Chiral phases of ultra cold fermions in optical lattices

F. Mila Ecole Polytechnique Fédérale de Lausanne Switzerland

Collaborators: C. Boos (Erlangen and Lausanne), P. Nataf (Grenoble) K. Schmidt (Erlangen), M. Lajko (Lausanne), K. Penc (Budapest), A. Wietek, C. Ganahl, C. Romen, A. Läuchli (Innsbruck)

Scope

The SU(N) Hubbard model of cold atoms \rightarrow Generic phase diagram Heisenberg model with one particle per site \rightarrow color order, VBS, algebraic liquid Chiral spin liquids \rightarrow several particles per site \rightarrow multi-site interactions Conclusions

Fermions in optical lattice N-flavour fermions: ⁸⁷Sr,... N=2I+1, I=nuclear spin, N up to 10

N-flavour Hubbard model

$$\mathcal{H} = -t \sum_{\langle i,j \rangle} \sum_{\alpha=1}^{N} (c_{i,\alpha}^{\dagger} c_{j,\alpha} + h.c.) + U \sum_{i} \sum_{(\alpha,\beta)} n_{i,\alpha} n_{i,\beta}$$

m fermions per site (m up to N)

Generic phase diagram for m particles per site (m integer)

Mott insulator

Metal

Heisenberg Multi-site interactions

Intermediate phase?

SU(2) on square lattice

Metal-insulator transition as soon as U>0 because of perfect nesting Néel antiferromagnetic order from weak to strong coupling \rightarrow No evidence of an intermediate phase \rightarrow Possible modification of the dispersion of spin waves

SU(2) case on triangular lattice

DMRG on Hubbard model \rightarrow Chiral intermediate phase Szasz, Motruk, Zaletel, Moore, 2018 Effective model \rightarrow Four-site interactions dominate Yang, Laeuchli, FM, Schmidt, 2010 Early study of four-site interaction \rightarrow Spinon Fermi surface Motrunich, 2005; Sheng, Motrunich, Fischer, 2009

Effective model (triangular lattice)

Yang, Laeuchli, FM, Schmidt, PRL 2010

Important parameters

N of SU(N): 2 in Mott insulators with electrons, up to 10 in cold atoms m: number of fermions per site t/U: simple Heisenberg or more complicated interactions Phase of hopping integral t \rightarrow artificial gauge fields if flux $\neq 0$ Lattice geometry: square, triangular, kagome,...

SU(N) Heisenberg model

$$H = \sum_{\langle i,j\rangle} S^{\beta}_{\alpha}(i) S^{\alpha}_{\beta}(j)$$

S^{β}_{α} generators of SU(N)

m

$$[S^{\beta}_{\alpha}, S^{\nu}_{\mu}] = \delta_{\beta\mu} S^{\nu}_{\alpha} - \delta_{\alpha\nu} S^{\beta}_{\mu}$$

Antisymmetric irrep with m boxes
→ fermionic representation

$$S^{\beta}_{\alpha} = c^{\dagger}_{\alpha}c_{\beta} - \frac{m}{N}\delta_{\alpha\beta}$$

• Fundamental representation • Hilbert space = { $I \sigma_1 \sigma_2 \dots \sigma_L >$ } $\sigma_i = 1, 2, \dots, N \text{ or } \sigma_i = A, B, C, \dots \text{ or } \bullet, \bullet, \bullet, \bullet \dots$

$$P_{ij}|\sigma_1...\sigma_i...\sigma_j...\sigma_N\rangle = |\sigma_1...\sigma_j...\sigma_i...\sigma_N\rangle$$

→ Quantum permutation

General properties

Soluble in 1D with Bethe Ansatz
 → algebraic correlations with periodicity 2π/N
 Sutherland, 1974

Equivalent of SU(2) dimer singlet: N sites

 $| S > = (1/\sqrt{N!}) \sum_{P} (-1)^{P} | \sigma_{P(1)} \sigma_{P(2)} \dots \sigma_{P(N)} >$ with $\{\sigma_{1} \sigma_{2} \dots \sigma_{N}\} = \{1 \ 2 \dots N\}$ Li, Ma, Shi, Zhang, PRL'98

Real space mean-field

$$|\psi\rangle = \prod_{i} |\varphi_i\rangle$$

$$\langle \varphi_1 \varphi_2 | P_{12} | \varphi_1 \varphi_2 \rangle = \langle \varphi_1 \varphi_2 | \varphi_2 \varphi_1 \rangle = |\langle \varphi_1 | \varphi_2 \rangle|^2$$

Typical phases

Long-range color order

 → SU(3) on triangular and square lattice

 Plaquette order

 → SU(3) on kagome, honeycomb,...

 Algebraic order

 → SU(4) on honeycomb

Long-range color order

SU(3) Triangular lattice

3-sublattice order

Tsunetsugu, Arikawa, JPSJ 2006 A. Läuchli, FM, K. Penc, PRL 2006

SU(3) Square lattice

A B A B B A B A A B A B Infinite degeneracy A, B \rightarrow C

Selection by zero-point fluctuations

T. Toth, A. Läuchli, FM, K. Penc, PRL 2010

Plaquette order

SU(3)

P. Corboz, M. Lajko, K. Penc, FM, A. Läuchli, PRB 2013 D.Arovas, PRB 2008; P. Corboz, K. Penc, FM, A. Läuchli, PRB 2012

M. Van Den Bossche, P. Azaria, P. Lecheminant, FM, PRL 2001

SU(4) on honeycomb lattice

No color order, no bond-energy order
 Good variational wave function with π-flux per plaquette
 Algebraic quantum liquid

Dirac point at quarter filling

P. Corboz, M. Lajko, A. Läuchli, K. Penc, FM, PRX 2012

Chiral spin liquids

 $\square N \rightarrow +\infty, m \rightarrow +\infty, k=N/m$ fixed Fermionic mean-field theory exact Chiral phase: Hofstadter spectrum for flux $2\pi/k$ per plaquette ■ On square lattice, chiral phase for $k \ge 5$ Hermele, Gurarie, Rey, PRL 2009 What about finite N?

Numerical approaches for finite N

Gutzwiller projected fermionic wave-functions
 → exact number of particles/site: variational
 → comparison of plaquette and chiral phases

■ Exact diagonalizations taking full advantage of SU(N) symmetry
 P. Nataf, FM, PRL 2014
 → basis of standard Young tableaus
 → large values of N for clusters with 20-30 sites

Hubbard model on triangular lattice

Effective model up to order t³/U²

$$\mathcal{H} = J \sum_{\langle i,j \rangle} P_{ij} + \sum_{\langle i,j,k \rangle} (K P_{ijk} + \text{h.c.})$$

 $J = 2t^2/U - 12\cos(\Phi) t^3/U^2 \qquad K = -6e^{i\Phi}t^3/U^2$

 True for any N>2
 Φ: flux per triangular plaquette (hopping term of Hubbard model)

Purely imaginary 3-site term

□ Φ = π/2 per triangular plaquette in Hubbard model → K purely imaginary: K = i K₃

$$H = J \sum_{\langle i,j \rangle} P_{ij} + K_3 \sum_{(i,j,k)} (iP_{ijk} + h.c.)$$

■ Time reversal symmetry explicitly broken
 → N low-lying singlets if chiral phase

Chiral phase for intermediate K₃

 $H = J \sum P_{ij} + K_3 \sum (iP_{ijk} + h.c.)$ $\langle i,j \rangle$ (i,j,k)

$$J = \cos\theta, \quad K_3 = \sin\theta$$

Excellent agreement between Gutzwiller projected Hofstadter wave function and ED for a range of K₃

→ Chiral liquid

P. Nataf, M. Lajko, A. Wietek, K. Penc, FM, A. Läuchli, PRL 2016

Ground-state quasi-degeneracy

N low-lying singlets on a torus

SU(N) Chern-Simons theory

$$\mathcal{L}_{CS} = \frac{k}{4\pi} \epsilon^{\mu\nu\rho} tr \left(A_{\mu} \partial_{\nu} A_{\rho} + \frac{2}{3} A_{\mu} A_{\nu} A_{\rho} \right)$$

 $A_{\mu} \in \text{Lie algebra of SU(N)}$

Antisymmetric irrep

 → k=1 (abelian chiral spin liquid)

 Degeneracy on a torus: N
 Edge states on a droplet: chiral SU(N)₁ WZW

Edge states

Tower of states predicted by conformal field theory

General K for SU(3)

C. Boos, M. Lajko, P. Nataf, K. Penc, K. Schmidt, FM, arXiv:1802.03179

Spectrum of SU(3) along semi-circle

6 low-lying singlets at $\varphi = \pi$

 $K/J = 0.37 e^{i\varphi}$

Real three-site term

Bieri, Serbyn, Senthil, Lee, 2012

Comparison with chiral phases

Two chiral phases first proposed by Lai, 2013

M. Lajko et al, unpublished

Connection to Hubbard

t/U = 0.07 <=> K/J = 0.25

J-K and higher order effective model on 21 sites

J-K

Higher order

6 low lying singlets for K/J not too small → spontaneous chiral symmetry breaking

Comparison of J-K and Hubbard

12 sites

A. Läuchli et al, unpublished

Phase diagram of SU(3) Hubbard on triangular lattice

Metal

Mott insulator

3-sublattice Chiral spin liquid

Conclusions

SU(N) on simple 2D lattices \rightarrow color order \rightarrow singlet plaquettes \rightarrow algebraic order \rightarrow chiral liquid (with artificial gauge field) \rightarrow spontaneous chiral symmetry breaking for SU(3) Hubbard on triangular lattice