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§ Time acceleration through modification to  
 potential energy surfaces
§ Applications of the techniques in biology,  
 chemistry, physics and engineering
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Why does C diffuse so slowly in martensite ?

Experiment: ageing of martensite

Ageing monitored by thermoelectric power (i.e. resistivity)

4.1. Identification of tempering stages from TEP evolution

Isothermal ageing treatments (tempering) of 100Cr6
samples from state H and HF have been performed at var-
ious temperatures. Fig. 2 shows the change in TEP, DS, as
a function of the ageing time. From these evolutions, three
different stages can be observed:

! Stage A: a sigmoidal-shaped evolution at low ageing
temperatures (e.g. 100 min at 110 !C) for which the
TEP curves from the H and HF states coincide.
! Stage B: another sigmoidal-shaped evolution for higher

temperatures (e.g. 20 min at 240 !C), for which the TEP
of the sample from the H and HF state are no longer
similar.

! Stage C: a fairly broad evolution, for the highest inves-
tigated ageing temperatures.

To investigate the origin of the first step (stage A), TEM
has been performed after H + 4 h at 140 !C (Fig. 3-r).
Analysis of the diffraction pattern led to the positive iden-
tification of e-carbide: a hexagonal structure with six iron
atoms per cell ðae ¼ 0:4767 nm and ce ¼ 0:4354 nmÞ, space
group P6322 and cell volume Xe ¼ 0:0857 nm3 as reported
by Hirotsu and Nagakura [22]. This carbide is a superstruc-
ture of ‘‘classical” e-carbide (space group P63/mmc,
JCPDS#36-1249). This stage is then assumed to be related
to the precipitation of e-carbide (first stage of tempering,
see Section 1).

As far as the second step (stage B) is concerned, TEM
analysis has been performed after H + 2 h at 240 !C
(Fig. 3-s). Analysis of the diffraction pattern led to the
positive identification of cementite (JCPDS#85-1317 [23]):
orthorhombic structure with 12 iron atoms per cell ðah ¼
0:50890 nm; ah ¼ 0:67433 nm and ch ¼ 0:45235 nmÞ, space
group Pnma and cell volume Xh ¼ 0:0236 nm3 as reported
by Bagaryatskii [24]. Note that no retained austenite has
been observed in the TEM after 2 h at 240 !C. Moreover,
if the TEP evolution of H240 and HF240 are compared
(see Fig. 2), taking into account that the main difference
between both states is the initial amount of retained austen-
ite, it can be concluded that this second step is also due to
the decomposition of retained austenite. Stage B is then
assumed to be related to both the decomposition of
retained austenite and the precipitation of cementite (sec-
ond and third stages of tempering, see Section 1). The same
interpretations are also given in the work of Tkalcec
[25], except that no retained austenite remained in their
steel.

Finally, the evolution of TEP for high temperature and/
or long ageing times (stage C) is assumed to be connected
to the recovery of the dislocation structure and the coarsen-
ing of martensite lathes according to Porter and Easterling

Fig. 2. Tempering of 100Cr6 martensite characterized by TEP. A two-step
sigmoidal evolution (labelled A and B) combined with a broader one
(labelled C) are observed. Labels r and s stand for states H + 4 h at
140 !C and H + 2 h at 240 !C, for which TEM analysis has been
performed (see Fig. 3). Uncertainties correspond to the symbol size.

Fig. 3. r State H + 4 h at 140 !C. Dark-field micrograph of !-carbides corresponding the the bold circled spot of the diffraction pattern. The diffraction
pattern shows the a0-Fe matrix near the [111] orientation (dashed hexagon) and additional spots due to hexagonal e-carbide. s State H + 2 h at 240 !C.
Bright-field image of cementite. The diffraction pattern shows the a0-Fe matrix near the ½112& orientation (dashed rectangle) and additional spots due to
orthorhombic cementite (see Ref. [21] for more details).

M. Perez et al. / Acta Materialia 57 (2009) 3170–3181 3173

[1] and Speich and Taylor [2] (fourth stage of tempering,
see Section 1).

4.2. Temperature–time equivalence

From the evolutions of TEP during ageing treatments
(Fig. 2), it seems that changing the temperature shifts the
timescale of the microstructural evolution associated with
TEP variations. Therefore, a temperature–time equivalence
has been performed, according to an Arrhenius law (activa-
tion enervy Q), to find the ‘‘equivalent time at 110 !C”1 for
all ageing treatments performed at temperature T:

t110 ¼ tT exp "Q
R

1

T
" 1

T 110

! "# $
ð2Þ

Considering the wide range of investigated ageing tem-
peratures (110–505 !C), microstructural evolution taking
place within the sample would certainly involve more than
a single mechanism (see Section 1), and therefore more
than a single activation energy. Indeed, stages 1–3 may
involve the diffusion of carbon, whereas stage 4 may
involve the recovery of the dislocation structure.

Therefore, two different activation energies have been
applied: (i) Ql ¼ 120 kJ mol"1 for ‘‘low”-temperature age-
ing treatments (H110, H140, H170, H200 and H240) and
(ii) Qh ¼ 190 kJ mol"1 for ‘‘high”-temperature ageing treat-
ments (H350 and H505). These values correspond to the
best fit shown in Fig. 4, leading to a unique TEP curve
for the whole range of investigated ageing temperatures.

The ‘‘low”-temperature activation energy Ql ¼ 120
kJ mol"1 appears to be close to that for carbide precipita-
tion in martensite (a range of 100–150 kJ mol"1 has often
been reported in the literature [2]). Although this is well
above the activation energy for carbon diffusion in ferrite,
it has been suggested before that alloying elements, such as
Cr, strongly increase the activation energy for the diffusion
of carbon (Adda reported an activation energy of
140 kJ mol"1 for a 0.92% Cr steel [26]).

The ‘‘high”-temperature activation energy Qh ¼
190 kJ mol"1 is close to that for recovery in a-iron [27].
It is indeed in between the activation energy for dislocation
core diffusion in a-iron (Qdcd ¼ 174 kJ mol"1 [28]) and
lattice self-diffusion in a-iron (Qlsd ¼ 251 kJ mol"1 [28]).

It is worth noting that the temperature–time equivalence
is valid only if diffusion controls the kinetics of precipita-
tion, which we believe is the case in the present study. If
the limiting factor was the driving force for precipitation,
a more realistic precipitation model based on classical nucle-
ation and growth theories [29,30] would need to be used.

4.3. Hypotheses and scenario

In order to analyse the contributions of (i) martensite
carbon content, (ii) retained austenite and (iii) martensite
structure on TEP, the following hypotheses are made:

% Retained austenite decomposition and cementite precip-
itation are two simultaneous processes (in agreement
with experimental observation—see above).
% Carbon is more stable while segregated to dislocations

than it is in e-carbides. However, it is even more stable
within cementite, as suggested by Butler [4].
% Dislocations get saturated with ½C'0D mass fraction car-

bon [8].
% The amount of carbon involved in undissolved carbides

is constant for the whole temperature and time range:
undissolved carbides can only be dissolved at much
higher temperatures [2]. They will therefore be disre-
garded in the present scenario.

These hypotheses lead to the following scenario (see the
schematic representation in Fig. 5): (i) e-carbides precipi-
tate first from the excess carbon of the martensite; then,
(ii) cementite precipitates are formed from e-carbides, car-
bon segregated in dislocations, and carbon in solution
within martensite; (iii) (simultaneously with (ii)) retained
austenite is decomposed into cementite and ferrite and
(iv) finally, recovery of the dislocation structure and coars-
ening of martensite lathes occur.

At time t ¼ 0, the 100Cr6 steel is then composed of: aus-
tenite (vol. frac. f 0

cR
) and martensite (vol. frac. 1" f 0

cR
).

During ageing, the steel is composed of: austenite (vol.
frac. fcR

), martensite (+ e-carbide and cementite) (vol. frac.
1" f 0

cR
) and ferrite (+ cementite), resulting from the

decomposition of retained austenite (vol. frac. f 0
cR
" fcR

)
(see Fig. 5).

Fig. 4. TEP evolution during ageing at various temperatures ranging from
110 to 505 !C starting from state H (see Section 2) as a function of the
‘‘equivalent time at 110 !C”. Raw data shown in Fig. 2 have been shifted
using a time–temperature equivalence (Arrhenius law) with an activation
energy of 120 kJ mol"1 for H140, H170, H200 and H240 treatments and
190 kJ mol"1 for H330, H505 treatments.

1 The reference temperature has been arbitrarily chosen to be 110 !C, as
it is the lowest investigated ageing temperature.

3174 M. Perez et al. / Acta Materialia 57 (2009) 3170–3181

Time-temperature equivalency: t = t0 exp
[

Q
kBT

]
Q = 120 kJ/mol =1.25 eV (0.85 eV for C in iron)

Why is the activation energy higher in martensite?
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Carbon diffusion: how?

From octahedral to octahedral site

Through tetrahedral site
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The solution?

[C. Zener, Elast. Anelast. Metals. Univ. Chigago Press (1948)]

Energy 

Dislplacement 
Octa1 Octa2 

Tetra 

�E0

[M. Hillerts, Acta Metall. 7 (1959)]
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The solution?

[C. Zener, Elast. Anelast. Metals. Univ. Chigago Press (1948)]

Energy 

Dislplacement 

Tetra 

�E0

UU/2

[M. Hillerts, Acta Metall. 7 (1959)]

diffusion process is the same as in ferrite. a carbon 

atom must now jump from a preferred site to a 

“forbidden” site before it can reach another preferred 

sik. From this argument Lement and Cohen con- 

cludcld that diffusion should be slower in martensite 

than in ferrite. and an experimental activation energy 

valucx of 26.000 cal/mole seemed reasonable. However, 

it is possible to arrive at a definite estimated value of 

the activation energy for diffusion of carbon in 

martcnsite in the following way. 

approximately ti7. As a consequence. the jump 
frequency will decrease 1)~ a factor ~XJI (- SC:/dRT), 

where SCjSR = 1700~ deg. Since long range diffusion 

is dominated by the highest energy barrier, the 
diffusion coefficient in martensite (aan 1~ estimated as 
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carbon atom jumps from one site to anot’her in b.c.c. 
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Iron-carbon EAM potential

[Becquart el al, Comp. Mat. Sc. 40 (2007)]

based on Mendelev Fe potential

fitted from C-Va and C-C interaction energies from DFT

reproduce tetragonality of Fe-C martensite

Simulation box for MD

2000 Fe atoms and 1, 174 or 250 C atoms (small system)!

Metropolis Monte-Carlo to relax the box

C is forced to remain ordered !

MD simulation within the NVE ensembles at zero pressure

50 ns MD runs
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MD results

Diffusivity from Mean Square Displacements

Modelling Simul. Mater. Sci. Eng. 22 (2014) 065003 B Lawrence et al

system to approach a constant value. As the goal of this study was to use MD to study carbon
diffusion in ordered (i.e. tetragonal) systems, conditions had to be selected that allowed for such
an ordered system to be stable at temperatures high enough for diffusion to be observed over
MD timescales. It was found that sufficient statistics could be generated for MD simulations
performed above 800 K. At this temperature, systems containing less than 8 at% C were found
to be partially disordered and so were not included in this work. For the temperatures and
carbon concentrations that were used in this diffusion analysis, the carbon was found to be
well ordered on a single octahedral variant (with greater than 90% occupation) and that all
systems were tetragonal.

MD simulations. MD simulations were performed using LAMMPS [27]. The system of
interest was brought to the desired temperature (between 850 and 1700 K) by randomly
assigning velocities from a Gaussian distribution to the atoms. The system was then held
for 10 ns (each MD time step is 1 fs) with a Nosé–Hoover thermostat and barostat maintaining
the temperature and zero pressure. This hold was designed to equilibrate the system to its
defined pressure and temperature before diffusion measurements were made.

To reduce any possible effect of the temperature and pressure control on the diffusion,
the thermostat and barostat ‘strength’ parameters4 have been set to very large values (10 µs).
An NV E ensemble was selected so as to have as little temperature and pressure variation
during the long holds at various temperatures for diffusion measurements. The simulation
was continued under these conditions and the movement of each carbon atom tracked over the
following 50 ns.

Diffusion measurement. MD simulations were used to provide the successive positions of
all carbon atoms every δt = 0.01 ns, thus providing nmax = 50/0.01 = 5000 carbon atom
positions. We define r⃗i (tn) as the position of the ith carbon atom at time tn = n δt and nC

as the total number of carbon atoms. The diffusivity of carbon at a given temperature was
then calculated by measuring the mean square displacement (MSD) of carbon throughout the
diffusion hold, using a sliding window of increasing size (0.01 to 50 ns):

〈[
r⃗i (tn) − r⃗i (0)

]2
〉

t,i
=

∑
i

∑nmax−n
j=1

[
r⃗i ((n + j) δt) − r⃗i (j δt)

]2

nC(nmax − n)
. (1)

The diffusivity of carbon can then be directly determined from

D =

〈[
r⃗i (tn) − r⃗i (0)

]2
〉

t,i

6tn
(2)

by performing linear regression of a plot of MSD versus time.

3. Simulation of carbon diffusion by means of MD

Figure 1 shows the MD measured diffusivity for a single carbon atom (within a box containing
2000 iron atoms) plotted alongside a compilation of experimental data. As previously shown
[19], the potential reproduces the experimental data well in this dilute limit. At temperatures
above ∼1000 ◦C, however, the experimental and simulated diffusivities diverge, with the
experimental data showing a decreasing diffusivity (increase in apparent activation energy) and

4 The ‘strength’ of a barostat (or thermostat) is set through a parameter (in time units) which determines the period
over which the pressure or temperature is relaxed. A strong barostat (or thermostat) is characterized by a short period
of this parameter.

4
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Figure 1. Diffusivity of a single carbon atom in a box containing 2000 iron atoms as
obtained from MD simulations using the Raulot–Becquart potential [19] (red symbols)
plotted alongside experimental data for carbon diffusion in ferrite [28–32]. The inset
highlights the deviation of the simulated diffusivity away from the Arrhenius behaviour
at higher temperatures. The reason for this deviation is explained in the appendix.

example, the potential predicts c/a = 1.006 for 1 at% C which is lower than both recent DFT
calculations (c/a = 1.011 [22]) and experiments (c/a = 1.008 [23], 1.01 [24], 1.009 [25]) at
the same carbon content.

As a classical embedded atom potential, the Raulot–Becquart potential does not account
for the magnetic contributions to the energy of the system. This results in ferrite being the
stable phase from 0 K to the melting point. As will be noted later, disregard for the magnetic
contribution to the energy of the system means that variations in physical properties of the
system, such as the diffusivity of carbon, do not match experimental results at temperatures
approaching the Curie temperature [26]. As the aim here is to describe the behaviour at low
temperatures, this is not considered a significant limitation in comparing Hillert’s mean-field
model to the fully atomistic simulations performed here.

The simulation box. To measure the diffusion of carbon, a periodic simulation box was defined
containing 10 × 10 × 10 ferrite unit cells, containing 2000 iron atoms. In the dilute limit, a
single carbon atom was placed within a randomly selected octahedral site at the start of the
simulation. Higher carbon concentrations were achieved by placing 174 and 250 carbon atoms
at randomly selected positions corresponding to xC = 8 and 11.11 at% C, respectively. The
simulation box was first equilibrated using a Metropolis Monte Carlo scheme where carbon
atoms were moved from one octahedral site to another and the change in energy calculated ‘on-
the-fly’ using molecular statics. In this scheme, molecular statics simulations were performed
after moving a carbon atom so as to allow for elastic relaxation of the system; this relaxation
was performed while also targeting zero pressure on the simulation box. At least a million
exchanges were performed in each case, sufficient to allow the energy and volume of the

3

Agreement with experiments (high temperature ?).
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Accounting for thermal expansion

MD at various temperature under zero pressure

εtherm = e1T + e2T
2

Diffusivity equation

d lnD

d(1/T )
= −∆E (T )

R

How to dertermine ∆E (T ) ?
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A bit of elasticity theory: (1) dipole moment tensor

One C atom in a stress free box → dilatation

One C atom in a fixed volume box → stress field

co-authors [26], the binding energy between a point defect
and a dislocation is obtained by the following equation:

Eb
½OjT ";elast ¼ P ij!

d
ij ð5Þ

where !d
ij is the strain field of the dislocation at the location

of the point defect [22,23]. After obtaining the binding
energies for a carbon atom occupying an O- or a T-site
with elasticity theory, the corresponding energy barrier
can be obtained by rearranging Eq. (1):

E½OjT ";carbonþdislo ¼ E½OjT ";carbon þ Edislo ' Eb
½OjT ";elast ð6Þ

and then taking the difference in Eq. (2):

Eeb
elast ¼ ET ;carbonþdislo ' EO;carbonþdislo

¼ ET ;carbon þ Edislo ' Eb
T ;elast

' EO;carbon þ Edislo ' Eb
O;elast

! "

¼ Eeb
bulk ' Eb
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barrier for carbon migration in a non-strained iron matrix.

3. Results and discussion

3.1. Energy calculations with molecular statics

To perform the atomistic simulations, all the octahedral
and tetrahedral sites within a radius of 6 nm around the
dislocation line were first mapped. For every mapped inter-
stitial site, a carbon atom was inserted in the corresponding
position and the total energy of the system was obtained by
performing conjugate gradient energy minimization (i.e.
molecular statics). The total energies converged at about
1–2 meV, which means a tolerance in the atomic forces of
less than 10'2 eV nm'1. The system was fully relaxed with
a carbon atom in an O-site. When occupying a T-site, the
carbon atom was allowed to relax only on the plane per-
pendicular to the corresponding reaction coordinate.
Throughout this work, the tetrahedral site has been
assumed to be the saddle point whenever two neighboring
energy minima have corresponded to the carbon atom sit-
ting on octahedral sites. Minimum energy path calculations
performed with the nudged elastic band (NEB) method
have shown that taking the tetrahedral site (more precisely,
the midpoint between two energy minima) as the saddle
point for carbon migration is a good approximation even
relatively near the dislocation lines (see Fig. 3).

Fig. 4 depicts a map of the energy barriers as a function
of carbon position with respect to the dislocation line for
the six types of transitions that a carbon atom can undergo
in the vicinity of an edge dislocation. The first thing to
notice is that the effect of the edge dislocation on the energy
barriers is more pronounced running parallel to the glide
plane, where the rxy component of the dislocation stress
tensor predominates. For the [100] and [001] O-site vari-
ants, in the simulation box orientation that we have
adopted, the carbon atom induces a local shear of the
two adjacent ð!10 1Þ planes, i.e. we have a local rxy – 0
which interacts with the long-range rxy created by the edge
dislocation. A carbon atom in a [010] O-site, in turn,
induces a local rxz shear. Since outside the core the rxz

component of the stress tensor of the edge dislocation van-
ishes, there is little interaction between the defects when a
carbon atom lies on a [010] O-site near the glide plane.
This explains the fact that energy barriers for transitions
starting from a [010] O-site differ less from the bulk value
than their counterparts. The largest variations in the migra-
tion energies occur when a carbon atom jumps between
[10 0] and [001] O-sites near the glide plane. A carbon
atom undergoing such transitions move on the ð!101Þ plane
passing through a [010] T-site. Although less pronounced,
there also are important variations in the migration ener-
gies just above and below the dislocation core, where the
point and the line defects interact more owing to their cor-
responding normal stresses.

In contrast with the edge dislocation, the stress field of a
screw dislocation is predominantly shear (rxz and ryz), with
a small normal contribution. The interaction of a carbon
atom with a dislocation through their respective shear
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co-authors [26], the binding energy between a point defect
and a dislocation is obtained by the following equation:
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½OjT ";elast ¼ P ij!

d
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where !d
ij is the strain field of the dislocation at the location

of the point defect [22,23]. After obtaining the binding
energies for a carbon atom occupying an O- or a T-site
with elasticity theory, the corresponding energy barrier
can be obtained by rearranging Eq. (1):
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barrier for carbon migration in a non-strained iron matrix.

3. Results and discussion

3.1. Energy calculations with molecular statics

To perform the atomistic simulations, all the octahedral
and tetrahedral sites within a radius of 6 nm around the
dislocation line were first mapped. For every mapped inter-
stitial site, a carbon atom was inserted in the corresponding
position and the total energy of the system was obtained by
performing conjugate gradient energy minimization (i.e.
molecular statics). The total energies converged at about
1–2 meV, which means a tolerance in the atomic forces of
less than 10'2 eV nm'1. The system was fully relaxed with
a carbon atom in an O-site. When occupying a T-site, the
carbon atom was allowed to relax only on the plane per-
pendicular to the corresponding reaction coordinate.
Throughout this work, the tetrahedral site has been
assumed to be the saddle point whenever two neighboring
energy minima have corresponded to the carbon atom sit-
ting on octahedral sites. Minimum energy path calculations
performed with the nudged elastic band (NEB) method
have shown that taking the tetrahedral site (more precisely,
the midpoint between two energy minima) as the saddle
point for carbon migration is a good approximation even
relatively near the dislocation lines (see Fig. 3).

Fig. 4 depicts a map of the energy barriers as a function
of carbon position with respect to the dislocation line for
the six types of transitions that a carbon atom can undergo
in the vicinity of an edge dislocation. The first thing to
notice is that the effect of the edge dislocation on the energy
barriers is more pronounced running parallel to the glide
plane, where the rxy component of the dislocation stress
tensor predominates. For the [100] and [001] O-site vari-
ants, in the simulation box orientation that we have
adopted, the carbon atom induces a local shear of the
two adjacent ð!10 1Þ planes, i.e. we have a local rxy – 0
which interacts with the long-range rxy created by the edge
dislocation. A carbon atom in a [010] O-site, in turn,
induces a local rxz shear. Since outside the core the rxz

component of the stress tensor of the edge dislocation van-
ishes, there is little interaction between the defects when a
carbon atom lies on a [010] O-site near the glide plane.
This explains the fact that energy barriers for transitions
starting from a [010] O-site differ less from the bulk value
than their counterparts. The largest variations in the migra-
tion energies occur when a carbon atom jumps between
[10 0] and [001] O-sites near the glide plane. A carbon
atom undergoing such transitions move on the ð!101Þ plane
passing through a [010] T-site. Although less pronounced,
there also are important variations in the migration ener-
gies just above and below the dislocation core, where the
point and the line defects interact more owing to their cor-
responding normal stresses.

In contrast with the edge dislocation, the stress field of a
screw dislocation is predominantly shear (rxz and ryz), with
a small normal contribution. The interaction of a carbon
atom with a dislocation through their respective shear
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1–2 meV, which means a tolerance in the atomic forces of
less than 10'2 eV nm'1. The system was fully relaxed with
a carbon atom in an O-site. When occupying a T-site, the
carbon atom was allowed to relax only on the plane per-
pendicular to the corresponding reaction coordinate.
Throughout this work, the tetrahedral site has been
assumed to be the saddle point whenever two neighboring
energy minima have corresponded to the carbon atom sit-
ting on octahedral sites. Minimum energy path calculations
performed with the nudged elastic band (NEB) method
have shown that taking the tetrahedral site (more precisely,
the midpoint between two energy minima) as the saddle
point for carbon migration is a good approximation even
relatively near the dislocation lines (see Fig. 3).
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of carbon position with respect to the dislocation line for
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in the vicinity of an edge dislocation. The first thing to
notice is that the effect of the edge dislocation on the energy
barriers is more pronounced running parallel to the glide
plane, where the rxy component of the dislocation stress
tensor predominates. For the [100] and [001] O-site vari-
ants, in the simulation box orientation that we have
adopted, the carbon atom induces a local shear of the
two adjacent ð!10 1Þ planes, i.e. we have a local rxy – 0
which interacts with the long-range rxy created by the edge
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induces a local rxz shear. Since outside the core the rxz

component of the stress tensor of the edge dislocation van-
ishes, there is little interaction between the defects when a
carbon atom lies on a [010] O-site near the glide plane.
This explains the fact that energy barriers for transitions
starting from a [010] O-site differ less from the bulk value
than their counterparts. The largest variations in the migra-
tion energies occur when a carbon atom jumps between
[10 0] and [001] O-sites near the glide plane. A carbon
atom undergoing such transitions move on the ð!101Þ plane
passing through a [010] T-site. Although less pronounced,
there also are important variations in the migration ener-
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point and the line defects interact more owing to their cor-
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MD resultsModelling Simul. Mater. Sci. Eng. 22 (2014) 065003 B Lawrence et al

Figure 1. Diffusivity of a single carbon atom in a box containing 2000 iron atoms as
obtained from MD simulations using the Raulot–Becquart potential [19] (red symbols)
plotted alongside experimental data for carbon diffusion in ferrite [28–32]. The inset
highlights the deviation of the simulated diffusivity away from the Arrhenius behaviour
at higher temperatures. The reason for this deviation is explained in the appendix.

example, the potential predicts c/a = 1.006 for 1 at% C which is lower than both recent DFT
calculations (c/a = 1.011 [22]) and experiments (c/a = 1.008 [23], 1.01 [24], 1.009 [25]) at
the same carbon content.

As a classical embedded atom potential, the Raulot–Becquart potential does not account
for the magnetic contributions to the energy of the system. This results in ferrite being the
stable phase from 0 K to the melting point. As will be noted later, disregard for the magnetic
contribution to the energy of the system means that variations in physical properties of the
system, such as the diffusivity of carbon, do not match experimental results at temperatures
approaching the Curie temperature [26]. As the aim here is to describe the behaviour at low
temperatures, this is not considered a significant limitation in comparing Hillert’s mean-field
model to the fully atomistic simulations performed here.

The simulation box. To measure the diffusion of carbon, a periodic simulation box was defined
containing 10 × 10 × 10 ferrite unit cells, containing 2000 iron atoms. In the dilute limit, a
single carbon atom was placed within a randomly selected octahedral site at the start of the
simulation. Higher carbon concentrations were achieved by placing 174 and 250 carbon atoms
at randomly selected positions corresponding to xC = 8 and 11.11 at% C, respectively. The
simulation box was first equilibrated using a Metropolis Monte Carlo scheme where carbon
atoms were moved from one octahedral site to another and the change in energy calculated ‘on-
the-fly’ using molecular statics. In this scheme, molecular statics simulations were performed
after moving a carbon atom so as to allow for elastic relaxation of the system; this relaxation
was performed while also targeting zero pressure on the simulation box. At least a million
exchanges were performed in each case, sufficient to allow the energy and volume of the

3

Not following experiments...

... but we understand MD non linearity!
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MD results vs Elasticity theory following Hillert’s idea
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Nice fit for low C concentration only !?!
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A las bit of elasticity theory: (4) accounting for octa and tetra

Interaction energy:

Einter = Pijεij with Po,t
ij =

 Po,t
⊗ 0 0

0 Po,t
• 0

0 0 Po,t
•


C induced elastic distortion:

εnCij =
nC
V

SijklPkl

Energy barrier:

∆E = ∆E0 +
(
E t
inter − E o

inter

)
= ∆E0 +

(
Pt
ij − Po

ij

)
εnCij
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A las bit of elasticity theory: (4) accounting for octa and tetra

Interaction energy:

Einter = Pijεij with Po,t
ij =

 Po,t
⊗ 0 0

0 Po,t
• 0

0 0 Po,t
•


C induced elastic distortion:

εnCij =
nC
V

SijklPkl

Energy barrier:

∆E = ∆E0 +
(
E t
inter − E o

inter

)
= ∆E0 +

(
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MD results vs Elasticity theory acounting for Tetra and Octa
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Still not working for 11% !?!
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What happens at 11%C?

A new phase !?!

that the form of ordering observed in !! may be actually
provide the lowest-energy structure over a range of compo-
sitions. The results shown above for the interaction energy
between two carbon atoms would suggest that even in the
dilute limit there are specific octahedral positions which car-
bon atoms would prefer to reside in and that these positions
correspond to the positions of the carbon atoms in the !!
phase.

To explore this possibility a series of simulations were
performed on samples having compositions ranging from
0 at. % carbon to 12 at. % carbon. In each case a simula-
tion similar to those described above was performed. For
substoichiometric compositions, carbon was randomly re-
moved from the stoichiometric !! followed by relaxation to
zero pressure and minimum energy via molecular statics.
This structure was next heated at 100 K/ns to 1700 K and
held for 10 ns. The resulting ! structure was subsequently
quenched to T=0 K, the energy and pressure being mini-
mized by molecular statics. Also, the ! structure formed at
1700 K was cooled to 900 K and held to form !". This was
followed by quenching to T=0 K and energy minimized by
molecular statics adjusting to also have zero pressure. As an
alternative method to form !", the starting substoichiometric
!! was heated at 100 K/ns to 900 K directly and held for 10
ns. This was then quenched to T=0 K, energy minimized
and relaxed to zero pressure. For superstoichiometric com-
positions the same procedure was followed but the starting
structure was produced by starting from the stoichiometric
!! structure, adding extra carbon to octahedral sites consis-
tent with the ""’ structure !cf. Fig. 2".

The results in Fig. 8 show several interesting characteris-
tics. First, one notes that the !!-like ordering of interstitials
results in the most preferable interstitial interaction over the
full range of compositions studied, whereas the disordered !
always shows unfavorable interactions. This shows remark-
able agreement with the qualitative ideas suggested by Tay-
lor et al.4 !cf. Fig. 20 of Ref. 4". One can see, as well, that at
high carbon contents close to the stoichiometric !! compo-
sition, the energy !and structures" predicted for the !"
formed by heating and cooling are not the same. This is
likely a consequence of the fact that atomic mobility is too
slow at this temperature for the structure to have found its
minimum energy configuration. One also notes that there are
no measurements for the !" at compositions less than
8 at. % C. This arises from the fact that at lower carbon
contents the stable structure at 900 K is actually ! and not
!". Thus, in order to obtain the !" structure it is necessary to
go to lower temperatures and longer simulation times. Fi-
nally, for compositions above the stoichiometric !! compo-
sition we found that upon heating to 1700 K the ! phase was
not formed. Instead, at a temperature close to 1400 K the

structure converted to the fcc-austenite phase, which one
could consider to be a substoichiometric "" carbide.

VI. SUMMARY

The results of these simulations provide valuable informa-
tion on the ordering of interstitial carbon in bcc-iron. The
observation of !!-Fe16C2 having the most favorable carbon-
carbon interactions is consistent with the concepts proposed
by Taylor et al.4 in the spinodal decomposition of martensite.
It is also, however, consistent with experimental studies at
much lower carbon contents where it is found that the
carbon-carbon neighbor spacings are those consistent with an
!!-like ordering. While, we do not consider the formation of
other carbides in these simulations, the results do suggest the
possibility for forming !!-Fe16C2 if sufficiently far from
equilibrium conditions can be obtained. Moreover, the results
represent a starting point for revisiting the low-temperature
phase equilibria in the Fe-C system.
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FIG. 8. !Color online" The interaction energy between carbon
atoms for !!, !", and ! structures as a function of composition. The
!" structures have been formed either by cooling from the high-
temperature ! phase at 1700 to 900 K or by heating !! from T=0 to
900 K.
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decomposition.4,10 As noted above, rather than being stoichi-
ometric Fe4C, the carbon-rich regions tended to have a car-
bon content closer to 10 at. %,14 a point that was highlighted
by Ino et al.15 who denoted it as Fe4Cx with x!1. Taylor et
al.4 on the basis of their original TEM and atom probe data
on Fe-Ni-C martensites along with previous work including
Mössbauer spectroscopy proposed that instead of "!-Fe4C,
the carbon-rich regions could be better described as
#"-Fe16C2, which is isostructural to the metastable #"-Fe16N2
nitride.16,17 The #"-Fe16C2 differs from the "!-Fe4C structure
only in that one half of the carbon atoms are systematically
removed in the former relative to the latter !Fig. 2".4 With the
advent of more powerful electron microscopy and three-
dimensional tomographic atom probe, there has been an at-
tempt to revisit this question. Some recent results appear to
support the results of Taylor et al. !e.g., Ref. 18" while other
results have led to questions about the structure, stability, and
conditions required for the formation of Fe16C2 !e.g., Refs.
19 and 20".

Both the "!-Fe4C and #"-Fe16C2 can be described as be-
ing comprised of carbon situated in an ordered configuration
on the octahedral sites of a tetragonally distored body cen-
tered cubic #-Fe lattice. While it is well known that in dilute
systems, characterized at low temperature, carbon tends to
organize onto one of the three types of octahedral sites in
Fig. 1, at high supersaturations consideration of further or-
dering on this type of octahedral site might be important.
Thus one can consider at least three conditions: !1" carbon
disordered on all octahedral sites, !2" carbon ordered onto
one octahedral site but not spatially organized on this octa-
hedral site !partially ordered", and !3" carbon ordered onto

one octahedral site with occupation of only some of these
sites leading to a fully ordered structure.

For compositions close to 11 at. % C and for “low” tem-
peratures, Taylor et al. argued that the lowest free energy
among these three choices may correspond to the fully or-
dered #"-Fe16C2 structure. The partially ordered structure
!denoted here as #!-Fe8C, following the literature for the
Fe-N system" would be the next most stable while the least
stable would correspond to carbon distributed equally among
the three octahedral sites !denoted here as #-Fe-C". For
lower carbon contents, a similar situation may occur with
nonstoichiometric #", where the free energy of #" and #!
will converge in the limit of dilution. Between the three
cases described above a continuous sequence of ordered
structures may exist connecting the #" and #! structures.
Experimental evidence that ordering beyond the Zener Or-
dered #! structure may exist even in untempered ferrous
martensites comes from the observation, based on Möss-
bauer spectroscopy, that the carbon-carbon nearest-neighbor
distance is similar to that expected within the #"-Fe16C2
structure.12

In this work we have sought to examine the various pos-
sible ways that carbon can order itself on octahedral sites
within the #-iron lattice with specific focus on the composi-
tion corresponding to #"-Fe16C2. To do this, molecular stat-
ics and molecular dynamics !MD" have been applied using a
recently developed interatomic potential for the Fe-C system
specifically fit based on the interaction energy between car-
bon interstitials and lattice defects. The goal here is restricted
to illustrating the relative thermal stability of interstitial car-
bon ordering in iron, the iron atoms being on a body-

[100]bct ∥ [110]fcc

[001]bct ∥ [001]fcc

[010]bct ∥ [11̄0]fcc

(a)

[100]

[001]

[010]

(b) (c)

FIG. 2. !Color online" !a" The "!-Fe4C carbide illustrating the position of carbon atoms !small spheres" situated in z-octahedral sites of
the body-centered tetragonal lattice. This can also be described as carbon in the octahedral sites of a face centered cubic iron lattice, an fcc
unit cell being highlighted by the dark !blue" atoms. The position of atoms in this image have been determined by molecular statics at zero
pressure using the EAM potential described in section Ia. !b" The #"-Fe16C2 carbide illustrating the position of carbon atoms !small spheres"
situated in z-octahedral sites of the body-centered tetragonal lattice. This structure is formed by the systematic removal of half of the carbon
atoms from the "!-Fe4C structure in !a". As with the "! structure shown in !a", the #" unit cell shown in !b" was obtained by molecular statics
at zero pressure. !c" To show the similarity of the atomic positions predicted from MD and DFT, the #100$ plane of the #"-Fe16C2 carbide
is plotted with the atomic positions in this plane being superimposed from the two calculation schemes.
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[Sinclair el al, Phys. Rev. B. 81 (2010)]
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How can it change diffusivity?

NEB on strained simulations boxes:Modelling Simul. Mater. Sci. Eng. 22 (2014) 065003 B Lawrence et al

Figure 3. NEB calculated minimum energy path between two octahedral sites
as a function of the superimposed macroscopic strain and the macroscopic strain
corresponding to that expected for the indicated atomic fraction of carbon. The energy
is plotted with reference to that of the carbon residing at the octahedral site whose
tetragonal axis was aligned with the tetragonal axis of the far-field strain. The open
circles show the barrier corresponding to diffusion out of a preferred site when carbon
orders to form Fe16C2.

having an imposed tetragonal strain, corresponding to different values of xC. First, a box of
pure iron was relaxed by molecular statics. The box was next strained according to equa-
tions (5) and (6) where the values xC = 0, 0.05, 0.08 and 0.11 were used. The positions of two
adjacent octahedral sites were found after straining by positioning a carbon atom at the position
expected on the basis of the macroscopic strain on the box, and the system relaxed to allow the
carbon to find its minimum energy position. In each case, the octahedral sites were found to be
located at the location based on the macroscopic strain. The starting octahedral site was taken
to be one whose tetragonal axis was aligned with the tetragonal axis of the far-field strain.

Figure 3 shows the resulting minimum energy paths calculated for these different levels
of macroscopic strain. One can see that, while the saddle point position is exactly halfway
between the octahedral positions for zero applied strain, it shifts towards the more disfavoured
octahedral site with increasing imposed tetragonal strain.

5. Comparison between MD and mean-field calculations of carbon diffusion

Table 3 gives the various activation barriers for carbon diffusion as a function of the carbon
atomic fraction predicted by the mean-field models described above. As a starting point, one
can compare the various mean-field predictions with one another. This is done in figure 4,
where the predicted differences in energy between octahedral and tetrahedral sites based on
NEB calculations are shown as a function of the atomic fraction of carbon. The dashed line
shows the prediction obtained using Hillert’s method when the values of P octa

ij and ϵa and ϵc

deduced from the EAM potential are used. In this case, the assumption that the variation of
the barrier with the carbon content is given by half the difference in energy between favoured
and disfavoured octahedral sites is seen to overestimate the increase in activation barrier as

10

Fe16C2 exhibits higher energy barrier
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A mixture of fully ordered Fe16C2 and ordred 11%C?

Order parameter η

η = 1 for Fe16C2

η = 0 for “random” ordered structure

∆E = kB ln

(
η exp

[
∆EFe16C2

kbT

]
+ (1− η) exp

[
∆EFe11%C

kbT

])
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Final comparision
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D0 = 1.1× 6 m2/s in all cases
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Conclusion

Ordered C in solid solution modifies diffusivity of C

Hillert was (almost) right !

Better to account for octa and tetra variation with C
content

[Lawrence el al, Modelling Simul. Mater. Sci. Eng. 22 (2014)]

Outlook

Diffusion of C within a Cottrell atmosphere

see Charlotte’s talk on thursday

Formation of carbides...
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