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Anyons: vortices with flux & charge (fractional).  
Aharonov-Bohm effect ó Geometric Phase. 

Statistics as quantum evolution 



Superconducting Hamiltonians:  
•  Topological phase of matter 
 

But SC are hard to simulate in the laboratory: 
•  Non-conservation of particles 
•  Zero energy, localisation at boundary 
•  Braiding not possible (yet) 
 

Spin-1/2 states are easy to simulate in the laboratory 
(photons, atoms, ions, Josephson junctions, NMR,…) 
 
We find spin analogs of SC and simulate braiding. 

Overview 



Superconducting fermion chain 

Consider two sites with tunnelling and pairing interactions 
 
 
 
Number of fermions is not conserved  
due to pairing term. 
Parity of fermions is conserved. 
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Spins Majorana 

Fermions 

We will treat this Hamiltonian in two ways:  



The Ising Hamiltonian 

For N sites we have 
 
 
Local to local Hamiltonian by non-local JW transformation. 
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will cause dephasing  
of the qubit state. 
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The ground states is still doubly degenerate  

| i = ↵|0iL + �|1iL = ↵|++...+i+ �|��...�i
It takes N flips to change from one state to the other. 



Majoranas from fermions 

“Real” and “imaginary” decomposition gives 
Majoranas:  
 
 
They are fermions that are their own anti-
particles: 
 
 
Up to now Majoranas are just a mathematical 
construction. 
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The Kitaev Hamiltonian 

Consider the superconducting Hamiltonian: 
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b†b = 0 or 1 Degenerate states. Leave at the end-points. 



The Kitaev Hamiltonian 

The degenerate eigenstates is a stable qubit: 

�1 �2 �3 �4 �2N

b = �1 + i�2N
b†b = 0 or 1
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In the presence of chemical  
potentials the edge modes are  
exponentially localised at the end. 



QC: Manage expectations 
•  Tiny energy gap: 

o  Temperature 
•  Finite extend:  

o  Perturbations 
o  Position inaccuracy 

•  Adiabatic transport 
•  State manipulations: 

o  Preparation  
o  Measurement 

What are Majoranas? 



Kitaev vs Ising 

The JW trans between spins and Majoranas is non-local. 
 
 
 
Both Hamiltonians are local. 
 
Spectrum is the same: unitary time evolution operators 
are the same. 
Eigenstates can have different properties: 
Local Majorana quasiparticles that do not overlap map to 
completely dispersed states of spin with complete overlap. 
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Unitary mapping 

JW 

Majorana chain Ising chain 
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Photonic implementation of Majorana-based
Berry phases
Jin-Shi Xu1,2*, Kai Sun1,2*, Jiannis K. Pachos3, Yong-Jian Han1,2†,
Chuan-Feng Li1,2†, Guang-Can Guo1,2

Geometric phases, generated by cyclic evolutions of quantum systems, offer an inspiring playground for
advancing fundamental physics and technologies alike. The exotic statistics of anyons realized in physical
systems can be interpreted as a topological version of geometric phases. However, non-Abelian statistics has
not yet been demonstrated in the laboratory. Here, we use an all-optical quantum system that simulates the
statistical evolution of Majorana fermions. As a result, we experimentally realize non-Abelian Berry phases with
the topological characteristic that they are invariant under continuous deformations of their control parameters. We
implement a universal set of Majorana-inspired gates by performing topological and nontopological evolutions and
investigate their resilience against perturbative errors. Our photonic experiment, though not scalable, suggests the
intriguing possibility of experimentally simulating Majorana statistics with scalable technologies.

INTRODUCTION
The Berry phase is one of the most intriguing concepts in physics
(1). It inspired numerous investigations toward theoretical frontiers
with its possible generalizations (2) and technological applications in
quantum computation (3). At the forefront of research in geometric
evolutions is the controlled realization of anyonic statistics in
condensed matter systems (4–6). This is manifested by the cyclic evo-
lution of two anyonic quasiparticles braided around each other. The
anyonic quasiparticles are deemed Abelian or non-Abelian depending
on the possible geometric evolutions from the exchange being simple
global phase factors or noncommuting unitaries, respectively. The sta-
tistical character of the exchange evolutions dictates that the resulting
geometric phases are topologically robust. This robustness is a very de-
sirable characteristic because it makes non-Abelian anyons a promising
platform for fault-tolerant quantum computation (5–8). In the past dec-
ades, non-Abelian anyons have been extensively theorized in condensed
matter systems (9–12). The most promising direction for realizing non-
Abelian anyons is the investigation of Majorana zero modes (MZMs).
There are already several positive signatures for the realization of MZMs
in the laboratory (13–21). Nevertheless, the experimental realization of
braiding operations is still a challenging open problem.

RESULTS
Encoding of MZM geometric evolutions
Here, we report the experimental quantum simulation of four MZM
braiding evolutions encoded in an all-optical system (22). The MZMs
are supported at the endpoints of two Kitaev chain models (KCMs)
composed of fermions. To perform the encoding, we first transform
the fermion system, with Hamiltonian HKCM, to a spin-1/2 system,
with Hamiltonian Hspin, through a unitary Jordan-Wigner (JW)
transformation, UJW (23, 24). The spin system is then encoded in
the spatial modes of single photons (25).

Under the JW transformation, the local Hamiltonians are uni-
tarily connected

Hspin ¼ U JWHKCMU†
JW ð1Þ

As a result, the time evolutions of the KCM and the spin system are
identical when written in their corresponding basis states. The ge-
ometric phases that correspond to the braiding of MZMs are par-
ticular cases of time evolutions that are cyclic and adiabatic. Hence, the
photonic system can simulate the statistical evolution of four MZMs by
simulating the corresponding spin system. The possibility to generate
an equivalent quantum evolution is in complete alignment with the
spirit of quantum simulation (26). The unitary equivalence (Eq. 1) be-
tween the KCM and the spin system guarantees that the Berry phase
obtained by evolving Hspin is non-Abelian and topological in nature.
Our previous experiment simulated the exchange of two MZMs po-
sitioned at the endpoints of the same chain, thus realizing a topological
Abelian Berry phase (25).

The topological character of the spin model results from the
topological character of the KCM. In the latter model, the topological
invariance corresponds to the invariance of the geometric evolution
against perturbations that are local in position space. As the environment
is assumed to act locally in space, the KCM is a promising candidate
for performing fault-tolerant quantum computation. The unitary
transformationUJW inherits the spin model with topologically invariant
geometric evolutions, but now with respect to perturbations that are
local in the parametric space of the adiabatic evolution. As these per-
turbations are not necessarily local in the position space, they may not
correspond to possible environmental errors in the spin system. In ad-
dition, in our photonic experiment, the resulting non-Abelian geometric
phases are insensitive of the exact timing of each controlled evolution
when it is large enough. This is a highly desirable characteristic that
facilitates the experimental realization of the non-Abelian evolution
with high fidelity.

By experimentally simulating the braiding of different pairs of
MZMs, we can only realize Clifford gates (27), such as the Hadamard

gate, H ¼ 1ffiffi
2

p 1 $ 1
1 1

" #
, and the ð$ p

4 Þ-phase gate, R ¼ 1 0
0 $ i

" #
,

which are not universal for quantum computation (28). The inclusion
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Majoranas as anyons 
Fusion and braiding of Majorana fermions 

Fusion 

One can show:  
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Majoranas as anyons 

Braiding 

Adiabatic braiding of Majorana fermions 

U†U = 1, U�1U† / �3, U�3U† / �1

This gives two possible solutions 

U2 = ei⇡ Nature Commun. 
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Photonic quantum simulator 
Produce geometric phases:  
 
Adiabatically change  
Hamiltonians ->      
Majoranas A and B are 
exchanged. 
 
Translate Majoranas to 
spins: JW transf. 
 
Do spin adiabatic 
evolution. 
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FIG. 1: The braiding of Majorana zero modes and the mapping between the fermionic and spin models. The spheres with
numbers at their centres represent the Majorana fermions, �j , for j = 1, ..., 6, at the corresponding sites. A pair of Majorana
fermions bounded by an enclosing ring represents a normal fermion. The wavy lines between di↵erent sites represent the
interactions between them. The interactions illustrated in a, b, c and d represent the Hamiltonians HMF

0 , HMF
1 , HMF

2 and H
MF
0 ,

respectively. The letters A and B in each pane represent the corresponding isolated Majorana zero modes. The mapping between
the Kitaev chain model (KCM) and the transverse-field Ising model (TFIM) through the Jordan-Wigner (JW) transformation
is shown in e. m3f and k3s are bases of the ground-state spaces defined in the KCM and TFIM (m and k=0 or 1), respectively.



Photonic quantum simulator 

Adiabatic dissipative evolution: 
 
 
 
      project the state to the eigenstate of 
 
 
Can take                                          for large t.  

 
 

  “Imaginary-time evolution” 
 

2

of Majorana fermions in which four MZMs are needed.
This establishes our photonic quantum simulator as a
novel platform to study the exotic physics of Majorana
fermions and their possible applications to quantum in-
formation [20]. Thus, our results extend the capabilities
of optical simulators.

Results

Majorana braiding. To clearly illustrate the proper-
ties of MZMs, we first consider the fermionic KCM [5].
This is the simplest model that supports two MZMs,
�A and �B at its boundaries and exhibits two-fold de-
generacy in its ground state. The braiding properties
of Majorana fermions can be investigated by exchang-
ing two MZMs. To perform such an exchange an adia-
batic evolution between carefully constructed Hamiltoni-
ans (HMF

0 , H
MF

1 , · · · , HMF

n
, H

MF

n+1 = H
MF

0 ) have been
proposed to probe the statistics of the MZMs in the
KCM [21, 22]. The exchange of �A and �B induces the
braiding evolution Uex = e

⇡�B�A/4 [21] acting on the two-
fold-degenerate ground-state space. As the MZMs belong
to the same chain with a fixed fusion channel the braid-
ing matrix is diagonal. Its elements are given in terms of
geometric phases [23] on the basis of |0Lf i (odd fermion
parity) and |1Lf i (even fermion parity), where the sub-
script f denotes fermionic states and L is the number of
sites of the chain (see section IA in the Supplementary
Information (SI) for more details). According to the work
of Pancharatnam [24] and the Bargmann invariants [25],
the geometric phases resulting from the braiding process
can be directly determined through projective measure-
ments

'g = �arg(hmLf |P1P2 · · ·Pn|mLf i), (1)

where 'g is the geometric phase associated with |mLf i
which represent the basis for the ground states of the
Hamiltonian H

MF

0 (m = 0 or 1). Here, Pi projects the
system into the ground space of HMF

i
, for i = 1, ..., n.

The geometric phases are gauge invariant and uniquely
determined by the Hamiltonians HMF

0 , H
MF

1 , · · · , HMF

n
,

while the details of the adiabatic processes between them
are not essential [26, 27]. Generally, the projective mea-
surement can be expressed as an imaginary-time evolu-
tion (ITE) operator e�H

MF
i t with a su�ciently large evo-

lution time t [28]. The adiabatic requirement preserves
the fermion parity of the initial state and guarantees
that the o↵-diagonal elements in Uex remain zero [26].
Therefore, the whole information of Uex can be read out
from ITE operators e�H

MF
1 t

e
�H

MF
2 t · · · e�H

MF
n t [29]. By

employing the method of dissipative evolution [30], each
projective measurement can be e�ciently completed with
some finite probability (a general circuit is given in sec-
tion IB in SI). We shall employ this method to experi-
mentally probe the geometric phases obtained during the
exchange of two MZMs by simulating a spin model that
is equivalent to the KCM.

To complete the exchanging of two MZMs, a four-
fermion scheme has been proposed in the superconduct-
ing wire system [21], which is further reduced to a three-
fermion scheme in our work. The three-fermion KCM can
be described in terms of six Majorana fermions, denoted
by �j (�

†
j
= �j , �k�l+�l�k = 2�k,l for j, k, l = 1, ..., 6), as

shown in Figure 1. The exchanging process can be com-
pleted by a set of adiabatic processes among three dif-
ferent Hamiltonians, as illustrated in Figure 1a-d. The
initial Hamiltonian is HMF

0 = i(�2�3+�4�5). The MZMs
�1 and �6 are isolated at the boundary of the chain to
form two MZMs, namely A and B (see Figure 1a), and
the degenerate ground-state space of H

MF

0 is spanned
by |03f i and |13f i (L = 3). The other two Hamiltoni-
ans are as follows: H

MF

1 = i(�4�5 + 1
2�1�2), where �3

and �6 are isolated to form MZMs (see Figure 1b), and
H

MF

2 = i(�4�5 + �2�6), where �1 and �3 are isolated to
form MZMs (see Figure 1c). The MZMs cross during the
adiabatic transition from H

MF

1 to H
MF

2 . To complete
the exchange process, we adiabatically transform H

MF

2
back into H

MF

0 , and the Majorana mode A is driven to
the location of �6 (see Figure 1d). The exchange of A and
B is thus completed, introducing the unitary operation
Uex = e

⇡�1�6/4 in the ground-state space on the basis of
|03f i and |13f i.
Through the JW transformation, a general KCM can

be transformed into a 1D transverse-field Ising model
(TFIM) [15]. However, these two models have some dif-
ferences in their physics (see section IC in SI for more
details). In the fermionic system, the total fermion par-
ity is fixed. The braiding e↵ect in a single KCM is an
overall phase. This phase cannot be directly measured
as the superposition state with di↵erent fermionic parity
is impossible. Despite that, the state of the spin model
can be prepared in any superposition state. Hence, the
relative geometric phase obtained during the exchange
can be measured. As the KCM and the TFIM in the fer-
romagnetic region have the same spectra and their cor-
responding quantum evolutions are equivalent, the geo-
metric phases obtained from the braiding evolution Uex

are invariant under this mapping (see section IE in SI for
more details). As a result, the well-controlled spin system
o↵ers a good platform to determine the exchange matrix
and investigate the statistical behaviour of MZMs.
The Hamiltonians involved in the three-fermion braid-

ing scheme of the KCM, i.e., H
MF

0 , H
MF

1 and H
MF

2 ,
are transformed through the JW transformation into a
spin-1/2 system as follows (see section ID in SI for more
details):

H0 = �(�x
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x

2 + �
x
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x

3 ) ,
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x
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3 +
1

2
(�z
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z
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3 ) ,

(2)

where �
x

i
, �y

i
and �

z

i
are Pauli matrices of the ith spin.

The ground states of these Hamiltonians are two-fold de-
generated. The basis of the ground states of H0 are de-

Pj Hj

Pj ⇡ e�Hjt



Photonic quantum simulator 
Three spins:             states: 
 
 
 
 
 
 
 
 
Pre: State preparation 
HWP: Half Wave Plate 
BD: Beam Displacer 30 or 60 mm 
 
Use photonic mode for spin state 
Use polarisation to couple to the environment  
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FIG. 2: Experimental setup for the simulation of the exchange of MZMs. The process follows the logical diagram pro-
vided in the pane enclosed by the black solid line, denoted by Logi. The state of the three-spin-1/2 system can be ex-
pressed in the eight dimensional space with the basis denoted by |li (l = 1 to 8), which are encoded as the spatial modes
of photons. Cl are the corresponding amplitudes. For the initial Hamiltonian H0, the space is expanded by the basis
of |xxxi, |xx̄xi, |xxx̄i, |xx̄x̄i, |x̄x̄x̄i, |x̄xx̄i, |x̄x̄xi, |x̄xxi. The polarization of a single photon is rotated using half-wave plates
(HWPs), and the spatial modes are separated by beam displacers, each with a beam displacement of either 3.0 mm (BD30) or
6.0 mm (BD60). The state preparation is illustrated in the pane labeled Pre. The basis rotations BR1, BR2 and BR3 are used
to express the input states in terms of the eigenstates of H1, H2 and H0, respectively. The dissipative evolutions DE0, DE1
and DE2 drive the input states to the ground states of H0, H1 and H2, respectively. Some of the detailed basis representations
of the spatial modes are given in the right column. The solid red rings represent the preserved optical modes, and the dashed
red rings represent the discarded optical modes. The states indicated near the optical modes represent the corresponding basis
in the eight-dimensional space. Two types of measurements are performed, i.e., two-mode measurement (TM) and four-mode
measurement (FM). Beam splitters (BSs) are used to send the photons to di↵erent measurement instruments. Finally, photons
are detected using single-photon detectors (SPDs).
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Produce geometric phases:  
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FIG. 2: Experimental setup for the simulation of the exchange of MZMs. The process follows the logical diagram pro-
vided in the pane enclosed by the black solid line, denoted by Logi. The state of the three-spin-1/2 system can be ex-
pressed in the eight dimensional space with the basis denoted by |li (l = 1 to 8), which are encoded as the spatial modes
of photons. Cl are the corresponding amplitudes. For the initial Hamiltonian H0, the space is expanded by the basis
of |xxxi, |xx̄xi, |xxx̄i, |xx̄x̄i, |x̄x̄x̄i, |x̄xx̄i, |x̄x̄xi, |x̄xxi. The polarization of a single photon is rotated using half-wave plates
(HWPs), and the spatial modes are separated by beam displacers, each with a beam displacement of either 3.0 mm (BD30) or
6.0 mm (BD60). The state preparation is illustrated in the pane labeled Pre. The basis rotations BR1, BR2 and BR3 are used
to express the input states in terms of the eigenstates of H1, H2 and H0, respectively. The dissipative evolutions DE0, DE1
and DE2 drive the input states to the ground states of H0, H1 and H2, respectively. Some of the detailed basis representations
of the spatial modes are given in the right column. The solid red rings represent the preserved optical modes, and the dashed
red rings represent the discarded optical modes. The states indicated near the optical modes represent the corresponding basis
in the eight-dimensional space. Two types of measurements are performed, i.e., two-mode measurement (TM) and four-mode
measurement (FM). Beam splitters (BSs) are used to send the photons to di↵erent measurement instruments. Finally, photons
are detected using single-photon detectors (SPDs).
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4

the photonic system. Nevertheless, there are intriguing
similarities. The detailed mapping between the basis of
Hilbert space of three-spin system and the spatial modes
of one photon depends on the Hamiltonian (see sections
IF and IG in SI for more details).

The basis of a spin state can be expressed as the eigen-
states of �

z (denoted by |zi, with an eigenvalue of 1,
and |z̄i, with an eigenvalue of �1), �y (denoted by |yi,
with an eigenvalue of 1, and |ȳi, with an eigenvalue of
�1) or �x (denoted by |xi, with an eigenvalue of 1, and
|x̄i, with an eigenvalue of �1). In our experiment, we
employ beam displacers (BDs) of various lengths to pre-
pare the initial states. A beam displacer is a birefringent
crystal, in which light beams with horizontal and ver-
tical polarizations are separated by a certain displace-
ment (depending on the length of the crystal) [37]. Two
types of BDs are employed, BD30 (with a beam dis-
placement of 3.0 mm) and BD60 (with a beam displace-
ment of 6.0 mm). The polarization of the photon can
be rotated using half-wave plates (HWPs), and the rel-
ative amplitudes of the di↵erent spatial modes can be
conveniently adjusted. To obtain the ground states of
the corresponding Hamiltonian, the polarization of the
photons is used as the environmental degree of freedom.
The coupling between the spatial mode and the polar-
ization is achieved using HWPs, which rotate the po-
larization in the corresponding paths. Dissipative evo-
lution is accomplished by passing the photons through
a polarization beam splitter (PBS), which transmits the
horizontal component and reflects the vertical compo-
nent. In our case, only photons in the optical modes
that have horizontal polarizations are preserved; these
modes correspond to the ground states of the Hamilto-
nian. The components with vertical polarizations are
completely dissipated. The precision of the dissipative
evolution is dependent on the ratio between the reflected
and transmitted parts of the vertical polarization after
the PBS, which can be higher than 500:1. To ensure dis-
sipative dynamics using a PBS, we must express the input
states in the basis of the eigenstates of the corresponding
Hamiltonian, which are referred to basis rotations. The
eigenstates of H0 = �(�x

1�
x

2 + �
x

2�
x

3 ) can be expressed
as {|xxxi, |xxx̄i, |xx̄xi, |xx̄x̄i, |x̄xxi, |x̄xx̄i, |x̄x̄xi, |x̄x̄x̄i},
which are represented by the eight spatial modes of the
single photon and are shown in the state preparation
pane labelled by Pre in Figure 2. The corresponding cross
sections of the spatial modes are shown in the left column
in Figure 2. Only the terms of |xxxi and |x̄x̄x̄i are pre-
served after the ITE operation of H0, which corresponds
to two spatial modes in the dissipative evolution of DE0.
For the ITE operation of H1 = ��

x

1�
x

2 +1/2(�z

1 +1), we
should only consider the term of 1/2(�z

1 + 1) (the term
of ��

x

1�
x

2 is the same as that in H0). Two HWPs with
the angles setting to be 45� in the basis rotation BR1 are
implemented in modes of |xxxi and |x̄x̄x̄i, in which the
basis of the first spin is rotated to |zi and |z̄i. The two
spatial modes are then separated to four by a BD60 with
the spatial modes represented as |z̄xxi, |zxxi, |z̄x̄x̄i and

|zx̄x̄i. After the dissipative evolution of DE1, only the
terms of |z̄xxi and |z̄x̄x̄i are preserved. The ITE oper-
ation of H2 can be implemented by the same way with
the details given in the section IF in SI.
To clearly show the two-mode output states, the corre-

sponding density matrices, ⇢, are expressed in the basis of
{I,�x

,�
y
,�

z} as follows: ⇢ = 1
2 (I+p1�

x+p2�
y +p3�

z).
Here I represents the identity operator and p1, p2 and p3

are the corresponding real amplitudes, which uniquely
identify density matrices on a Bloch sphere. The initial
states after the ITE operation of DE0 is shown in Fig-
ure 3a. The corresponding final states after the operator
Uex are illustrated in Figure 3b. It is shown that the
final state is the same as the initial state when the initial
state is |03si ( 1p

2
(|xxxi + |x̄x̄x̄i), denoted as dot 4) or

|13si ( 1p
2
(|xxxi � |x̄x̄x̄i), denoted as dot 6) which sug-

gests that there is no o↵-diagonal elements in the braiding
matrix, Uex. In addition, the relative geometric phase
between |03si and |13si during the braiding can be di-
rectly measured. Indeed, the final states are obtained
by rotating the initial states counterclockwise along the
X axis through an angle of ⇡/2 when the initial state
is a superposition state of |03si and |13si, i.e., the ba-
sis |03si obtains an extra phase factor of �i relative to
|13si. Thus, the braiding matrix can be determined by
the relative geometric phase giving Uex = diag(1, e�i⇡/2).
The braiding matrix determined here agrees well with
the theoretical result [21]. This implies that any in-
put state ↵|xxxi+ �|x̄x̄x̄i, with the complex coe�cients
of ↵ and � (|↵|2 + |�|2 = 1), would be transformed
to 1p

2
(↵ � i�)|xxxi + 1p

2
(� � i↵)|x̄x̄x̄i, i.e., the state

1p
2
(↵ + �)|03si + 1p

2
(↵ � �)|13si) would be changed to

1p
2
(↵ + �)|03si + i

1p
2
(↵ � �)|13si) in the basis of |03si

and |13si.
The real and imaginary parts of the experimentally de-

termined operator of the exchange process (the computa-
tion basis are represented as |xxxi and |x̄x̄x̄i), as deter-
mined via the quantum process tomography (represented
by Pauli operators {I,X(�x), Y (�y), Z(�z)}) [38], are
presented in Figures 3c and d. The fidelity is calculated
to be 94.13 ± 0.04% (the errors are deduced from the
Poissonian photon counting noise).
If the statistics between the MZMs were Abelian then

the braiding matrix between these two degenerate states
would have been the identity matrix without any rela-
tive phase between the degenerate basis states. That we
obtain a relative phase factor is in agreement with the
non-Abelian character of MZMs.
Experimental results on simulating local noises
immunity. We further investigate local noises immu-
nity of the information encoded in the ground space of
the KCM. The output state after the dissipative evolu-
tion DE0, ↵|xxxi+�|x̄x̄x̄i, is treated as the initial state.
After the operation of 1

4 (i�
y

1�
x

2 + �
y

1�
y

2 + �
x

1�
x

2 � i�
x

1�
y

2 )
(flip-error operator), the two output modes would be-
come eight. The final state is the same as the initial
one by projecting the state back to the ground-space of

10

FIG. 3: Experimental results on simulating the braiding evolution. a. The six experimental initial states after the first
ITE operation of DE0 with the dark green dot labeled as 1, cyan dot labeled as 2, red dot labeled as 3, dark yellow dot
labeled as 4, violet dot labeled as 5 and navy dot labeled as 6 in the Bloch sphere. b. The corresponding experimental
final states after the second ITE operation of DE0 with the dark green dot labeled as 10, cyan dot labeled as 20, red dot
labeled as 30, dark yellow dot labeled as 40, violet dot labeled as 50, and navy dot labeled as 60 in the Bloch sphere. The
black dots in the poles of the Bloch spheres represent the corresponding theoretical predictions with the states |xxxi (+Z
direction), 1p

2
(|xxxi� i|x̄x̄x̄i) (-Y direction), |x̄x̄x̄i (-Z direction), 1p

2
(|xxxi+ |x̄x̄x̄i) (+X direction, |03si), 1p

2
(|xxxi+ i|x̄x̄x̄i)

(+Y direction), and 1p
2
(|xxxi � |x̄x̄x̄i) (-X direction, |13si), respectively. Due to the experimental errors, the coloured dots

(experimental results) are slightly separated from the corresponding black dots. The final states are shown to be rotated along
the X axis by ⇡/2 from the initial states. c. Real (Re) and d. Imaginary (Im) parts of the exchange operator, with a fidelity
of 94.13± 0.04%.

FIG. 4: Experimental results on simulating local noises immunity. a. Real (Re) and b. Imaginary (Im) parts of the flip-error
protection operator, with a fidelity of 97.91± 0.03%. c. Real (Re) and d. Imaginary (Im) parts of the phase-error protection
operator, with a fidelity of 96.99± 0.04%.

'g ⇡ ⇡/2

| i = ↵|xxxi+ �|x̄x̄x̄i
Tomography [Nature Commun. 7, 13194 (2016)] 
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FIG. 1. The set of universal quantum gates and the Deutsch-Jozsa algorithm. The Kitaev chains

consist six fermions (numbered from 1 to 6) with four isolated Majoranas A, B, C and D, which

can be used to demonstrate the universal gates. Each two particles in the blue ellipse form a con-

ventional fermion. The dashed lines between di↵erent fermions represent the interactions between

them. a. The exchange of Majoranas A and C, which corresponds to a Hadamard (H) gate on

the logical basis. b. The exchange of Majoranas C and D, which corresponds to a rotation (R)

gate on the logical basis. c. The real time population-dependent evolution on Majoranas B and C,

which is manipulated by transport both of these two MZMs to a single site (site 3 in our experi-

ment) and leads to an ⇡

8 operation on the logical basis (T gate). d. The process to implement the

Deutsch-Jozsa algorithm with topological protected manner. The Hadamard gate is implemented

by braiding A and C. The unitary operation (Uf ) can be identity (the state remains the same) or

�z operation (two successive braiding of C and D).

(ITE) realised by dissipation with finite probabilities. We show in the following that by

transporting the MZMs we can realise the one-qubit braiding gates, H and R, as well as the

dynamical T gate.

The smallest system of two connected chains that retains fault-tolerance against local

perturbations at all times along the braiding operations comprises of six fermion sites. I

think we need to show that in a cartoon, how with six fermions the majoranas

never meet at the same site. We denote these fermions through the canonical operators

ci, c
†
i
, with positions i = 1, ..., 6 , where i = 1, 2 comprise the first chain, i = 4, 5, 6 comprise

6

R =

✓
1 0
0 i

◆

HR 6= RH

T =

✓
1 0
0 ei⇡/4

◆
H =

1p
2

✓
1 �1
1 1
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FIG. 1: The process of exchanging Majoranas in the two-dimension Kitaev model with six fermions

(numbers from 1 to 6). Four isolated Majoranas A, B, C and D exist in this model. a, b, c, d and e

correspond to the imaginary-time evolution of Hamiltonian of H0, H1, H2, H3 and H0, respectively.

Each two particles in the blue ellipse form a fermion. The dashed lines between di↵erent fermions

represent the interactions between them.

|�0i is sent to the ITE operation of the second Hamiltonian

H1 = ��
x

1�
x

2 + �
y

1�
z

2�
x

3 + �
z

4/2� �
x

5�
x

6 . (3)

We find that the terms of ��
x

1�
x

2 and ��
x

5�
x

6 in H1 are the same as that in H0. Therefore, we

should only implement the ITE operation of �
z

4/2 and �
y

1�
z

2�
x

3 . The output state becomes

|�1i = [↵(1 + i) + �(1� i)]|r1h2d3v4d5d6i

+ [�↵(1 + i) + �(1� i)]|r1v2k3v4d5d6i

+ [↵(1� i)� �(1 + i)]|l1v2d3v4d5d6i

+ [�↵(1� i)� �(1 + i)]|l1h2k3v4d5d6i

+ [�µ(1 + i)� ⌫(1� i)]|r1h2d3v4k5k6i

+ [µ(1 + i)� ⌫(1� i)]|r1v2k3v4k5k6i

+ [�µ(1� i) + ⌫(1 + i)]|l1v2d3v4k5k6i

+ [µ(1� i) + ⌫(1 + i)]|l1h2k3v4k5k6i.

(4)

4

26 = 64



To realize the p
8-phase gate, we place two MZMs at the same site

and apply a local field. This causes the splitting of the ground-state
degeneracy for a certain time, during which the appropriate dynamical
phase factor is accumulated (29). In particular, we transport the B and
C MZMs to site 3 by a set of ITE operations. Then, the population-
dependent Hamiltonian He = − ig3ag3b is operated for a certain time t,
as shown in Fig. 1C. Last, the MZMs are transferred back to their ini-
tial position. The details of this process can be found in section S1D.
During this evolution, the qubit states are transformed by M ¼

cost "isint
"isint cost

! "
¼ e"isx t . With the help of the Hadamard gate,

we can obtain the p
8-phase gate as H†MH ¼ e"it 1 0

0 e2it

! "
by

choosing the time to be t ¼ p
8. This gate is not protected against noise

perturbations acting on site 3 when both MZMs are positioned there.
Moreover, unlike the braiding gates, the dynamical gate is sensitive to
timing errors.

Spin encoding of two-chain system
To experimentally simulate the braiding evolutions of MZMs A and
C, we transform the fermionic HamiltoniansHM0,Hh1,Hh2, andHh3
of Eqs. 2 and 3, via a JW transformation, into the equivalent spin
Hamiltonians, H0, H1, H2, and H3, respectively, where

H0 ¼ "s x
1s

x
2 þ sz3 " s x

4s
x
5 " s x

5s
x
6 ;

H1 ¼ "s x
1s

x
2 þ s y

1s
z
2s

x
3 þ sz4 " s x

5s
x
6 ;

H2 ¼ "s x
1s

x
2 þ s y

1s
z
2s

x
3 þ s x

3s
y
4 " s x

5s
x
6 ;

H3 ¼ "s x
1s

x
2 þ s y

1s
z
2s

x
3 " s x

4s
x
5 " s x

5s
x
6 ð4Þ

During the adiabatic process, the spin system has the same spectrum
as the fermion system at all times. Hence, both systems share the same
time evolution operatorswhenwritten in their corresponding basis (25).
In particular, the non-Abelian geometric phase obtained during the
transport of MZMs can be faithfully studied in the equivalent spin
system. Because of the commutation relations between the terms
ofH0,H1,H2, andH3, the total process of ITE can be further simplified
as e"H0te"H3te"H2te"H1t jf0i ¼ e"sz

3tes
x
4 s

x
5 te"s x

3 s
y
4te"s y

1s
z
2s

x
3 te"sz

4t jf0i ,

where |f0〉 is the ground state of H0. To experimentally simulate
the above dynamics, we need, in principle, a 27-dimensional Hilbert
space that corresponds to six spins for the chain network and an ex-
tra spin for implementing dissipation. However, because of the
character of the ITE, we need to focus only on manipulations that
act on the low-energy subspace, which is 25-dimensional (see
Materials and Methods). While our photonic simulator has limited
scalability as it does not have a tensor product structure, we success-
fully managed to encode the full low-energy Hilbert space.

The experimental setup that realizes the adiabatic evolutions be-
tween the spin Hamiltonians (Eq. 4) and, as a consequence, the evolu-
tions that correspond to the braiding of MZMs A and C is shown in
Fig. 2. We encode the quantum states in the optical spatial modes of
photons and manipulate them by beam displacers (BDs). A BD is a
birefringent crystal, which separates light beams with horizontal and
vertical polarizations by a certain displacement that depends on the
length of the crystal (32). In our experiment, the polarization of the
photons is used as the environmental degree of freedom for the real-
ization of the ITE operations. The coupling between the spatial modes
and the photon polarization is achieved using half-wave plates
(HWPs) and quarter-wave plates (QWPs), which rotate the polariza-
tion of the corresponding modes. A dissipative evolution is accomplished
in two steps. Initially, photons are passed through a polarizing beam
splitter (PBS), which transmits the horizontal component and reflects
the vertical one. Subsequently, photons with vertical polarization are
completely dissipated, and only the ones with horizontal polarization
are preserved. The resulting states correspond to the ground state of
the spin chain system. In this way, the state |f0〉 is initially prepared
and is then sent to the ITE operation of H1, H2, H3, and H0 for the
braiding of A and C with the dynamical map shown in Fig. 2A. The
ITE operations are realized in Fig. 2, B (see Materials and Methods)
and C, with one of the detailed processes shown in Fig. 2E. The com-
bination of HWPs and a QWP in Fig. 2F is used to exchange basis
between Pauli operators sy and sx (sz). The setup of basis rotation
shown in Fig. 2D is used to rotate the output state onto the same basis
of the input state. During the experiment, we need to construct a stable
interferometer with 16 spatial modes. The relative phases in the inter-
ferometer are compensated by inserting thin glasses in the corresponding

H0
Basis
rotationA

B

C

D

E

BD30 BD60 PBSHWP

H1 H2 H3 H0

F

QWP

 4  y1  2  x3

Basis rotation

 x3  y4  x4  x5  3/ /–

Fig. 2. Experimental setup. (A) ITEs between Hamiltonians that exchange MZMs A and C. (B) Setup to realize the ITE of H1 (needs only sz4 and s y
1s

z
2s

x
3 ). The state is

initially prepared to be the ground state of H0 involving four spatial modes, represented by solid circles. After rotation by BDs (BD30 with beams separated by 3.0 mm
and BD60 with beams separated by 6.0 mm), HWPs, and QWPs and subsequent dissipation by PBSs, there are eight output spatial modes. One of the operation
processes represented by the arrows is shown in (E), with HWPs set at different angles operating on different spatial modes. The combination of HWPs and a QWP
in (F) is used to exchange basis between the Pauli operators sy and sx (sz). (C) Setup for the ITE of H2 (needs onlys x

3s
y
4). The subsequent ITEs of H3 (needs only"sx4s

x
5) and H0

(needs only sz3) are similar to those of H2. (D) The setup for basis rotation is used to rotate the output state along the same basis as the input state.
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Non-Abelian Statistics 

To implement it we use the following processes: 



Non-Abelian Statistics 

Fidelities: 
 Most gates F>97% 
 Total Fidelity >91% 

 
Errors: 
 No errors  Errors on 4 Errors on 3 4&5 Errors 3&4 Errors 
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FIG. S12: Experimental results without and with phase and flip errors on the ⇡/8 phase gate operation. The real (Re) and

imaginary (Im) parts of the output density matrixes expressed on the logical basis |00gi and |11gi, which are represented as

0 and 1 for simplicity, respectively. The input state is prepared to be |11gi. a. The density matrix without errors. b. The

density matrix with phase error on site 4. b. The density matrix with phase error on site 3. c. The density matrix with flip

error on sites 4 and 5. d. The density matrix with flip error on sites 3 and 4.

[6] Lahtinen V., & Pachos J. K., Non-Abelian statistics as a Berry phase in exactly solvable

models, New J. Phys. 11 093027 (2009).

[7] Kapit E.,Ginsparg P., & Mueller E., Non-Abelian Braiding of Lattice Bosons. Phys. Rev. Lett.

108, 066802 (2012).

[8] Xu, J.-S., et al., Demon-like algorithmic quantum cooling and its realization with quantum

optics Nature Photon. 8, 113-118 (2014).

[9] Fendally, P. Parafermionic edge zero modes in Zn-invariant spin chains. J. Stat. Mech. 11,

P11020 (2012).

[10] Kitaex, A. & Laumann, C. ‘Topological phases and quantum computation’ in Les Houches

Summer School ‘Exact methods in low-dimensional physics and quantum computing’. (2008).

[11] Suzuki M. Generalized Trotter’s formula and systematic approximants of exponential opera-

tors and inner derivations with applications to many-body problems. Commun. Math. Phys.

51, 183-190 (1976).

[12] Xue Z.-Y., Detecting non-Abelian statistics of Majorana fermions in quantum nanowire net-

works. JETP Lett. 94, 213-216 (2011).

[13] Bargmann, V. Note on Wigner’s theorem on symmetry operations. J. Math. Phys. 5, 862-868

(1964).



Summary 
•  Spins are favourable for quantum simulations with 

photons, atoms, ions, Josephson junctions, NMR,… 

•  Topological phases such as SC fermionic systems 
exciting:  
o  encoding protected quantum information 
o  demonstrating new physics (anyons) 

 
•  Here we simulated their braiding properties, construct 

one-qubit gates and demonstrate fault-tolerance. 

•  Outlook: Quantum algorithms are similar to evaluating 
Jones polynomials -> 

   Quantum Machine Learning…  



Outlook 
Deutsch-Jozsa Algorithm: 

|1i = H11H|0i

|0i = HR
2
H|0i
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