Dynamics, Synchronization and Inverse problem in Neural Networks with synaptic plasticity

Matteo di Volo
Group for Neural Theory
ENS, Paris

From Microscopic to collective dynamics in Neural Circuits
Dresden, 2016
Neural Network

\(Y(t) \) Electrical activity

Avalanches activity

- Delta (\(\delta \)): 0.5-4 Hz
- Infants, sleeping adults
- Spikes
- Epilepsy: petit mal

Graphs showing electrical activity and avalanche activity.
Outline

• LIF neurons with synaptic plasticity
• Heterogeneous Mean Field
• Partially synchronous and asynchronous regimes
• From collective activity to network structure
LIF Neuronal Model

\[\dot{v} = a - v + I_{\text{syn}} \]

\[v > v_{\text{th}} = 1 \begin{cases} \text{spike} \\ v = 0 \end{cases} \]

\[\alpha > 1 \]

\[\text{Spiking Regime} \]

Short term plasticity:
TUM model for excitatory neurons

\[I^{(i)}_{\text{syn}}(t) = \tilde{g} \sum_{j \in \text{presyn.i}} y_j(t) \]

\[S_j(t) = \sum_{n|t_n < t} \delta(t - t_n(j)) \]

\[k_{\text{in}} = k \]

\[k_{\text{out}} \]

\[\dot{y}_j = -\frac{y_j}{\tau_{\text{in}}} + u x_j S_j \]

\[\dot{x}_j = \frac{\tilde{z}_j}{\tau_r} - u x_j S_j \]

\[x_j + y_j + z_j = 1 \]
LIF Neuronal Model

\[\dot{v} = a - v + I_{\text{syn}} \]

\[v > v_{\text{th}} = 1 \begin{cases} \text{spike} \\ v = 0 \end{cases} \]

\[a > 1 \]

\[\text{Spiking Regime} \]

Short term plasticity:
TUM model for excitatory neurons

\[S_j(t) = \sum_{n | t_n < t} \delta(t - t_n(j)) \]

\[I_{\text{syn}}^{(i)}(t) = \tilde{g} \sum_{j \in \text{presyn}.i} y_j(t) \]

\[\dot{y}_j = -\frac{y_j}{\tau_{\text{in}}} + u x_j S_j \]

\[\dot{x}_j = \frac{z_j}{\tau_{r}} - u x_j S_j \]

\[x_j + y_j + z_j = 1 \]
LIF Neuronal Model

Finite size network of N neurons

\[
\dot{v}_i = a - v_i + \frac{g}{N} \sum_{j \neq i} g_{ij} y_j
\]

\[
\dot{y}_i = -\frac{y_i}{\tau_{in}} + ux_i S_i
\]

\[
\dot{x}_i = \frac{1 - x_i - y_i}{\tau_r} - ux_i S_i
\]

$\tau_{in} = 0.2$; $\tau_r = 26.6$

$u = 0.5$; $a = 1.3$

$g = 30$
Erdös–Renyi random Network

each link connected with probability p

large N : $P_N(k) = G(Np, Np(1 - p))$

\[
Y(t) = \frac{1}{N} \sum_i y_i(t)
\]

\[
\tilde{k} = \frac{k}{N}
\]
Thermodynamic limit

Erdös–Renyi: \(P(\tilde{k}) = G(p, p(1-p)/N) \)

fluctuations \(\sigma_{\tilde{k}} \sim 1/\sqrt{N} \)

Dynamics \((N \rightarrow \infty) \neq \) Dynamics (finite \(N \))

New Network construction

\(P(\tilde{k}) \) fixed

extract \(\tilde{k}_i \) from \(P(\tilde{k}) \)

&

assign randomly \(N\tilde{k}_i \) inputs

Gaussian \(P(\tilde{k}) : \langle \tilde{k} \rangle = 0.7 \) \(\sigma_{\tilde{k}} = 0.06 \)
Heterogeneous Mean Field

\[\dot{v}_i = a - v_i + \frac{g}{N} \sum_j \epsilon_{ij} y_j \]

\[\frac{1}{k_i} \sum_j g_{ij} y_j(t) \simeq \frac{1}{N} \sum_j y_j(t) = Y(t) \implies F_i(t) = \frac{g}{N} \sum_j g_{ij} y_j(t) \to g\tilde{k}_i Y(t) \]

\[\dot{v}_k(t) = a - v_k(t) + g\tilde{k}Y(t) \]

\[y_k(t) = -\frac{y_k(t)}{\tau_{in}} + u x_k(t) S_k(t) \]

\[\dot{x}_k(t) = \frac{(1 - y_k(t) - x_k(t))}{\tau_r} - u x_k(t) S_k(t) \]

\[Y(t) = \int_0^1 P(\tilde{k}) y_{\tilde{k}}(t) d\tilde{k} \]

Gaussian \(P(\tilde{k}) : \langle \tilde{k} \rangle = 0.7 \quad \sigma_{\tilde{k}} = 0.06 \)
Stability Analysis

Take \(Y(t) \) from HMF simulation

\(Y(t) \) periodic of period \(T \)

\[\dot{v}_k(t) = a - v_k(t) + g_kY(t) \]

Obtain a map:

\[t_{n+1}(\tilde{k}) = M_k t_n(\tilde{k}) \]
From partial synchrony to asynchronous phase: the role of degree disorder

\[R = \left\langle \frac{1}{N} \left| \sum_{j=1}^{N} e^{i \phi_j(t)} \right| \right\rangle \]

\[\phi_i(t, m) = 2\pi \frac{t - t_i(m)}{t_i(m+1) - t_i(m)} \]
HMF model is non-chaotic

\[\lambda_{max} \sim \frac{1}{\sqrt{M}} \]
Global Inverse Problem: \[Y(t) \rightarrow P(\tilde{k}) \]
Different setups: the disorder in neurons excitability

in vitro experiments
Robinette et al., Front. Neuroeng. (2011)

Model: disorder on \(a_i \) around \(a_c = 1 \)
Different setups: the inversion procedure

Uniform distribution $P(a)$ around threshold, All-to-All network

$$Y(t) = \int P(a)y_a(t) \, da$$
Conclusions

- Heterogeneous Mean Field reproduces finite size dynamics
- Rich dynamical phase
- Connectivity distribution from global signals

Collaborators:

University of Parma: R. Burioni, M. Casartelli, A. Vezzani

University of Florence: R. Livi