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Key Points

Granular materials are characterized by a
non-affine motion and often by anisotropy

Can we determine particles non-affine
motion by employing equilibrium?

Can we predict anisotropy by employing
equilibrium?



Dense Suspensions

Particles (hard spheres) in a Newtonian fluid

Neutrally buoyant suspensions
(the densities of the spheres and suspending fluid are equal)

Reynolds number based on particle size

_pya’ .
u

Re, 0

Viscous Forces dominate over the Inertial
Forces



Goal

Employ equilibrium for a typical pair

Prediction of particle trajectories

Prediction of microstructure: particle
distribution






Theoretical Model

1. Kinematics

2. Force

3. Equilibrium

4 Statistics

5. Stress



Kinematics A-B

Relative velocity of centers

B — §(BAGEY) | a9 BAFEA)
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a 1s the particle radius
s 1s the smallest separation between particles edges
Kinematics A-n

The relative velocity spheres A and n follows the affine
motion

nA
(2a+ 5) Dg,ds™



Force

Viscous Force + Repulsive Force

(Jeffrey and Onishi, 1983, JFM)

Interaction B-A
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Essential Ingredients
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Interaction n-A
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Equilibrium

Equilibrium particle A
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Equilibrium particle B
Interchanging A with B

d(AB) — _q(B4)



Structural Sums

From local tensors...



...to global (average) tensors

Conditional Average

All pairs B-A with orientation near
4(BA)






Assume the neighbors are uniformily distributed about
the pair A-B

N(A)
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m=0
n, = —3vV3(k—1)/(167)
¢ =—-3V3(k—1)/(4r)

k 1s average number of near contacts per particle



Sum up

For every pair A-B

Equilibrium Equations

3 F
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Solution depends on the orientation of the pair d(BA)
with respect to D



Next Step

Take the components of the force balance
parallel and perpendicular to the line of
centeres A — B

Two Unknowns:

1) s(BA)

2) 0 (BA)

Two Equilibrium Equations



Relative Motion in Pure Shear

Make s dimensionless with a and Fy with a>uy
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Force balance perpendicular to d
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Circumferential Distribution .&/
Steady State

Constant flux of the distribution along the trajectory

d
2L (6 =
dG(G)O

o/ (0)do is the average number of particles in do



Governing Equations

ds 2
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Numerical Predictions

Torquato (e.g. PRE, 1995)

1f v <0.69

_ vx(16=7v)
G = 16(1—v)?2

otherwise

_ 0.82—0.69
G =V x7.2646=55"
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Simple Shear

J.T. Jenkins and L. La Ragione, JFM, 763, 2015




Kinematics A-B

Relative velocity of “contact points”

vff 4y 2a§2xfc§BA)

Relative velocity of centers

vﬁf 4) S(BA>dA&BA) + ZaG(BA)f&BA)

Kinematics A-n

The velocity of the “contact points” of spheres A and n moving with
the average translation and rotation

A(nA) A(nA)
2a (Dﬁy—l— Wﬂ?’) dy + 2(1Q><tﬁ



Equilibrium

Equilibrium particle A
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Equilibrium particle B
Interchanging A with B

d(4B) — _q(Ba)



Next Step

Take the components of the force balance parallel and
perpendicular to the line of centeres A — B

Three Unknowns:
1) S(BA)
2) 6'(BA)
3) Q~
Two Local Equilibrium Equations

and
One Global Equilibrium (Symmetry of the Stress)

Input &k, § and D, W*



Relative Motion in Simple Shearing

Force balance along d
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Force balance perpendicular to d
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Dimensionless Equilibriated Force

(BA) .
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Dimensionless Stress Tensor

t, = Lap
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with
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Symmetry of the Stress

Eaplap = 0]
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Circumferential Distribution &/

Constant Flux



Representative trajectories s=s(8)

tory

Downstream \

trajectory

—

Trajectories of closest approach begin at the same
separation, given k and s.
Accumulated strain of two trajectories is equal.

Upstream branch: the spheres approach close to the
compression axis and depart close to the extension axis.
Downstream branch: the spheres approach and depart
from nearer the x-axis.




Separation s versus 0

0.1

0.09

0.08

0.07

0.06

» 0.05

0.04

0.03

0.02

0.01

K . | |
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Expanded view of s versus 0 (solid), when v = 0.60, k = 3, and
F = 10~%, with curves of s = 0 (dashed) and 8 = 0 (dot-dashed). Ac-
cording with Nazockdast and Morris (2013) at left of stagnation point
we have a reversing trajectory, at right a trajectory that continues in
the flow direction.
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FIG. 9. Average pair trajectories in shear plane of a ¢ = 0.20 suspension at Pe = 100: (a) predictions, (b) simulation results.

(c) Pair trajectories of an isolated pair in simple shear flow.

The point marked as the stagnation point separates reversing trajectories from those which
continue in the flow direction. The average velocity magnitude is zero at this point. In the absence
of Brownian fluctuations and fluctuations induced by bath particles, any pair of particles would
remain stagnant in this configuration, and g(r) would diverge at this point. Although the presence
of fluctuations removes this singularity, the stagnation point is still close to the location of the
maximum value of g; see Figure 6(a). The third trajectory zone contains far-field trajectories which
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Distribution <7 versus 6, when k = 3 and F = 1074, for v = 0.55
(dashed), and 0.65 (solid). Note the peak close to the stagnation point
as in Nazockdast and Morris (2013).



16 ,

14

12

0
0.55 0.6 0.65
\Y

Predicted shear stress 7y, versus area fraction v (solid line connect-
ing predicted values), with coordination number £ = 3 and repulsive

force F = 107*, and that measured by Singh & Nott (2000) (dashed
line connecting measured values)
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Predicted particle pressure p versus area fraction v (solid line con-
necting predicted values), with coordination number k£ = 3 and re-

pulsive force F = 107, and that measured by Singh & Nott (2000)
(dashed line connecting measured values)
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Predicted normal stress difference N versus area fraction v (solid
line connecting predicted values), with coordination number k = 3
and repulsive force F = 10, and that measured by Singh & Nott
(2000) (dashed line connecting measured values)
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Particle pressure p (circles) and normal stress difference N (dia-
monds) versus In(1/F), for coordination number k= 3 and v = 0.6.



CONCLUSIONS

a) A rather simple model is employed to study the rheology of
dense suspensions at low Reynolds number

b) Motion of a typical pair (given by an average and a
fluctuation) is determined by local force equilibrium

¢) Symmetry of the stress determines Q* — W~



Possible Numerical Tests:

a) Relate §, v 1n the anisotropic case. How
different 1s from the 1sotropic prediction?

b) Measure Q™ different from W* ?

c) Are p and N proportional to In(1/F) ?

d) Can numerical simulation provide a number for
k?



Next

Extend to the 3D case: two different normal

stresses

Centers of the particles not constrained to stay in

the flow plane

Comparison between theory, simulations and
physical experiments



