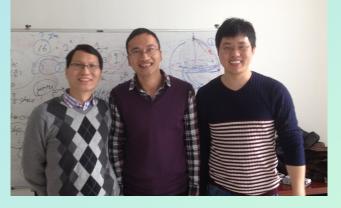
Non-Abelian topological Berry phases Theory & Experiment

J.-S. Xu, K. Sun, Y.-J. Han, C. F. Li, G.-C. Guo, JKP

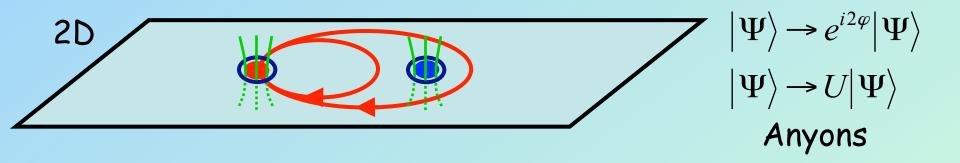
Nature Commun. **7**, 13194 (2016) Science Advances **4**, eaat6533 (2018)

Dresden, January 2019



Statistics

Statistics as quantum evolution



Anyons: vortices with flux & charge (fractional). Aharonov-Bohm effect \Leftrightarrow Geometric Phase.

Overview

Superconducting Hamiltonians:

Topological phase of matter

But SC are hard to simulate in the laboratory:

- Non-conservation of particles
- Zero energy, localisation at boundary
- Braiding not possible (yet)

Spin-1/2 states are easy to simulate in the laboratory (photons, atoms, ions, Josephson junctions, NMR,...)

We find spin analogs of SC and simulate braiding.

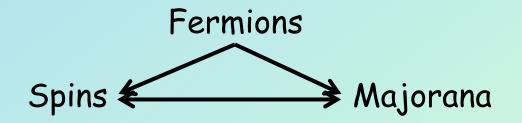
Superconducting fermion chain

Consider two sites with tunnelling and pairing interactions

$$H_{\rm SC} = -(a_1^{\dagger}a_2 + a_2^{\dagger}a_1) + a_1^{\dagger}a_2^{\dagger} + a_2a_1$$

Number of fermions is not conserved due to pairing term. **Parity of fermions** is conserved.

We will treat this Hamiltonian in two ways:



The Ising Hamiltonian

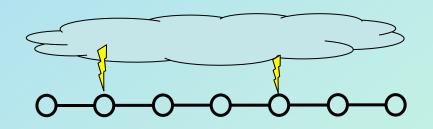
For N sites we have $H_{\rm SC} = -\sum_{i=1}^{N-1} \left(a_i^{\dagger} a_{i+1} + a_i^{\dagger} a_{i+1}^{\dagger} + \text{h.c.} \right) = -\sum_{i=1}^{N-1} \sigma_i^x \sigma_{i+1}^x$

Local to local Hamiltonian by non-local JW transformation. The ground states is still doubly degenerate

$$++...+\rangle, |--...-\rangle$$

It takes N flips to change from one state to the other.

$$|\psi\rangle = \alpha |0\rangle_L + \beta |1\rangle_L = \alpha |++...+\rangle + \beta |--...-\rangle$$



$$H_{\rm error} = B\sigma_i^x$$

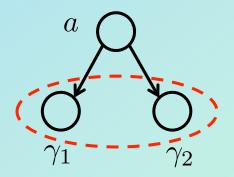
will cause dephasing of the qubit state.

Majoranas from fermions

"Real" and "imaginary" decomposition gives Majoranas:

$$\gamma_1 = \frac{a+a^{\dagger}}{2}, \ \gamma_2 = \frac{a-a^{\dagger}}{2i}$$

They are fermions that are their own antiparticles: $\gamma_{j}^{\dagger} = \gamma_{j}$



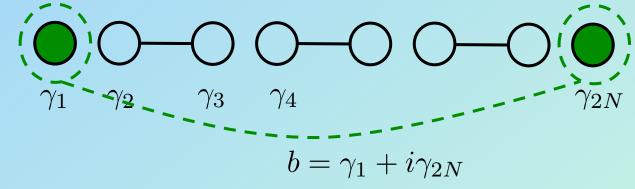
The Kitaev Hamiltonian

Consider the superconducting Hamiltonian:

 $b^{\dagger}b = 0 \text{ or } 1$ Degenerate states. Leave at the end-points.

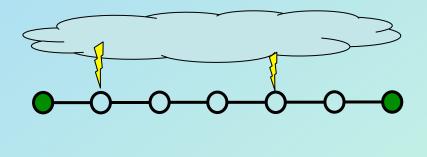
The Kitaev Hamiltonian

The degenerate eigenstates is a stable qubit:



 $b^{\dagger}b = 0 \text{ or } 1$

$$|\psi\rangle = \alpha |0\rangle_L + \beta |1\rangle_L = \alpha |b^{\dagger}b = 0\rangle + \beta |b^{\dagger}b = 1\rangle$$

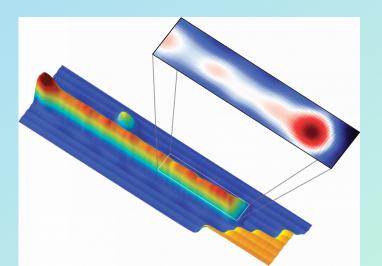


 $H_{\rm error} = \mu a_i^{\dagger} a_i$

In the presence of chemical potentials the edge modes are **exponentially** localised at the end.

QC: Manage expectations

- Tiny energy gap:
 Temperature
- Finite extend:
 - Perturbations
 - Position inaccuracy
- Adiabatic transport
- State manipulations:
 - Preparation
 - Measurement



What are Majoranas?

Kitaev vs Ising

The JW trans between spins and Majoranas is non-local.

$$a_i = \left(\prod_{j < i} \sigma_j^z\right) \sigma_i^+, \quad a_i^{\dagger} = \left(\prod_{j < i} \sigma_j^z\right) \sigma_i^-,$$

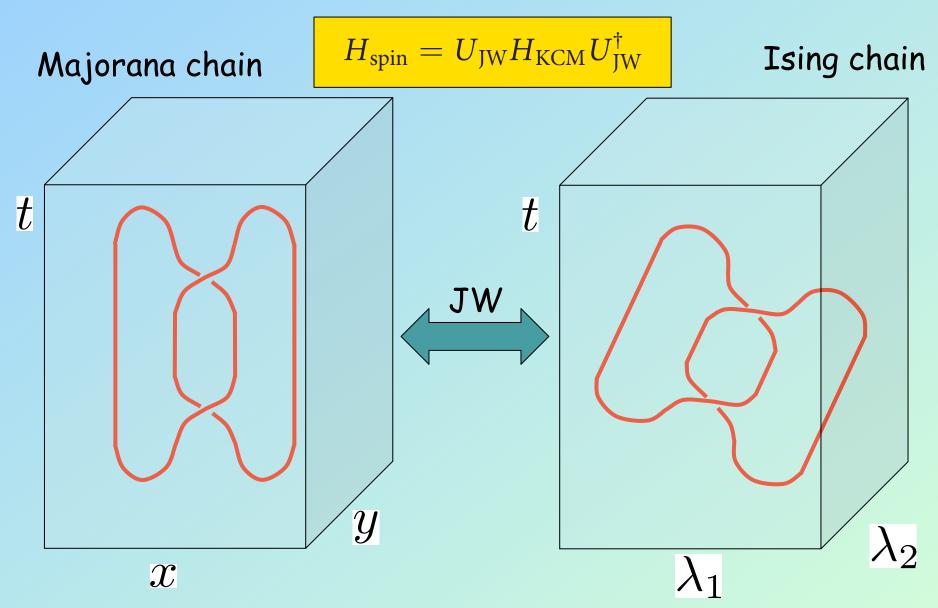
Both Hamiltonians are local.

Spectrum is the same: unitary time evolution operators are the same.

Eigenstates can have different properties:

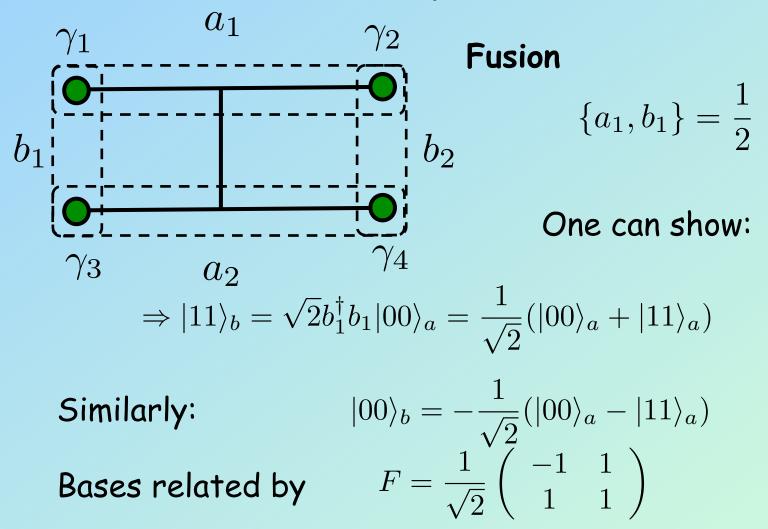
Local Majorana quasiparticles that do not overlap map to completely dispersed states of spin with complete overlap.

Unitary mapping



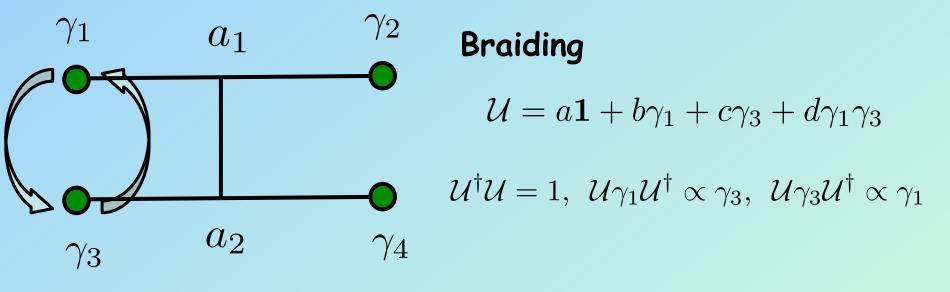
Majoranas as anyons

Fusion and braiding of Majorana fermions



Majoranas as anyons

Adiabatic braiding of Majorana fermions



This gives two possible solutions

Photonic quantum simulator

Produce geometric phases:

Adiabatically change Hamiltonians -> Majoranas A and B are **exchanged**.

Translate Majoranas to spins: JW transf.

Do spin adiabatic evolution.



Photonic quantum simulator

Adiabatic dissipative evolution:

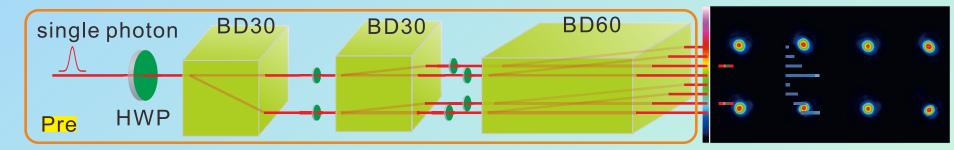
$$\varphi_{g} = -\arg(\langle m_{Lf} | P_1 P_2 \cdots P_n | m_{Lf} \rangle)$$

 P_j project the state to the eigenstate of H_j

Can take $P_j \approx e^{-H_j t}$ for large t.

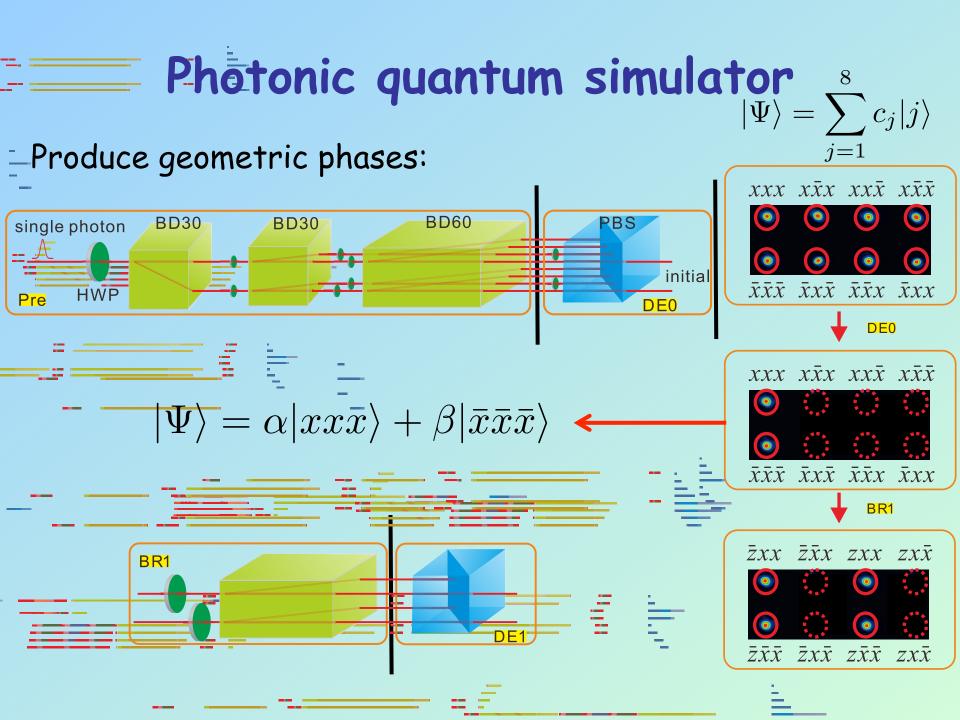
"Imaginary-time evolution"

Photonic quantum simulator Three spins: $2^3 = 8$ states: $|\Psi\rangle = \sum_{j=1}^8 c_j |j\rangle$



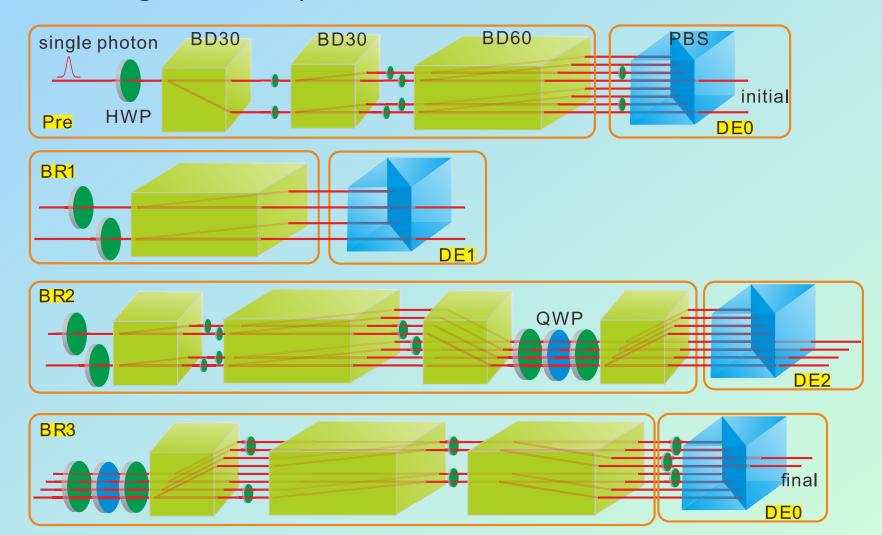
Pre: State preparation HWP: Half Wave Plate BD: Beam Displacer 30 or 60 mm

Use photonic mode for spin state Use polarisation to couple to the environment

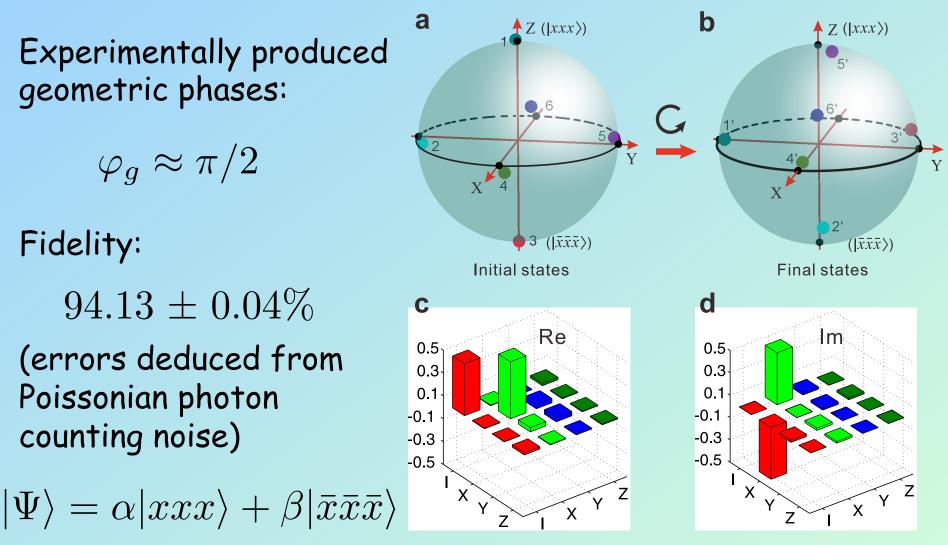


Photonic quantum simulator

Produce geometric phases:



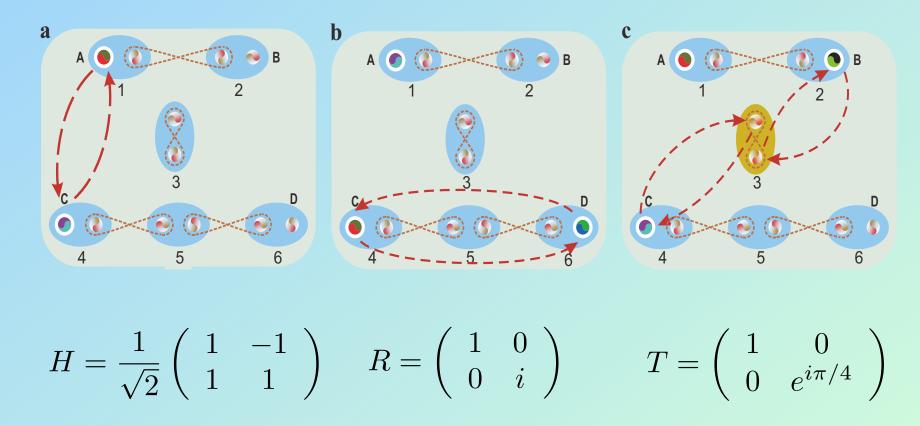
Abelian Statistics



[Nature Commun. 7, 13194 (2016)]

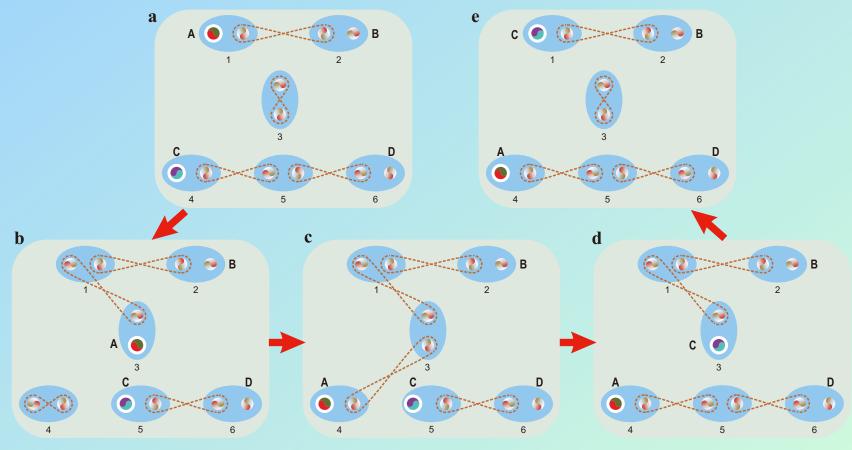
Tomography

Exchange A and C Majorana fermions



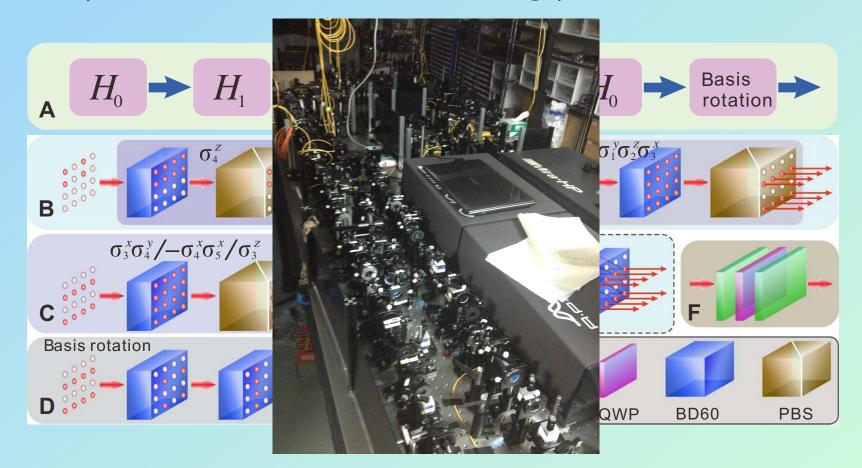
Non-Abelian statistics emerges as $HR \neq RH$

Exchange A and C Majorana fermions



Non-Abelian statistics emerges. $2^6 = 64$ states!

To implement it we use the following processes:



Fidelities: Most gates F>97% Total Fidelity >91%

Errors:

No errors Errors on 4 Errors on 3 4&5

a	b	C	d	e
0.8	0.8	0.8	0.8	0.8
0.4	0.4	0.4	0.4	0.4
0.0	0.0	0.0	0.0	0.0
0.4	-0.4	0.4	0.4	-0.4
0.5	0.5	0.5 Im	0.5	0.5
0.0	0.0	0.0	0.0	0.0
0.5	0.5	.0.5	.0.5	0.5

Summary

- Spins are favourable for quantum simulations with photons, atoms, ions, Josephson junctions, NMR,...
- Topological phases such as SC fermionic systems exciting:
 - encoding protected quantum information
 - demonstrating new physics (anyons)
- Here we simulated their braiding properties, construct one-qubit gates and demonstrate fault-tolerance.
- Outlook: Quantum algorithms are similar to evaluating Jones polynomials ->

Quantum Machine Learning...

