’états et nous montrons que des fluctuations
ont une influence majeure sur les fonctions de réponse du système. Nous discutons des

sources différentes de fluctuations et estiment leurs influences sur les propriétés
mécaniques de la touffe ciliaire. Les fonctions de réponse linéaire et non-linéaire calculées

numériquement sont en accord quantitatif avec des expériences.

Abstract

The inner ear is one of the most important sensitive organs of all vertebrates. It
shows an extraordinary performance, with a large dynamic range, high sensitivity and an
exquisite frequency selectivity.

The inner ear is not simply a passive detector, but a nonlinear active amplifier. The
most striking manifestation of this activity is the fact that the ear does not only detect
sound, but it can also emit one to several tones: the so-called spontaneous oto-acoustic
emissions.

The auditory sense is based on the transformation of mechanical stimuli into electrical
signals, which is done by the sensory cells of the inner ear, the haircells. The mechanosen-
sitive organelle of the haircell is the hair-bundle.

Hair-bundles are active structures, they are namely displaying spontaneous oscilla-
tions. These spontaneous oscillations are a natural candidate for the active process un-
derlying the activity of the inner ear. This work is a theoretical study of the mechanical
properties of the hair-bundle.

We discuss the physical principles underlying detection based on critical oscillations

as well as specific mechanisms that can lead to oscillations and active behavior by hair-

bundles. We present a simple description of active hair-bundle mechanics. We calculate

the state diagram and show that fluctuations fundamentally change the mechanical re-

sponse functions. We discuss different sources of fluctuations and estimate their influ-

ence on the hair-bundle’s mechanical properties. Furthermore, the linear and nonlinear

response functions calculated numerically account for the observed properties of active

hair-bundles.


