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Outlook

Reaction-Type Dynamics in Dynamical Systems

‘Transformations’ are mediated by phase space bottlenecks
phase space consists of disjoint regions in which system remains for long
times
there are rare - but important - events where the system finds its way
through a phase space bottleneck connecting one such region to another

For Example, in Chemistry

Evolution from reactants to products through ‘transition state’

“On the way from reactants to products, a chemical reaction passes through
what chemists term the transition state – for a brief moment, the participants
in the reaction may look like one large molecule ready to fall apart.”

from R. A. Marcus. Skiing the Reaction Rate Slopes. Science 256 (1992) 1523
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Transition State Theory (Eyring, Polanyi, Wigner 1930s)

Compute reaction rate from directional flux through ‘dividing surface’ in
the transition state region

Dividing surface needs to have ‘no recrossing property’, i.e. it is to be
crossed exactly once by all reactive trajectories and not crossed at all by
non-reactive trajectories

Computational benefits:
compute rate from flux through a dividing surface rather than from
integrating trajectories, i.e. use ‘local’ rather than ‘global’ information
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Classical and quantum reaction dynamics in multidimensional systems

Applications

Chemical reactions (scattering, dissociation, isomerisation, protein
folding)

Many, many people

Atomic physics (ionisation of Rydberg atoms in crossed field
configurations)

S. Wiggins, L. Wiesenfeld, C. Jaffé & T. Uzer (2001) Phys. Rev. Lett. 86 5478

H. Cartarius, J. Main & G. Wunner (2009) Phys. Rev. A 79 033412

Condensed matter physics (atom migration in solids, ballistic electron
transport)

G. Jacucci, M. Toller, G. DeLorenzi & C. P. Flynn (1984) Phys. Rev. Lett. 52 295

B. Eckhardt (1995) J. Phys. A 28 3469

Celestial mechanics (capture of moons near giant planets, asteroid
motion)

C. Jaffé, S. D. Ross, M. W. Lo, J. Marsden, D. Farrelly & T. Uzer (2002) Phys. Rev. Lett. 89 011101

H. W., A. Burbanks & S. Wiggins (2005) Mon. Not. R. Astr. Soc. 361 763

Cosmology
H. P. de Olivieira, A. M. Ozorio de Almeida, I. Danmião Soares & E. V. Tonini (2002) Phys. Rev. D 65 083511
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Classical Reaction Dynamics in Multidimensional Systems

Phase Space Conduits for Reaction
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Phase Space Structures near a Saddle

Setup

Consider f -degree-of-freedom Hamiltonian system
(R2f (p1, . . . , pf , q1, . . . , qf ), ω =

∑f
k=1 dpk ∧ dqk ) and Hamilton function H.

Assume that the Hamiltonian vector field(
ṗ
q̇

)
=

(
− ∂H
∂q
∂H
∂p

)
≡ J DH , J =

(
0 −1
1 0

)
has saddle-centre-. . .-centre equilibrium point (‘saddle’ for short) at the
origin, i.e.

J D2H has eigenvalues ± λ, ±iω2, . . . , ±iωf , λ, ωk > 0
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Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

Simplest case

Consider Hamilton function

H = 1
2 p2

x − 1
2λ

2x2 + 1
2 p2

y + 1
2ω

2
y y2

=: Hx + Hy

corresponding vector field is


ṗx

ṗy

ẋ
ẏ

 = J DH =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0



∂H
∂px

∂H
∂py

∂H
∂x

∂H
∂y

 =


λ2x
−ω2

y y
px

py



Hx and Hy are conserved individually,

Hx = Ex ∈ R , Hy = Ey ∈ [0,∞) , H = E = Ex + Ey ∈ R
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ṗy

ẋ
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Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

E < 0 :

Rewrite energy equation H = E as

E +
1
2
λ2x2 =

1
2

p2
x +

1
2

p2
y +

1
2
ω2

y y2︸ ︷︷ ︸
' S2 for x ∈ (−∞,−

√
−2E
λ

)

or x ∈ (

√
−2E
λ

,∞)

⇒ Energy surface
ΣE = {H = E}

consists of two disconnected components which represent the
‘reactants’ and ‘products’
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Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

E > 0 :

E +
1
2
λ2x2 =

1
2

p2
x +

1
2

p2
y +

1
2
ω2

y y2︸ ︷︷ ︸
' S2 for all x ∈ R

⇒ Energy surface

ΣE = {H = E} ' S2 × R (spherical cylinder)

⇒ ΣE bifurcates at E = 0 (the energy of the saddle) from two disconnected
components to a single connected component
Consider projection of ΣE to R3(x , y , py ), i.e. project out

px = ±
√

2E − p2
y + λ2x2 − ω2

y y2

which gives two copies for the two signs of px
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Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

Ex

EyE = E  + E
x

y


ṗx
ṗy
ẋ
ẏ

 =


λ2x
−ω2

y y
px
py

ΣE for E < 0

ΣE consists of two components representing reactants and products

copy with px ≥ 0 copy with px ≤ 0

x

y

p
y

x

p
y

y

“reactants” “products” “reactants”
“products”
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Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

Ex

EyE = E  + E
x

y


ṗx
ṗy
ẋ
ẏ

 =


λ2x
−ω2

y y
px
py

ΣE for E < 0

all trajectories have Hx = Ex < 0 and hence are non-reactive

copy with px ≥ 0 copy with px ≤ 0

x

y

p
y

x

p
y

y

non-reactive trajectory on the side of reactants
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Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

Ex

EyE = E  + E
x

y


ṗx
ṗy
ẋ
ẏ

 =


λ2x
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y y
px
py

ΣE for E > 0

Reactive trajectories have Hx = Ex > 0

copy with px ≥ 0 copy with px ≤ 0

x

y

p
y

x

p
y

y

forward reactive trajectory backward reactive trajectory
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Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

Ex

EyE = E  + E
x

y


ṗx
ṗy
ẋ
ẏ

 =


λ2x
−ω2

y y
px
py

ΣE for E > 0

Dynamical reaction paths have Hx = Ex = E (i.e. Hy = Ey = 0)

copy with px ≥ 0 copy with px ≤ 0

x

y

p
y

x

p
y

y

forward reaction path backward reaction path
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Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

Ex

EyE = E  + E
x

y


ṗx
ṗy
ẋ
ẏ

 =
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λ2x
−ω2

y y
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ΣE for E > 0

Lyapunov periodic orbit ' S1 has Hx = Ex = 0 with x = px = 0

copy with px ≥ 0 copy with px ≤ 0

x

y

p
y

x

p
y

y
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Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

Ex

EyE = E  + E
x

y


ṗx
ṗy
ẋ
ẏ

 =


λ2x
−ω2

y y
px
py

ΣE for E > 0

Stable manifolds W s ' S1 × R has Hx = Ex = 0 with px = −λx

copy with px ≥ 0 copy with px ≤ 0

x

y

p
y

x

p
y

y

reactants branch W s
r products branch W s

p
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Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

Ex

EyE = E  + E
x

y


ṗx
ṗy
ẋ
ẏ

 =
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λ2x
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ΣE for E > 0

Unstable manifolds W u ' S1 × R has Hx = Ex = 0 with px = λx

copy with px ≥ 0 copy with px ≤ 0

x

y

p
y

x

p
y

y

products branch W u
p reactants branch W u

r
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Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

Ex

EyE = E  + E
x

y


ṗx
ṗy
ẋ
ẏ

 =


λ2x
−ω2

y y
px
py

ΣE for E > 0

Forward cylinder W s
r ∪W u

p and backward cylinder W s
p ∪W u

r enclose all
the forward and backward reactive trajectories, respectively

copy with px ≥ 0 copy with px ≤ 0

x

y

p
y

x

p
y

y

forward cylinder backward cylinder
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Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

Ex
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y
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ṗx
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ẋ
ẏ

 =
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λ2x
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y y
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ΣE for E > 0

Forward and backward dynamical reaction paths form the centreline of
the forward and backward cylinders, respectively

copy with px ≥ 0 copy with px ≤ 0

x

y

p
y

x

p
y

y

forward reaction path backward reaction path
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Phase Space Structures near a Saddle
Linear vector field for f = 2 degrees of freedom

Ex
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y


ṗx
ṗy
ẋ
ẏ

 =


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y y
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ΣE for E > 0

Dividing surface ' S2 has x = 0,

Lyapunov periodic orbit ' S1 forms its equator and divides it into two
hemispheres ' B2

copy with px ≥ 0 copy with px ≤ 0

x

y

p
y

x

p
y

y

forward hemisphere B2
f backward hemisphere B2

b
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Apart from its equator (which has x = px = 0) the dividing surface is
transverse to the flow (ẋ = px 6= 0 for px 6= 0)
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f backward hemisphere B2
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Outlook

Phase Space Structures near a Saddle
General (nonlinear) case

f = 2 degrees of freedom: dividing surface can be constructed from
periodic orbit

Periodic Orbit Dividing Surface (PODS) (Pechukas, Pollak and
McLafferty, 1970s)

How can one construct a dividing surface for a system with an arbitrary
number of

degrees of freedom? What are the phase space conduits for reaction in
this case?
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Phase Space Structures near a Saddle
General (nonlinear) case; E > 0

2 DoF 3 DoF f DoF

energy surface S2 × R S4 × R S2f−2 × R

dividing surface S2 S4 S2f−2

normally hyperbolic S1 S3 S2f−3

invariant manifold (NHIM)

(un)stable manifolds S1 × R S3 × R S2f−3 × R

forward/backward B2 B4 B2f−2

hemispheres

“flux” form Ω′ = dϕ ω 1
2ω

2 1
(f−1)!

ωf−1

“action” form ϕ p1dq1 + p2dq2 (p1dq1 + p2dq2 + p3dq3) ∧ 1
2ω

∑f
k=1 pk dqk ∧

1
(f−1)!

ωf−2

Flux (rate): N(E) =
∫

B2f−2
ds; forward

Ω′ =
∫

S2f−3
NHIM

ϕ

R. MacKay (1990) Phys. Lett. A 145 425
Uzer et al. (2001) Nonlinearity 15 957-992
H. W. & S. Wiggins (2004) J. Phys. A 37 L435
H. W., A. Burbanks & S. Wiggins (2004) J. Chem. Phys. 121 6207
H. W., A. Burbanks & S. Wiggins (2005) Mon. Not. R. Astr. Soc. 361 763Holger Waalkens - MPIPKS Dresden - BRITS16 The Geometry of Classical and Quantum Transition State Theory
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Phase Space Structures near a Saddle
General (nonlinear) case; construction of the phase space structures from normal form

Theorem (Normal Form) Consider a Hamiltonian vector field with a saddle
equilibrium point like in our setup, i.e. J D2H has eigenvalues
±λ,±iω2, . . . ,±iωf , λ, ωk > 0. Assume that the linear frequencies
(ω2, . . . , ωf ) are linearly independent over Q. Then, for any given order, there
exists a local, nonlinear symplectic transformation to normal form (NF)
coordinates (P,Q) = (P1, . . . ,Pf ,Q1, . . . ,Qf ) in which the transformed
Hamilton function, to this order, assumes the form

HNF = HNF(I, J2, . . . , Jf ) = λI + ω2J2 + . . .+ ωf Jf + h.o.t. ,

where

I = P1Q1 , J2 =
1
2

(P2
2 + Q2

2) , . . . , Jf =
1
2

(P2
f + Q2

f ) .
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Phase Space Structures near a Saddle
General (nonlinear) case; construction of the phase space structures from normal form

Comments

The NF proves the regularity of the motions near transition states

The NF gives explicit formulae for the phase space structures that
control reaction dynamics

The phase space structures can be realised in the NF coordinates
(P,Q) and mapped back to the original coordinates (p, q) using the
inverse of the NF transformation

The NF gives a simple expression for the flux in terms of the integrals
I, J2, . . . , Jf

The NF transformation can be computed in an algorithmic fashion

In general the NF transformation does not converge but has to be
truncated at a suitable order

The NF is of local validity. Unbounded phase space structures like the
NHIM’s stable and unstable manifolds have to be extended from the
neighbourhood of validity of the NF by the flow corresponding to the
original vector field
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Example: HCN/CNH Isomerisation

CN

H

r

R

γ

3 DoF for vanishing total angular
momentum:

Jacobi coordinates r ,R, γ

Hamilton function

H =
1

2µ
p2

r +
1

2m
p2

R +
1
2

(
1
µr 2 +

1
mR2

)
p2
γ + V (r ,R, γ)

where

µ = mCmN/(mC + mN), m = mH(mC + mN)/(mH + mC + mN)

V (r ,R, γ) : Murrell-Carter-Halonen potential energy surface
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Example: HCN/CNH Isomerisation
Unfolding the dynamics

Iso-potential surfaces V = const . saddle(s) at γ = ±67◦

consider energy 0.2 eV above saddle

normal form to 16th order

H. W., A. Burbanks & S. Wiggins (2004) J. Chem. Phys. 121 6207
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Example: HCN/CNH Isomerisation
Phase space structures

dividing surface S4

transverse to
Hamiltonian vector field

minimises the flux

NHIM S3

transition state or
activated complex

(un)stable manifolds S3 × R

phase space conduits
for reaction
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Quantum Transition State Theory

Outlook

The stable and unstable manifolds of the NHIM(s) and the geometry of
their intersections contain the full information about the reaction
dynamics

This allows one to study
complex reactions (rare events - how does a system find its way through a
succession of transition states? global recrossings of the dividing surface?)

violations of ergodicity assumptions which are routinely employed in
statistical reaction rate theories (can every initial condition react?)

time scales for reactions (classification of different types of reactive
trajectories)

the control of reactions
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Violations of ergodicity assumptions

Are all points in phase space reactive i.e. do they all, as initial conditions for
Hamilton’s equations, lead to reactive trajectories?

Theorem (Reactive Phase Space Volume) Consider a region M in an energy
surface (e.g. the energy surface region corresponding to a potential well) with
n exit channels associated with saddle equilibrium points. The energy
surface volume of initial coniditions in M that lead to reactive (escape)
trajectories is given by

vol(Mreact) =
n∑

j=1

〈t〉Bds;j NBds;j

where

〈t〉Bds;j = mean residence time in the region M of trajectories
starting on the j th dividing surface Bds;j

NBds;j = flux through j th dividing surface Bds;j

H. W., A. Burbanks & S. Wiggins (2005) Phys. Rev. Lett. 95 084301

H. W., A. Burbanks & S. Wiggins (2005) J. Phys. A 38 L759

H. W., A. Burbanks & S. Wiggins (2005) Mon. Not. R. Astr. Soc. 361 763Holger Waalkens - MPIPKS Dresden - BRITS16 The Geometry of Classical and Quantum Transition State Theory
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Example: HCN/CNH Isomerisation
Reactive phase space volumes

vol(MHCN; react)

vol(MHCN; total)
= 0.09

only 9 % of initial conditions in the HCN
well
are reactive!

The procedure to compute vol(Mreact)
following from the theorem is orders of
magnitudes more efficient than a brute
force Monte Carlo computation

H. W., A. Burbanks & S. Wiggins (2005) Phys. Rev. Lett. 95 084301

H. W., A. Burbanks & S. Wiggins (2005) J. Phys. A 38 L759

H. W., A. Burbanks & S. Wiggins (2005) Mon. Not. R. Astr. Soc. 361 763
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Outlook

The stable and unstable manifolds structure the reactive region into
subregions of different types of reactive trajectories with a hierarchy of
reaction time scales
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Example: HCN/CNH Isomerisation
Reactive phase space subvolumes
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Example: HCN/CNH Isomerisation
Reactive phase space volumes

Reaction time distribution

0 0.1 0.2 0.3 0.4 0.5
t [ps]

0.0001

0.001

0.01

0.1

P pt
(t

)
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Quantum Transition State Theory

classical quantum

Hamilton’s equations Schrödinger equation

ṗ = − ∂H
∂q , q̇ = ∂H

∂p , (p, q) ∈ R2f Ĥψ ≡
(
− ~2

2 ∇
2 + V

)
ψ = Eψ , ψ ∈ L2(Rf )

Main idea: “locally simplify” Hamilton function/operator

symplectic transformations unitary transformations

H 7→ H ◦ φ Ĥ 7→ UĤU?

(classical) normal form quantum normal form

R. Schubert, H. W. & S. Wiggins (2006) Phys. Rev. Lett. 96 218302

H.W., R. Schubert & S. Wiggins (2008) Nonlinearty 21 R1-R118
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Systematic quantum-classical correspondence from Weyl calculus

Weyl calculus:
operator Â↔ phase space function A (symbol)

Â =
1

(2π~)f

∫
R2f

A(ξq , ξp)T̂ (ξq , ξp) dξqdξp ↔ A(~, q, p) = Tr(T̂ (q, p)Â) ,

where
T̂ (q, p) = e

i
~ (〈p,q̂〉+〈q,p̂〉)

Examples:

A Â

J := 1
2 (p2 + q2) Ĵ := − ~2

2
d2

dq2 + 1
2 q2

I := pq Î := −i~(q d
dq + 1

2 )
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Quantum Normal Form

Theorem (Quantum Normal Form) Consider a Hamilton operator Ĥ whose
(principal) symbol has a saddle equilibrium point like in our classical setup,
i.e. J D2H has eigenvalues ±λ,±iω2, . . . ,±iωf , λ, ωk > 0. Assume that the
linear frequencies (ω2, . . . , ωf ) are linearly independent over Q. Then, for any
given order, there exists a unitary transformation U(N) such that

U(N)ĤU(N) ? = Ĥ(N)
QNF + R̂(N)

where
Ĥ(N)

QNF = H(N)
QNF(̂I, Ĵ2, . . . , Ĵf )

and R(N) is of order N + 1, i.e. R(N)(εp, εq, ε2~) = O(εN+1)

R. Schubert, H. W. & S. Wiggins (2006) Phys. Rev. Lett. 96 218302

H.W., R. Schubert & S. Wiggins (2008) Nonlinearty 21 R1-R118
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Quantum Normal Form

Comments

Ĥ(N)
QNF is an operator function of the ‘elementary’ operators Î, Ĵk ,

k = 2, . . . , f , whose spectral properties are well known

This allows one to compute
quantum reaction probabilities (i.e. the analogue of the classical flux) and
quantum resonances (i.e. the quantum lifetimes of the activated complex)

scattering and resonance wavefunctions (‘quantum bottleneck states’) which
are localised on the classical phase space structures

Like the classical normal form the quantum normal form can be
computed in an algorithmic fashion
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~ Ŵn , Wn ∈ Pn

qm

Holger Waalkens - MPIPKS Dresden - BRITS16 The Geometry of Classical and Quantum Transition State Theory



Phase Space Conduits for Reaction
Quantum Transition State Theory

Outlook

Sketch of the Quantum Normal Form Computation

classical quantum

Taylor expansion of Hamilton function H Taylor expansion of the symbol H of Ĥ
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H(n) = H(n−1) ◦ φ−1
Wn

, Wn ∈ Pn
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H(n) = H(n−1) ◦ φ−1
Wn

, Wn ∈ Pn
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for s < n: H(n)
s = H(n−1)

s for s < n: H(n)
s = H(n−1)

s

for s ≥ n: H(n)
s =

∑[ s−1
n−1 ]

j=0
1
j! [adWn ]jH(n−1)

s−j(n−2)
for s ≥ n: H(n)

s =
∑[ s−1

n−1 ]

j=0
1
j! [MadWn ]j H(n−1)

s−j(n−2)

where adWn := {Wn, ·} where MadWn := {Wn, ·}M

with Poisson bracket {A,B}(p, q) = with Moyal bracket {A,B}M (p, q) =

A(p, q)[〈
↼
∂ p,

⇀
∂ q〉 − 〈

⇀
∂ p,

↼
∂ q〉]B(p, q) 2

~A(p, q) sin
(

~
2 [〈

↼
∂ p,

⇀
∂ q〉 − 〈

⇀
∂ p,

↼
∂ q〉]

)
B(p, q)

chooseWn, n = 2, . . . ,N, such that choose Wn, n = 2, . . . ,N, such that

{H2,H
(n)
n } = 0 {H2,H

(n)
n }M = 0 (i.e. [Ĥ2, Ĥ

(n)
n ] = 0)

from solving the homological equation from solving the homological equation

H(n)
n = H(n−1)

n + {Wn,H2} H(n)
n = H(n−1)

n + {Wn,H2}
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⇒ H(N) = H(N)
CNF +R(N) ⇒ Ĥ(N) = Ĥ(N)

QNF + R̂(N)

where H(N)
CNF = H(N)

CNF(I, J2, . . . , Jf ) where Ĥ(N)
QNF = H(N)

QNF (̂I, Ĵ2, . . . , Ĵf )

(and R(N) is remainder term of order N + 1) (and R(N) is remainder term of order N + 1)

R. Schubert, H. W. & S. Wiggins (2006) Phys. Rev. Lett. 96 218302

H.W., R. Schubert & S. Wiggins (2008) Nonlinearty 21 R1-R118
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Quantum normal form computation of the cumulative reaction probability

Scattering states are eigenfunctions of

ĤQNF = HQNF(̂I, Ĵ2, . . . , Ĵf ),

i.e.
ĤQNF ψ(I,nscatt) = HQNF(I, ~(n2 +

1
2

), . . . , ~(nf +
1
2

))ψ(I,nscatt),

where I ∈ R and nscatt ∈ Nf−1
0 and

ψ(I,nscatt)(q1, . . . , qf ) = ψI(q1)ψn2 (q2) · · ·ψnf (qf )

with quantum numbers nscatt = (n2, . . . , nf ) ∈ Nf−1
0
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centre planes
(qk , pk ),
k = 2, . . . , f

saddle plane
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Quantum normal form computation of the cumulative reaction probability

A scattering state ψ(I,nscatt) has transmission probability

Tnscatt =

[
1 + exp

(
− 2π

I
~

)]−1

Cumulative reaction probability

N(E) =
∑
nscatt

Tnscatt (E) =
∑

nscatt∈N
f−1
0

[
1 + exp

(
− 2π

Inscatt (E)

~

)]−1

,

where Inscatt (E) is determined by

HQNF
(
Inscatt (E), ~(n2 + 1/2), . . . , ~(nf + 1/2)

)
= E
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Example: Coupled Eckart-Morse-Morse Potential

H =
1
2

(p2
x + p2

y + p2
z ) + VE(x) + VM;y (y) + VM;z(z)︸ ︷︷ ︸+ ε (px py + px pz + py pz)︸ ︷︷ ︸

VE(x) =
A eax

1 + eax +
B eax

(1 + eax )2 ‘kinetic coupling’

VM;y (y) = Dy

(
e(−2αy y) − 2e(−αy y)

)
VM;z(z) = Dz

(
e(−2αz z) − 2e(−αz z)

)

Iso-potential surfaces:
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Example: Coupled Eckart-Morse-Morse Potential
Cumulative reaction probability
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Example: Coupled Eckart-Morse-Morse Potential
Cumulative reaction probability

Cumulative reaction probability N(E) ≈ ‘number of open transmission
channels at energy E ’

p1 p2
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Example: Coupled Eckart-Morse-Morse Potential
Cumulative reaction probability

Cumulative reaction probability N(E) ≈ integrated density of states of the
activated complex to energy E

J3

I

S1

IR

S1 IR2S1 IR2

S1 IR2 S1 IR2
J2

2

S1

2 2 RI

2 RI2

2

classical flux
J3

J2
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Cumulative reaction probability

Cumulative reaction probability N(E) = integrated density of states of the
activated complex to energy E

J3
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2
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2
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Quantum resonances (Gamov-Siegert resonances)

Heisenberg uncertainty relation prohibits the existence of an invariant
subsystem analogous to the classical case in quantum mechanics

Wavepackets initialised on the (classical) activated complex decay
exponentially in time. This is described by the resonances.

Formal definition of resonances: poles of the meromorphic continuation of
the resolvent

R̂(E) = (Ĥ − E)−1

to the lower half plane

Quantum resonances are obtained from complex Bohr-Sommerfeld
quantization conditions

E(n1,n2,...,nf ) = H(N)
QNF

(
In1 , Jn2 , . . . , Jnf

)
In1 = −i~(n1 + 1

2 ), Jn2 = ~(n2 + 1
2 ), . . . , Jnf = ~(nf + 1

2 ), n1, . . . , nd ∈ N0
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Quantum resonances (Gamov-Siegert resonances)
Husimi functions of resonance states in the saddle plane
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Phase Space Conduits for Reaction
Quantum Transition State Theory

Outlook

Outlook

more general bottlenecks/transition states

going beyond (quantum) normal forms

Holger Waalkens - MPIPKS Dresden - BRITS16 The Geometry of Classical and Quantum Transition State Theory


