Gauge-frustrated Kitaev Spin Liquid

Maria Hermanns, Stockholm University Nordita

arXiv:1901.05283

University of Cologne

<u>Tim Eschmann</u> Simon Trebst

University of Tokyo

Petr Mishchenko Troels Arnfred Bojesen Yasuyuki Kato Yukitoshi Motome

Vetenskapsrådet

Outline

Frustration

Kitaev interactions in materials

'Conventional' Kitaev spin liquids

- Solving the Kitaev model
- Majorana metals
- Thermodynamic signatures

'Gauge frustration' – geometric frustration in the gauge sector

Thermodynamics

Quantum spin liquids

- no magnetic order
- strongly fluctuating spins down to zero temperature
- no long-range correlations, but long-range entanglement
- topological ground state degeneracy
- spin fractionalization

elusive

- no experimentally verified candidates (no smoking gun signature)
- very few theoretical models, where QSL ground state is rigorously established Kitaev spin liquids

geometric frustration

geometric frustration

Herbertsmithite ZnCu₃(OH)₆CL₂

Han et al., Nature (2012)

geometric frustration

Herbertsmithite ZnCu₃(OH)₆CL₂

Han et al., Nature (2012)

exchange frustration

geometric frustration

exchange frustration

Herbertsmithite ZnCu₃(OH)₆CL₂ Han et al., Nature (2012)

Kitaev honeycomb model Iridates

Exchange Frustration in Iridates

G. Jackeli and G. Khaliullin, PRL 102, 017205 (2009)

Materials – 2D

honeycomb

Kitaev interaction dominant

Chun et al., Nature Physics (2015)

quantized thermal Hall conductance

 α -Li₂IrO₃, Na₂IrO₃ Singh et al. PRL (2012)

RuCl₃ Banerjee et al., Nat. Mat. (2016)

 $H_3LiIr_2O_6$ Kitagawa et al. Nature (2018)

Materials – 3D

 γ -Li₂IrO₃ Modic et

 β -Li₂IrO₃ Takayama et al., PRL (2015)

Copper-Oxalate Framework

Zhang, J. Am. Chem. Soc. (2018)

 \rightarrow learn more about **quantum spin liquids in 3D**

Can we realize many more 3D tri-coordinated lattice structures?

potential materials: *metal-organic-frameworks*

Yamada et al. PRL (2016) Dwivedi et al. PRB (2017)

Spin fractionalization and Majorana fermions

Zoo of gapless Kitaev Spin Liquids Dirac cones nodal line nodal chains Dirac points Majorana Fermi line Fermi surface chiral QSL chiral QSL Weyl points

Kitaev, Annals of Physics (2006) Yang et al. PRB (2007) Yao and Kivelson, PRL (2007)

O'Brien, Hermanns, Trebst, PRB (2016) Yamada, Dwivedi, Hermanns, PRB (2017)

Zoo of gapless Kitaev Spin Liquids

Z_2 gauge field – vison excitations

2D

fluxes are point particles

deconfined

any finite temperature destroys the spin liquid

Z_2 gauge field – vison excitations

2D

fluxes are point particles

deconfined

any finite temperature destroys the spin liquid

Z_2 gauge field – vison excitations

2D

3D

fluxes are point particles deconfined any finite temperature destroys the spin liquid fluxes form loops finite loop tension → confined at low temperatures finite temperature transition

Thermodynamic Signatures

Nasu, Udagawa, Motome, PRL (2014)

L=6

a=0.5 a=0.75

a = 1.0

L=5

10-2

Т

10-1

10°

10¹

'Gauge-frustration'

no Z₂ monopoles (vison excitations form closed loops in 3D) (8,3)c lattice

'Gauge-frustration'

no Z₂ monopoles (vison excitations form closed loops in 3D)

Lieb theorem $\rightarrow \pi$ flux per plaquette

local constraints

extensive degeneracy

(partially) lift degeneracy by altering the coupling strenghts

Interplay of Majoranas and fluxes

Ordering the Z₂ fluxes

phase diagram for J_x=J_y

Conclusions

Kitaev spin liquids and materials

'Gauge-frustration'

extensive residual entropy arising in the gauge sector

interplay of Majoranas and gauge field leads to ordering of the fluxes and formation of a Majorana metal