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• Molecular Dynamics, the numerical integration of atomistic 
equations of motion, is the gold standard to investigate the 
dynamical evolution of atomistic systems  

• Essentially a numerical experiment 
 
• MD can be used to compute “any” atomistic dynamic or 
thermodynamic property 

MD is extremely widely used: about 3M hits on Google scholar… 
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• MD is computationally expensive 
– Every atom has to be resolved 
– The fastest vibrational motion has to be resolved (dt ~ 1 fs) 

• Limits size and time scales that can be directly simulated 

• Parallel computers help, but only partially address the 
problem 
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• Spatial decomposition 

weak-scales very well. 
Trillions of atoms can be 
simulated. 

• Strong-scaling is 
comparatively poor. 
Temporal reach of MD is 
limited to µs or less. 

•  This will remain so for the 
foreseeable future. 
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• The timescale limitation is 

especially crippling for 
systems that evolve through 
rare, activated events. 

• These systems are 
characterized by long 
periods of vibrational 
dynamics… 
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• …punctuated by rare, but 

fast, transitions… 
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• …to a another long-lived 

state… 
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•  If you cannot afford to some 
number of transitions, you 
learn nothing about long 
time evolution of the system 
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• Accelerated MD methods (A.F. Voter et al, LANL) are 
designed to address this limitation 

• The goal is to mimic MD, but at a coarser level: to obtain 
long, statistically correct, state-to-state trajectories 

• The basic idea is to let MD trajectories find appropriate 
transitions but to coax them into doing so faster 

• Use statistical mechanics concepts (primarily rate theories) 
to make sure trajectories are unbiased 



NOTE: 
This is 
the lab 

color 
palette. State-to-state dynamics 

9/30/16   |   11 Los Alamos National Laboratory 



NOTE: 
This is 
the lab 

color 
palette. Today 

9/30/16   |   12 Los Alamos National Laboratory 

 
• Discuss a new strategy to harness parallel computers to 
reach long timescales: Parallel Trajectory Splicing [Perez, 
Cubuk, Waterland, Kaxiras, Voter, JCTC 12, 18 (2016)]  

• The idea is to parallelize the dynamics in time, instead of in 
space. We also parallelize through speculative execution. 

 
• Generalization of the Parallel Replica Dynamics method 

[Voter, PRB 57, 13985 (1998)] 
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How can we use parallel computers to generate proper state-
to-state trajectories over very long times? 

Strategy: 
1.  Factorize the problem into independent tasks 

2.  Decide which task should be executed at what time 
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• Integrating MD trajectories is inherently serial: you have to 
finish a timestep before you start the next one 

• That makes parallel-in-time methods challenging if one 
insists on continuity in phase space 

• If one only wants state-to-state trajectories, things become 
much easier  
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Markovian limit: 
 
 
• Future only depends on present 
 
• All trajectories that begin in a given 
state are proper futures of a trajectory 
that ends in this state. 

 
• A long Markovian trajectory can be 
constructed by splicing independently 
generated trajectories end-to-end. 
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A long Markovian trajectory can 

be constructed by splicing 
independently generated 
trajectories end-to-end. 
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MD state-to-state dynamics is not strictly Markovian. 
What then? 
 
 
 

Consider a Fokker-Planck operator with absorbing boundary 
conditions around a state. Let {-λ} be its eigenvalues.  
Define :  

 λ1 : quasi-stationary inter-state transition rate  
 λ2 : slowest intra-state relaxation rate  

Then : 
 First escape becomes (approximatively) Markovian after τc      
 > 1/(λ2 − λ1) 

 
               [Le Bris, Lelievre, Luskin, and Perez, MCMA 18, 119 (2012)]  
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• Conditional on not escaping, a trajectory gradually looses its 
memory of how it entered a state 

• After a time τc > 1/(λ2 − λ1), the end of the trajectory is 
(approximately) a sample from the unique Quasi-Stationary 
Distribution (QSD) of that state 

• First escape from the QSD is a Markovian process 

• Samples from the QSD are equivalent starting points w.r.t 
future state-to-state evolution 

               [Le Bris, Lelievre, Luskin, and Perez, MCMA 18, 119 (2012)]  
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You can splice sections of trajectories as long as their 
ends are samples for the QSD in their respective state. 
 
 
 
 
 
 
 
Segment: section of trajectory that remained within the same 
state for at least τc before its beginning and before its end. 
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Non-Markovian Trajectory splicing: 
 
With error O(exp[−(λ2 − λ1)τc]), a trajectory can be constructed 
by splicing independently generated segments end-to-end. 
 
Segments are the basic work units in ParSplice. They can be 
generated concurrently and stored in a database until they are 
spliced into the trajectory. 
 

  [Perez, Cubuk, Waterland, Kaxiras, Voter, JCTC 12, 18 (2016)]  
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Which segments should we generate? State space is much too 
vast to be covered. Decisions have to be made at run-time. 

– Conservative approach (ParRep): run short segments at the 
current end of the trajectory. Efficient only if N < τesc /τc. 

 
– Speculative approach: run short segments at the expected 
end of the trajectory when the segment is complete. 
Perfectly scalable given an oracle. 
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• We don’t have an oracle, but trajectories are often 
statistically predictable, especially when trapped in a super-
state 

• Scalability is then limited by super-state escape time:  
     N ∼ τss

esc /τc >> τi
esc /τc   

 
 

• If prediction of the future is impossible and the 
trajectory never revisits states: ParSplice == ParRep.  
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How to speculate? 
 
• Build a Markovian model of state-to-state dynamics on-
the-fly by analyzing completed segments. 

 
• Use this model to carry out meta-simulations, i.e., 
simulations of the future execution of the code. 

• Takes into account the expected behavior of the system 
and the internal state of the code (i.e., the content of 
segment database) 
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• Each time a segment is complete: 
– Insert into segment database 

– Update model of state-to-state dynamics 

– Extend trajectory by splicing until running out of 
completed segments 

– Sample endpoints of incomplete segments using Markov 
model 

– Virtually extend the trajectory by splicing segments (now 
including incomplete ones) until running out.  

– Request additional segment at end of virtual trajectory 
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      Ag trimer on Ag (100) 
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      ~4 revisits per state                     ~50 revisits by state 
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•  Magic size: perfect 
icosahedral Cu core and Ag 
shell 

•  Studied with global 
optimization methods, but 
not with dynamical ones 

•  Started simulations from a 
completely disordered state 
(quenched liquid) 



NOTE: 
This is 
the lab 

color 
palette. Application to Ag42Cu13 nanoparticles  

9/30/16   |   30 Los Alamos National Laboratory 



NOTE: 
This is 
the lab 

color 
palette. Application to Ag42Cu13 nanoparticles  

9/30/16   |   31 Los Alamos National Laboratory 

At 500K : 
• 334 µs of simulation time 
• 108 transitions 
• 105 different states visited 
• Average visit durations : 2.5 ps 
• Six independent visits to the ground state 
• Six-fold symmetric core is lower in free energy for T>400K 
• 89% efficiency on 180 replicas 
• ParRep would have had ∼ 50% efficiency on 2 replicas...  
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•  Tungsten is a leading candidate 
plasma-facing material for fusion 
reactors 

 
•  Incoming He from the plasma is 

however known to adversely affect 
the microstructure, e.g., to lead to 
the formation of “fuzz” 

•  Fuzz formation mechanisms are 
unknown, but He is essential 
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Ito et al.  

•  Tungsten is a leading candidate 
plasma-facing material for fusion 
reactors 

 
•  Incoming He from the plasma is 

however known to adversely affect 
the microstructure, e.g., to lead to 
the formation of “fuzz” 

•  Fuzz formation mechanisms are 
unknown, but He is essential 
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• We study the behavior of small HeM/
VN cluster (N=1,2) in fusion 
conditions. 

• Nuclei of He bubbles 

• Conflicting assumptions on the 
mobility of these defects 

• We simulate this system with 
ParSplice on Trinity at LANL, using 
up to 200,000 workers 

•  This gives access to ms timescales 
Ito et al.  
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N=1 

N=2 

One He per vacancy is sufficient to immobilize the defects on ms 
timescales. 
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Tungsten vacancies      Tungsten intersitials            
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• As the He pressure increases, W Frenkel pair nucleation 
occurs, followed by He filling up the vacancy.  

• Given enough time, nucleation is reversible and Frenkel 
pair annihilation can follow. 

• Leads to interconversion between different ILVN+LHeM 
variants.  

• Repeated interconversions lead to net motion. 
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Mobility requires both fast 
nucleation and annihilation 

– Low M: nucleation-limited regime. 
Clusters are immobile on ms 
timscales 

 
– Large M: nucleation is faster but 

annihilation is slower.  Variant 
distribution also changes. Leads 
to strong mobility variations. 

 
– At the peak, mobility is close to 

that of bare vacancy, but it is 
usually much slower. 
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We use the Xolotl cluster dynamics 
code (UTK) to assess the effect of 
the mobility of these clusters. We 
assume that only N=1,2 are 
mobile. 

• At high flux (MD), effect is 
negligible. Complexes grow 
before they can move very far. 

• At low fluxes typical of real 
reactors, He retention decreases 
significantly (~5-fold). Diffusion 
of the complexes opens up an 
efficient channel for He out-
take.  

 

4x1025 He/m2/s 

4x1023 He/m2/s 

4x1022 He/m2/s 
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Pros: 
• Can be made arbitrarily accurate for 

any definition of states 

• Speculation only gambles on 
excess capacity 

• Extremely scalable when 
trajectories are predictable  

• No waste: every segment can 
potentially be used 

• Well suited to large scale platforms 
(shown scalability up to 200,000 
producers) 

Cons: 
• Speedup limited by number of 

workers 

• Making good predictions can be 
hard at large scales (have to 
predict further into the future) 

•  Implementation is complex 
compared to ParRep 
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• ParSplice is a parallel-in-time method that leverages massively-
parallel computers to reach long timescales. 

• It uses modern tools and concepts to significantly improve 
scaling relative to its predecessors. 

• On current machines, it allows for direct simulations of small 
systems for ~1000 atoms over ms.  
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