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Abstract

Complex systems of coupled dynamical units can often be understood as adaptive
networks. In such networks the dynamical exchange of information between the
local and topological degrees of freedom gives rise to a plethora of self-organization
phenomena. Analytical studies can elucidate the mechanisms behind these phe-
nomena. The development of respective approaches, however, is impeded by the
necessity to capture both, the dynamical as well as structural aspects of the network.

This work explores a new analytical approach, which combines tools from dynam-
ical systems theory with tools from graph theory to account for the dual nature of
adaptive networks. To our knowledge, it is the first approach that is applicable to
continuous networks. We use it to study the mechanisms behind three emergent
phenomena that are prominently discussed in the context of biological and social
sciences: synchronization, spontaneous diversification, and self-organized critical-
ity.

First, we analyze the relation between structure and dynamics in a network of cou-
pled, synchronized phase oscillators. By constructing a topological interpretation
of Jacobi’s signature criterion, we show that synchronization can only be achieved
if the network obeys specific topological conditions. These conditions pertain to
subgraphs on all scales, pinpointing the impact of mesoscale topological structures
on the collective dynamical state.

Second, we study the emergence of social diversification and social coordination
in a self-assembled collaboration network. Our model generalizes the continuous
snowdrift game, a paradigmatic model from game theory, to a multi-agent setting.
In this generalization, the agents can continuously, selectively, and independently
adapt the amount of resources allocated to each of their collaborations in order to
maximize the obtained payoff. We show that both, social coordination and diversi-
fication, are emergent features of the model, and that both phenomena can be traced
back to symmetries of the local pairwise interactions.

Third, we examine the ability of adaptive networks to self-organize toward dynam-
ically critical states. We derive a generic recipe for the construction of local rules
that generate self-organized criticality. Our analysis allows on the one hand side to
relate details of the setup of hitherto studied models to particular functions within
the self-organization process. On the other hand, it can guide the construction of
technical systems featuring the desired critical behavior.
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Zusammenfassung

Komplexe Systeme können oftmals durch adaptive Netzwerke beschrieben werden.
Diese zeichnen sich dadurch aus, dass lokale und topologische Freiheitsgrade dyna-
misch gekoppelt sind, was zu einer Fülle von Selbstorganisationsphänomenen führt.
Analytische Studien können zum Verständnis der Mechanismen beitragen, die den
Phänomenen zugrunde liegen. Die Entwicklung entsprechender methodischer An-
sätze ist jedoch durch die Notwendigkeit erschwert, sowohl den dynamischen als
auch den strukturellen Eigenschaften des Netzwerkes Rechnung zu tragen.

Diese Arbeit untersucht einen neuen analytischen Ansatz, der Methoden aus der
Graphentheorie und der Theorie dynamischer Systeme kombiniert. Es ist unseres
Wissen nach der erste Ansatz, der für die Analyse kontinuierlicher Netzwerke ge-
eignet ist. Wir setzen ihn ein, um drei emergente Phänomene zu untersuchen, die in
biologischen und sozialen Systeme von zentraler Bedeutung sind: Synchronisation,
spontane Diversifikation und selbstorganisierte Kritikalität.

Im ersten Teil der Arbeit analysieren wir den Zusammenhang von Struktur und Dy-
namik in einem Netzwerk gekoppelter, synchronisierter Phasen-Oszillatoren. Die
topologische Interpretation von Jacobis Signaturkriterium zeigt, dass die Synchro-
nisation der Oszillatoren spezifische topologische Bedingungen voraussetzt. Diese
betreffen Subgraphen verschiedener Größe und offenbaren den Einfluss mesosko-
pischer topologischer Strukturen auf die kollektive Dynamik.

Im zweiten Teil untersuchen wir die Emergenz sozialer Diversifikation und Koordi-
nation in einem Kooperationsnetzwerk. Unser Model verallgemeinert das paradig-
matische Snowdrift-Game von zwei auf mehrere Agenten. Diese können die Resour-
cen, die sie in verschiedene Kooperationen investieren, kontinuierlich, gezielt und
unabhängig voneinander adaptieren, um ihren Gesamtgewinn zu maximieren. Wir
zeigen, dass sowohl soziale Koordination als auch soziale Diversifikation emergente
Eigenschaften des Models sind, und dass beide Phänomene auf die Symmetrien der
lokalen Interaktionen zurückgeführt werden können.

Im dritten Teil betrachten wir die Fähigkeit adaptiver Netzwerke, sich auf einen dy-
namisch kritischen Zustand hin zu organisieren. Wir formulieren generische Kon-
struktionprinzipien für dynamische Regeln, die selbstorganisierte Kritikalität her-
vorrufen. Unsere Analyse ermöglicht uns zum einen, Details bisher untersuchter
Modelle spezifischen Funktionen innerhalb des Selbstorganisationsprozesses zuzu-
ordnen. Zum andere bildet sie die Basis für die Konstruktion technischer Systeme,
die kritisches Verhalten aufweisen.
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1 Introduction

Consider the millions of parts in industrial machinery. To function they require elab-
orate construction and thoughtful assembly. Indeed, it is our general experience that
systems of many interacting components need organization to arrive at order and
function. All the more fascinating is that in numerous natural many-body systems
order, structure, and function arise without planning and without supervision: An-
imals behave collectively in swarms, cells cooperate in functional organs, and water
molecules arrange themselves in complex snow crystals, although none of the con-
stituent parts has a vision of the global development, much less the authority to
conduct or dominate it.

Systems, in which collective order – be it spatial, temporal, or spatio-temporal –
emerges on the basis of local interactions and local information, are called self-
organizing [1]. Self-organization plays a crucial role in biology, but also in our social
lives [2], and in the economy [3,4]. Moreover, it is increasingly considered an attrac-
tive paradigm for technical solutions beyond the reach of functional architecture and
centralized control [5]. Such solutions promise to feature both, scalability and ro-
bustness against perturbations and parameter changes. Scalability results from the
locality of interactions: By processing information from only few other constituents,
each single constituent is insensitive to the system size. Thus, large systems can be
realized by increasing only the number, but not the design, of the constituent parts.
Robustness results from the dynamical nature of the self-organization: A system
that a has evolved into a structured or functional state from unspecific initial con-
ditions is likely to reach it again, when it is perturbed by noise or environmental
changes.

Every endeavour to approach self-organization, whether to understand the phe-
nomenon in real-world systems, or to utilize it in technical applications, leads to
either of two sides of one central problem: There neither exists a generic algorithm,
which would allow to trace system-level phenomena back to the properties of the
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1 Introduction

individual constituents, nor a recipe for designing the constituents such that they
generate a desired system-level behavior.

The non-apparent relationship between local and global properties identifies self-
organization as an emergent feature of a complex system [6]. The genesis of such
features can be illustrated using the example of a chemical substance. Its solid,
fluid, or gaseous phases are not composed of solid, fluid, or gaseous particles but
rather differ in the interactions of the constituents. This suggests that for the analysis
of emergent features, such as the aggregate state, the properties of the interactions
between constituents are at least as important as the properties of the constituents
themselves.

A convenient framework for the mathematical description of a complex, self-organi-
zing system is provided by networks. Considering a given system as a network
means to reduce it to a set of discrete nodes connected by links and thus to simplify
its constituents, while retaining the complexity of their interactions.

The formal concept of networks and their terminology mostly originate from the
mathematical field of graph theory. Yet, while in graph theory, networks are usu-
ally regarded as static objects, the approach from the complex-system perspective
highlights their dynamical nature.

In general, a network model may account for two types of dynamics: State dy-
namics on the network, and topological changes of the network. In many cases,
both types of dynamics occur interdependently. Such a network, in which the local
state dynamics are topology-dependent and the link evolution is state-dependent,
is called an adaptive network [7, 8].

Adaptive networks are found in many real-world systems [7]. For instance, in
social networks, the opinion of an individual may be influenced by its interaction
partners, while an individual’s choice with whom to interact may depend on the
others’ opinions [9,10]. Further examples include technical [11], as well as biological
networks [12], chemical [13], as well as transport networks [14].

Due to their ubiquity, adaptive networks provide a framework for studying themes
from various fields. After simulation studies have opened up a plethora of most
interesting phenomena [9–29], it is todays’s challenge to develop analytical ap-
proaches for addressing the underlying principles.

Analytical approaches to adaptive networks need to account for the dual nature
of such networks and thus to comprise two different mathematical frameworks:
While graph theory provides the tools for the description of the network structure,
dynamical systems theory lends itself to the description of its dynamics. Combining
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both frameworks causes characteristic difficulties. Thus, networks are inherently
high-dimensional, while dynamical systems theory has primarily been developed
for low-dimensional systems.

Many existing approaches solve the problem by describing the network by coarse-
grained variables hence effectively reducing it to a low-dimensional system [30–42].
The information about the states of the individual nodes is typically cut down to
the abundances of nodes with a given state. Similarly, the topological information
is cut down to the abundance of certain subgraphs. These can either be subgraphs
that contain one link [30, 31], subgraphs that contain less than a given number of
links [32–36], or subgraphs that are star-shaped [37–42]. In all cases, the number
of subgraphs to be tracked increases combinatorially with the number of possible
node states limiting the approaches to discrete networks, in which the number of
accessible states is low.

In all but very specific systems, coarse-graining constitutes an approximation. The
validity of this approximation is dependent on the absence of correlations beyond
a certain scale. Thus, the degree of accuracy of coarse-grained descriptions varies
considerably depending on the model, dynamical phase, and question under con-
sideration [43].

In this thesis, we explore an analytical approach that is complementary to coarse-
graining. We use the full, high-dimensional descriptions of different adaptive net-
work models to derive exact results about their self-organizational properties. For
capturing the topological information, we complement the tools of dynamical sys-
tems theory with the tools of graph theory. Our approach is applicable to continu-
ous networks, in which the nodes and the links can assume an infinite number of
different states.

We use the approach to study three fundamental self-organization phenomena: We
first address the spontaneous synchronization of coupled oscillators, second, the di-
versification of an initially homogeneous population into different node classes, and
third, the topological self-organization of adaptive networks toward a dynamically
critical state. The investigation of the phenomena goes hand in hand with the in-
vestigation of the relation between the local, and the global, the structural, and the
dynamical properties of adaptive networks. In particular, we ask which topological
structures support a specific global dynamical state, which topological structures
evolve from a given set of local dynamical rules, and which local rules generate a
specific global behavior.

We start in Chapter 2 with a short introduction of the concepts and tool used in this
work. The chapter focuses on topics from dynamical systems theory and graph the-
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1 Introduction

ory. In addition, we introduce the concept of a phase transition, which we contrast
against the concept of a bifurcation in order to employ both angles for the analysis
in Chapter 5.

In Chapter 3, we study the interplay between structure and dynamics in a net-
work of coupled phase oscillators described by the paradigmatic Kuramoto model.
Here, the proposed approach can pinpoint specific defects precluding synchroniza-
tion. Deriving a topological interpretation of Jacobi’s signature criterion, we show
that synchronization can only be achieved if the coupling network obeys specific
topological conditions. These conditions do not only pertain to the topology of the
complete network, but also to its topological building blocks. We can thus explore
the impact of particular mesoscale structures on the stability of collective dynamical
states.

In Chapter 4, we study the emergence of social structure in a population of self-
interested agents. Here, our approach allows for studying the established contin-
uous snowdrift game in a multi-agent setting. We propose a model that accounts
for the ability of agents to maintain different levels of cooperation with different
self-chosen partners. All agents continuously, selectively, and independently adapt
the amount of resources allocated to each of their collaborations in order to max-
imize the obtained payoff, thereby shaping the social network. We show that the
symmetries of the local dynamical rules scale up and are imprinted in non-obvious
symmetries in the evolving global structure. The self-organized global symmetries
imply a high degree of social coordination, while at the same time causing the
emergence of privileged topological positions, thus diversifying the initially homo-
geneous population into different social classes.

In Chapter 5, we study a class of adaptive network models that evolve toward a
topological configuration, in which the dynamics on the network become critical.
We discuss how the emergence of self-organized criticality (SOC) is linked to the
adaptive feedback loop, and argue that in a number of models displaying SOC this
feedback is implemented according to a certain pattern. Our approach allows to de-
termine how, and under which generic conditions the pattern generates SOC. The
conceptual understanding enables us on the one hand to relate details of the setup
of exemplary models to particular functions within the self-organization process.
On the other hand, it allows us to formulate a generic recipe for the construction of
adaptation rules that give rise to SOC. We demonstrate its applicability by construct-
ing an adaptive Kuramoto model that self-organizes toward the onset of collective
synchronized behavior.

Finally, we summarize our results in Chapter 6. We emphasize that they can feed
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back to both, the fundamental understanding of biological systems as well as the
innovative design of technological applications. Beside the results on the studied
phenomena, we discuss general aspects of the approach itself. In particular, we
outline possible extensions of the explored methodology.
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2 Concepts and Tools

The purpose of this work is to develop new analytical approaches that capture
the dual nature of dynamical networks by combining tools from graph theory, and
dynamical systems theory. In this chapter we introduce the relevant concepts and
approaches. The selected topics are elementary, and can be found in most textbooks.
They are presented here to illustrate the line of reasoning employed, rather than to
achieve mathematical rigor. In the same spirit, lengthy or technical aspects, which
substantiate the argumentation but interrupt the line of thought, are presented in
boxes throughout the subsequent chapters.

We begin in Section 2.1 with dynamical systems. Following a brief definition of the
central notions, we focus on two techniques – linear stability analysis and bifurca-
tion analysis – to which we will return in the course of the following chapters. In
Section 2.2, we introduce the concept of phase transitions and contrast it against the
concept of a bifurcation. Finally, in Section 2.3 we review the relevant notions from
graph and network theory.

2.1 Dynamical systems

In many different disciplines, observations of an experimental system are described
by a set of state variables. The common reading in mathematics and physics inter-
prets the values of these variables at any instance t as coordinates in the abstract
space of all possible states of the system – the so-called phase space [44–46]. The
instantaneous state of a system is thus described by a position in phase space. And
its evolution is given by a trajectory through phase space.

Dynamical models mimic the progression of a physical systems through phase space
by formulating a prescription which, for any point in phase space, specifies the
points that the system will pass through in the immediate future. Typically, such
prescriptions are formulated as differential equations or time discrete maps, which
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2 Concepts and Tools

can then be studied in the framework of dynamical systems theory. The evolution
equations may be stochastic or deterministic. Often, they are non-linear and param-
eter dependent. If they do not explicitly depend on time, the dynamical system is
called autonomous [45].

In this work, we consider dynamical systems described by autonomous systems of
ordinary differential equations (ODEs):

d
dt

x(t) = f
(
x(t), p1, . . . , pm

)
, (1)

where the components of the vector field f are smooth functions depending only on
the phase-space coordinates x ∈ Rn, and on m parameters pi ∈ R [46]. A function
x(t) which solves the system of ODEs for a given set of initial conditions is called a
trajectory or orbit. While in many textbooks the emphasis is on the calculation and
the characterization of individual trajectories (see [47, 48] and references therein),
this work mostly focusses on families of trajectories, and, in particular, on their
long-term behavior [45, 46].

The dynamical systems studied in this work are dissipative. This means that over
time the phase space volume spanned by trajectories with different initial conditions
contracts. In such systems, we can distinguish between transient and long-term
behavior. During the transients, the system approaches certain regions in phase
space, in which it then remains for all time.

One possible type of long-term behavior is stationarity. It corresponds to a steady
state x∗ of the system, for which f (x∗) = 0. Below, we employ the example of a
steady state to discuss the concept of stability, and the techniques of linear stability
analysis.

The notion of stability as used in this work can be understood in terms of the
system’s reaction to small perturbations. A steady state x∗ of the dynamical system
given by Eq. (1) is called stable, if all trajectories beginning close to it remain close
– that is, if small perturbations from the steady state remain small. The stronger
notion of local asymptotic stability requires that all trajectories starting close to
the steady state eventually converge toward it, i.e., that small perturbations decay.
Below, we use the term ‘stability’ in the sense of local asymptotic stability.

In the vicinity of a steady state, the system of ODEs in Eq. 1 can be approximated
by the linear system

d
dt
δx = J δx . (2)
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2.1 Dynamical systems

Here, δx denotes a small deflection from x∗ and J ∈ Rn×n is the Jacobian matrix,
defined by Jik = ∂ẋi/∂xk|x∗ . The solutions of the linear system are well known, and
can be written in the form

δx(t) =
n∑

i=1

ci e
λit vi , (3)

where the ci are coefficients predefined by the initial conditions, vi are the right
eigenvectors of J and λi the corresponding eigenvalues [45]. Equation (3) shows
that the stability of x∗ is determined by the spectrum of J: if all eigenvalues of
the Jacobian have negative real parts, then all the perturbations δx decay, and the
steady state is stable. By contrast, if one or more eigenvalues of the Jacobian have
positive real parts, then perturbations in direction of the respective eigenvectors are
amplified, and the steady state is unstable.

In summary, the linear stability analysis of a dynamical system reduces to an eigen-
value problem. If all parameters pi are specified, the problem can be solved by
using numerical algorithms for calculating the spectrum of high-dimensional ma-
trices [49]. In many cases, however, it is interesting to study families of systems
with generic, unspecified parameters. In such cases, the eigenvalue problem has
to be solved analytically. In particular for high-dimensional systems, it is useful to
consider that for determining the stability properties, complete knowledge of the
spectrum of J is unnecessary; knowledge of the signs alone suffices. Tools for stabil-
ity analysis that depart from this point are the method of resultants [50], and Jacobi’s

signature criterion discussed in Chapter 3 and 4.

The idea of studying families of dynamical systems, whose members differ with
respect to their parameter values pi, leads directly to another important concept,
that of bifurcation. In general, two systems with slightly different parameter sets p

and p′ have different but topologically equivalent dynamics, that is, they are identical
with respect to the number, and type of their attractors. However, there may be
parameter sets p, for which there are arbitrarily close sets p′ exhibiting topologically
non-equivalent dynamics. Such parameter sets p define special points in parameter

space, called bifurcation points [45, 46]. Crossing a bifurcation point in parameter
space induces a structural transition in the phase space. The transition itself is
called a bifurcation.

If the evolution equations (1) are smooth functions, the bifurcation points are not
isolated in parameter space, but lie on a manifold [45]. The difference between the
dimension of the parameter space and the dimension of the bifurcation manifold
is referred to as the codimension of the bifurcation. Equivalently, the codimension
can be defined as the minimal number of parameters that need to be varied for the
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2 Concepts and Tools

bifurcation to occur.

Bifurcation manifolds divide the parameter space in regions of topologically equiv-
alent systems. In physics, such regions are often called the phases of a system.
Phases and bifurcations represent the observable characteristics of a dynamical sys-
tem, which can be used to compare the theoretical model with the described exper-
imental system. Thus, variations of experimental parameters within a phase should
not qualitatively change the behavior of the experimental system, while already
marginal changes close to a bifurcation manifold are expected to induce abrupt
transitions [51–53].

2.2 Phases and phase transitions

Many particle systems in equilibrium can often be analyzed on a macroscopic, phe-
nomenological level, the classical example being an ideal gas: Statistical physics
relates the microscopic properties of individual particles, such as location and mo-
mentum of atoms and molecules, to macroscopic state variables, such as tempera-
ture and pressure. The relation between both levels of description is probabilistic. It
is based on the assumption that the probability of finding a state with given macro-
scopic state variables depends on the number of compatible microscopic states [54].

Generalizing statistical physics to systems far from equilibrium, considered here, is
a persistent challenge. Thus, for example, the fundamental assumption on the prob-
ability of a given macroscopic state is inherently bound to equilibrium. Accordingly,
we do not use statistical physics for the analysis of the systems that we consider in
the subsequent chapters. Yet, we do use its terminology to describe the featured
phenomena on a macroscopic, phenomenological level.

In the language of statistical physics, a phase is a region in parameter space, through-
out which the macroscopic state variables of a system change smoothly. At a phase
boundary, by contrast, small variations of the parameters induce qualitative changes
in the macroscopic variables. These changes can either be discontinuous, or else be
continuous, but non-analytic. Depending on the actual type of changes, we speak
of a discontinuous / continuous phase transition respectively [55, 56].

In this work, we will be concerned only with continuous phase transitions. A system
that undergoes such a transitions displays unique features, which are commonly
subsumed under the term criticality. In a critical state, the correlation between local
properties of the microscopic constituents extend over arbitrarily large distances,
limited only by the size of the system [56]. Moreover, a number of observables
show power-law behavior.
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2.3 Graphs

Continuous phase transitions can in many cases be studied in terms of a so-called
order parameter, an observable that it is zero in one phase and non-zero in the other
[56]. An order parameter profile associates to every point in parameter space a value
of the order parameter. It displays kinks at the points in parameter space, where the
transition occurs. It is worth noticing that specifying an order parameter determines
the corresponding phase transition, while a phase transition can often be described
by different order parameters [55, 57].

In summary, a situation, in which small variations in the parameters induce quali-
tative changes in the behavior of an experimental system, can be analyzed in terms
of a bifurcation or a phase transition depending the description that is available for
the underlying system. In cases where both description are available, the relation
between bifurcations and phase transitions is known [58].

For the class of systems described in Chapter 5, the phase-transition treatment is
well established; descriptions in terms of bifurcation analysis, however, are so far
known only for a few special cases [59]. Yet, even for systems which have no such
descriptions, insights from bifurcation theory can often be used indirectly.

2.3 Graphs

In the following chapters, we will use the tools from dynamical systems to analyze
the microscopic dynamics of and on networks, and the concepts from statistical
physics to describe the observed macroscopic behavior. The concepts of graph the-
ory will be used to classify the networks’ structure.

Let us emphasize that there exist two terminological frameworks for describing the
structure of a network: That of graph theory, which it mostly used in mathematics,
and that of complex network theory, which is more common in physics. Here, we
mainly use the terminology of complex network theory. The only exception are the
terms ‘network’, and ‘network theory’, which we replace by the terms ‘graph’, and
‘graph theory’, where we want to make explicit that solely structural aspects are
meant.

Below, we give a short overview over the central notions of complex network /
graph theory. Detailed introductions into the field can be found in [60, 61].

A graph describes the pairwise relations between objects from a certain collection.
The objects are represented by so-called nodes; their pairwise relations by so-called
links. Every link has two endpoints in the collection of nodes, and is said to con-
nect them. Connected nodes are called neighboring or adjacent, the aggregate of all
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2 Concepts and Tools

neighborhood relations defines the topology.

Graphs are categorized in different classes depending on the properties of their
links [61]. A link that has an orientation, distinguishing one of the connected nodes
as its origin and the other as its end point, is called directed. Equivalently, a link that
has no orientation is called undirected. A link that is associated with a real number
is called weighted. A directed/undirected/weighted graph is a graph that contains
directed/undirected/weighted links.

For describing the structure of a graph, one often refers to its building blocks. A
graph G′, whose nodes and links form subsets of the nodes and link of a given graph
G, is called a subgraph of G. A subgraph G′ of G is called a spanning subgraph if it
contains all nodes of G.

A (simple) path is a subgraph that consists of a set of nodes connected by an un-
branched sequence of links; the length of the path is the number of links con-
tained [61]. A cycle is a path that ends at the node it begins. Cycles of length
one are called self-loops.

A graph is called connected if every pair of nodes is connected by a path, and it is
called fully connected if every pair of nodes is connected by a path of length one. A
graph that is not connected can be divided into disjoint connected subgraphs, called
components. A component without cycles is a tree.

The complete topology of a graph is captured in the so-called adjacency matrix. This
is a square matrix A, whose order is determined by the number of nodes in the
graph. An entry Aij of A is zero if node i and j are not adjacent, and one if they are.

To capture the topology of weighted graphs one can define a weighted adjacency

matrix W. This is an adjacency matrix, whose entries Wij denote the weight of the
link between i and j. Thus, Wij is zero if node i and j are not adjacent, but can
usually take any value from a specified interval if they are.

Some of the global attributes of graphs defined above map directly to global prop-
erties of the adjacency matrix. Thus, for an undirected graph, Aij = Aji, i.e., the
adjacency matrix is symmetric. For a graph without self-loops, it has zeroes on the
diagonal. Finally, if a graph consists of more than one component, its node can be
relabeled such that the adjacency matrix becomes block diagonal [61].

In network models that contain a large number of links and nodes, the structure
of the underlying graph is often described only on the level of global topological
features. The most prominent among these features are based on the degree of the
nodes. A nodes’s degree is defined as the number of links attached to it [60]. The
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2.4 Summary

degree distribution of a graph captures the relative frequency of nodes with a given
degree. The mean degree of a graph is the average of the degrees of its nodes and
thus proportional to the ratio between links and nodes of the graph. Interestingly,
this coarse grained measure already allows some statements concerning the actual
topology. Thus, a component with N nodes and mean degree 2(N − 1)/N must be
a tree, a component with N nodes and a mean degree greater or equal to 2 must
have at least one cycle.

Finally, note that the locality of interactions and information, which is fundamen-
tal to our definition of self-organization, is topological in nature. In the context of
graphs and networks, locality is usually defined as pertaining to direct neighbor-
hood relations. For instance, in Chapter 5 we call an update rule local if it only
depends on the state of a focal node and the states of its topological neighbors.

2.4 Summary

In this chapter we have reviewed tools and concepts from dynamical systems the-
ory, statistical physics, and graph theory, which are used for the analysis of self-
organization phenomena in network models in the subsequent chapters. In these
models, the evolution of the individual microscopic constituents are mostly for-
mulated in terms of dynamical systems. However, the dimension of the systems
is typically huge, such that the emergent, system-level phenomena fall within the
scope of the concepts of many particle statistical physics. Finally, the structure of
the networks will be described using the concepts from graph theory.
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3 Topological stability criteria for synchronized states

In the multifarious world of emergent collective phenomena, synchronization stands
out as one of the most intensively studied [62, 63]. The term pertains to situations,
in which coupled microscopic oscillators acquire a common frequency due to their
interactions. This then gives rise to macroscopic oscillations.

One reason for the prominent role of synchronization is the universality of the phe-
nomenon. Real world examples of systems, whose periodic macroscopic behavior
can be traced back to collective oscillations of individual microscopic units, are
found in many different fields such as biology, ecology, and engineering [62–65].
They include for instance the beating heart [66], populations of flashing fireflies [67]
or radio communication devices [68].

Another reason for the extensive study of synchronization is that it is considered
a benchmark for the understanding of emergent phenomena as such [62]. The
paradigmatic model proposed by Kuramoto [69] has opened the field for detailed
studies of the interplay between collective dynamics and interaction structure [70–
74]. These studies have revealed the influence of various topological measures, such
as the clustering coefficient, the diameter, and the degree or weight distribution, on
the propensity to synchronize [75–77]. However, recent results [64, 78, 79] indicate
that beside global topological measures also details of the exact local configuration
can crucially affect synchronization. This highlights synchronization of phase oscil-
lators as a promising example, in which it may be possible to understand the local,
global, and mesoscale constraints on stability that severely limit the operation of
complex technical and institutional systems [80, 81].

In this chapter, we derive necessary topological conditions for the stability of col-
lective synchronized dynamics. While statistical approaches reveal the influence of
global topological features on the propensity to synchronize, our approach identifies
specific topological defects precluding synchronization. These pertain to subgraphs
that contain multiple nodes but are smaller than the entire network, thus imposing
constraints on the mesoscale.
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3 Topological stability criteria for synchronized states

We start in Sec. 3.1 by introducing the Kuramoto-model of heterogeneous coupled
phase oscillators. By means of Jacobi’s signature criterion we determine necessary
algebraic conditions for the stability of phase-locked solutions. In Sec. 3.2, we in-
troduce a graphical notation, on the basis of which the algebraic stability conditions
can be mapped on topological stability criteria (cf. Sec. 3.3). In Sec. 3.4, we show
that the results can readily be generalized to other systems than the studied. Finally,
we apply our analysis to an adaptive version of the Kuramoto model in Sec. 3.5, and
discuss our results in Sec. 3.6.

3.1 Stability in networks of phase-oscillators

Consider a system of N oscillators i, whose time evolution is given by

ẋi = ωi +
∑

j 6=i

Aij sin(xj − xi) , ∀i ∈ 1 . . .N . (4)

Here, xi and ωi denote the phase and the intrinsic frequency of node i, while
A ∈ RN×N is the weight matrix of an undirected, weighted interaction network.

Equation (4) defines the so-called Kuramoto model, that is today considered to be a
paradigm for the study of synchronization phenomena in coupled discrete systems
[82], and is, therefore, used as the natural benchmark for comparative evaluations
of performances of methods and tools.

If Aij 6= 0, the two oscillators i and j are said to be coupled, if further ẋi(t) = ẋj(t)
for all t, they are said to be phase locked. In this chapter, we are interested in com-
pletely phase locked states, i.e., in states where ẋi(t) = ẋj(t) for all i, j. Studied in a
reference frame that co-rotates with a frequency Ω = 1/N

∑N
i=1 ωi, the phase-locked

states correspond to steady states of the governing system of equations (4). The
local stability of such states is determined by the eigenvalues of the Jacobian matrix
J ∈ RN×N defined by Jik = ∂ẋi/∂xk (cf. Chapter 2).

In systems of symmetrically coupled phase oscillators, the Jacobian J is symmet-
ric and thus admits analysis by Jacobi’s signature criterion (JSC). The JSC (also
known as Sylvester criterion) states that the number of negative eigenvalues of a
hermitian or symmetric matrix J equals the number of changes of sign in the se-
quence 1, D1, . . . , Dr , where Dq := det (Jik), i, k = 1, . . . , q, is the principal minor of
order q, and r is the rank of J [83]. In a stable system, the sequence has to alter-
nate in every step. Hence, a necessary and sufficient condition for stability is that
sgn
(
Dq
)
= (−1)q for all q.
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Stability analysis by means of JSC is well-known in control theory [83] and has been
applied to problems of different fields from fluid- and thermodynamics to offshore
engineering [84–86]. However, the applicability of JSC is presently limited to sys-
tems with few degrees of freedom. For system with many degrees of freedom the
analytical evaluation of JSC is impeded by the growth of both, a) the number of
determinants that have to be checked, and b) the number of terms in each deter-
minant. Dealing with this growth is the central difficulty addressed in the present
chapter.

Let us first consider difficulty (a) stated above. Applying the sufficient condi-
tion is impracticable for most larger systems. Note, however, that demanding
sgn
(
Dq
)
= (−1)q for some q already yields a necessary condition for stability.

The necessary stability condition that is found by considering a principal minor of
given order q depends on the ordering of variables, i.e., the ordering of rows and
columns in the Jacobian. By considering different orderings, the number of condi-
tions obtained for a given q can therefore be increased [87]. To distinguish minors
that are based on different orderings of the variables, we define S =

{
s1, . . . , sq

}
as a

set of q indices and Dq,S as the determinant of the submatrix of J, which is spanned
by the variables xs1 , . . . , xsq . Therewith, the conditions for stability read

sgn
(
Dq,S

)
= (−1)q, ∀S, q = 1, . . . , r. (5)

Considering necessary rather than sufficient conditions avoids the difficulty (a)
mentioned above, which leaves us to deal with difficulty (b), i.e., the combinato-
rial explosion of terms that are needed to write out the conditions for increasing q.
In the common notation more than 700 terms are necessary for expressing the mi-
nors of order 6. Although we cannot circumvent this problem completely, progress
can be made by employing a graphical notation that captures basic intuition and
allows for expressing the minors in a concise way.

3.2 Graphical notation

We propose a graphical notation based on a topological reading of the minors. We
interpret the Jacobian J as the weight matrix of an undirected, weighted graph G. A
Jacobian element Jij then corresponds to the weight of a link connecting nodes i and
j. We can now relate products of the Jacobian elements to subgraphs of G spanned
by the respective links. For instance JijJjk is interpreted as the path i-j-k, JijJjkJki
as a cycle from i to j to k and back to i. Thus, the minors of J can be expressed as
sums over subgraphs of G.
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3 Topological stability criteria for synchronized states

The Leibniz formula for determinants [88] implies that (i) a minor Dq,S is a sum over q!
elementary products Ji1j1 · . . . · Jiqjq ; and that (ii) in each of these products every index

si ∈ S occurs exactly twice.

In the topological reading this translates to the following statements: Because of property

(i), each term of a minor Dq,S corresponds to a subgraph with q links. Because of property

(ii), these subgraphs are composed of sets of cycles in G: Every index si ∈ S occurs either

with multiplicity two on a diagonal element of J, or, with multiplicity one, on two off-

diagonal elements of J. In the former case, the respective factor corresponds to a self-loop

of G, i.e., to a cycle of length n = 1; in the latter case, there is a set of factors Jij i 6= j

corresponding to a closed path of links, i.e., a cycle of length n > 1.

Box 1: All minors Dq,S can be decomposed in the cyclic subgraphs of G.

In Box 1 we show that every term occurring in a minor Dq,S of J corresponds to
a subgraph that can be decomposed in cycles of G. This allows expressing the
index structure of every term by a combination of symbols denoting cycles of a
given length. The idea is now to supplement the basis of symbols with a summa-
tion convention; This convention is designed such that all algebraic terms that are
structurally identical and only differ by index permutations can be captured in one
symbolic term, which drastically reduces the complexity of the minors.

Below, we use the following definitions: The basis of symbols is given by ×, |,△,2, . . .

denoting cycles of length n = 1, 2, 3, 4, . . .. The summation convention stipulates that
in a minor Dq,S, every product of symbols denotes the sum over all non-equivalent
possibilities to build the depicted subgraph with the q nodes s1, . . . , sq. With these
conventions the first 4 principal minors can be written as

D1 = × (6a)

D2 = × · × − | (6b)

D3 = × · × · × − × · | + 2△ (6c)

D4 = × · × · × · × − × · × · | + | · | + 2 × ·△ − 22 (6d)

More generally

Dq,S =
∑(

all combinations of symbols with
∑

n = q
)

, (7)

where symbols with n > 2 appear with a factor 2 that reflects the two possible
orientations in which the corresponding subgraphs can be paced out. Symbols with
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Figure 1: Example for the graphical notation. Shown are the minors of the matrix (8) in alge-
braic, and graphical notation, and, for each term, the corresponding subgraph of a
three-node graph G. Here, as well as in the next figures, filled symbols correspond
to nodes ∈ S, open symbols to nodes /∈ S.

an even (odd) number of links carry a negative (positive) sign related to the sign of
the respective index permutation in the Leibniz formula for determinants [88].

An example for the graphical notation is presented in Fig. 1. The figure displays the
three principal minors of the symmetric 3 × 3 matrix

J=






J11 J12 J13

J12 J22 J23

J13 J23 J33




 (8)

in algebraic, and graphical notation. Moreover, it displays for each term the corre-
sponding subgraph of a three-node graph G.

In many systems, including the standard Kuramoto model, fundamental conserva-
tion laws impose a zero-row-sum condition, such that Jii = −

∑

j 6=i Jij . Using this
relation we can remove all occurrences of elements Jii from the Jacobian and its mi-
nors. In the topological reading this substitution changes the graph G by replacing
a self-loop at a node i by the negative sum over all links that connect to i.

The simplification of the minors due to the zero-row-sum condition can be under-
stood using the example of the Eqs. (6). Replacing the self-loops, the first term of
every minor Dq,S, ×q, is (−1)q times the sum over all subgraphs meeting the follow-
ing conditions: (i) the subgraph contains exactly q links; (ii) there is at least one link
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3 Topological stability criteria for synchronized states

connecting to every node ∈ S; and (iii) every link connects to at least one node ∈ S.
By means of elementary combinatorics it can be verified that all other terms of Dq,S

cancel exactly those subgraphs in ×q that contain cycles. This enables us to express
the minors in another way: Defining

Φq,S =
∑

all acyclic subgraphs of G meeting conditions (i)–(iii) (9)

we can write
Dq,S = (−1)qΦq,S . (10)

We remark that Kirchhoff’s Theorem [89], which has previously been used for the
analysis of dynamical systems [90, 91], appears as the special case of Eq. (10), in
which q =N − 1.

The simplification of the minors due to the zero-row-sum condition as well as the
relation between the Dq,S and their topological equivalents Φq,S can be illustrated
by means of a simple example. Consider the symmetric 6 × 6 matrix

J=












−(J12 + J13) J12 J13 0 0 0
J12 − (J12 + J23) J23 0 0 0
J13 J23 − (J13 + J23 + J34) J34 0 0
0 0 J34 − (J34 + J45) J45 0
0 0 0 J45 − (J45 + J56) J56

0 0 0 0 J56 −J56












(11)

which obeys the zero-row-sum condition. In Fig. 2, we calculate the minor D4,S={1,...,4}

in terms of the subgraphs of the corresponding graph G. The calculation illustrates
the reasoning that lead to the Eqs. (9) and (10).

The complete sequence of minors Dq,S, q = 1, . . . , r can be calculated as

D1,S = (−1) (J12 + J13)

D2,S = (−1)2 (J12J13 + J12J23 + J13J23)

D3,S = (−1)3 (J12J13 + J12J23 + J13J23) J34

D4,S = (−1)4 (J12J13 + J12J23 + J13J23) J34J45

D5,S = (−1)5 (J12J13 + J12J23 + J13J23) J34J45J56

where S =
{

1, . . . , q
}

, and r = 5 due to the zero-row-sum condition.

On the other hand, we can use the definition (9) to construct the sequence Φq,S,
q = 1, . . . , r, directly from the graph G (cf. Fig. 3). A comparison of both, the alge-
braic and the topological results, reproduces Eq. (10). Note that labeling the nodes
in different order would have yielded different algebraic as well as topological ex-
pressions.
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Figure 2: Symbolic calculation of a minor using the zero-row-sum condition. Shown is the
graph G, defined by the off-diagonal entries of Eq. (11). The terms of the minor
D4,S can be written as × · × · × · × = A + B + C + 2D, − × · × · | = −(B + 2C), | · | = C,
2 × · △ = −2D and −22 = 0 (cf. Eq. (6d)). It thus follows that D4,S ≡ Φ4,S = A is the
sum over all acyclic subgraphs of G meeting conditions (i)–(iii).
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Figure 3: Topological equivalents of minors. Shown is the complete sequence of
Φq,S, q = 1, . . . , 5 for the graph G from Fig. 2.
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3 Topological stability criteria for synchronized states

3.3 Topological stability conditions

Let us shortly summarize what we obtained so far. The topological reading of
determinants maps a symmetric Jacobian J with zero row sum onto a graph G,
whose weighted adjacency matrix is given by the off-diagonal part of J. The minors
of J can then be interpreted as sums over values associated with subgraphs of G.
Combining the Eqs. (5) and (10), the algebraic stability constraints on the minors of
J translate into

Φq,S > 0, ∀S, q = 1, . . . , r. (12)

We emphasize that the graph G is not an abstract construction, but combines in-
formation about the physical interaction topology and the dynamical units. For
example, if a graph G has disconnected components, there is a reordering of the
variables xi, such that J is block diagonal. This implies that the spectra of different
topological components of G decouple and can thus be treated independently.

From Eq. (12) we can immediately read off a weak sufficient condition for stability:
As Φq,S is a sum over products of the Jij , a Jacobian with Jij ≥ 0 ∀i, j is a solution
to Eq. (12) irrespective of the specific structure of G (for the specific case of the
Kuramoto model known as Ermentrout theorem [92, 93]). By contrast, if Jij < 0 for
some i, j, then the existence of solutions of Eq. (12) is dependent on the topology. In
the following, we investigate which combinations of negative Jij in a graph G lead
to the violation of at least one of the Eqs. (12). For this purpose, we first explore the
restrictions that Eq. (12) imposes on simple topological building blocks. Thereafter,
we piece the results for the different example topologies together to formulate a
conjecture for stability conditions in complex topologies.

In Fig. 4, we illustrate that if G is a tree, then Jij ≥ 0 ∀i, j is not only a sufficient
but also a necessary condition for stability. The reasoning in the figure translates
one-to-one to any tree-like subgraph of a general graph G that is not part of a cycle
of G. More precisely: Stability requires that all links of G that are not part of a cycle
correspond to positive entries of the Jacobian. Conversely, links corresponding to
negative entries can only appear in cyclic parts of the graph.

In Fig. 5, we summarize results for different cyclic example graphs, which we ob-
tained by the calculations sketched in Box 2. The figures show that stability restricts
the maximum number of links corresponding to negative elements, as well as their
position, and their strength. The maximum number of negative links that can be
reconciled with stability is one less than the number of independent cycles. Further,
the negative links must be placed such that the graph that is obtained by removing
the negative links is still connected.
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3.3 Topological stability conditions

Figure 4: Necessary stability condition for trees. (a,b) If G is a tree, ΦN−1,S has only one term,
G itself (nodes /∈ S are represented by open symbols). The condition ΦN−1,S > 0
then allows for an even number of negative links in G. If the number of negative
links is > 0 (e.g. 2), we can find a pair of nodes i, j connected by a negative link
and choose S =

{
k|k 6= i, j

}
such that ΦN−2,S = ΦN−1,S/Jij < 0 (c). It follows that if

G is a tree, stability requires that all links are positive.

a b c

Figure 5: Necessary stability conditions for cyclic example topologies. (a) If G is a cycle, it
can have at most one negative link whose strength |α| is bounded by a cycle-length
dependent relation (cf. Box 2). (b) If G is composed of two cycles that share one
node, each of these cycles can have at most one negative link of bounded strength.
(c) If G is composed of two cycles that share a sequence of links, every unbranched
sequence of links (red, violet, blue), can at most have one negative link, while the
total number of negative links may not exceed 2. Removing the maximum number
of negative links from the example topologies reveals that the permissible graph
is still connected (lower panels).
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3 Topological stability criteria for synchronized states

Let G be a cycle of length N, whose nodes are numbered such that the indices occur in

increasing order, when the cycle is paced out. To evaluate the stability restrictions on

G, we will below apply the stability condition Eq. (12) successively to different sectors

of G. We start with Φq=1,S={1}, and expand S in each step by one node q + 1, thereby

incrementally increasing the length of the considered sector.

The first element in the sequence of restrictions stipulates that Φ1,S=1 = JN1 + J12 > 0,

which implies that two neighboring links cannot both have negative sign. To derive

further constraints on the maximum number and possible positions of negative links, we

will below assume that JN1 is negative. Note that this done without loss of generality as

the numbering of the nodes is arbitrary.

The second element in the sequence stipulates that Φ2,S={1,2} = JN1(J12 + J23)+ J12J23 >

0, which modifies the upper bound on the absolute value of the negative link as per

−JN1 < J12J23/(J12 + J23). Let us next ask, if there can be further negative links in

the chain JN1J12J23. As seen before, JN1, J12 < 0 is excluded by the Φ1,S=1 criterion;

To see that JN1, J23 < 0, too, violates stability, consider that condition Φ2,S={1,2} can be

rewritten as − (JN1 + J23) < (−JN1)(−J23)/J12. Due to the Φ1,S=2 criterion −J23 < J12,

such that the right hand side of the inequality is bounded above by −JN1. It follows that

− (JN1 + J23) < −JN1, which excludes JN1, J23 < 0. Hence, no two links in G that are

separated by one link can simultaneously have negative sign.

Along to the sketched line, we can iteratively calculate the whole sequence of restrictions.

The maximum q that has to be considered is N − 1, which results from G representing a

Jacobian, whose rank is deficient due to the zero row sum condition. Every element Φq,S

of the sequence Φ1,S, . . . ,ΦN−1,S prohibits the existence of a second negative link and

modifies the upper bound on −JN1 as per

−JN1 <
J12 · . . . · Jq q+1

∑
all distinct products of (q − 1) factors Jij , i, j ∈

{
S ∪ q+1

} . (13)

The right hand side of Eq. (13) is monotonously decreasing with increasing q. We can

thus conclude that G can have at most one link, whose absolute value α is bounded above

by

α <
J12 · . . . · JN−1 N

∑
all distinct products of (N − 2) factors Jij , i, j ∈ {1, . . . ,N}

. (14)

If G consists of two cycles sharing one node, all connected sectors Φq,S that do not

contain the branching node can be treated in perfect analogy to the above discussed case

of an isolated cycle. More precisely, if A and B are sets of node indices, which can

uniquely be associated to one of the two cycles, and if further l(X) is the number of

elements in set X = A,B, then all Φq,S with q ≤ l(X) and S ⊂ X are positive, if both
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3.3 Topological stability conditions

cycles have at most one negative link, whose absolute value is restricted by Eq. (14)
evaluated at N = l(X). Moreover, all Φq,S with l(X) < q ≤ l(A) + l(B) = N − 1 and

S containing indices from A and B can be factorized in those Φq,S with q ≤ l(X) and

S ⊂ X, and thus do not yield further restrictions.

If G consists of two cycles sharing a number of links, the proceeding as well as the

naming conventions can be adopted from the case of two cycles sharing one node. Hence,

all Φq,S with q ≤ l(X) and S ⊂ X are positive, if every unbranched sector, A, B, and

C, has at most one negative link, whose absolute value satisfies Eq. (14). Like above,

all Φq,S with l(X) < q ≤ l(A) + l(B) + l(C) and S containing indices from A, B and

C can be factorized in the Φq,S with q ≤ l(X) and S ⊂ X, and thus yield no further

restrictions. Note, though, that due to the presence of two branching points, which

do not belong to any of the sets X, the highest q that can be addressed in this way

l(A) + l(B) + l(C) =N − 2, where N denotes the number of nodes in G. As the rank of

the Jacobian associated to G equals N − 1, we have to address one additional criterion. It

can be written as

ΦN−1,S = Φl(A),AΦl(B),BΠC +Φl(C),CΦl(B),BΠA +Φl(A),AΦl(C),CΠB > 0

where, ΠX denotes the product of all links in sector X. If all three sectors have one

negative link, whose strength does not exceed the respective upper bounds, all Φl(X),X >

0, but all ΠX < 0. Thus, the condition ΦN−1,S > 0 restricts the total number of possible

negative links to maximally two.

Note that the presented analysis can readily be generalized to cases, where cyclic struc-

tures of the discussed types do not appear isolated, but are connected by treelike struc-

tures, and thus constitute subgraphs of a more general graph G. In this case, the restric-

tions concerning the maximum number and location of negative links remain unchanged,

while the restriction Eq. (14) on the absolute value of possible negative links is affected

by the weight of links from adjacent treelike subgraphs.

Box 2: Stability restrictions on cyclic graphs G: Calculations

The results from the examples considered so far can be summarized by saying that
stability of the synchronized state requires the existence of a spanning tree in which
every link corresponds to a positive element of the Jacobian. We conjecture that this
result holds also in the general case, so that stability in any network requires that
the graph G must have a spanning tree of positive links, i.e., if all negative links are
removed from G, the remaining graph must still be connected.

In order to check the conjecture stated above numerically, we generated ensembles
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Figure 6: Numerical test of the hypothesized stability condition. The fraction of matrices J

that have a positive largest eigenvalue although the corresponding graph G pos-
sesses a positive spanning tree is plotted against |α|. The continuous transition
from 0 to 1 confirms that the upper bound on |α| depends on the exact position of
the negative link.

of 108 connected graphs of size N = 25 and fixed mean degree 〈k〉. In each graph,
we assigned a negative weight −α to all but N − 1 randomly chosen links. The re-
maining links were assigned weight 1. We then checked for each graph, whether the
graph had a positive spanning tree and calculated the largest non-trivial eigenvalue
λ of the corresponding Jacobian. The procedure was repeated for different values
of α.

Among the 109 generated test graphs, more than 98% did not contain a positive
spanning tree. Of these networks, none were found to be stable, which corroborates
the conjecture. Among the approximately 107 graphs that did contain a positive
spanning tree, stability depended on the specific topology and the value of α (cf.
Fig. 6). As expected from Box 2, the fraction of networks that are unstable although
they obey the necessary condition increases with increasing α.

Applied to the Kuramoto model defined in Eq. (4), the topological stability crite-
rion reveals common properties of the configuration of all possible phase-locked
systems. In a phase-locked state, Jij = Aij cos(xj −xi), where xj −xi is the stationary
phase difference between oscillator j and i. Given that all link weights Aij ≥ 0, sta-
bility of the phase-locked state requires that the coupling network has a spanning
tree of oscillators obeying |xj − xi| < π/2.

In case the spanning tree is disconnected by a negative link with |xj − xi| > π/2,
the topological stability criterion indicates two interventions that may resolve the
instability of the phase-locked state. Consider that the stationary phase difference
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between the oscillators i and j obeys the relation

xj − xi = arcsin




1
Aij

(
Ω −ωi −

∑

k 6=i,j

Aik sin(xk − xi)
)



 , (15)

where Ω = 1/N
∑N

i=1 ωi. The absolute value of the left hand side decreases with
decreasing argument of the arcsin-function. For achieving |xj − xi| < π/2, we can
therefore either increase the coupling Aij or shift the intrinsic frequencies ωi, ωj

toward the mean frequency Ω.

3.4 Other applications

Although we have so far focused on the Kuramoto model as an example, the topo-
logical interpretation of the JSC only requires a hermitian Jacobian. Further, the
simplification leading up to the spanning tree criterion is possible whenever the
Jacobian has zero row sums. This condition is satisfied for instance by all systems
of the form

ẋi = Ci +
∑

j 6=i

Aij ·Oij(xj − xi) , ∀i ∈ 1 . . .N (16)

where the Aij are the weights of a symmetric interaction network and the Oij odd
functions. We emphasize that the approach remains applicable in heterogeneous
networks containing different link strengths Aij , coupling functions Oij or intrinsic
parameters Ci.

The class of systems, to which the present results are directly applicable, thus
includes general networks of phase oscillators as well as other models such as
continuous-time variants of the Deffuant model of opinion formation [94]. In the
context of this model, the xi denote opinions held by a networked community of
agents. The criteria derived here then constrain the distribution of opinions that can
be sustained in stationarity.

Although the specific criteria derived above are contingent on the zero-row sum
condition, it can be expected that the general approach proposed here is also appli-
cable to situations where this condition is violated, such as in the model of coopera-
tion among interacting agents studied in [87]. A simple extension of Eq. (16), which
violates the zero row sum condition, is found by replacing Ci by a function of xi.
Such an extension can account for the dynamical retuning of the intrinsic frequency,
e.g., for modeling homeostatic feedback in neural networks. For illustrating the ap-
plication of the proposed method to models, in which the zero row sum condition
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3 Topological stability criteria for synchronized states

is violated in some rows, we consider another model inspired by neuroscience in
the subsequent section.

Before we address our final example, let us emphasize that the graphical notation
proposed here may also be useful for problems not concerning stability analysis.
For instance, it allows exploring the isospectrality of hermitian or symmetric ma-
trices [95, 96], which differ with respect to the signs of some off-diagonal entries:
The characteristic polynomial χ of a hermitian matrix A ∈ Cn×n can be expressed as
χ(λ) = Dn(A − λI). Considering the structure of the graph G associated to A − λI,
allows to determine which symbols contribute to χ. On this basis, we can then
address the isospectrality of matrices that are generated from A by a mapping
R : Aij → −Aij , Aji → −Aji, which changes the sign of an arbitrary number of off-
diagonal entries while preserving hermiticity. A map R that leaves all symbols in
Dn(A − λI) invariant leaves the characteristic polynomial and thus the spectrum
invariant. That is, we may evaluate the global impact of an operation R by only
regarding its effect on the mesoscale structures, to which it directly contributes.

As an example, consider a hermitian matrix A − λI, whose corresponding graph G

is a tree. The only symbols that contribute to the characteristic polynomial χ are
the symbols × and |. Symbols × correspond to factors (Aii − λ) in χ, symbols | to
factors AijAji = |Aij |

2. Both are invariant under R. Hence, the spectrum of matrices
A, whose corresponding graphs G is a tree, is invariant under any operation that
changes the sign of a pair of off-diagonal entries.

Along the same line, we can infer isospectrality relations for matrices A, whose
corresponding graphs G are composed only of tree-like subgraphs and isolated cy-
cles. For such matrices, the spectrum is invariant under hermiticity preserving sign
changes of

1. an arbitrary number of off-diagonal entries that do not belong to cyclic sub-
graphs of G.

2. an even number of off-diagonal entries that belong to the same cyclic subgraph
of G.

3.5 Adaptive Kuramoto model

We now apply the proposed approach to an example, in which the topology of the
interaction network coevolves with the dynamics of the oscillators [7, 17, 23]. In
the context of the Kuramoto model, adaptive coupling has recently attracted keen
interest as it allowed to show that the appearance of synchronous motion can be
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3.5 Adaptive Kuramoto model

intimately related to a selection mechanism of specific network topologies [97], and
to the identification of complex hierarchical structures in the graph connectivity
[23, 98].

We consider a system of N phase oscillators that evolve according to Eq. (4), while
the coupling strength Aij evolves according to

d
dt
Aij = cos(xj − xi) − b ·Aij . (17)

The first term in Eq. (17) states that the more similar the phases of two nodes the
stronger reinforced is their connection, the second term guarantees convergence. In
a stationary, phase-locked state state, Aij = cos(xj −xi)/b and all oscillators oscillate
with a common frequency Ω = 1

N

∑

iωi. The stability of this state is governed by a
symmetric Jacobian

J =













−b 0 0 s21 s12 0
0 −b 0 s31 0 s13

0 0 −b 0 s32 s23

s21 s31 0 m1 o12 o13

s12 0 s32 o12 m2 o23

0 s13 s23 o13 o23 m3













, (18)

where oij := 1
b cos2(xj − xi), mi := −

∑

j 6=i oij , sji := sin(xj − xi), and we have chosen
N = 3 for illustration. The marked partitioning separates two blocks on the diago-
nal. The upper one is a diagonal submatrix of size L×L, L :=N(N −1)/2, the lower
one is a N ×N symmetric submatrix with zero row sum, which we denote as j.

Let us start our analysis by focusing on the upper left block of J. In the chosen
ordering of variables the first L minors Dq satisfy the stability condition Eq. (5) iff
b > 0. Concerning the minors of order q > L, the following conventions prove
advantageous: We define DL+n,S as the determinant of the submatrix of J, which
is spanned by all variables Aij and the n variables xsi . Further, D0+n,S denotes the
determinant of the submatrix of j, which is solely spanned by the n variables xsi .

We find that
DL+n,S = (−1)LbL−n · F(D0+n,S) , (19)

where F is the linear mapping F : oij → cos(2(xj − xi)). As the submatrix j is sym-
metric and has a zero row sum, its minors, D0+n,S, can be rewritten using Eq. (10)

DL+n,S = (−1)L+nbL−nF(Φn,S) , (20)
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3 Topological stability criteria for synchronized states

where Φn,S refers to subgraphs of the graph G defined by the off-diagonal entries of
j. Stability requires that sgn (DL+n,S) = (−1)L+n. As the necessary stability condition
b > 0 implies bL−n > 0, it follows that in a stable system

F(Φn,S) > 0, ∀S, n = 1 . . . r. (21)

Comparison with Eq. 12 reveals that a necessary condition for stability is that the
graph F(G) has a positive spanning tree. Revisiting the definitions of the linear
map F and the graph G, we find that the weight of a link ij of F(G) is given by
cos(2(xj − xi)). Hence, F(G) has a positive spanning tree iff the adaptive coupling
network has a spanning tree of oscillators obeying |xj −xi| < π/4. The restriction on
the stationary phase-differences in a stable, phase-locked state are thus more strict
in the adaptive than in the non-adaptive case.

3.6 Discussion

In the present chapter, we analyzed necessary conditions for local asymptotic stabil-
ity of stationary and phase-locked states in networks of phase oscillators. Using a
graphical interpretation of Jacobi’s signature criterion we first formulated conditions
for the stability of small subgraphs. Piecing the results together, we formulated a
conjecture stating that stability requires the existence of a spanning tree, in which
every link corresponds to a positive element of the Jacobian matrix.

Our results provide an analytical angle that is complementary to statistical analysis
of network synchronizability. Where statistical approaches reveal global features
impinging on the propensity to synchronize, our approach can pinpoint specific de-
fects precluding synchronization. We note that such defects can occur on all scales,
corresponding to the violation of the signature criterion in subgraphs of different
size. This highlights synchronization of phase oscillators as a simple example, in
which instabilities can arise from local, global or mesoscale structures.

Testing the conditions identified here in real-world systems requires information
on the stationary phase profile. This limits the applicability of our approach for
synchronizing systems that do not synchronize naturally. However, we note that
even in such systems it may be possible to stabilize an existing unstable phase-
locked state, e.g. by delayed-feedback control [99]. Based on the observed phase
profile in the stabilized state, one can then use the identified conditions to search
for structures that preclude synchronization when the controller is turned off. A
more direct application of the present results is possible in networks with designed
phase profiles [100]. Given a coupling topology and a desired phase profile, it is
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often relatively easy to find a set of natural frequencies for which the phase pro-
file is stationary but not necessarily stable. Here, the necessary stability conditions
provide constrains on the stable profiles that may be realized in a given coupling
topology. Further, we note that the proposed criteria can be applied even with-
out knowing the underlying dynamical equations if the Jacobian is accessible, for
instance from data analysis [101] or generalized modeling [102].

The present results demonstrate the applicability of Jacobi’s signature criterion to
large networks. In principle, the criterion can be applied to all systems in which the
Jacobian is a hermitian matrix. In the present chapter, we additionally assumed that
the Jacobian has zero row sums. An example of the application of Jacobi’s signature
criterion in a large system, in which the zero row sum condition is violated, is
presented in the next chapter.
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4 Patterns of cooperation

As the last, also the present chapter revolves around the interplay of structure and
dynamics in a complex, self-organizing system. In this chapter, however, the system
under consideration is a social system.

Social structure and social dynamics are commonly studied using the example of
cooperation networks. Cooperation builds the basis for many institutions that shape
our lives on different scales [103, 104]: Thus, humans cooperate in communities,
companies, ethnies and nations [105–107]. Thereby, the collaborative behavior of
the individuals is strongly influenced by the embedding social structure, while the
social structure itself evolves in response to the individuals’ collaborative behavior
[108]. The adaptive interplay is implicated in a variety of emergent phenomena [109,
110]. In this chapter, we investigate its role for the emergence of social coordination,
diversification, and for the rise of leaders that hold distinguished social positions.

The interplay between collaborative behavior and social structure has first been ex-
plored in evolutionary game theory [111]. The intense research in this field has iden-
tified several mechanism allowing for the evolution and persistence of cooperation
despite the often high costs incurred by an cooperating agent [112]. In particular,
the emergence of cooperation is promoted if the interacting agents are distributed
in some (potentially abstract) space, so that only certain agents can interact at any
given time [113–115]. In the context of social cooperation, spatial structure can be
appropriately modeled by a complex network, in which nodes represent agents,
while the links correspond to collaborations. The topology of this network has been
shown to be of central importance for the level of cooperation that evolves [116–119].

In social networks, the topology is not static, but reacts to the behaviour of the
agents [120–125]. Adaptive network models, which account for the dynamical in-
terplay, have been studied for some time in the social literature (e.g. [125–127]),
while pioneering work [128,129] only recently triggered a wave of detailed dynam-
ical investigations in physics [130]. Recent publications discuss simple cooperative
games such as the one-shot prisoner’s dilemma [131–141], the iterated prisoner’s
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4 Patterns of cooperation

dilemma [142, 143], and the snowdrift game [144–146] on adaptive networks. They
showed numerically and analytically that a significantly increased level of coopera-
tion can be achieved if individuals are able rewire their links [131–136, 146–148], if
links are formed and broken [137, 138, 144, 145, 147, 149], or if new agents are added
to the network [140, 141]. Moreover, it has been shown that the adaptive interplay
between the agents’ strategies and the network topology can lead to the emergence
of distinguished agents from an initially homogeneous population [129, 131–133].

While important progress has been made in the investigation of games on adaptive
networks, it is mostly limited to discrete networks, in which the agents can only
assume a small number of different states, say, unconditional cooperation with all
neighbors or unconditional defection. Most current models therefore neglect the
ability of intelligent agents to maintain different levels of cooperation with different
self-chosen partners [150].

In this chapter, we analyze a weighted and directed adaptive network model, in
which agents continuously and selectively reinforce advantageous collaborations.
After a brief description of the model, we show in Sec. 4.3 that the network gener-
ally approaches a state in which all agents make the same total cooperative invest-
ment and every reciprocated investment yields the same benefit. Despite the emer-
gence of this high degree of coordination, the evolved networks are far from ho-
mogeneous. Typically, the agents distribute their total investment heterogeneously
among their collaborations, and each collaborations receives different investments
from the partners. In Sec. 4.5, we show that this heterogeneity enables resource
fluxes across the network, which allow agents holding distinguished topological
positions to extract high payoffs. Thereafter, in Sec. 4.6, we investigate further topo-
logical properties of the evolved networks and identify the transition in which large
cooperating components are formed. In Sec. 4.7, we then focus on the appearance of
unidirectional (unreciprocated) investments. Specifically, we identify three distinct
scenarios in which unidirectional collaborations can arise and discuss their implica-
tions for the interaction topology. Finally, in Sec. 4.8, we discuss a possible extension
of the model which accounts for a player’s success feeding back on his cooperative
investment Our conclusions are summarized in Sec. 4.9.

4.1 The Model

We consider a population of N agents, representing for instance people, firms or na-
tions, engaged in bilateral collaborative interactions. Each interaction is described
by a continuous snowdrift game [104], one of the fundamental models of game the-
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4.1 The Model

ory. In this game, an agent i can invest an amount of time/money/effort eij ∈ R
+
0

into the collaboration with another agent j. Cooperative investments accrue equal
benefits B to both partners, but create a cost C for the investing agent. Assuming
that investments from both agents contribute additively to the creation of the ben-
efit, the payoff received by agent i from an interaction with an agent j can then be
written as

Pij = B
(
eij + eji

)
− C
(
eij
)
. (22)

The game thus describes the generic situation, in which agents invest their personal
resources to create a common good shared with the partner.

As an example of the snowdrift game, the reader may think of a scientific collabora-
tion where two researchers invest their personal time in a project, while the benefit
of the publication is shared between them. This example makes clear that the benefit
of the collaboration must saturate when an extensive amount of effort is invested,
whereas the costs faced by an agent, measured for instance in terms of personal
well-being, clearly grows superlinearly once the personal investment exceeds some
hours per day.

In the following, we do not restrict the cost- and the benefit-functions, B and C,
to specific functional forms, except in the numerical investigations. However, we
assume that both are differentiable and, moreover, that B is sigmoidal and C is su-
perlinear (cf. Fig. 9). These assumptions capture basic features of real-world systems
such as inefficiency of small investments, saturation of benefits at high investments,
as well as additional costs incurred by overexertion of personal resources and are
widely used in the sociological and economic literature [151, 152].

To account for multiple collaborations per agent, we assume that the benefits re-
ceived from collaborations add linearly, whereas the costs are a function of the sum
of investments made by an agent, such that the total payoff received by an agent i
is given by

Pi =
∑

j 6=i

B
(
σij
)
− C (Σi) . (23)

where Σi :=
∑N

j=1 eij denotes the total investment of the agent i while σij := eij + eji
denotes the total investment made in the collaboration ij. This is motivated by
considering that benefits from different collaborations, say different publications,
are often obtained independently of each other, whereas the costs generated by
different collaborations stress the same pool of personal resources.

Let us emphasize that we do not restrict the investment of an agent further. While
investments cannot be negative, no upper limit on the investments is imposed. Fur-
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4 Patterns of cooperation

thermore, the agents are free to make different investments in collaborations with
different partners. Thus, to optimize its payoff, an agent can reallocate investments
among its potential partners as well as change the total amount of resources in-
vested.

For specifying the dynamics of the network, we assume the agents to be selfish,
trying to increase their total payoff Pi by a downhill-gradient optimization

d
dt
eij =

∂

∂eij
Pi . (24)

Every agent can cooperate with every other agent. Thus, the network of potential
collaborations is fully connected and the deterministic time-evolution of the model
system is given by a system of N(N − 1) ordinary differential equations of the form
of Eq. 24. The network dynamics, considered in the following, is therefore only
the shifting of link weights eij . Note, however, that already the weight dynamics
constitutes a topological change. As will be shown in the following, the agents typ-
ically reduce their investment in the majority of potential collaborations to zero, so
that a sparse and sometimes disconnected network of non-vanishing collaborations
is formed. Therefore the terminology of graph theory is useful for characterizing
the state that the system approaches. Below, we use the term link to denote only
those collaborations that receive a non-vanishing investment σij . A link is said to be
bidirectional if non-vanishing investments are contributed by both connected agents,
while it is said to be unidirectional if one agent makes a non-vanishing investment
without reciprocation by the partner. Likewise, we use the term neighbors to denote
those agents that are connected to a focal agent by non-vanishing collaborations and
the term degree to denote the number of non-vanishing collaborations, in which a
focal agent participates.

4.2 Numerical investigation

In the following, the properties of the model are investigated mostly by analytical
computations that do not require further specifications. Only for the purpose of
verification and illustration we resort to numerical integration of the ODE system.
For these we use the functions

B
(
σij
)
=

2ρ
√

τ + ρ2
+

2(σij − ρ)
√

τ +
(
σij − ρ

)2
, C (Σi) = µ (Σi)

2 .
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4.3 Coordination of investments

Figure 7: Network of collaborations in the final state.
The nodes represent agents, links correspond
to collaborations receiving non-vanishing in-
vestments σij . The small dash on every link ij
is a fairness indicator: the further it is shifted
toward one agent i, the lower the fraction,
eij/σij , of the investment agent i contributes
to the link. Agents extracting more payoff
are shown in darker colour and are placed
toward the center of the community. The
size of a dot indicates the agent’s total invest-
ment Σi. In the final configuration, the net-
work exhibits a high degree of heterogeneity.
Nevertheless, all agents make the same total
investment and all collaborations receive the
same total investment. (Parameters: ρ = 0.65,
τ = 0.1, µ = 1.5)

For studying the time-evolution of exemplary model realizations by numerical in-
tegration, all variables eij are assigned random initial values drawn independently
from a Gaussian distribution with expectation value 1 and standard deviation 10−14,
constituting a homogeneous state plus small fluctuations. The system of differen-
tial equations is then integrated using Euler’s method with variable step size h. In
every timestep, h is chosen such that no variable is reduced by more than half of its
value in the step. If in a given timestep a variable eij falls below a threshold ǫ << 1
and the corresponding time derivative is negative, then deij/dt is set to zero for one
step to avoid very small time steps. We emphasize that introducing the threshold
ǫ is done purely to speed up numerical integration and does not affect the results
or their interpretation. In particular, we confirmed numerically that, the exact value
of ǫ does not influence the final configuration that is approached. In all numerical
results shown below, ǫ = 10−5 was used.

4.3 Coordination of investments

The numerical exploration of the system reveals frustrated, glass-like behavior;
starting from a homogeneous configuration as described above, it approaches ei-
ther one of a large number of different final configurations, which are local maxima
of the total payoff.
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b

a

Figure 8: Time evolution of example networks from a homogeneous state. The different
frames show snapshots of the network of collaborations at different times. a) In
small systems the network sometimes self-organizes to homogeneous topologies
in which all players extract the same payoff. b) If a player (arrow) tries to main-
tain too many links at too low investment, his partners will cease reciprocating
investments, leading sometimes to unidirectional links.

A representative example of an evolved network, and snapshots from the time-
evolution of two smaller example networks are shown in Figs. 7,8, respectively. In
the example networks only those links are shown that receive a non-vanishing (i.e.
above-threshold) investment. Most of these non-vanishing links are bidirectional,
receiving investments from both of the agents they connect. Only rarely, unidirec-

tional links appear, which are maintained by one agent without reciprocation by the
partner.

For further investigations, it is useful to define a bidirectionally connected component

(BCC) as a set of agents and the bidirectional links connecting them, such that,
starting from one agent in the set, every other agent in the set can be reached by
following a sequence of bidirectional links. In the numerical investigations, we
observe that all bidirectional links within a BCC receive the same total investment
in the final state. However, the investment σij made in every given link is in general
not split equally among the two connected agents. Furthermore, all agents within
a BCC make the same total cooperative investment Σi in the final state. However,
the investments eij of one agent in different collaborations are in general different.
The coordination of total investments σij , Σi therefore arises although no agent has
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4.3 Coordination of investments

sufficient information to compute the total investment made by any other agent. We
emphasize that the level of investments, which the agents approach is not set rigidly
by external constraints, but instead depends on the topology of the network of
collaborations that is formed dynamically. This is evident for instance in differences
of up to 20 % between the level of investment that is reached in different BCCs of
the same network.

To understand how coordination of investment arises, we now formalize the obser-
vations made above. We claim that in our model in the final state the following
holds: Within a BCC (i) every agent makes the same total investment, and (ii) ei-
ther all bidirectional links receive the same total investment or there are exactly two
different levels of total investment received by bidirectional links. For reasons de-
scribed below, the case of two different levels of total investment per link is only
very rarely encountered. In this case, every agent can have at most one bidirectional
link that is maintained at the lower level of investment.

We first focus on property (i). This property is a direct consequence of the station-
arity of the final state. Consider a single link ij. Since both investments, eij and eji,
enter symmetrically into σij , the derivative of the benefit with respect to either in-
vestment is ∂B(σij)/∂eij = ∂B(σji)/∂eji =: B′(σij). Thus, if eij , eji > 0, the stationarity
conditions deij/dt = deji/dt = 0 require

∂

∂eij
C (Σi) = B

′
(
σij
)
=

∂

∂eji
C
(
Σj
)
. (25)

Equation (25) implies C′(Σi) = C′(Σj). As we assumed C to be superlinear, C′ is
injective and it follows that Σi = Σj =: Σ, such that i and j, are at a point of identical
total investment. Iterating this argument along a sequence of bidirectional links
yields (i).

Let us remark that the stationarity of vanishing investments may be fixed due to the
external constraint that investments have to remain non-negative. The stationarity
condition for vanishing and uni-directional links, analogous to Eq. (25), is therefore

∂

∂eij
C (Σi) ≥ B

′
(
σij
)
≤

∂

∂eji
C
(
Σj
)
. (26)

Because of the inequalities that appear in this equation, the argument given above
does not restrict the levels of total investment found in different components. For
similar reasons agents that are only connected by unidirectional links can sustain
different levels of investment, which is discussed in Sec. 4.7.
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Figure 9: Adjustment of investments. Shown are the perceived cost functions C and benefit
functions B (insets) for the example of an agent 1 of degree one interacting with
an agent 2 of degree two (sketched). The function B depends on the sum of
both agents’ investments into the interaction while C depends on the sum of all
investments of one agent. In every equilibrium (SE or UE) stationarity demands
that the slope of these functions is identical. This requires that the agents make
identical total investments. In stable equilibria (SE), the operating point lies in
general above the inflection point (IP) of B, whereas equilibria found below the IP
are in general unstable (UE). Therefore, in a stable equilibrium both links produce
the same benefit and both agents make the same total investment.

We note that, although the network of potential interactions is fully connected, no
information is transfered along vanishing links. Therefore, the equation of motion,
Eq. 24, should be considered as a local update rule, in the sense that it only depends
on the state of the focal agent and on investments received from a small number of
direct neighbors.

In order to understand property (ii), we consider multiple links connecting to a
single agent i. In an equilibrium, the investment into each of the links has to be
such that the slope of the benefit function of each link is identical. Otherwise, the
payoff could be increased by shifting investments from one link to the other. Since
the benefit function is sigmoidal, a given slope can be found in at most two points
along the curve: one above and one below the inflection point (IP). By iteration,
this implies that if a stationary level of investment is observed in one link, then the
investment of all other links of the same BCC is restricted to one of two values,
which amounts to the first sentence of (ii). For understanding why the case of
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two different levels of investments is rarely encountered, the stability of steady
states has to be taken into account. A local stability analysis, based on linearisation
and subsequent application of Jacobi’s signature criterion, is the subject of the next
section.

4.4 Stability conditions

To determine the local asymptotic stability of the steady states, we study the Jaco-
bian matrix J ∈ RN(N−1)×N(N−1) defined by J(ij)(kl) = ∂ėij/∂ekl. The terms contained
in this matrix can be grouped into three different types

Aij :=
∂ėij

∂eij
=

∂2

(∂eij)2
B
(
σij
)
−

∂2

(
∂eij
)2
C (Σi) (27)

Pij :=
∂ėij

∂eji
=

∂

∂eji

∂

∂eij
B
(
σij
)

(28)

Ki :=
∂ėij

∂eil
= −

∂

∂eil

∂

∂eij
C (Σi) (29)

albeit evaluated at different points. For reasons of symmetry

∂

∂eji

∂

∂eij
B
(
σij
)
= ∂2

(∂eij)
2 B
(
σij
)
=: B′′

(
σij
)

∂

∂eil

∂

∂eij
C (Σi) =

∂2

(∂eij)
2 C (Σi) =: C′′ (Σi) ,

and consequentially Pij = Pji, and Aij = Pij +Ki. Ordering the variables according
to the mapping M : N × N → N; (i, j) →N(i − 1) + j the Jacobian can be written in
the form

J =













A12 K1 P12 0 0 0

K1 A13 0 0 P13 0

P12 0 A21 K2 0 0

0 0 K2 A23 0 P23

0 P13 0 0 A31 K3

0 0 0 P23 K3 A32













, (30)

which is shown here for N = 3. As each cooperation ij is determined by a pair of
variables

(
eij , eji

)
, each Pij occurs twice forming quadratic subunits with the corre-

sponding entries Aij and Aji. Subsequently, we restrict ourselves to the submatrix
Js of J, which only captures variables eij belonging to ‘non-vanishing’ links. As
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argued before, ‘vanishing links’, i.e. links with σij = 0, are subject to stationarity
condition (26). If C′ (Σi) > B′ (0), their stability is due to the boundary condition
eij ≥ 0 and is independent of the second derivatives of C and B. Hence, they can be
omitted from the subsequent analysis. This means in particular that the spectra of
different topological components of the network decouple and can thus be treated
independently.

The Jacobian Js is symmetric and can hence be analyzed by means of Jacobi’s signa-
ture criterion [154] introduced in Chapter 3. Thus, the system is stable if all minors
Dq of Js satisfy sgn

(
Dq
)
= (−1)q for q = 1, . . . ,N(N − 1). In chapter 3, we countered

the high number of algebraic stability conditions by summarizing them in few ef-
fective topological conditions. Unfortunately, the results cannot readily be applied
to the system considered here, as the Jacobian Js does not obey a zero-row sum con-
dition. However, we show below that evaluating the conditions for different minors
of order q = 1, 2 already suffices to understand property (ii).

By means of an even number of column and row interchanges the above stated form
of Js can always be transformed such that the first 2 × 2 block reads

(
Aij Pij
Pij Aji

)

.

Since we assume that ij is a non-vanishing link, and, hence, i and j to be in the
same component, both agents make the same total investment Σ. It follows from
definition (29) that Ki = Kj =: K and therewith that Aij = Aji. Thus, the sequence
1, D1, D2 alternates if

D1 = Pij +K < 0 ∧ (31)

D2 =
(
2Pij +K

)
K > 0. (32)

Equation (32) stipulates that K and
(
2Pij +K

)
have the same sign. Of the two

possible scenarios
(
2Pij +K

)
, K < 0 and

(
2Pij +K

)
, K > 0 (33)

the second is ruled out by Eq. (31): If K > 0, it follows from Eq. (31) that Pij < −K <

0, which contradicts
(
2Pij +K

)
> 0. Hence, the necessary conditions for stability,

Eqs. (31), (32), require
K < 0 ∧

(
2Pij +K

)
< 0 . (34)

If either agent i or agent j has another bilateral link, say ik, it is furthermore possible
to transform Js by an even number of row and line interchanges such that the first
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4.4 Stability conditions

2 × 2 block reads (
Aij K

K Aik

)

. (35)

In this representation the sequence 1, D1, D2 alternates if

D1 = Aij = Pij +K < 0 (36)

D2 = PikPij +
(
Pik + Pij

)
K > 0. (37)

Condition (37) can then be written as

PikPij > −K
(
Pik + Pij

)
. (38)

Inserting the definitions Eqs.(27)-(29) in Eqs. (34) and (38) reveals that for a pair of
agents ij connected by a bidirectional link, stability requires

C′′(Σi) > 0 ∧ 2B′′(σij) − C
′′(Σi) < 0, (39)

and every pair of links ij and ik connecting to the same agent i has to satisfy

B′′(σik)B
′′(σij) > C

′′(Σi)
︸ ︷︷ ︸

>0

(
B′′(σik) + B

′′(σij)
)
. (40)

Note that Eq. (39) implies 2B′′(σij) < C
′′(Σi) > 0, but does not stipulate the sign of

B′′(σij). As Eq. (39) pertains also to the link ik, the same holds for B′′(σik). We
therefore have to consider three different cases when testing the compatibility of
Eq. (40) with Eq. (39):

a) B′′(σik) < 0 and B′′(σij) < 0, (both investments above the IP)

b) B′′(σik) > 0 and B′′(σij) > 0, (both investments below the IP)

c) B′′(σik) > 0 and B′′(σij) < 0 (one investment above and one below the IP).

In case a), Eq. (40) is trivially fulfilled as the left hand side has positive and the
right hand side negative sign. In case b), Eq. (40) and Eq. (39) are incompatible:
estimating the lower bound of the right hand side of (40) using the relation C′′(Σ) >

2B′′(σij) leads to the contradiction

:=X>0
︷ ︸︸ ︷

B′′(σik)B
′′(σij) > C′′(Σi)

(
B′′(σik) + B

′′(σij)
)

> 2B′′(σij)
(
B′′(σik) + B

′′(σij)
)
= 2B′′(σij)B

′′(σik)
︸ ︷︷ ︸

=2X

+ 2
(
B′′(σij)

)2

︸ ︷︷ ︸
>0

.
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4 Patterns of cooperation

This shows that in a stable stationary state, every agent can at most have one link
receiving investments below the IP. In case c), Eq. (40) can in principle be satisfied.
However, the equation still imposes a rather strong restriction on a positive B′′ (σik)

requiring high curvature of the benefit function close to saturation. The restriction
becomes stronger, when the degree of agent i increases. This can be shown by taking
determinants Dq with q > 2 into account.

Bilateral links with investments below the IP can be excluded entirely, if the bene-
fit function approaches saturation softly, so that the curvature above the inflection
point remains lower or equal than the maximum curvature below the inflection
point. For such functions, every pair σik < σij of solutions to the stationarity condi-
tion B′

(
σij
)
= B′ (σik) = C′ (Σi) yields a pair of coefficients B′′ (σik) > 0, B′′

(
σij
)
< 0

violating (40). In this case, only configurations in which all links receive invest-
ments above the IP can be stable and hence all links produce the same benefit in
the stable stationary states. This explains why the case of two different levels of co-
operation is generally not observed in numerical investigations if realistic cost and
benefit functions are used.

For understanding the central role of the IP for stability, consider that in the IP the
slope of B is maximal. Therefore, links close to the IP make attractive targets for
investments. If the total investment into one link is below the IP, a disturbance
that raises (lowers) the investment increases (decreases) the slope, thus making the
link more (less) attractive for investments. Hence, below the IP, a withdrawal of
resources by one of the partners, no matter how slight, will make the collabora-
tion less attractive, causing a withdrawal by the other partner and thereby launch-
ing the interaction into a downward spiral. Conversely, for links above the IP the
gradual withdrawal of resources by one partner increases the attractiveness of the
collaboration and is therefore compensated by increased investment from the other
partner. In psychology both responses to withdrawal from a relationship are well
known [153]. The proposed model can therefore provide a rational for their obser-
vation that does not require explicit reference to long term memory, planning, or
irrational emotional attachment.

For our further analysis, property (ii) is useful as it implies that, although our model
is in essence a dynamical system, the BCCs found in the steady states of this sys-
tem can be analyzed with the tools of graph theory for undirected graphs. In the
Secs. 4.5, 4.6 we go one step further and treat not only the BCC but the whole
network as an undirected graph. We thereby ignore the differences between di-
rected and undirected links in order to study properties such as the degree- and
component-size distributions before we continue in Sec. 4.7 with a more detailed
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investigation of directed links and their topological implications.

4.5 Distinguished topological positions

Despite the coordination described above, the payoff extracted by agents in the final
state can differ significantly. This is remarkable because the agents follow identical
rules and the network of collaborations is initially almost homogeneous with respect
to degree, link weights, and neighborhood.

Because all bidirectional links in a BCC produce the same benefit, the total benefit
an agent receives is proportional to the degree of the agent. By contrast, the cost
incurred by an agent does not scale with the degree, but is identical for all agents
in the BCC, because agents of high degree invest a proportionally smaller amount
into their collaborations. Topological positions of high degree thus allow agents to
extract significantly higher benefits without requiring more investment.

The payoff distribution in the population is governed by the degree distribution pk
describing the relative frequency of agents with degree k. Figure 10 shows a rep-
resentative degree distribution of an evolved networks in the final state. While the
finite width of the distribution indicates heterogeneity, the distribution is narrower,
and therefore fairer, than that of an Erdős-Rényi random graph, which constitutes a
null-model for randomly assembled network topologies. We verified that the vari-
ance of the evolved network is below the variance of a random graph for the whole
range of admissible mean degree k̄ in a network of given size.

Although the snowdrift game is not a zero-sum game, payoffs cannot be generated
arbitrarily. In order to sustain the extraction of high payoffs by agents of high
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4 Patterns of cooperation

degree, investments have to be redistributed across the network. In the definition
of our model, we did not include the transport of resources directly. Nevertheless,
a redistribution of investments arises indirectly from the asymmetry of the agents’
investments. This is illustrated in Fig. 11. Consider for instance an agent of degree
1. This agent necessarily focuses his entire investment on a single collaboration.
Therefore, the partner participating in this collaboration only needs to make a small
investment to make the collaboration profitable. He is thus free to invest a large
portion of his total investment into links to other agents of possibly higher degree.
In this way, investments flow toward the regions of high degree where high payoffs
are extracted (cf. Fig. 11).

4.6 Formation of large components

To explore the topological properties of the networks of collaborations in the final
state further, we performed an extensive series of numerical integrations runs, in
which we varied all parameters in a wide range. These revealed that an important
determinant of the topology is the mean degree k̄ = 2L/N, where L denotes the
number of links and N the number of agents in the network. Given two evolved
networks with similar k̄, one finds that the networks are also similar in other prop-
erties such as the component-size distribution, clustering coefficient, and the frac-
tion of collaborations that are unidirectional. We therefore discuss the topological
properties of the evolved networks as a function of k̄, instead of the original model
parameters.

We first consider the expected size 〈s〉 of a network component to which a randomly
chosen agent belongs. In contrast to the BCCs discussed above, unidirectional col-
laborations are now taken into account in the computation of component sizes. The
value of 〈s〉 in the evolved network as a function of k̄ is shown in Fig. 12a. The
figure reveals that large components begin to appear slightly below k̄ = 2. Because
of the difficulties related to integrating N(N − 1) differential equations, our numer-
ical investigations are limited to networks of up to 100 agents. While it is therefore
debatable whether the observed behaviour qualifies as a phase transition, it can be

Figure 11: Redistribution of investments. Even
in small networks investments flow to-
ward agents of high connectivity. This
flow is apparent in the position of
the fairness indicators on the links,
cf. Fig. 7, caption.
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Figure 12: Giant component transition. (a) At k̄ = 1.91 the expected size 〈s〉 of a network
component changes from O(1) to O(N). (b) Even in the relatively small networks
of 100 nodes a power-law shape starts to appear in the component-size distribu-
tion obtained from the final states of 750 network realizations with a mean degree
a mean degree k̄ = 1.91.

related to the giant component transition commonly observed in larger networks.

In the giant component transition, a component is formed that scales linearly with
network size. In the absence of higher correlations, the transition occurs at q̄ = 1
[155], where q̄ is the mean excess degree of the network, i.e., the number of ad-
ditional links found connected to a agent that is reached by following a random
link.

In Erdős-Rényi random graphs, q̄ = k̄, therefore the giant component transition
takes place at k̄ = 1. In the present model, the transition in 〈s〉 is shifted to higher
values of k̄ because of the nature of the underlying snowdrift game: The snowdrift
game favors cooperation in the sense that for an agent of degree zero it is always
advantageous to initiate an interaction. Therefore k̄ = 1 is the lowest possible value
that can be observed in evolved networks. Further, any evolved network with k̄ = 1
invariably consists of isolated pairs, which precludes the existence of a giant com-
ponent. Finally, the relatively narrow degree distribution of the evolved networks
implies q̄ < k̄ and therefore k̄ > 1 at the transition.

To estimate an upper limit for the connectivity at which the giant component tran-
sition occurs, it is useful to consider degree homogeneous networks. In these net-
works, the degree distribution is a delta function and q̄ = k̄−1, so that the transition
occurs at k̄ = 2. In the networks evolved in the proposed model, we can therefore
expect a critical value of k̄ between one and two. Based on numerical results, we
estimate that the giant component transition in the present model occurs at k̄ ≈ 1.91
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4 Patterns of cooperation

(Fig. 12). At this value, a power-law distribution of component sizes, which is
a hallmark of the giant-component transition, begins to show already in relative
small networks with N = 100.

4.7 Unreciprocated collaborative investments

While in Sec. 4.3 we have mainly considered bidirectional links, and in Sec.4.5 and
4.6 only distinguished between vanishing and non-vanishing links, we will now
focus on unidirectional links, which one partner maintains without reciprocation
by the other. The presence of such links in collaboration networks was recently
discussed in detail by [156].

For the discussion below, it is advantageous to consider the mean degree of agents
in a connected component 〈k〉 = 2l/n, where n and l are the number of agents
and links in the component. Note that in large components 〈k〉 ≈ k̄, while the
two properties can be significantly different in small components. In contrast to k̄,
〈k〉 allows us to infer global topological properties: Components with 〈k〉 < 2 are
trees. Components with 〈k〉 = 2 contain exactly one cycle, to which trees might be
attached. And, components with 〈k〉 > 2 contain more than one cycle, potentially
with trees attached. As in the previous section, the term component refers to max-
imal subgraphs which are connected by bidirectional and/or unidirectional links.
According to this definition, a component may, beside one or more BCCs, contain
agents, which only have unidirectional links. In the following, we denote the set of
these agents as the non-BCC part of the component (nBCC). For the sake of simplic-
ity, we focus on components which contain only one BCC, but note that the case of
multiple BCCs can be treated analogously.

Unlike the BCC, the nBCC is not a subcomponent but only a set of agents which
are not necessarily connected. Nevertheless, numerical results show that (i*) all
nBCC agents make the same total investment Σn and (ii*) all unidirectional links
maintained by nBCC agents receive the same total investment σn. While property
(ii*) can be understood analogously to property (ii) of BCCs, property (i*) cannot be
ascribed to stationarity or stability conditions, but seems to result from optimality
restrictions. As a consequence of the properties (i*) and (ii*), the number of outgoing
links m := Σn/σn is identical for all agents in the nBCC.

So far we have decomposed a component into the BCC and the nBCC. Within each
subset, all agents make the same total investment, and all links receive the same
total investment, therefore each subset can be characterized by two parameters,
Σb, σb for the BCC and Σn, σn for the nBCC. To recombine the subsets and infer
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Figure 13: Unidirectional investments and proportion of unidirectional links. (a) The ra-
tio between the investment in unidirectional and the investment in bidirectional
links from the same component, σn/σn, equals 1 for 〈k〉 = 2m, m ∈ N. σn/σb > 1
applies to 〈k〉 > 2 6= 2m, σn/σb < 1 to 〈k〉 < 2. (b) For 〈k〉 < 2 the average
proportion of unidirectional links (PUL) features discrete peaks. As every tree
must have a bidirectional core, the smallest 〈k〉 with non-zero PUL is 〈k〉 = 4/3.
It corresponds to components with 3 agents and 2 links, one of which can be
unidirectional.

properties of the whole component, we need to study the relation between these
four parameters.

The central question guiding our exploration is why do agents not start to recip-
rocate the unidirectional investments. The lack of reciprocation implies that the
unidirectional links are either less attractive or just as attractive as bidirectional
links. We distinguish the two scenarios

a) B′(σb) = B
′(σn) ,

b) B′(σb) > B
′(σn) .

In case a) the unidirectional collaborations are as attractive as targets for invest-
ments as bidirectional collaborations. In typical networks, where all remaining links
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a b

Figure 14: Topological arrangement of unidirectional links (shown in red). (a) For 〈k〉 < 2,
unidirectional links connect individual nBCC agents with a BCC core. (b) For
〈k〉 ≥ 2 unidirectional links are arranged in long chains which is shown here for
〈k〉 = 2. For 〈k〉 > 2 typical components become too large to be presented in this
way.

receive investments above the IP, this implies σb = σn = σ. Furthermore, in case a)
the stationarity condition, Eq. (25), requires that C′(Σb) = C′(Σn), which stipulates
Σb = Σn =: Σ. Therefore the whole component consists of agents making an invest-
ment Σ and links receiving an investment σ.

Conservation of investments within a component implies lσ = nΣ and hence

〈k〉 = 2
l

n
= 2

Σ

σ
. (41)

We know further that Σ/σ = Σn/σn = m ∈ N, where m is the number of outgoing
links of an agent in the nBCC. Inserting Σ/σ = m in Eq.(41) yields 〈k〉 = 2m,
showing that unidirectional links that are as attractive as bidirectional links can
only occur in components, in which the mean degree 〈k〉 is an integer multiple of 2.
This matches the numerical data displayed in Fig. 13a, which shows that σn/σb = 1
is observed in components with 〈k〉 = 2 and 〈k〉 = 4.

It is remarkable that observing σn = σb in a pair of collaborations is sufficient to
determine the mean degree of the whole component. Moreover, components in
which the mean degree is exactly 2 have to consist of a single cycle potentially
with trees attached. In the numerical investigations, we mostly observe cycles of
bidirectional links to which trees of unidirectional links are attached, as shown in
Fig. 14b.

In case b) the bidirectional links are more attractive targets for investments than
unidirectional links. In typical networks with σb, σn ≥ σIP, this implies σb < σn, and
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thus that unidirectional links receive a higher investment than bidirectional links.
Now, the stationarity condition Eq. (25) demands that C′(Σb) > C′(Σn), and thus
that

σb < σn ≤ Σn < Σb . (42)

Hence, the total investment made by an agent investing in bidirectional links is
higher than the one made by agents investing in unidirectional links. This relation-
ship restricts the connectivity in the BCC to 〈k〉BCC := 2Σb/σb > 2, which implies
〈k〉 > 2, because the mean degree of the component cannot be smaller than 2 if a
subcomponent already has a degree greater than 2. Therefore, we find that unidi-
rectional links that are less attractive than bidirectional links only occur in compo-
nents, in which the mean degree is larger than 2, but not an integer multiple of 2 (cf.
Fig. 13a). As such links are only found at k̄ beyond the giant component transition,
they occur typically in large components as shown in Fig. 7.

In numerical investigations, we also observe some unidirectional links in compo-
nents with 〈k〉 < 2 (cf. Fig. 13b). To explain these, we have to consider case b) but
relax the assumption that both, σn and σb are above the IP. Thus, we obtain case
c), about which we know that the unidirectional links are less attractive than bidi-
rectional links, Σn < Σb, and that the unidirectional link only receives investments
from one agent, i.e., σn ≤ Σn. Moreover, 〈k〉 < 2 implies 〈k〉BCC < 2 and therefore
Σb < σb. Therefore

σn ≤ Σn < Σb < σb, (43)

which shows that unidirectional links can only appear in components with 〈k〉 < 2
if the investment received by unidirectional links is smaller than the investment re-
ceived by bidirectional links. Satisfying simultaneously σn < σb and B′(σn) < B

′(σb)

requires σn < σIP. The components with 〈k〉 < 2, in which such links are found,
are trees formed by a core of bidirectional links, to which individual agents are at-
tached by unidirectional links (Fig. 14a). Chains of unidirectional links, as we have
observed in case a), cannot appear for 〈k〉 < 2: Such a scenario would necessitate
that some agents have one incoming and one outgoing link below the IP, which is
ruled out by a trivial extension of the reasoning from Sec. 4.3.

4.8 Extension of the model

Below, we consider an extension of the studied model, in which a player’s success
feeds back on his cooperative investment. In reality, such feedbacks arise for in-
stance because interest rates for loans may be lower for players, who receive a high
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Figure 15: Example of communities formed
in the adaptive model with 100

players. The communities are
dominated by leaders, which are
characterized by high degree and
high payoff. The size of a node
indicates an agent’s total invest-
ment Σi. Within each compo-
nent, agents with the same de-
gree maintain the same Σi. (Pa-
rameters: ρ = 0.7, τ = 0.1, µ =

2.24, ν = 0.588)

income. Including a benefit-dependent reduction of C in the model yields a fully
adaptive network.

In our adaptive model, players enjoy benefit-dependent cost reduction

Pij = B
(
σij
)
−
eij

Σi
C (Σi) ·

1

R
(
βi
) ,

where R is a monotonically increasing function of the total benefit βi :=
∑

k B (σik),
in the simulations chosen as R(βi) := 1 + νβi. Simulations and analytical reasoning
show that for the adaptive model property (ii) still holds while property (i) needs
to be modified: The total amount of investment differs among players within a
BCC as investments for players of high degree become cheaper (Fig. 15). However,
we find that players of the same degree approach the same level of investment.
Consequently distinct classes of players arise which differ both in investment and
in payoff.

Surprisingly, higher investments by players of high degree do not lead to fairer
interactions with players of low degree. The additional investments made by high-
degree players are used to a large extend to establish additional links and thereby
increase their own benefit. However, although broader than in the non-adaptive
case, the degree distribution obtained for moderate reduction of costs is still rela-
tively narrow compared to a random graph, and hence relatively fair.

4.9 Discussion

In this chapter, we have analyzed a model for the formation of complex collabora-
tion networks between self-interested agents. In this model, the evolving network is
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described by a large system of deterministic differential equations allowing agents
to maintain different levels of cooperation with different partners.

We showed analytically that bidirectionally communities are formed, in which every
agent makes the same total investment and every collaboration provides the same
benefit. In contrast to models for cooperation on discrete networks, the present
model thereby exhibits a high degree of coordination which can be interpreted as a
precursor of a social norm. We emphasized that coordination is generally achieved
although single agents possess insufficient information for computing the total in-
vestment made by any other agent and although the level of cooperation that is
reached in a community is not fixed rigidly by external constraints.

Despite the high degree of coordination, we observed the appearance of privileged
agents, reminiscent of the leaders emerging in [129]. In the model proposed in
the present chapter, the privileged agents hold distinguished topological positions
of high degree centrality allowing them to extract much higher payoffs than other
agents, while making the same cooperative investment. However, we found that in
the absence of further mechanism reinforcing differences the assembled topologies
were fairer than random graphs.

Although our primary aim was to investigate the formation of social networks,
some aspects of the behavior of social agents are reminiscent of results reported
in psychology. For instance, our investigation showed that agents can react to the
withdrawal of investment by a partner either by mutual withdrawal of resources or
by reinforcing the collaboration with increased investment. Our analysis provides
a rational which links the expected response to the withdrawal of resources to an
inflection point of an assumed benefit function.

Furthermore, we investigated under which conditions non-reciprocated collabora-
tions appear. Here, our analysis revealed that such unidirectional collaborations can
appear in three distinct scenarios, which can be linked to topological properties of
the evolving networks. In particular, exploited agents whose investments are not
reciprocated invest less than the average amount of resources in their links when
occurring in small components, but more than the average amount, when integrated
in large components.

The results reported here can be verified in laboratory experiments, in which hu-
mans interact via a computer network. Inspired by our model, Fehl et al. ran an
experiment, in which the players could adopt different behavioral options toward
different, self-chosen partners [150]. In contrast to our model, however, the behav-
ioral options in the experiment are discrete; players can either cooperate or refuse
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to cooperate with a given partner. We believe that an experiment with continuous
behavioral options may confirm the topological properties of the self-organized net-
works reported here. Additionally, it may provide insights into the perceived cost
and benefit functions that humans attach to social interactions.

Furthermore, results of the proposed model may be verified by comparison with
data on collaboration networks between people, firms or nations. This comparison
may necessitate modifications of the model to allow for instance for slightly different
cost functions for the players. Most of these extensions are straight forward and
should not alter the predictions of the model qualitatively. For instance in the case of
heterogeneous cost functions, players will make different total investments, but will
still approach an operating point in which the slope of their cost function is identical.
Further, coordination should persist even if the network of potential collaborations
is not fully connected. Finally, but perhaps most importantly, our analytical results
do not rely heavily on the assumption that only two agents participate in each
collaboration. Most of the results can therefore be straight-forwardly extended to
the case of multi-agent collaborations.

Our analytical treatment suggests that the central assumption responsible for the
emergence of coordination is that the benefit of a collaboration is shared between
the collaborating agents, but is independent of their other collaborations, whereas
the cost incurred by an agent’s investment depends on the sum of all of an agent’s
investments. Because this assumption seems to hold in a relatively large range of
applications we believe that also the emergence of coordination and leaders by the
mechanisms described here should be observable in a wide range of systems.
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The emergent, collective phenomena addressed in the last chapters were dynamical
and structural in nature. In this chapter, we consider the self-organization into a
functional state.

To approach the topic, recall that a system, which depends on external parame-
ters, may have different phases distinguished by qualitatively different dynamics.
Particularly in biology, however, dynamics are intimately related to function. One
may thus ask, if a biological system has to operate in a certain phase for optimiz-
ing its functionality. Central in this field is the so-called criticality hypothesis [157],
according to which critical dynamics close to a phase transition provide particular
functional gains.

Early evidence for the criticality hypothesis came from the field of cellular automata
[158]. In these systems, the tuning of a control parameter commonly changes the
macroscopic behavior from highly ordered to chaotic. The transition between the
respective dynamical phases occurs in a narrow parameter regime, sometimes called
the edge of chaos, in which the cellular automata display optimal adaptation and
information-processing properties [158].

A number of recent papers have yielded a comprehensive picture of the relation
between critical dynamics and computational properties [159, 160]. The investiga-
tions are based on different model systems and achieve a high level of generality
by linking fundamental characteristics of critical states to fundamental aspects of
information theory. Information is generally assumed to be coded in the dynam-
ical attractor that is reached in response to an input. Thus, the maximal number
of attractors at criticality has been associated with maximal information storage ca-
pacity [161, 162], and the diverging correlation length at criticality with maximal
information transmission [163]. It has been emphasized that the scale invariance of
observables bears the potential to code information over several orders of magni-
tude [164]. And finally, it has been shown that fluctuations and spontaneous activity

55



5 Self-organized criticality

can assist the processing of stimulus-evoked activity and thus broaden the range of
processable inputs [165].

On the background of the sketched results, it is plausible to assume that our brain
may operate at a critical point. Indeed, scale invariance of observables – the hall-
mark of criticality – was found in different experiments ranging from EEG measure-
ments in humans to direct activity measurements in slices of rat cortex [163, 166–
169]. Considering that the brain is subject to ongoing changes throughout develop-
ment, through aging and damage, it is an interesting question how it preserve the
operating parameters prerequisite for criticality. One possible explanation is that
the observed criticality is achieved and maintained in a dynamical self-organization
process.

The concept of self-organized criticality (SOC) was first proposed by Bak, Tang, and
Wiesenfeld. In their seminal work [170], the authors presented a simple cellular
automaton, which evolves into a state that features several characteristics of natural
critical systems, such as fractal geometry, 1/f noise, and scale invariance. The
critical state is reached due to the intrinsic dynamics of the system, independently
of the value of any model parameter.

In recent years, it has been shown that beside cellular automata, also adaptive net-
works have the ability to self-organize toward a critical state [142, 143, 171–180].
Indeed, it was found that SOC is not only a generic, but also a robust feature of the
latter model class. Today, adaptive SOC is studied with different perspectives: The
hope is that understanding the phenomenon in simple models will help to compre-
hend SOC in biological systems, as well as to implement SOC in technical systems.
One step in the latter direction shall be made in the present chapter.

We begin in Sec. 5.1 with a short overview of the first generation of SOC mod-
els, and describe the common mechanism which has been found to underlie them.
Then, in Sec. 5.2, we contrast these models with the later models based on adaptive
networks. Condensing the latter to their common core reveals that on an abstract
level the genesis of SOC in adaptive networks is linked to the adaptive feedback
loop. In Sec. 5.3, we shortly review four exemplary models showing adaptive SOC.
We highlight both, the conceptual similarities in the basic design, as well as the
specific differences in their concrete rules. In Sec. 5.4, we derive a generic recipe for
the construction of rules that generate SOC. Finally, in Sec. 5.5, we use the recipe to
design an adaptive network of heterogeneous phase oscillators that self-organizes
toward the onset of synchronization.
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5.1 SOC models of the first generation

Initiated by [170], a wave of cellular automata models have been studied under
the paradigm of SOC (cf. [181–185] and references therein). They all consider non-
equilibrium systems, in which constant microscopic driving leads to series of macro-
scopic events, so-called avalanches, whose frequency and size follow power-law
distributions [185].

By way of illustration, consider the sandpile model studied in [170]. In this model,
grains of sand are placed onto random sites of a lattice. The so-defined microscopic
driving builds up the slope of the pile. When the slope at a site exceeds a certain
threshold, it transfers sand to the adjacent sites. This potentially causes cascading
reactions, i.e., avalanches, which are found to obey power-law statistics.

According to [186], SOC in the studied models can generically be traced back to the
systems’ approaching a configuration at a continuous absorbing-state phase tran-
sition. Below, we describe the mechanism through which this is achieved on an
intuitive level without addressing the mathematical subtleties of the argument.

Consider a cellular automaton, whose sites are either active or passive with respect
to a local dynamical rule, which we call the avalanche rule. The density of active
sites, ρ, is an order parameter of an absorbing-state phase transition. It is zero in
states where no avalanche can occur (frozen regime), and non-zero otherwise (active
regime). The avalanche rule dynamically changes ρ; Active site are dissipated in
avalanches, such that in the active regime the system is driven toward the frozen
regime. To achieve SOC, a second dynamical rule is needed, which dominates in the
frozen regime and drives the system back toward the active regime. One possible
realization of this is a slow driving that increases the density of active sites.

In summary, the genesis of SOC in cellular automata builds on two ingredients: An
absorbing phase transition and two contrary dynamical rules effecting

ρ̇ < 0 if ρ > 0 ∧ ρ̇ > 0 if ρ = 0 , (44)

such that the order parameter ρ is tuned to a critical point, where its value changes
from zero to finite.

Note that the tuning parameter in Eq. (44) is identical to the order parameter. The
system has no autonomous parameter by means of which it could be tuned from the
frozen to the active phase. Hence, although the critical configuration approached
can be associated to a phase transition, it is not possible to draw an order parameter
profile.
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5.2 SOC in adaptive network models

In 1998, the first-time observation of SOC in an adaptive network model [171] trig-
gered the interest in adaptive networks. Since then, a number of simulation stud-
ies have revealed that the ability to self-organize into a critical state is not only
a frequent feature of adaptive network models, but also a surprisingly resilient
one [142, 143, 172–180]. Thus, in contrast to the SOC models of the first generation,
SOC in adaptive network models is very robust to noise, and in many cases even to
changes in the modeling setup.

In Sec. 5.3, we address the robustness of adaptive SOC by means of four exemplary
models. Before, however, let us shortly focus on the general definition of the phe-
nomenon, its relation to SOC in cellular automata, and to the adaptive feedback
loop.

Prerequisite to adaptive SOC is a network, whose local state dynamics shows differ-
ent dynamical phases depending on the underlying topological configuration. We
speak of SOC if the dynamics of the network adjust the topological variables such
that the dynamics on the network become critical.

The definition of adaptive SOC reveals the differences to SOC in cellular automata.
While in the first-generation SOC models the tuning and the order parameter are
identical, they are clearly distinguished in adaptive network models: The tuning pa-
rameters are the variables of the topological evolution, i.e., the link states. The order
parameter, by contrast, characterizes the local evolution on the network, and is thus
related to the node states. By tuning the topological variables, the phases to both
sides of the approached transition can actually be scanned, and order parameter
profiles can be generated.

We can now pinpoint the role of the adaptive feedback loop for the genesis of SOC.
Due to the feedback from the topology to the local dynamics, the local dynamics
are parametrized by the topological configuration. Due to the feedback from the
local states to the topological dynamics, however, the change of the topological
configuration is sensitive to order-parameter related information. Thus, the space
of topological configurations, i.e., the parameter space of the local dynamics, can
be navigated in a phase-sensitive manner to find points which lie on the phase
boundary.

In the next section, we illustrate the typical implementation of the adaptive feed-
back by means of four models showing adaptive SOC. Though related, the models
display considerable differences in their specific rules thus providing an example
for the robustness of the phenomenon against variations of the actual setup.
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5.3 Four examples for adaptive SOC

The most prominent model system for adaptive SOC is the brain. Its activity shows
signatures of criticality, although the underlying synaptic connectivity is too com-
plex to possibly be hard coded in the genome [189]. Indications for the decentralized
shaping of neural connections based on local, activity-dependent mechanisms have
been found in various experimental settings [190–192]. Two of the proposed mech-
anisms – homeostatic plasticity [193] and spike-time-dependent plasticity [194] –
were subsequently studied in AN models. These models revealed that homeostatic
plasticity tunes a system toward the onset of self-sustained activity [173–176, 178],
and spike time dependent plasticity toward the onset of synchronous activity [179].

Below, we briefly review four models which address the self-organization of neu-
ral networks under the action of homeostatic plasticity. We begin our discussion
with two models studied by Levina, Hermann and Geisel [175], and Meisel respec-
tively [178]. Both models consider an adaptive network, whose links correspond
to synapses and whose nodes are modeled as integrate-and-fire neurons: The node
state, corresponding to the neuron’s membrane voltage, is represented by a continu-
ous variable xi. The state variable is incremented, if the node perceives an incoming
spike. Once it exceeds a threshold, the node itself emits a spike. Meisel additionally
includes a leakage term, according to which the state variable decays, if a node does
not receive an incoming spike.

When simulated on static topologies, the described dynamical rules give rise to
qualitatively different long-time behaviors, in which the spiking activity is either
sustained (active phase) or suppressed (frozen phase). The probability of observ-
ing persisting macroscopic activity depends on the topological configuration of the
underlying network. It increases rapidly, if the average connectivity of the network
exceeds a critical value [195].

In the two models under consideration, the topological configuration is dynamically
tuned. The tuning results in both cases in critical configurations at the transition
between the frozen and the active phase, although it is implemented in different
ways: Levina et al. consider directed links with continuous weights. If a node
spikes, the weight of all outgoing links is decreased; if it does not spike, the link
weights slowly regain their default strength [175]. By contrast, Meisel considers
directed links with discrete weights ±gc. If a node spikes, it looses all outgoing
links; if not, it gets a new link from a randomly chosen node [178].

The two models of Levina et al., Meisel respectively, provide a first example for
the robustness of adaptive SOC against variations in the modeling setups: Their
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differences, manifest in the rescaling of the weights of fixed connections compared
to the reformation of connections with binary values, does not affect the genesis of
SOC.

The two models we want to address next are not as closely patterned on neuronal
systems as the afore-discussed, but can nevertheless be considered to map the ac-
tion of homeostatic plasticity in the brain. In the adaptive networks considered by
Bornholdt and Rohlf [173], and Bornholdt and Röhl [174], the node evolution is
determined by boolean threshold dynamics. Thus, in [173], nodes and links can
adopt binary states xi = ±1, Aij ± 1 respectively. In every timestep t, every node i
sums over the inputs Ajixj(t) it receives from its neighbors j. If the result is smaller
(larger) than a threshold h, it adopts state xi = +1 (xi = −1) in the next timestep.

Just as the integrate-and-fire neuron model, the boolean threshold model has a
phase transition from a frozen to an active phase, depending on the underlying
topological configuration. And just as the neuron model, the threshold model can
self-organize toward a critical configuration if run in an adaptive scenario. In [173],
Bornholdt and Rohlf introduce adaptivity by prescribing the repeated application
of the following topological update rule: The local dynamics of the system are sim-
ulated on a static topology until a dynamical attractor such as a limit cycle has been
reached. Then, a randomly chosen node changes its topological environment in
one of two possible ways depending on a local activity measure: If the node has
changed its state at least once over the course of the attractor, it deletes an incoming
link, if not, it gets a new incoming link from a random node.

The model studied by Bornhold and Röhl [174] is a variation of [173]. Main mod-
ifications concern the introduction of continuous link states Aij ∈ [−1, 1], and of
stochasticity in the node dynamics. Finally, the topological update rule considers
not only one randomly chosen node i, but a pair of randomly chosen nodes i and j.

The absolute correlation Cij =
∣
∣
∣

1
τ

∑to+τ
t=to

xi(t)xj(t)
∣
∣
∣ of i and j, averaged over a fixed,

long period τ , serves as a criterion for i to opt between the two modes of topological
adaptation: If Cij is larger than a given threshold, i receives a new link from node
j, if it is smaller, the link between i and j is deleted.

Here, as above, the differences in the setup do not affect the genesis of SOC: Both
models, as well as a number of other variations described in [174], show robust
self-organization toward a critical state.

In all four models, the topological update rule captures two opposing processes,
e.g., link building and link deletion, which are applied depending on some local
measure that relates to the node state dynamics. Below, we expand this pattern
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for formulating a generic recipe for the construction of topological update rules
that give rise to SOC. While the recipe highlights on the one side common design
principles, it classifies on the other hand the possibilities to modify the concrete
setup without affecting SOC.

5.4 Engineering adaptive SOC

Below, we consider the following abstract scenario: Given a local update rule that
gives rise to distinct macroscopic phases when run on different static topologies, can
we construct a topological adaptation rule such that the resulting adaptive network
exhibits SOC? We start our considerations by specifying three conditions, which the
adaption rule shall meet beyond generating SOC. These conditions are imposed to
account for the above given definition of self-organization.

Firstly, the adaptation rule shall act on local topological variables. That is, the adapta-
tion pertains either to single links, or to a set of links connected to a focal node. For
the moment, we only consider the case of continuous variables. Possible choices
for a continuous and local topological variable include the weight of a single link,
or the total weight of all links of a focal node. Below, the number of topological
variables in the network will be denoted by d, and the variables themselves by Ti,
i = 1, . . . , d.

Secondly, the adaptation of the topological variables shall occur solely on the basis
of local information. This concerns the implementation of the feedback from the
node states to the topological dynamics. Local information about the dynamics on
the network is information, that a focal node can gather by monitoring its own
state and / or the influences it experiences from its direct neighbors. Below, such
information will be denoted by Oi if accessible to a node i.

Thirdly, all topological variables shall be subject to the same adaptation rule. This
is done to account for the idea that the constituents of a self-organizing system are
structurally identical. By way of illustration, consider the model of Bornholdt and
Rohlf described above [173]. In this model, the topological update rule is the same
for all nodes, while the topological variable, to which it is applied, and the local
information, on which it depends, are node specific.

In Sec. 5.3, we have seen four examples for topological adaptation rules that meet
the imposed conditions. They all follow a pattern according to which a local topo-
logical variable Ti is changed in one of two possible ways depending on some local
measure Oi. Below, we first ask which underlying principles make this pattern tune
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5 Self-organized criticality

a system toward a critical configuration. Then, we analyze which properties of the
Oi and the Ti are necessary for the pattern to work. This finally allows us to expand
the pattern to a generic recipe for the construction of adaptation rules generating
SOC.

How and under which conditions does the alternative application of two opposing
processes tune a system toward a critical configuration? For the sake of simplicity,
we approach the question in a discrete time scenario. As a starting point, we use the
generic properties of the prerequisite phase transition of the local state dynamics.
We may generically assume that it can be observed in ensembles of random graphs,
which differ in the macroscopic parameter

T =
1
d

d∑

i=1

Ti (45)

that subsumes all adaptable degrees of freedom (cf. Fig. 16a-c). In this case, the two
phases can uniquely be described as low-T , high-T phase respectively (cf. Fig. 16d).
Depending on the definition of the Ti, T may for instance denote the average cou-
pling strength in the network.

The codimension of a transition that can directly be observed, and thus the minimal
number of degrees of freedom that need to be adapted for arriving at the phase
boundary Mc is one. Hence, it is convenient to determine that in every step of the
topological evolution only one randomly chosen variable Ti is updated, while all
others (although in principle dynamic) are kept constant. In the literature, this is
often called a sequential update.

The sequential update decomposes the process, which navigates the d-dimensional
space of topological configurations, in a series of processes that are one-dimensional;
in each evolutionary step, the randomly chosen variable Ti can only be increased
or decreased. Depending on the values of the fixed variables Tj , j 6= i, the updated
variable Ti can have a critical value (Ti)c, which geometrically corresponds to an
intersection point of the (d−1)-parameter family Ti and Mc (cf. Fig. 16e). If (Ti)c
exists, it can be approached, by increasing (decreasing) Ti, if the system is in the
low (high) T phase. If (Ti)c does not exist, the application of same rule increases
the probability that in the next evolutionary step, when a different variable Tk is
updated, it finds parameters Tj , j 6= k, such that (Tk)c exists.

Let us shortly summarize. The above reasoning illustrates how the d-dimensional
space of topological configurations can be steered by means of a sequential update
rule that prescribes the phase-dependent application of two opposing processes. It
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Figure 16: Steering the space of topological configurations: Schematic illustration using an
example with d = 2. (a) Shown is the two-dimensional space of topological con-
figurations spanned by the variables T1 = x and T2 = y. The order parameter
profile, coded in the coloring of the plane, divides the space of topological con-
figurations in two different phases. The kink in the profile defines the phase
boundary Mc (depicted as black line), which is of codimension one. (b) In nu-
merical studies, random graphs with different configurations (x, y) and (x′, y′)

are collapsed onto one data point ti, if they satisfy T(x, y) = T(x′, y′) = ti for some
function T : R2 → R. Geometrically, this means that a hypersurface characterized
by T = const., is projected onto one point. The figure shows three hypersurfaces
(dashed red lines), and the projection manifold T (solid red line). The statistical
analysis of the ensemble data associates to every value of ti the average value
of the order parameter 〈O〉. (c) Plotted is the resulting one-dimensional order-
parameter profile. The minimal t, for which the phase transition is observed (here
t2), is usually referred to as critical value tc, at which the transition occurs. Note,
however, that the terminology is misleading, as T(x, y) = tc cannot be viewed as a
universal characteristic of all critical configurations. (d) The statistical projection
of (c) can be used to distinguish a high-T , and a low-T phase. (e) In a sequential
update, only one degree of freedom is updated in every given adaption step, and
all others are kept constant. Sketched is a situation, in which y is tuned, while x
is fixed at x = x1. By tuning y, the configuration (x, y) may be shifted along the
red line. The intersection point yc(x1) of this line and Mc is approached if y is
increased (decreased) when the system is in the high (low) T phase.
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One example for an order parameter of the form Eq. (47) is the order parameter O that

Bornholdt and Rohlf use to characterize the absorbing phase transition of the threshold

model [173]. In this paper, O is defined as the fraction of nodes that has not changed

state over the course of an attractor. This is equivalent to the population average over a

local measure Oi, which is 1 if a node i has not changed state, and 0 if it has.

Another example is the order parameter that Meisel and Gross use to characterize the

synchronization transition of the integrate-and-fire neuron model [179]. In this paper,

the definition of O is based on a local measure Cij(τ), which denotes the correlation

between the state of node i and node j over a period τ . The order parameter O is the

mean value of Cij(τ) average over all pairs i, j.

One example for an order parameter, which cannot be understood as population average

over a local measure, is the order parameter commonly used to characterize the synchro-

nization transition of the Kuramoto model. It is defined as the norm R of the vector

describing the centroid of the population of phase oscillators, and can be written as:

R =

∣
∣
∣
∣
∣
∣

1
N

N∑

j=1

eixje−iψ

∣
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∣

1
N

N∑

j=1

ei
∑

k 6=j(xj−xk)

∣
∣
∣
∣
∣
∣
, (46)

where xj is the phase of oscillator j, and ψ = 1/N
∑N

j=1 ωj is the mean of the intrinsic

frequencies. Inserting the defining relation of ψ, the coordinates of the centroid can be

rewritten as population average over a local measure accessible to every node j. However,

the norm of the vector cannot be rewritten as average over locally computable quantities.

Box 3: Global order parameters are often population averages over local measures.

further reveals that the variables Ti and the local measure Oi employed by such a
rule have to meet the following requirements: The topological variables Ti have to
be chosen such that the phases can be uniquely be described as high-T phase, low-T
phase respectively. The local measure Oi has to allow for the detection of the global
phase such that it can be used as local criterion for the phase-specific application
of the opposing processes. As the condition on the Ti is rather mild, we below
concentrate on the task of finding local measures Oi, by means of which the global
phase can be detected.

Consider a local measure Oi, whose global average is an order parameter O of the
phase transition. Finding such a measure Oi is typically easy, as standard order
parameters can often be rewritten as

O ∝
∑

i

Oi . (47)
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To demonstrate the application of the homogeneity definition Eq. (48), we again use the

example of the absorbing phase transition of the threshold model [173]. In particular, the

example shall illustrate that homogeneity is not a property that pertains to a phase as

such, but a property that depends on both, the phase and the exact definition of the Oi.

We begin with defining the local measure Oi as the number of times a node i has changed

state over a period τ ; O =
∑

iOi is an order parameter of the phase transition and is zero

in the frozen and non-zero in the active phase.

The definition of the frozen phase requires that in this phase all nodes i measure

Oi = 0 = O. Hence, the frozen phase is homogeneous. The definition of the active phase

requires that in this phase at least some nodes measure Oi 6= 0. We show below that the

number of nodes measuring Oi 6= 0, and therewith the homogeneity or inhomogeneity of

the active phase, depends on the particular value of τ .

In the active phase, the local threshold dynamics are ergodic [196,197]. This implies that

in this phase a randomly chosen node changes state with probability one if monitored

over an infinite period of time, and with a probability close to one, if monitored over an

finite but long period τ . Thus, if τ is chosen sufficiently large, all nodes i measure Oi 6= 0
in the active phase. In this case the active phase is homogeneous.

On the other hand, the probability of finding one or more nodes i measuring Oi = 0
increases with decreasing τ . Thus, if τ is chosen sufficiently small, the active phase is

inhomogeneous.

Box 4: The homogeneity of a phase depends on the exact definition of Oi.

For examples we refer to Box 3. Next, we have to ask under which conditions the
local Oi, as the global O, contain information about the global phase. For addressing
this question, it will prove convenient to introduce the following conventions:

If for a given phase and a given order parameter of the form (47) holds

O = 0 ⇒ Oi = 0 ∀i , (48a)

O 6= 0 ⇒ Oi 6= 0 ∀i respectively , (48b)

we call the phase homogeneous in the Oi. Analogously, if the applicable relation is
violated, the phase is called inhomogeneous (cf. Box 4).

We can now distinguish three different cases: Case (a), in which both phases of
a system are homogeneous, case (b), in which both phases of a system are inho-
mogeneous, and case (c), in which one phase is homogeneous, while the other is
inhomogeneous.
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In case (a), the local observation Oi is unconditionally equivalent to the global ob-
servation O. Hence, the complete information about the global phase is locally
accessible by all nodes and in both phases.

In case (b), there is no local observation Oi that could reliably be linked to a global
observation O. Thus, the information about the global phase cannot locally be
accessed via Oi.

Finally, in case (c), only one of the two possible local observations Oi can reliably
be linked to a global observation O: The local observation Ohom that is made by all
nodes in the homogeneous phase is measured also by some nodes in the inhomo-
geneous phase. Thus, it does not convey information about the global phase. By
contrast, the local observation Oi 6= Ohom conveys that the system is in the inhomo-
geneous phase. Hence, the global phase can locally be detected via Oi, albeit the
detection is restricted to the inhomogeneous phase, and, within this phase, to nodes
measuring Oi 6= Ohom. It is worth noticing that the fraction f of nodes that measure
Oi 6= Ohom is an order parameter of the transition.

We can now summarize the conditions under which the alternative application of
two opposing processes tunes a system toward a critical configuration: Our analysis
revealed that it is convenient to implement the update rule as a sequential rule, and
that it is necessary to make the application of the opposing processes phase-specific.
We found that the topological variables Ti should allow for the unique definition of
a low-T and a high-T phase, and that the process that prevails in the high-T (low-T )
phase should decrease (increase) Ti. We found further that a local phase-detecting
criterion Oi should have a global mean that is an order parameter of the transition,
and lastly that it is necessary to define Oi such that at least one of the phases is
homogeneous. Below, we finally adopt the engineering viewpoint and translate
the conditions on the Ti, Oi, and the opposing processes into a recipe for their
construction.

To define a local measure Oi that is a suitable criterion for the phase-specific ap-
plication of the two opposing processes, we can proceed as follows: First, we have
to find a measure Oi, whose global mean O ∝

∑

iOi is an order parameter of the
transition. Second, we have to check for each phase whether it is homogeneous or
inhomogeneous in Oi. Third, if either one, or both phases are homogeneous in Oi,
the measure can be applied as a switching criterion between the opposing processes:
In case both phases are homogeneous, the two possible measurements Oi = 0 and
Oi 6= 0 can uniquely be related to the high-T phase, low-T phase respectively. On
this basis, we can then specify whether a given topological degree of freedom Ti
shall be increased or decreased depending on the value of Oi.
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Given a system, whose local state dynamics have two different dynamical phases depend-

ing on the underlying topological configuration,

1. Find a local measure Oi, whose global mean O ∝
∑

iOi is an order parameter of

the transition.

2. Check for each phase whether it is homogeneous or inhomogeneous in Oi. If at

least one phase is homogeneous, proceed.

3. Define local topological variables Ti. If the local measure Oi pertains to a node i (a

link i), Ti should capture the weights of the links of a node i (the weight of a link

i).

4. Sample random graphs with different T =
∑

i Ti and measure O to determine

high-T / low-T phase.

5. Relate local measurements Oi = 0 and Oi 6= 0 to high-T / low-T phase.

6. Stipulate that in every step of the topological evolution, one Ti is chosen at random.

It is decreased by δ↓ (increased by δ↑) if Oi indicates that the system is in the high-

T (low-T ) phase.

7. If one of the phases is inhomogeneous, choose the rate of change of the process

applied for Oi 6= Ohom larger than the rate of the process applied for Oi = Ohom.

Box 5: Recipe for a topological update rule generating adaptive SOC

In case one phase is inhomogeneous, only the measurement Oi 6= Ohom is a reliable
indicator of the global phase and can uniquely be related to either the high-T or
the low-T phase. The bounded information content of the measurement Oi = Ohom

can be compensated if the opposing topological processes are implemented with
different rates of change. Thereby, the process that is applied for Oi 6= Ohom should
have a larger rate of change than the process that is applied for Oi = Ohom.

In Box 5, we summarize the above considerations in a recipe for the construction of
a topological update rule generating SOC. To evaluate the effect of such a rule, we
below study one scenario quantitatively.

Consider a system, whose local state dynamics have two different phases depending
on the topological configuration. Consider further a local measure Oi, with respect
to which one the phases is homogeneous, the other inhomogeneous, and a set of
local variables Ti such that the homogeneous phase is the low-T phase. Let us next
define δ↑ and δ↓ as rates of change of the processes applied for Oi = Ohom, Oi 6= Ohom
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respectively. If we moreover adopt a continuous time picture, the balance equation
for each topological variable can be written as differential equation

d
dt
Ti =






1
d · δ↑ in the homogeneous phase
1
d ·
[
1 − f (T)

]
· δ↑ −

1
d · f (T) · δ↓ in the inhomogeneous phase

. (49)

Here, T = (T1, . . . , Td)
t denotes the d-dimensional vector describing the topological

configuration, while f(T) denotes the configuration-dependent fraction of nodes
measuring Oi 6= Ohom. The term 1

d corresponds to the probability that the variable Ti
is chosen for an update. With probability f(T), the chosen node measures Oi 6= Ohom

and thus decreases Ti by δ↓, with probability 1 − f(T), it measures Oi = Ohom and
thus increases Ti by δ↑.

We can immediately read off the implicit function defining the stationary points T∗

of Eq. (49)

f(T∗) =
δ↑

(δ↑ + δ↓)
. (50)

The left hand side denotes the value of the order parameter f in a stationary topo-
logical configuration. The right hand side may in the continuous time picture be
considered as a measure for the timescale separation between the topological pro-
cesses. As the right hand side of Eq. (50) is non-zero for finite δ↑, δ↓, all stationary
configurations lie in the inhomogeneous phase. Assuming that, in this phase, f in-
creases with increasing distance to the phase boundary, we can infer that the steeper
f and the larger the separation between the two timescales of the topological evo-
lution, the closer the fixpoints T∗ lie to the phase boundary. Further, it follows from
the same assumption that all stationary configurations T∗ are stable, and, thus, that
the system converges to one of them.

Equation (50) reveals that the influence of the parameters δ↑, and δ↓ on the assem-
bled topological configuration is the smaller, the sharper the transition of the order
parameter f . In particular, the solution T∗ of the stationarity condition (50) becomes
independent of the right hand side if the fraction of nodes measuring Oi 6= Ohom

jumps sharply from 0 to 1 at the transition. This corresponds to the limit, in which
the inhomogeneous phase becomes homogeneous, i.e., to the limit, in which case
(c) becomes case (a). As shown above, the transition from case (c) to case (a) is
related to the long-term accumulation of the local measure Oi if the dynamics in the
inhomogeneous phase are ergodic [173, 174]. We may thus say that in this case the
timescale separation between the local and the topological dynamics substitutes the
timescale separation between the two topological processes.
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The two different modes of implementing the timescale separation may be illus-
trated using the examples given in Sec. 5.3: In the models of Levina et al., and
Meisel, the accumulation time τ of the local activity measure is comparably short
[175, 178] such that the active phase is inhomogeneous. Indeed, in accordance with
Eq. (50), the rate of change in the inhomogeneous, active phase exceeds in both
models the rate of change in the homogeneous, frozen phase.

In the models of Bornholdt and Rohlf, Bornholdt and Roehl respectively, the ac-
cumulation time τ of the local activity measure is long: In [174], it exceeds the
timescale of the local threshold dynamics by a factor of 100. In [173], it is given by
the variable length of an attractor. Being one in the frozen phase, the attractor length
diverges in the active phase [198], such that in [173], too, the topological dynamics
in the active phase are much slower than the local dynamics. Thus, in [173, 174]
both phases are homogeneous; the opposing topological processes have the same
rate of change: Links are deleted and created at the rate of one link per update.

Note that in the strict sense the topological configurations assembled by our rule
are not critical: Due to Eq. (50), the fixpoints T∗ lie close to the phase boundary, but
not on it. Moreover, due to the statistical nature of Eq. (49), a given realization of
the process might not converge to a fixpoint T∗, but fluctuate around it. As argued
by Bonachela and Muñoz, the difference between configurations that are critical in
the strict sense and so-called pseudo-critical configurations is conceptually consid-
erable [188]. However, they also show that it dislimns if primarily the generated
phenomenology in finite systems is considered. As we are interested in the latter,
we may stick with our terminology. Thus, in our context a system is termed critical
if close, but not necessarily arbitrarily close configurations give rise to qualitatively
different dynamics.

If we adopt this more qualitative picture, the above argumentation can readily be
transferred to the case of discrete topological variables. In this case, the parame-
ter space is not continuous and the concept of the phase boundary looses validity.
However, the closeness of configurations can still be defined, for example as mini-
mal number of changes necessary to arrive from one to the other. Hence, systems
with discrete topological variables, too, can self-organize toward configurations that
are critical in the sense of the definition given above. This applies in particular in
the limit of large system sizes.

Let us emphasize that – in contrast to the underlying mechanism of the first gener-
ation of SOC models, which we discussed in Sec. 5.1 – the construction principles
determined in this section are not bound to a certain type of phase transition. For
demonstration, we use them in Sec. 5.5 to construct a model that self-organizes
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5 Self-organized criticality

toward a synchronization transition.

5.5 Engineering SOC in a model system

In this section, we use the recipe derived in Sec. 5.4 to construct an adaptive network
model that shows SOC. Starting point for our construction is a network, whose local
state dynamics are determined by the Kuramoto model. Our adaptive model shall
self-organize toward the onset of synchronization.

Let us briefly recall the conventions used. We consider a network of N oscillators i,
whose local state evolution is given by

ẋi = ωi +
∑

j 6=i

Aij sin(xj − xi) , ∀i ∈ 1 . . .N . (51)

As above, xi and ωi denote the phase and the intrinsic frequency of oscillator i,
while Aij = Aji denotes the weight of the link between two oscillators i and j. If
Aij 6= 0, the oscillators are said to be coupled; if further ẋi(t) = ẋj(t) for all t, they
are said to be phase locked.

The local, pairwise criterion for phase locking reveals that the Kuramoto model
has not only two, but three different phases: The completely disordered phase,
where no two oscillators are phase locked, the partially synchronized phase where
some oscillators are phase locked, and the complete synchronized phase, where all
oscillators are phase locked [199].

The definition of the global phases through the local phase-locking criterion pro-
vides an ideal starting point for the construction of our rule. According to Box 5,
we first have to find a local measure Oi, whose global mean is an order parameter.
This is obviously fulfilled by the measure

Cij =
1
τ

∫ to+τ

t=t0

[
ẋi(t) − ẋj(t)

]
dt , (52)

which is zero if two oscillators i and j are phase locked, and non-zero if they are
not.

In step 2, we have to compare the local phase-locking criterion Cij with the defi-
nition of the global phase. The comparison reveals that the completely disordered
and the completely synchronized phase are homogeneous in Cij , while the partially
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5.5 Engineering SOC in a model system

synchronized phase is inhomogeneous:

Cij






6= 0 for all i, j in the disordered phase

= 0 for some i, j in the partially synchronized phase

= 0 for all i, j in the completely synchronized phase .

(53)

Both phase transitions, the lower transition between the disordered and partially
synchronized phase, and the upper transition between the partially and the com-
pletely synchronized phase, separate one homogeneous and one inhomogeneous
phase. Thus, Cij can be employed as a local, phase-detecting criterion Oi for a
topological update rule that tunes the system toward either of them.

In step 3, we have to define the topological variables that shall be adapted by our
rule. As the chosen local measure Oi = Cjk pertains to a single link, it is conve-
nient to let the adaptation processes, too, act on a single link. Thus, we define the
variables Ti as link weights Ajk.

If the average coupling strength T = 1/d
∑

i Ti of a network is incrementally in-
creased, the three phases are observed in the order of Eq. (53) [199]. Hence, the dis-
ordered phase is the low-T phase, the partially synchronized phase the intermediate-
T phase, and the completely synchronized phase the high-T phase of our system.

Next, we have to prescribe which of the opposing processes – increasing or decreas-
ing Aij – shall be applied for which values of Cij . For this purpose consider that
irrespective of the regarded phase transition, the local measure Cij = 0 is character-
istic for the phase with higher T . Thus, we stipulate that for Cij = 0 the link weight
is decreased by an amount δ↓, while for Cij 6= 0 it is increased by an amount δ↑.

Finally, we have to specify the rates δ↓, δ↑ thereby accounting for the inhomogeneity
of the partially synchronized phase. According to step 7 of the recipe, the rate of
change of the process applied for Cij 6= Chom has to be larger than the rate of change
of the process applied for Cij = Chom. In case of the upper transition Chom = 0, as
the homogeneous of the two abutting phases is the completely synchronized one
(cf. Eq. (53)). For tuning toward this transition, we thus have to choose δ↓ << δ↑.
In case of the lower transition Chom 6= 0, as the homogeneous of the two abutting
phases is the disordered one. For tuning toward this transition, we have to choose
δ↑ << δ↓.

In summary, our topological update rule stipulates that in every evolutionary step
one link ij is chosen at random, and the measure Cij is evaluated over a period
τ . If Cij = 0, Aij is decreased by an amount δ↓; if Cij 6= 0, it is increased by an
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Figure 17: One-dimensional order parameter scans around evolved network configurations.
Plotted is the average fraction of phase locked links f in topological configura-
tions T related to the evolved configuration Tevolved via the scanning parameter
c: T = c · Tevolved. Every data point is averaged over 300 integration runs with
different initial phases xi. In each of these runs, the phase locking criterion Cij

was measured over 1000 integration steps. The evolved configuration, marked
by the dashed line at c = 1, lies close to the lower (upper) transition in case (a),
(b) respectively. It results in both cases from 104 iterations with the following
parameters: (Aini, δ↓, δ↑) = (0.005, 0.01, 0.001) for (a), and (0.01, 0.001, 0.01) for (b).

amount δ↑. For approaching the lower transition, we choose δ↑ << δ↓; by contrast,
for approaching the upper transition, we choose δ↓ << δ↑.

To evaluate the defined topological update rule, we study exemplary realizations of
the adaptive network model in numerical simulations. In these, we substitute the
local measure Cij defined by Eq. (52) with a different measure, which can be tracked
with less computational effort and has further the advantage of yielding a discrete
phase-detecting criterion. Thus, we define Cij as the number of changes of sign that
the coupling term sin(xi − xj) displays during a tracked period τ . We verified that
if τ is chosen sufficiently large, both described criteria coincide qualitatively.

Our simulations are run on networks of N = 50 oscillators, whose intrinsic fre-
quencies are drawn from a Gaussian distribution with mean zero and variance
σ2 = 0.01. We assume that the network of potential interactions is Erdös-Renyi
random graph [200] with mean degree k = 10. All links are initially assigned a
weight Aini.

Between any two topological updates, we integrate the system of equations (51) on
a static topology for τ = 500 time units using a Taylor series method [201]. We then
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Figure 18: Order parameter scans around network configurations, which have been evolved
in 3000, 4000, 5000 iterations of topological evolution (red, blue, black). The
longer the evolution, the steeper the increase of f around the evolved config-
uration (c = 1). Every data point is averaged over 100 integration runs with
different initial phases xi. The evolved networks were obtained with parameters
(Aini, δ↓, δ↑) = (0.0, 0.01, 0.001).

choose one random link ij, and evaluate the local measure Cij over the last 0.7τ
steps of the integration thus discarding transients. For organizing toward the lower
transition, we apply the following rule: If Cij = 0, the link weight Aij is decreased
by an amount δ↓ = 0.01, but always kept nonnegative; Otherwise it is increased by
δ↑ = 0.001. For organizing toward the upper transition, we apply the same rule but
with exchanged rates δ↓ = 0.001, δ↑ = 0.01.

Figure 17 confirms that the constructed topological update rules tune the system
toward configurations, where the order parameter f changes qualitatively. The
figure shows one-dimensional order parameter scans around two self-organized
network configurations. Shown is the average fraction of phase locked links f in
topological configurations T related to the evolved configuration Tevolved via the
scanning parameter c: T = c · Tevolved. As predicted, the system approaches the
lower phase transition if δ↓ >> δ↑, and the upper phase transition if δ↑ >> δ↓. Note
that in accordance with Eq. 50, the evolved network configurations (c = 1) lie in
both cases slightly in the inhomogeneous phase.

Figure 18 shows that the change of the order parameter around the evolved config-
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uration is the steeper, the longer the topology is evolved. This can be understood as
follows: Consider a configuration Tevolved at the boundary of the disordered phase.
The change of f around Tevolved is a measure for the number of links ij, for which
the phase-locking criterion Cij changes from Cij 6= 0 to Cij = 0, if all Aij → (1+ǫ)Aij .
As by assumption Tevolved lies at the phase boundary, the number is at least one.
However, there may be points at the boundary, where it is much higher.

Let us now come back to Fig. 18. It reveals that the phase boundary is reached
after 3000 − 4000 iterations of the topological evolution. The topological evolution
toward the phase boundary, however, is followed by a topological evolution along
the phase boundary, in the course of which more and more link weights are tuned to
critical values. This is a direct consequence of the sequential update rule, according
to which topological variables are chosen in an ongoing manner and gradually
tuned. Thus, it leads to a configuration which is not only locally distinguished
by the proximity to the transition of the order parameter, but also globally by the
maximal steepness thereof.

5.6 Discussion

In this chapter, we have analyzed a pattern commonly found in the adaptation
rules of heuristic SOC models. By determining the functional principles behind this
pattern, we found a generic mechanism that generates SOC. Comparing the specific
models with the mechanism allows to analyze the former on an abstract level and
to relate the details of their setup to particular functions within the self-organization
process. Moreover, the abstract mechanism explains the robustness of SOC against
variations in the modeling setup. Thus, it may be considered as set of requirements
on the two central entities, Ti and Oi. Within the bounds of these requirements,
however, the entities can freely be chosen without affecting the genesis of SOC.

We have shown that the recipe allows to construct systems that self-organize to-
ward criticality. We believe that this engineering viewpoint on SOC will become
particularly important in the future. Thus, for example, as part of the development
of nano computing elements the targeted placement of conducting paths gets in-
creasingly demanding. A new and promising approach to this problem is to abstain
from targeted placement, put conducting paths at random and implement a neuro-
mimetic self-organization process for achieving a functionally connected state. As a
positive side effect, such a state can be assumed to feature the favorable information
processing properties that we described above.
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Engineering solutions that rely on SOC can benefit from the decentralized opti-
mization of computational, but also of structural properties: Thus, as shown in the
example of the Kuramoto model, the self-organization process can tune the sys-
tem toward a state, which is able to support a predefined task, while reducing the
required connectivity.

In all models discussed here, the topological update rules tune the total coupling
strength and/or the connectivity of the network. However, the analysis of Sec. 5.4
reveals that SOC can equally be achieved by means of a rule, which acts on other
topological structures, for example on the number of triangles. In fact, for the
self-organization toward a phase boundary of codimension one, the choice of the
topological tuning parameters Ti is quasi unrestricted. Note however that different
choices may result in topologically different, albeit dynamically equivalent configu-
rations.

The above reasoning suggests that it is possible to implement systems, that simulta-
neously self-organize toward more than one phase transition: Consider a dynamical
system which features m < d phase transitions, with non-parallel phase boundaries
of codimension one. Consider moreover m topological rules, each of which fulfills
the criteria derived in Sec. 5.4 and depends on a local measure sensitive to one of
the considered phase transitions. If the topological update rules steer the parameter
space in a non-parallel way, i.e., if they act on different topological structures Ti, it
is assured that the individual self-organization processes do not conflict with each
other. Hence, their simultaneous application should drive the system to a config-
uration that lies on the intersection of the m phase boundaries and which is thus
critical with respect to all m phase transitions.
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In this work, we proposed new analytical approaches to adaptive self-organization.
These approaches are applicable to continuous networks and allow to address the
mechanisms behind emergent phenomena that are prominently discussed in the
context of biological systems.

In Chapter 3, we studied the relation between structure and synchronized behavior
in a system of coupled oscillators. We introduced a graphical notation, which allows
writing the minors of a hermitian Jacobian matrix in a concise way. Imposing a
zero-row-sum condition, we reformulated the algebraic stability conditions from
Jacobi’s signature criterion as topological restrictions on a simple graph G. The
topological stability criteria pertain to structures on all scales and provide a rapid
test for whether a interaction topology can support stable steady states. In cases
where it is violated it allows to determine those interactions that presumably cause
the instability.

In Chapter 4, we examined the spontaneous diversification of an initially homoge-
neous population of interacting agents. Our analysis of the continuous, directed,
multi-agent snowdrift game, revealed that the symmetries of the local dynamical
rules scale up and are imprinted in non-obvious symmetries in the evolving global
structure. These global symmetries imply a high degree of social coordination.
However, at the same time they cause the emergence of privileged topological po-
sitions, thus diversifying the population into different classes.

In Chapter 5, we addressed the ability of adaptive networks to self-organize toward
dynamically critical states. We identified a common pattern in the setup of exem-
plary SOC models, and laid out how and under which conditions it generates SOC.
By expanding the pattern to an abstract mechanism, we were able to explain the
robustness of SOC against variations in the modeling setup. Moreover, we were
able to formulate a generic recipe for the construction of local rules that give rise to
self-organized critical behavior. We demonstrated the applicability of this recipe by
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engineering an adaptive network of phase oscillators that self-organize toward the
onset of synchronization.

The results presented in this work can feed back to both, the experimental explo-
ration of biological systems as well as the design of technological applications. For
example, knowing the role of cyclic interaction structures for synchronization gives
a hint what to look for in experimental data to explain synchronized behavior, but
also what to built in technical devices to achieve it.

The central theme of this work is the analytical treatment of continuous network
models. While analytical approaches for discrete networks are well-studied, con-
tinuous networks have so far received considerably less attention. Below, we want
to contrast both classes of networks, discuss the characteristic difficulties associated
with the analysis of continuous networks, and highlight possible approaches.

The dynamics of both, discrete as well as continuous networks, are usually analyzed
with the tools of dynamical systems theory. However, the respective dynamical sys-
tems are qualitatively different. To see this, consider that in a continuous network,
the dynamics of the link and node states can often be described by deterministic
differential equations. Thus, the microscopic dynamics of a continuous network
directly constitute a deterministic dynamical system. By contrast, describing the
dynamics of a discrete network in a dynamical system necessitates a detour: Usu-
ally, the dynamics of the discrete link and node states are assumed to be stochastic.
Then, the system is described by continuous, coarse-grained variables, whose bal-
ance equations are formulated as differential equations.

In summary, a dynamical system description of a discrete network typically pertains
to the approximate dynamics of macroscopic variables, while a dynamical system
description of a continuous network pertains to the exact dynamics of the micro-
scopic variables. This means that the dynamical system is low-dimensional in case
of a discrete network, but high-dimensional in case of a continuous network. More-
over, it implies that the analysis reveals macroscopic properties in the discrete case,
but microscopic properties in the continuous case. Thus, studying self-organization
in continuous instead of discrete networks imposes two problems: It necessitates to
deal with high-dimensional dynamical systems, and to infer the macroscopic prop-
erties of interest from the microscopic result of the analysis.

The results presented in this work show that the problems inherent in the analytical
treatment of continuous networks can be overcome. Hence, our analysis started in
all cases with the consideration of the full, high-dimensional systems. However, we
were able to determine in each case model-inherent properties that allowed for the
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reduction of the dimensionality. Thus, in Chapter 3, the symmetry of the minors
with respect to permutations of the index set S disclosed that the cycles of the
graph G can serve as a basis for the graphical notation and calculus. In Sec. 4, the
linear stability analysis revealed that any topological component in the equilibrated
network can be characterized by at most four variables. Finally, in Chapter 5, the
sequential update rule implied that the process of steering the high-dimensional
parameter space can be decomposed in a sequence of one-dimensional processes.

For inferring macroscopic properties from the microscopic-level descriptions we
used upscaling procedures. Hence, in Chapter 4, the stationarity and stability con-
ditions first and foremost equated the investments of two links connected by one
node, two nodes connected by one link respectively. To scale up the symmetry rela-
tions to whole components, we iterated the argument along a sequence of neighbors.
In Chapter 3, the analysis followed a similar pattern. Thus, we considered sequences
of incrementally growing link chains to derive the topological stability conditions
for cyclic subgraphs. Considering multiple subgraphs in turn led to the conjecture
of the positive spanning tree criterion. Finally, in Chapter 5, we asked for the pre-
requisites for an upscaling procedure: We determined under which conditions the
value of a microscopic measure Oi allows inferring the value of macroscopic order
parameter O.

The challenges associated with the analysis of continuous networks are compen-
sated by certain advantages. Thus, the dynamical system description of a continu-
ous network captures the full topological information and thus allows to study the
interplay between structure and dynamics in detail. To describe the structural de-
tails of the network on all scales, we complemented the methods from the theory of
dynamical systems with methods from graph theory. We interlocked the two toolk-
its in different ways, usually however by a translation step, in which information
about the system is transferred from one framework to the other. To illustrate this
point, let us shortly summarize for each project the tie points between the toolkits
and the benefits of their interlocking.

In Chapter 3, we interpreted the dynamics related information of the Jacobian J as
adjacency information of a graph G, which allowed to translate the algebraic sta-
bility conditions into topological stability conditions. Beside this, the topological
interpretation allowed to overcome a technical challenge: For evaluating the neces-
sary algebraic stability conditions the index structure of the terms in a minor was
found to be decisive. Describing this structure is intricate in the algebraic frame-
work, but practicable in the graph theoretical framework, which provides suitable
concepts and terms such as subgraphs, trees, and cycles.
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In Chapter 4, translation between the frameworks allowed to interpret the algebraic
conditions for the stationarity and stability of the cooperative investments as topo-
logical characteristics of the evolving networks. The tools from dynamical systems
side revealed that in equilibrium any topological component can be characterized
by at most four variables, which – for stationarity to be observed – additionally
have to satisfy one of three possible relations. Arguments from graph theory then
revealed that the relations define topologically distinct scenarios, which differ with
respect to the average degree in a component as well as to the expected topological
arrangements of unidirectional links.

In Chapter 5, finally, the translation step was carried at the very beginning of the
considerations, when we mapped a topological structure onto a scalar variable Ti.
Therewith, we were able to study the topological self-tuning of the network from
the dynamical systems perspective.

In summary, the analytical treatment of continuous network models is in itself more
difficult than the analysis of discrete network models. However, it provides results
which are exact and account for the detailed topological configuration. The meth-
ods derived in this work show ways of overcoming the technical challenges. In
the future, it would be desirable to extend them, for example by generalizing the
assumptions under which the topological stability analysis introduced in Chapter 3

can be applied. Our hope is that by opening up continuous networks to analyt-
ical treatment our methods may contribute to future steps toward a conceptional
understanding of adaptive self-organization.
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