Cold atoms in quasi-1D traps: beyond the zero-range approximation

Krzysztof Jachymski, Hagar Veksler, Paul S. Julienne and Shmuel Fishman

Dresden, 14.02.2017
Why ultracold atoms?

- large number of bosons/fermions close to zero temperature
- easy to manipulate with optical fields
- optical lattices, reduced dimensional systems
- control of the type and strength of interactions
- precise measurements
- great toolkit for quantum simulations

Figure: Bloch, Dalibard and Zwerger, RMP 2008
Why ultracold atoms?

- large number of bosons/fermions close to zero temperature
- easy to manipulate with optical fields
- optical lattices, reduced dimensional systems
- control of the type and strength of interactions
- precise measurements
- great toolkit for quantum simulations

Figure: Bloch, Dalibard and Zwerger, RMP 2008
Cold atoms in quasi-1D traps: beyond the zero-range approximation

Motivation

Why ultracold atoms?

- large number of bosons/fermions close to zero temperature
- easy to manipulate with optical fields
- optical lattices, reduced dimensional systems
- control of the type and strength of interactions
- precise measurements
- great toolkit for quantum simulations

Figure: Bloch, Dalibard and Zwerger, RMP 2008
Why ultracold atoms?

- large number of bosons/fermions close to zero temperature
- easy to manipulate with optical fields
- optical lattices, reduced dimensional systems
- control of the type and strength of interactions
- precise measurements
- great toolkit for quantum simulations

Figure: Bloch, Dalibard and Zwerger, RMP 2008
Why ultracold atoms?

- large number of bosons/fermions close to zero temperature
- easy to manipulate with optical fields
- optical lattices, reduced dimensional systems
- control of the type and strength of interactions
- precise measurements
- great toolkit for quantum simulations

Figure: Bloch, Dalibard and Zwerger, RMP 2008
Why ultracold atoms?

- large number of bosons/fermions close to zero temperature
- easy to manipulate with optical fields
- optical lattices, reduced dimensional systems
- control of the type and strength of interactions
- precise measurements
- great toolkit for quantum simulations

Figure: Bloch, Dalibard and Zwerger, RMP 2008
Cold atoms in quasi-1D traps: beyond the zero-range approximation

Motivation

Realization of Lieb-Liniger model

- low density, quasi-1D gas with short-range interactions
- \(V(x) \approx g_{1D} \delta(x) \)
- control over \(g \) to probe different regimes achieved using Feshbach resonances
- intense studies in Innsbruck (prof. Hans Christoph Nägerl) see Florian Meinert’s talk for more recent experimental results
Realization of Lieb-Liniger model

- low density, quasi-1D gas with short-range interactions
- \(V(x) \approx g_{1D} \delta(x) \)
- control over \(g \) to probe different regimes achieved using Feshbach resonances
- intense studies in Innsbruck (prof. Hans Christoph Nägerl) see Florian Meinert’s talk for more recent experimental results
Realization of Lieb-Liniger model

- low density, quasi-1D gas with short-range interactions
- $V(x) \approx g_{1D} \delta(x)$
- control over g to probe different regimes achieved using Feshbach resonances
- intense studies in Innsbruck (prof. Hans Christoph Nägerl) see Florian Meinert’s talk for more recent experimental results
Realization of Lieb-Liniger model

- low density, quasi-1D gas with short-range interactions
- \(V(x) \approx g_{1D} \delta(x) \)
- control over \(g \) to probe different regimes achieved using Feshbach resonances
- intense studies in Innsbruck (prof. Hans Christoph Nägerl) see Florian Meinert’s talk for more recent experimental results
Motivation

Realization of Lieb-Liniger model

- low density, quasi-1D gas with short-range interactions
- $V(x) \approx g_{1D} \delta(x)$
- control over g to probe different regimes achieved using Feshbach resonances
- intense studies in Innsbruck (prof. Hans Christoph Nägerl) see Florian Meinert’s talk for more recent experimental results
Cold atoms in quasi-1D traps: beyond the zero-range approximation

Outline

Motivation

Cold atomic collisions

Scattering in a waveguide

Generalized Lieb-Liniger model

Conclusions
Outline

Motivation

Cold atomic collisions

Scattering in a waveguide

Generalized Lieb-Liniger model

Conclusions
Cold atoms in quasi-1D traps: beyond the zero-range approximation

Motivation

Outline

Motivation

Cold atomic collisions

Scattering in a waveguide

Generalized Lieb-Liniger model

Conclusions
Outline

Motivation

Cold atomic collisions

Scattering in a waveguide

Generalized Lieb-Liniger model

Conclusions
Cold atoms in quasi-1D traps: beyond the zero-range approximation

Motivation

Outline

- Motivation

- Cold atomic collisions

- Scattering in a waveguide

- Generalized Lieb-Liniger model

- Conclusions
Cold atoms in quasi-1D traps: beyond the zero-range approximation

Interactions & Feshbach resonances

- neutral, closed-shell atoms - van der Waals interactions
 \[V(r) \xrightarrow{r \to \infty} -\frac{C_6}{r^6} \]

- length \(R_6 = (2\mu C_6/\hbar^2)^{1/4} \) or \(a \approx 0.477R_6 \); \(E_6 = \hbar^2/2\mu R_6^2 \)

- collision energy \(E \sim nK \), very dilute gas, s-wave scattering is enough (bosons)

- scattering length \(a_{3D} = \lim_{k \to 0} \left(-\frac{\tan \delta(k)}{k} \right) \) can be tuned using Feshbach resonances (see Chin et al, RMP 2010)
Cold atoms in quasi-1D traps: beyond the zero-range approximation

Cold atomic collisions

Interactions & Feshbach resonances

- neutral, closed-shell atoms - van der Waals interactions $V(r) \xrightarrow{r \to \infty} - \frac{C_6}{r^6}$
- length $R_6 = (2\mu C_6/\hbar^2)^{1/4}$ or $\bar{a} \approx 0.477 R_6$; $E_6 = \hbar^2 / 2\mu R_6^2$
- collision energy $E \sim nK$, very dilute gas, s-wave scattering is enough (bosons)
- scattering length $a_{3D} = \lim_{k \to 0} \left(-\frac{\tan \delta(k)}{k} \right)$ can be tuned using Feshbach resonances (see Chin et al, RMP 2010)
Cold atoms in quasi-1D traps: beyond the zero-range approximation

Cold atomic collisions

Interactions & Feshbach resonances

- neutral, closed-shell atoms - van der Waals interactions
 \[V(r) \xrightarrow{r \to \infty} - \frac{C_6}{r^6} \]
- length \(R_6 = (2\mu C_6/\hbar^2)^{1/4} \) or \(\bar{a} \approx 0.477 R_6 \); \(E_6 = \hbar^2 / 2\mu R_6^2 \)
- collision energy \(E \sim nK \), very dilute gas, s-wave scattering is enough (bosons)
- scattering length \(a_{3D} = \lim_{k \to 0} \left(-\frac{\tan \delta(k)}{k}\right) \) can be tuned using Feshbach resonances (see Chin et al, RMP 2010)
Interactions & Feshbach resonances

- neutral, closed-shell atoms - van der Waals interactions $V(r) \xrightarrow{r \to \infty} -\frac{C_6}{r^6}$
- length $R_6 = (2\mu C_6/\hbar^2)^{1/4}$ or $\bar{a} \approx 0.477 R_6$; $E_6 = \hbar^2 / 2\mu R_6^2$
- collision energy $E \sim nK$, very dilute gas, s-wave scattering is enough (bosons)
- scattering length $a_{3D} = \lim_{k \to 0} \left(-\frac{\tan \delta(k)}{k} \right)$ can be tuned using Feshbach resonances (see Chin et al, RMP 2010)
Cold atoms in quasi-1D traps: beyond the zero-range approximation

Interactions & Feshbach resonances

- scattering length \(a_{3D} = a_{bg} \left(1 - \frac{\Delta}{B-B_0} \right) \)
- universal weakly bound state \(E_b \propto 1/a^2 \)

Figure: Scattering length and bound state energy near a Feshbach resonance (Chin et al, RMP 2010).
Interactions & Feshbach resonances

- scattering length \(a_{3D} = a_{bg} \left(1 - \frac{\Delta}{B - B_0} \right) \)
- universal weakly bound state \(E_b \propto 1/a^2 \)

Figure: Scattering length and bound state energy near a Feshbach resonance (Chin et al, RMP 2010).
Introducing the pseudopotential

- replace the interaction by pseudopotential which reproduces scattering properties

\[
V_{\text{eff}} = \frac{2\pi \hbar^2 a_{3D}}{\mu} \delta(r) \frac{\partial}{\partial r} r
\]

- energy dependence can be included using effective range

\[
k \cot \delta_{3D}(k) = -\frac{1}{a_{3D}(k)} = -\frac{1}{a_{3D}} + \frac{1}{2} r_{3D} k^2 + \ldots
\]

- energy-dependent pseudopotential for trapped particles

\[
V(r) = -\frac{2\pi \hbar^2}{\mu} \frac{\tan \delta_{3D}(k)}{k} \delta(r) \frac{\partial}{\partial r} r
\]
Introducing the pseudopotential

- replace the interaction by pseudopotential which reproduces scattering properties

\[V_{\text{eff}} = \frac{2\pi \hbar^2}{\mu} a_3 \delta(r) \frac{\partial}{\partial r} r \]

- energy dependence can be included using effective range

\[k \cot \delta_3(k) = -\frac{1}{a_3(k)} = -\frac{1}{a_3} + \frac{1}{2} r_3 k^2 + \ldots \]

- energy-dependent pseudopotential for trapped particles

\[V(r) = -\frac{2\pi \hbar^2}{\mu} \frac{\tan \delta_3(k)}{k} \delta(r) \frac{\partial}{\partial r} r \]
Cold atoms in quasi-1D traps: beyond the zero-range approximation

Introducing the pseudopotential

- replace the interaction by pseudopotential which reproduces scattering properties

\[V_{\text{eff}} = \frac{2\pi \hbar^2 a_{3D}}{\mu} \delta(r) \frac{\partial}{\partial r} r \]

- energy dependence can be included using effective range

\[k \cot \delta_{3D}(k) = - \frac{1}{a_{3D}(k)} = - \frac{1}{a_{3D}} + \frac{1}{2} r_{3D} k^2 + \ldots \]

- energy-dependent pseudopotential for trapped particles

\[V(r) = - \frac{2\pi \hbar^2}{\mu} \frac{\tan \delta_{3D}(k)}{k} \delta(r) \frac{\partial}{\partial r} r \]
Introducing the pseudopotential

Figure: Energy dependence of the phase shift (Chin et al, RMP 2010)
Energy and length scales

- transverse harmonic confinement $U_{tr} = \frac{1}{2} \mu \omega^2 \rho^2$
- new length scale $d = \sqrt{\frac{\hbar}{\mu \omega}}$, energy scale $\hbar \omega$
- typically $d \gg R_6$
Energy and length scales

- transverse harmonic confinement \(U_{tr} = \frac{1}{2} \mu \omega^2 \rho^2 \)
- new length scale \(d = \sqrt{\frac{\hbar}{\mu \omega}} \), energy scale \(\hbar \omega \)
- typically \(d \gg R_6 \)
Cold atoms in quasi-1D traps: beyond the zero-range approximation

Scattering in a waveguide

Energy and length scales

- transverse harmonic confinement \(U_{tr} = \frac{1}{2} \mu \omega^2 \rho^2 \)
- new length scale \(d = \sqrt{\frac{\hbar}{\mu \omega}} \), energy scale \(\hbar \omega \)
- typically \(d \gg R_6 \)
Solving energy-dependent problem

- start with Schrödinger equation

\[
\left(-\frac{\hbar^2}{2\mu} \nabla^2 + V(\mathbf{r}) + \frac{1}{2}\mu \omega^2 \rho^2 \right) \psi = E \psi
\]

- asymptotic boundary conditions

\[
\psi \xrightarrow{r \to \infty} \psi_{nm}(\rho) e^{ipz} + \sum_{n' m'} f^{(+)}_{nm,n'm'}(p) \psi_{n'm'} e^{ip'|z|}
\]

- odd part vanishes (bosons)
- restrict to lowest transverse mode
- extract the scattering amplitude \(f^{(+)} \)

Olshanii, PRL 1999; Naidon et al, NJP 2007; Idziaszek et al, NJP 2015
Solving energy-dependent problem

- start with Schrödinger equation

\[
\left(-\frac{\hbar^2}{2\mu} \nabla^2 + V(r) + \frac{1}{2}\mu\omega^2 \rho^2 \right) \psi = E\psi
\]

- asymptotic boundary conditions

\[
\psi \xrightarrow{r \to \infty} \psi_{nm}(\rho)e^{ipz} + \sum_{n'm'} f_{nm,n'm'}^{(+)}(p)\psi_{n'm'}e^{ip'|z|}
\]

- odd part vanishes (bosons)
- restrict to lowest transverse mode
- extract the scattering amplitude \(f^{(+)} \)

Olshanii, PRL 1999; Naidon et al, NJP 2007; Idziaszek et al, NJP 2015
Cold atoms in quasi-1D traps: beyond the zero-range approximation

Scattering in a waveguide

Solving energy-dependent problem

- start with Schrödinger equation

\[\left(-\frac{\hbar^2}{2\mu} \nabla^2 + V(\mathbf{r}) + \frac{1}{2}\mu\omega^2 \rho^2 \right) \psi = E\psi \]

- asymptotic boundary conditions

\[\psi \xrightarrow{r \to \infty} \psi_{nm}(\rho)e^{ipz} + \sum_{n'm'} f^{(+)}_{nm,n'm'}(p)\psi_{n'm'}e^{ip'|z|} \]

- odd part vanishes (bosons)
 - restrict to lowest transverse mode
 - extract the scattering amplitude \(f^{(+)} \)

Olshanii, PRL 1999; Naidon et al, NJP 2007; Idziaszek et al, NJP 2015
Cold atoms in quasi-1D traps: beyond the zero-range approximation

Scattering in a waveguide

Solving energy-dependent problem

- start with Schrödinger equation

\[\left(-\frac{\hbar^2}{2\mu} \nabla^2 + V(r) + \frac{1}{2} \mu \omega^2 \rho^2 \right) \psi = E \psi \]

- asymptotic boundary conditions

\[\psi \xrightarrow{r \to \infty} \psi_{nm}(\rho) e^{ipz} + \sum_{n' m'} f_{nm,n'm'}(p) \psi_{n'm'} e^{ip'|z|} \]

- odd part vanishes (bosons)

- restrict to lowest transverse mode

- extract the scattering amplitude \(f^{(+)} \)

Olshanii, PRL 1999; Naidon et al, NJP 2007; Idziaszek et al, NJP 2015
Solving energy-dependent problem

- start with Schrödinger equation

\[
\left(-\frac{\hbar^2}{2\mu} \nabla^2 + V(r) + \frac{1}{2}\mu\omega^2 \rho^2 \right) \psi = E\psi
\]

- asymptotic boundary conditions

\[
\psi \xrightarrow{r \to \infty} \psi_{nm}(\rho) e^{ipz} + \sum_{n'm'} f^{(+)}_{nm,n'm'}(p) \psi_{n'm'} e^{ip'|z|}
\]

- odd part vanishes (bosons)

- restrict to lowest transverse mode

- extract the scattering amplitude \(f^{(+)} \)

Olshanii, PRL 1999; Naidon et al, NJP 2007; Idziaszek et al, NJP 2015
1D physics

- one-dimensional phase shift δ_{1D}

$$f^{(+)}(p) = -\frac{1}{1 + i \cot \delta_{1D}(p)}$$

- 1D even scattering length

$$a^{(+)}_{1D}(p) = \frac{1}{p \tan \delta_{1D}(p)}$$

- effective interaction strength in 1D $V_{\text{eff}}(x) = g_{1D}(x)$

$$g_{1D}(p) = -\frac{\hbar^2}{\mu a_{1D}(p)}$$

(note that $g_{3D} = \frac{2\pi \hbar^2 a_{3D}}{\mu}$)
1D physics

- one-dimensional phase shift δ_{1D}

$$f^{(+)}(p) = -\frac{1}{1 + i \cot \delta_{1D}(p)}$$

- 1D even scattering length

$$a_{1D}^{(+)}(p) = \frac{1}{p \tan \delta_{1D}(p)}$$

- effective interaction strength in 1D $V_{\text{eff}}(x) = g_{1D} \delta(x)$

$$g_{1D}(p) = -\frac{\hbar^2}{\mu a_{1D}(p)}$$

(note that $g_{3D} = \frac{2\pi \hbar^2 a_{3D}}{\mu}$)
1D physics

▷ one-dimensional phase shift δ_{1D}

\[
f^{(+)}(p) = -\frac{1}{1 + i\cot \delta_{1D}(p)}
\]

▷ 1D even scattering length

\[
a^{(+)}_{1D}(p) = \frac{1}{p \tan \delta_{1D}(p)}
\]

▷ effective interaction strength in 1D $V_{\text{eff}}(x) = g_{1D} \delta(x)$

\[
g_{1D}(p) = -\frac{\hbar^2}{\mu a_{1D}(p)}
\]

(note that $g_{3D} = \frac{2\pi\hbar^2 a_{3D}}{\mu}$)
Energy-dependent interaction strength

- general result for $a_{1D}(p)$ ($C = -\zeta(1/2)$) (Olshanii, Naidon)

$$a_{1D}(p) = -\frac{d^2}{2a_{3D}(k)} \left(1 - C \frac{a_{3D}(k)}{d}\right)$$

- incorporate energy dependence

$$a_{3D}(k) \approx \frac{a_{3D}}{1 - k^2 r_{3D} a_{3D}/2}$$

- include zero-point energy of the transverse oscillator!

$$k^2 = p^2 + 2/d^2$$

- low energy expansion $g_{1D}(p) = g_{1D}(1 + g' p^2) + \ldots$

$$g_{1D} = \frac{2\hbar^2}{\mu d} \left(\frac{d}{a_{3D}} - C - \frac{r_{3D}}{d}\right)^{-1}$$

- corrections $g' = \frac{r_{3D} d}{2} \left(\frac{d}{a_{3D}} - C - \frac{r_{3D}}{d}\right)^{-1}$
Energy-dependent interaction strength

- general result for \(a_{1D}(p) \) (\(C = -\zeta(1/2) \)) (Olshanii, Naidon)
 \[
 a_{1D}(p) = -\frac{d^2}{2a_{3D}(k)} \left(1 - C \frac{a_{3D}(k)}{d} \right)
 \]

- incorporate energy dependence
 \[
 a_{3D}(k) \approx \frac{a_{3D}}{1 - k^2 r_{3D} a_{3D}/2}
 \]

- include zero-point energy of the transverse oscillator!
 \(k^2 = p^2 + 2/d^2 \)

- low energy expansion \(g_{1D}(p) = g_{1D}(1 + g' p^2) + \ldots \)
 \[
 g_{1D} = \frac{2\hbar^2}{\mu d} \left(\frac{d}{a_{3D}} - C - \frac{r_{3D}}{d} \right)^{-1}
 \]

- corrections \(g' = \frac{r_{3D} d}{2} \left(\frac{d}{a_{3D}} - C - \frac{r_{3D}}{d} \right)^{-1} \)
Energy-dependent interaction strength

- general result for $a_{1D}(p) \ (C = -\zeta(1/2))$ (Olshanii, Naidon)

$$a_{1D}(p) = -\frac{d^2}{2a_{3D}(k)} \left(1 - C \frac{a_{3D}(k)}{d}\right)$$

- incorporate energy dependence

$$a_{3D}(k) \approx \frac{a_{3D}}{1 - k^2 r_{3D} a_{3D}/2}$$

- include zero-point energy of the transverse oscillator!

$$k^2 = p^2 + 2/d^2$$

- low energy expansion $g_{1D}(p) = g_{1D}(1 + g'p^2) + \ldots$

$$g_{1D} = \frac{2\hbar^2}{\mu d} \left(\frac{d}{a_{3D}} - C - \frac{r_{3D}}{d}\right)^{-1}$$

- corrections $g' = \frac{r_{3D}d}{2} \left(\frac{d}{a_{3D}} - C - \frac{r_{3D}}{d}\right)^{-1}$
Energy-dependent interaction strength

- general result for $a_{1D}(p)$ ($C = -\zeta(1/2)$) (Olshanii, Naidon)

$$a_{1D}(p) = -\frac{d^2}{2a_{3D}(k)} \left(1 - C \frac{a_{3D}(k)}{d}\right)$$

- incorporate energy dependence

$$a_{3D}(k) \approx \frac{a_{3D}}{1 - k^2 r_{3D} a_{3D}/2}$$

- include zero-point energy of the transverse oscillator!

$$k^2 = p^2 + 2/d^2$$

- low energy expansion $g_{1D}(p) = g_{1D}(1 + g' p^2) + \ldots$

$$g_{1D} = \frac{2\hbar^2}{\mu d} \left(\frac{d}{a_{3D}} - C - \frac{r_{3D}}{d}\right)^{-1}$$

- corrections $g' = \frac{r_{3D} d}{2} \left(\frac{d}{a_{3D}} - C - \frac{r_{3D}}{d}\right)^{-1}$
Energy-dependent interaction strength

- general result for $a_{1D}(p) (C = -\zeta(1/2))$ (Olshanii, Naidon)

$$a_{1D}(p) = -\frac{d^2}{2a_{3D}(k)} \left(1 - C \frac{a_{3D}(k)}{d} \right)$$

- incorporate energy dependence

$$a_{3D}(k) \approx \frac{a_{3D}}{1 - k^2 r_{3D} a_{3D}/2}$$

- include zero-point energy of the transverse oscillator!

$$k^2 = p^2 + 2/d^2$$

- low energy expansion $g_{1D}(p) = g_{1D}(1 + g' p^2) + \ldots$

$$g_{1D} = \frac{2\hbar^2}{\mu d} \left(\frac{d}{a_{3D}} - C - \frac{r_{3D}}{d} \right)^{-1}$$

- corrections $g' = \frac{r_{3D} d}{2} \left(\frac{d}{a_{3D}} - C - \frac{r_{3D}}{d} \right)^{-1}$
Energy-dependent interaction strength

- general result for $a_{1D}(p)$ ($C = -\zeta(1/2)$) (Olshanii, Naidon)

$$a_{1D}(p) = -\frac{d^2}{2a_{3D}(k)} \left(1 - C \frac{a_{3D}(k)}{d}\right)$$

- incorporate energy dependence

$$a_{3D}(k) \approx \frac{a_{3D}}{1 - k^2 r_{3D} a_{3D}/2}$$

- include zero-point energy of the transverse oscillator!

$$k^2 = p^2 + 2/d^2$$

- low energy expansion $g_{1D}(p) = g_{1D}(1 + g' p^2) + \ldots$

$$g_{1D} = \frac{2\hbar^2}{\mu d} \left(\frac{d}{a_{3D}} - C - \frac{r_{3D}}{d}\right)^{-1}$$

- corrections $g' = \frac{r_{3D} d}{2} \left(\frac{d}{a_{3D}} - C - \frac{r_{3D}}{d}\right)^{-1}$
Numerical verification

Figure: Naidon, NJP 2007; Bergeman, PRL 2003, Lennard-Jones potential

theory remains valid for $d \gtrsim \bar{a}$, independently of a_{3D}
Transmission coefficient

convenient analysis in terms of transmission coefficient

\[T(p) = |1 + f|^2 = \frac{1}{1 + \tan^2 \delta_{1D}(p)} \]
Role of effective range

Figure: Wide trap $d = 20\bar{a}$, wide resonance - typical conditions in Innsbruck experiment
Wide vs. narrow resonances

- role of closed-channel contribution close to the Feshbach resonance
- “pole strength“ $s_{\text{res}} = \frac{a_{\text{bg}}}{a} \frac{\delta \mu \Delta}{\bar{E}}$
- large s_{res} - open channel-dominated (“broad“)
- $s_{\text{res}} \ll 1$ “narrow“ resonance
- effective range at the broad resonance - single-channel formula

$$r_{3D} = \frac{\Gamma(1/4)^2 \bar{a}}{6\pi^2} \left(1 - \frac{2\bar{a}}{a_{3D}} + \frac{2\bar{a}^2}{a_{3D}^2}\right)$$

- narrow resonances - nonuniversal behavior

$$r_{3D} \approx \frac{\nu + r_0(a_{3D} - a_{\text{ex}})^2}{a_{3D}^2}$$

Bo Gao, PRA 1998; Blackley et al, PRA 2014
Wide vs. narrow resonances

- role of closed-channel contribution close to the Feshbach resonance
- "pole strength" $s_{\text{res}} = \frac{a_{bg}}{\bar{a}} \frac{\delta \mu \Delta}{E}$
- large s_{res} - open channel-dominated ("broad")
- $s_{\text{res}} \ll 1$ "narrow" resonance
- effective range at the broad resonance - single-channel formula
 \[r_{3D} = \frac{\Gamma(1/4)^2 \bar{a}}{6\pi^2} \left(1 - \frac{2\bar{a}}{a_{3D}} + \frac{2\bar{a}^2}{a_{3D}^2} \right) \]
- narrow resonances - nonuniversal behavior
 \[r_{3D} \approx \frac{\nu + r_0 (a_{3D} - a_{ex})^2}{a_{3D}^2} \]

Bo Gao, PRA 1998; Blackley et al, PRA 2014
Wide vs. narrow resonances

- role of closed-channel contribution close to the Feshbach resonance
- “pole strength“ $s_{\text{res}} = \frac{a_{bg}}{a} \frac{\delta \mu \Delta}{E}$
- large s_{res} - open channel-dominated ("broad")
- $s_{\text{res}} \ll 1$ "narrow" resonance
- effective range at the broad resonance - single-channel formula

$$r_{3D} = \frac{\Gamma(1/4)^2 \tilde{a}}{6\pi^2} \left(1 - \frac{2\tilde{a}}{a_{3D}} + \frac{2\tilde{a}^2}{a_{3D}^2} \right)$$

- narrow resonances - nonuniversal behavior

$$r_{3D} \approx \frac{\nu + r_0 (a_{3D} - a_{\text{ex}})^2}{a_{3D}^2}$$

Bo Gao, PRA 1998; Blackley et al, PRA 2014
Wide vs. narrow resonances

- role of closed-channel contribution close to the Feshbach resonance
- “pole strength“ $s_{\text{res}} = \frac{a_{\text{bg}} \delta \mu \Delta}{\bar{a} E}$
- large s_{res} - open channel-dominated (“broad“)
- $s_{\text{res}} \ll 1$ “narrow“ resonance
- effective range at the broad resonance - single-channel formula

$$r_{3D} = \frac{\Gamma(1/4)^2 \bar{a}}{6\pi^2} \left(1 - \frac{2\bar{a}}{a_{3D}} + \frac{2\bar{a}^2}{a_{3D}^2}\right)$$

- narrow resonances - nonuniversal behavior

$$r_{3D} \approx \frac{v + r_0(a_{3D} - a_{\text{ex}})^2}{a_{3D}^2}$$

Bo Gao, PRA 1998; Blackley et al, PRA 2014
Wide vs. narrow resonances

- role of closed-channel contribution close to the Feshbach resonance
- “pole strength“ $s_{\text{res}} = \frac{a_{\text{bg}}}{\bar{a}} \frac{\delta \mu \Delta}{E}$
- large s_{res} - open channel-dominated (“broad“)
- $s_{\text{res}} \ll 1$ “narrow“ resonance
- effective range at the broad resonance - single-channel formula

$$r_{3D} = \frac{\Gamma(1/4)^2 \bar{a}}{6\pi^2} \left(1 - \frac{2\bar{a}}{a_{3D}} + \frac{2\bar{a}^2}{a_{3D}^2}\right)$$

- narrow resonances - nonuniversal behavior

$$r_{3D} \approx \frac{\nu + r_0(a_{3D} - a_{\text{ex}})^2}{a_{3D}^2}$$

Bo Gao, PRA 1998; Blackley et al, PRA 2014
Wide vs. narrow resonances

- Role of closed-channel contribution close to the Feshbach resonance
- “Pole strength” $s_{\text{res}} = \frac{a_{bg}}{\bar{a}} \frac{\delta \mu \Delta}{E}$
- Large s_{res}: open channel-dominated (“broad“)
- $s_{\text{res}} \ll 1$: “narrow“ resonance
- Effective range at the broad resonance - single-channel formula

$$r_{3D} = \frac{\Gamma(1/4)^2 \bar{a}}{6\pi^2} \left(1 - \frac{2\bar{a}}{a_{3D}} + \frac{2\bar{a}^2}{a_{3D}^2}\right)$$

- Narrow resonances - nonuniversal behavior

$$r_{3D} \approx \nu + r_0 \frac{(a_{3D} - a_{\text{ex}})^2}{a_{3D}^2}$$

Bo Gao, PRA 1998; Blackley et al, PRA 2014
Role of effective range

Cs, \(\sim 47G \) resonance with very small \(s_{\text{res}} \)

Figure: left: \(d = 20\bar{a} \), right: \(d = 5\bar{a} \)

Theory without effective range corrections fails!
Role of effective range II

Figure: g_{1D} with (blue) and without corrections for two different narrow resonances at $a_{3D} = 10\bar{a}$; note that red curve remains the same!
Introducing the GLL

- length scale $\ell = \sqrt{2|g'|}$ associated with the correction
- $V(x)\psi(x) = g_{1D}\delta(x) \left(1 - g'\partial^2_x\right)\psi(x)$
- discretize the derivative
- resulting effective model

 $V(x) = c_0\delta(x) + c_\ell(\delta(x - \ell) + \delta(x + \ell))$

 $c_0 = 2g_{1D}$, $c_\ell = -g_{1D}/2$ or $c_0 = 0$, $c_\ell = g_{1D}/2$ depending on the sign of g'

- mapping on the Lieb-Liniger model for dilute system

 $c_{\text{eff}} = c_0 + 2c_\ell + \frac{mc_\ell\ell}{\hbar^2} \left(2c_0 + 2c_\ell + \frac{mc_0c_\ell\ell}{\hbar^2} + \frac{mc_0^2\ell}{2\hbar^2}\right)$

 $\frac{1}{1 - \frac{m^2c_0c_\ell\ell^2}{2\hbar^4} - \frac{m_c\ell\ell}{\hbar^2}}$

- $c_{\text{eff}} \neq c_0 + 2c_\ell$, unit transmission possible for finite interactions

Introducing the GLL

- length scale $\ell = \sqrt{2|g'|}$ associated with the correction
- $V(x)\psi(x) = g_{1D}\delta(x) \left(1 - g'\partial_x^2\right)\psi(x)$
- discretize the derivative
- resulting effective model

 $V(x) = c_0\delta(x) + c_\ell(\delta(x - \ell) + \delta(x + \ell))$

 $c_0 = 2g_{1D}, c_\ell = -g_{1D}/2$ or $c_0 = 0, c_\ell = g_{1D}/2$ depending on the sign of g'
- mapping on the Lieb-Liniger model for dilute system

$$c_{\text{eff}} = c_0 + 2c_\ell + \frac{mc_\ell\ell}{\hbar^2} \left(2c_0 + 2c_\ell + mc_0c_\ell\ell + mc_0^2\ell^2 \right) \left(1 - \frac{m^2c_0c_\ell\ell^2}{2\hbar^4} - \frac{mc_\ell\ell}{\hbar^2}\right)$$

- $c_{\text{eff}} \neq c_0 + 2c_\ell$, unit transmission possible for finite interactions

Introducing the GLL

- length scale $\ell = \sqrt{2|g'|}$ associated with the correction
- $V(x)\psi(x) = g_{1D}\delta(x)\left(1-g'\partial_x^2\right)\psi(x)$
- discretize the derivative
- resulting effective model
 $$V(x) = c_0\delta(x) + c_\ell(\delta(x-\ell) + \delta(x+\ell))$$
 $c_0 = 2g_{1D}$, $c_\ell = -g_{1D}/2$ or $c_0 = 0$, $c_\ell = g_{1D}/2$ depending on the sign of g'
- mapping on the Lieb-Liniger model for dilute system
 $$c_{\text{eff}} = c_0 + 2c_\ell + \frac{mc_\ell\ell}{\hbar^2}\left(2c_0 + 2c_\ell + \frac{mc_0c_\ell\ell}{\hbar^2} + \frac{mc_0^2\ell^2}{2\hbar^2}\right)$$
 $$\frac{1}{1 - \frac{m^2c_0^2c_\ell^2\ell^2}{2\hbar^4} - \frac{mc_\ell\ell^2}{\hbar^2}}$$
- $c_{\text{eff}} \neq c_0 + 2c_\ell$, unit transmission possible for finite interactions

Introducing the GLL

- length scale \(\ell = \sqrt{2|g'|} \) associated with the correction
- \(V(x)\psi(x) = g_{1D}\delta(x) \left(1 - g' \partial_x^2\right) \psi(x) \)
- discretize the derivative
- resulting effective model
 \[
 V(x) = c_0\delta(x) + c_\ell(\delta(x - \ell) + \delta(x + \ell))
 \]
 \(c_0 = 2g_{1D}, \ c_\ell = -g_{1D}/2 \) or \(c_0 = 0, \ c_\ell = g_{1D}/2 \) depending on the sign of \(g' \)
- mapping on the Lieb-Liniger model for dilute system
 \[
 c_{\text{eff}} = c_0 + 2c_\ell + \frac{mc_\ell \ell}{\hbar^2} \left(2c_0 + 2c_\ell + \frac{mc_0 c_\ell \ell}{\hbar^2} + \frac{mc_0^2 \ell}{2\hbar^2}\right) \left(1 - \frac{m^2 c_0 c_\ell \ell^2}{2\hbar^4} - \frac{m c_\ell \ell}{\hbar^2}\right)^{-1}
 \]
 \(c_{\text{eff}} \neq c_0 + 2c_\ell \), unit transmission possible for finite interactions

Introducing the GLL

- length scale $\ell = \sqrt{2|g'|}$ associated with the correction
- $V(x)\psi(x) = g_{1D}\delta(x) \left(1 - g' \partial^2_x \right) \psi(x)$
- discretize the derivative
- resulting effective model

 $V(x) = c_0 \delta(x) + c_\ell (\delta(x - \ell) + \delta(x + \ell))$

 $c_0 = 2g_{1D}, \ c_\ell = -g_{1D}/2$ or $c_0 = 0, \ c_\ell = g_{1D}/2$ depending on the sign of g'
- mapping on the Lieb-Liniger model for dilute system

 $c_{\text{eff}} = c_0 + 2c_\ell + \frac{mc_\ell \ell}{\hbar^2} \left(2c_0 + 2c_\ell + \frac{mc_0 c_\ell \ell}{\hbar^2} + \frac{mc_0^2 \ell^2}{2\hbar^2} \right) \frac{1}{1 - \frac{m^2 c_0 c_\ell \ell^2}{2\hbar^4} - \frac{m c_\ell \ell}{\hbar^2}}$

 $c_{\text{eff}} \neq c_0 + 2c_\ell$, unit transmission possible for finite interactions
Cold atoms in quasi-1D traps: beyond the zero-range approximation

Generalized Lieb-Liniger model

Introducing the GLL

- length scale $\ell = \sqrt{2|g'|}$ associated with the correction
- $V(x)\psi(x) = g_{1D}\delta(x) \left(1 - g' \partial_x^2 \right) \psi(x)$
- discretize the derivative
- resulting effective model

 $V(x) = c_0\delta(x) + c_\ell(\delta(x - \ell) + \delta(x + \ell))$

 $c_0 = 2g_{1D}$, $c_\ell = -g_{1D}/2$ or $c_0 = 0$, $c_\ell = g_{1D}/2$ depending on the sign of g'

- mapping on the Lieb-Liniger model for dilute system

 $c_{\text{eff}} = c_0 + 2c_\ell + \frac{mc_\ell \ell}{\hbar^2} \left(2c_0 + 2c_\ell + \frac{mc_0 c_\ell \ell}{\hbar^2} + \frac{mc_0^2 \ell}{2\hbar^2} \right)$

 $1 - \frac{m^2 c_0 c_\ell \ell^2}{2\hbar^4} - \frac{m c_\ell \ell}{\hbar^2}$

- $c_{\text{eff}} \neq c_0 + 2c_\ell$, unit transmission possible for finite interactions

validity of GLL

Figure: Transmission for two narrow resonances; GLL denoted by black dashed line
Conclusions & outlook

- Atomic interactions in traps need to include finite energy corrections.
- Can be described in terms of universal quantities.
- Effective range affects the stability of the trapped gas.
- Relevant especially for narrow resonances.
Conclusions & outlook

- atomic interactions in traps need to include finite energy corrections
- can be described in terms of universal quantities
- effective range affects the stability of the trapped gas
- relevant especially for narrow resonances
Conclusions & outlook

- atomic interactions in traps need to include finite energy corrections
- can be described in terms of universal quantities
- effective range affects the stability of the trapped gas
- relevant especially for narrow resonances
Conclusions & outlook

- atomic interactions in traps need to include finite energy corrections
- can be described in terms of universal quantities
- effective range affects the stability of the trapped gas
- relevant especially for narrow resonances