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Dyon:

Particle with both (non-Abelian!) magnetic flux and electric charge
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The 1D Ising and Kitaev models

Ising:

L L
H= _JZUZ,TUZ,T+1 - NZUI,T
r=1 r=1
@ Z, global symmetry:
Q = Haz,r
P

such that |1) < ||)
@ Ferromagnetic phase with broken symmetry
@ Quasi-degenerate ground states, for u = 0:

[bgs1)) =111 tgs2)) = - )
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The 1D Ising and Kitaev models

Kitaev:

1
| —

O=O— 0= O— =0~ —OmO—O=O—O=O—0=0—0=0
A

L L
H = _Z'JZ’Y27'727‘+1 - i,uz Y2r—172r
T r

@ Jordan-Wigner Transformation:

Y2r—1 = Ozr H Oz,j5 5 Yor = _ioz,rom,r H Og,j -
j<r i<r

@ Majorana operators: {v;,v;}=28;;, 2 =1.

o Symmetry Q =[], 0., — Parity (=1)¥ =[], iv2r—172r



The 1D Ising and Kitaev models

Ferromagnetic - topological phase:

Ising

%m +“z GZ+IT> % % % % %

Kltaev

J>n
O@@@@@@@O
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1D Topological Order

The Kitaev model is topological:

@ Quasi-degenerate ground states |¢), ):
Ef==

Excited states

Gap

g l Quasi-degenerate Ground states
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1D Topological Order

The Kitaev model is topological:
@ Quasi-degenerate ground states |t), )
@ Robustness against bulk local operators V (r):

<¢Q1 |V( )qu> = CI1 q2 + C(T q1, CI2)

where ¢ decays exponentially with the distance from the edges.
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1D Topological Order

The Kitaev model is topological:
@ Quasi-degenerate ground states |t), )
@ Robustness against bulk local operators V (r):

<¢Q1 |V( )qu> = CI1 q2 + C(T q1, CI2)

where ¢ decays exponentially with the distance from the edges.
© Local indistinguishability. For any local observable O(r):

<¢Q1 |O( )'L/}qz> th q2 + O(L q1, Q2>

where o decays exponentially with the system size.
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Chiral Potts model

Kadanoff and Fradkin, N. Phys. B 1980; Fendley, JSTAT 2012

@ Topological model with Z symmetry:

H= —Ji (@ng_HUT + H.c.) — in ,
r=1
@ N states for each site {|1),...,|N)}, such that:
aln) = e’
rfn) = In® 1) |n)
Clock operators:
UT:@iZWWTU, oN=rN=1 .. In+1)

@ Global Symmetry: Q,, = [[,. 7"
@ For J > pand |¢| < m/N we get a ferromagnetic phase.
@ N ground states with aligned clock degrees of freedom:

|¢on)) = [nn...0)
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Chiral Potts model and flux ladder

Potts

% T+" °*+l lg%q)(f_ll;% %—%/@{E/NTL

N-1

L L
H=-J% (e%jﬂar + H.c.) 3y
=il

k=

S

)

=
3
—

@ Each state in the chain is associated to an element g € Z y:
{Ing), st.ng=1,...,N} — {lg), st.geZn}

@ Each plaquette is associated with a flux ® = 27 (ny, — ny) /N
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Chiral Potts model and flux ladder

Potts

% T+° °*+l lg%q}(f_ll;% %—%/@{%/NTL

N-1

L L
H=-J% (e%jHUT + H.c.) 3y
=il

k=

S

)

_
3
[y

@ Each state in the chain is associated to an element g € Z y:
{Ing), st.ng=1,...,N} — {lg), st.geZn}

@ Each plaquette is associated with a flux ® = 27 (ny, — ny) /N
@ For ¢ = 0, the plaquette J—term returns an energy:

me = —2J cos 27 (ng — ny)/N]

@ The ferromagnetic ground states have only trivial fluxes
@ The u—term varies the fluxes in the plaquettes
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Can we generalize it to a non-Abelian gauge group G?

The building blocks from lattice gauge theory (E. Zohar and M.B., PRD 2015)

@ We will build a model symmetric under any transformation h € G.
@ For each site we consider |G| states: {|g) with g € G}.
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Can we generalize it to a non-Abelian gauge group G?

The building blocks from lattice gauge theory (E. Zohar and M.B., PRD 2015)

@ We will build a model symmetric under any transformation h € G.
@ For each site we consider |G| states: {|g) with g € G}.

@ Gauge operators: 7" — 0y

Onlg) = [hg)
Ohlo) = h~"9) g)

6 constitutes a left group multiplication.

@ Connection operators: o — UK, .
UK is a matrix of operators such that:

n
Umnl9) = Dinn(9)19) -
Umnlg) = Dt(9)lg)
where DX (g) is the unitary matrix
representation of g with respect to the
irreducible representation K.
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Commutation rule:

0} U = Dyns (B)Upr 81




From the clock model to the flux ladder
N—-1
Helock = —JZ ( ol o+ H-C-) - MZ Z v

Heux = —J (ZTI"[UF(T-i-l)CUFT —|—HC> /JZ Z

Hjy H,

(Moot ity

@ Hj; assigns a mass my, to all the h € G fluxes

@ Cis a unitary matrix (parameter). It breaks time reversal

@ H, nucleates pairs of fluxes and gives them kinetic energy
@ x“(g) = Tr [D*(g)] depends on (the conjugacy class of) g
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Flux ladder

Hepyx = —J (ZT_r[UF(rH)CUFT( —i—Hc) Y > x

r g#eeG

Hy H,

{ Mool ™y 7T

@ ForC =1:

l9r)r = |gr+1)rs1 = No flux: H; is minimized
l9-)r # |gr+1)re1 = Non-trivial flux @!
H ; defines the masses meg

@ We want C such that m;, # my, for h # k.
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Flux ladder

Hpox = —J (Z T[UF (r + 1)CUFt ()] + H. c> Y > x

r g#eeG

Hy H,

{ Mool ™y 7T

@ For u=0and C = 1 we are in a ferromagnetic phase.
@ |G| degenerate ground states with parallel degrees of freedom:

1)) =lgg...9) VgeG

@ Global (broken) left G symmetry

@ Foraweak ;1 < J, the ground states split with AE o< 55—
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Example: G = S5
@ S5 is the group of the triangle with 6 elements:

R(n) cos —2§" —sin —27:;" I(n) cos —27:,;" sin —27%”‘ 0.1.2
= 5 n)=| . n=
sin —27:;” cos —27?:” ’ sin —27?:" —cos 5% )7 »

@ Generators: ¢ = R(1),b = 1(0), such that:

g(p,q) =bPc?, p=0,1, ¢=0,1,2 = |g(p,q)) = |p) ®|q)

@ Gauge operators:

0 1
1 0 0 0
= (5 o) +(5 1)s
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Example: G = S5

w/J =0.03

Ground state splittings
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How to build a topological model?

So far we have a ferromagnetic model with G symmetry

TTPURES

yonic model

J n
o-g—o—o—o—o—o—o—o—o—o—o—o—o—o—o
Q

We need a Jordan-Wigner transformation to define operators « and j3:

g ab (27 = 1) = Loap(r = DURL(r),

g,mn,ab

’B;iﬁn,ab( r) = Eg ab(7 )U'ri;rz(r)a
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The G-Jordan-Wigner transformation

Irreducible representations

Group element Jordan-Wigner string

@ L2(r)is a Jordan-Wigner string which adds a flux g in the r'®
plaquette.

@ The string is built from “dressed” gauge transformations @ﬁ:

=[[021G),  ©2() =U(5)8,U*(5)

Jj<r

@*g“ is defined based on non-Abelian dualities
(Cobanera, Ortiz, Knill 2013)
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Dyonic model
Heyx — Hpyon
Flux ladder

b g et

yonic model

J
o-g—o—o—o—o—o—o—ol-lo—o-o—o-o—o-o
Q

Hpyon = _dimL (Z TrpTry |:Oé};(27‘ 4 1)C,6h(2r)} I H.c.)

Z Z Trr Tra [,BT(2r)ag(2r — l)DFT( )]

dlm
T g#e€G

Michele Burrello Dyonic Zero-Energy Modes



Dyonic model: Topological phase

nw=0

I J>1 Ik
DD DDE

@ For u =0, a(1) and 3(2L) do not enter the Hamiltonian:
Dyonic zero-energy edge modes!

@ In the bulk Traf (21 + 1), (r)] = dim(A):
All the ground states share the same bulk
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Dyonic model: Topological phase

pnw=0

I J>1 Ik
DD DDE

@ For u =0, a(1) and 3(2L) do not enter the Hamiltonian:
Dyonic zero-energy edge modes!

@ In the bulk Traf (21 + 1), (r)] = dim(A):
All the ground states share the same bulk

@ Bulk operators are either trivial or they create fluxes:
Bulk operators do not cause ground-state transitions

@ The only observables distinguishing the ground states are built
with a(1) and 5(2L): Local indistinguishability!
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Dyonic model: Topological phase

pnw=0

I J>1 Ik
DD DDE

@ For u =0, a(1) and 3(2L) do not enter the Hamiltonian:
Dyonic zero-energy edge modes!

@ In the bulk Traf (21 + 1), (r)] = dim(A):
All the ground states share the same bulk

@ Bulk operators are either trivial or they create fluxes:
Bulk operators do not cause ground-state transitions

@ The only observables distinguishing the ground states are built
with a(1) and 5(2L): Local indistinguishability!

@ For u = 0 the system is topological!
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Topological phase and weak zero-energy modes

nLJ

I, J>n Iy
DDDDDDE

@ 1 # 0: quasi-adiabatic continuation! (Hastings & Wen 2005)
@ The system remains topological!
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Topological phase and weak zero-energy modes

nLJ

I, J>n Iy
DDDDDDE

@ 1 # 0: quasi-adiabatic continuation! (Hastings & Wen 2005)
@ The system remains topological!
@ Weak topological zero-energy modes (ground states only!):

Tr [ 8](2)an(1) DT (8)|

Mp — Me

V(wa(L)Vi(p) = a(l)+u) a(1) (1 - DY(h))+O (%)

h#e
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Topological phase and weak zero-energy modes

nLJ

I, J>n Iy
DDDDDDE

@ 1 # 0: quasi-adiabatic continuation! (Hastings & Wen 2005)
@ The system remains topological!

@ Weak topological zero-energy modes (ground states only!):
I
Trivial Topological
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Topological phase and weak zero-energy modes

nLJ

I, J>n Iy
DDDDDDE

@ 1 # 0: quasi-adiabatic continuation! (Hastings & Wen 2005)
@ The system remains topological!
@ Weak topological zero-energy modes (ground states only!):

I
Trivial Topological

@ Strong topological zero-energy modes (all the spectrum!)
require a breaking of translational symmetry
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Conclusions

M. I. K. Munk, A. Rasmussen, M. B., PRB 98, 245135 (2018)

@ We built a gauge-flux model with a discrete non-Abelian
symmetry group G and a symmetry-broken phase

@ A G-Jordan-Wigner transformation defines dyonic operators
@ We obtained a dyonic model with topological order
@ We obtained weak zero-energy dyonic modes

@ Strong dyonic zero-energy modes require position-dependent
terms
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M. I. K. Munk, A. Rasmussen, M. B., PRB 98, 245135 (2018)
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