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INTRODUCTION TO THE CVHD METHOD



HYPERDYNAMICS

AV

Add a bias potential AV to the potential energy surface (PES)
“Fill"” and destabilize minima
Leave dividing surfaces untouched

Simulations on the modified PES V*(R) = V(R) + AV(R) exhibit
Faster state-to-state transitions...
...but correct relative dynamics...
...and global system evolution equivalent to (much slower) MD

Time becomes a statistical quantity, this hypertime is related to the MD time
through the boost factor { eV ).



HYPERDYNAMICS

AV

How to construct a suitable and efficient bias potential?
- What should AV be a function of?
The lowest eigenvalue of the Hessian (Voter)
The potential energy V (Steiner; Fichthorn et al.; Hamelberg et al.; ...)
Bond distortions (Miron & Fichthorn)
Collective variables (Tiwary & van de Walle)
- How to parameterize AV?
Use a priori knowledge of the PES (most methods)
Apply a self-learning method



HYPERDYNAMICS & METADYNAMICS

To some extent, metadynamics is already self-learning hyperdynamics, as it also
enhances sampling through a bias potential, but with a different focus

HYPERDYNAMICS: “natural” unconstrained sequence of state-to-state
transitions, without much a priori information on the possible pathways.

METADYNAMICS: extensive sampling of a limited part of the phase space.
Tiwary & Parrinello: get correct kinetics within this region if you're careful.




HYPERDYNAMICS & METADYNAMICS

With infrequent metadynamics, a self-learning sampling method has been given
the ability to generate correct kinetics.

- Metadynamics getting some hyperdynamics aspects
Can we go the other way?

- Make hyperdynamics self-learning by adopting parts of metadynamics

Required ingredients:
Suitable collective variable (CV)
History-dependent bias constructed from a sum of repulsive Gaussians
> The collective variable-driven hyperdynamics method (CVHD)



CVHD - THE CV

A

n=1 n<l

In metadynamics, the used CV(s) must be able to distinguish between all relevant
states one wishes to visit.

In a tfrue hyperdynamics method, we preferably shouldn’t need to know in advance
where we're going, but this complicates the choice of CVs.

In CVHD, as in the SISYPHUS method (Tiwary & van de Walle), we use a single
CV, n, centered around the current state:

If O < 17 < 1: system is well within current state

If 77> 1: system is close to dividing surface or has crossed it

l.e., only distinguish between “current state” and “rest of the universe”



CVHD - THE CV

Most chemical processes involve bond breaking, so as a first CV it makes sense to
use a bond distortion (cf. Bond Boost):
I’,- _rimin
Zi = max min
=

1

Which can yield a single CV (cf. SISYPHUS):

oo(zx)

And in order to get vanishing derivatives:

n= %(1 —cos(ﬂ;(,z))

Generalizable to other y, other definitions of 77, multiple CVs...



CVHD - THE BIAS

A bias potential is easily generated through a metadynamics procedure, i.e., as a
history-dependent sum of Gaussians.

A

<1 n=1
But because the CV can only resolve the current state, we have to reset it after

each fransition, and “throw away” the bias.

A
Sometimes more efficient to

not use a “dynamic” bias, but
rather a predifined one

AV =V (1-7)




APPLICATIONS



process

vacancy hop
adatom hop

adatom exchange

dimer hop

dimer exchange

DIFFUSION ON CU(001)

ER® (eV)
0.44 + 0.01
0.53 + 0.01
0.76 + 0.04
0.51 = 0.01
0.74 + 0.06

EY’ (eV)
0.43 + 0.02
0.51 + 0.01
0.71 £+ 0.05
0.49 + 0.02
0.76 + 0.05

BB ~ static CVHD with bond length distortion CV

Excellent recovery of Arrhenius-type diffusion parameters

EZ° (eV)
0.44 + 0.03
0.52 + 0.03
0.73 £ 0.04
0.47 + 0.03
0.71 + 0.06

Opportunity to compare CVHD with “Bond Boost” (BB) hyperdynamics



DIFFUSION ON CU(001)
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Performance of dynamic bias improves at lower rates
Temperatures as low as 150 K (time up to 500 seconds)



MODEL FOLDING

Use dihedral distortion instead of bonds!
Model potential with helix state as minimum

~ 8 kcal/mol barrier for a single dihedral
Start with 50 bead extended chain at 300 K
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Dynamic bias is adaptable and eventually beats the static option
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HETEROGENEOUS CATALYSIS

Dissociation of CH, on Ni(111): barriers for individual decomposition steps differ
strongly:

Only ~8 kcal/mol for CH, - CH+ H

More than 30 kcal/mol for CH-> C+H

- Can't use a predifined bias



HETEROGENEOUS CATALYSIS
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process
CH,(g) —» CH;(ad) + H(ad)
CH,(ad) - CH,(ad) + H(ad)
CH,(ad) — CH(ad) + H(ad)
CH (ad) — C(ad) + H(ad)

CVHD in dynamic mode is really flexible
Multi-timescale abilities

reaction time
4—9 us
0.09-0.22 us
3791 ps
0.3—0.8 ms



PYROLYSIS & COMBUSTION

We want to use CVHD as a predictive tool

Pyrolysis/combustion is an interesting option
Many MD studies (and good ReaxFF potential) available...
... but at high temperatures (>2000 K instead of ~1000 K)
Complex temperature-dependent pathways and products
Barriers from ~30 kcal/mol (propagation) to ~80 kcal/mol (initiation)
Parallel replica only got to T us at 1350 K (Joshi et al.)

For the n-dodecane test system, CVHD can reach longer times (ms and beyond)

Pyrolysis Combustion
Lowest temperature 1000 K 700 K
Longest simulated time 57 ms 39 s

Largest boost 6.3 x 10° 1.3 x 10’



PYROLYSIS
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Use of dynamic bias in practice

Mass fraction

Temperature-dependent pyrolysis products

Remarkable agreement with recent experiments
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OXIDATION

Low temperature:
"00QOO0H
RH %>R' % 3RO0 >'QOOH ——{Q=0 + "OH
—HO;
alkene + HO,
High temperature:
RR' —R’ s olefins—22— further oxidation
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Temperature-dependent oxidation pathways and products can also be captured



PYROLYSIS & COMBUSTION
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A posteriori validation through direct MD



PLASMA ETCHING
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Graphite etching and redeposition in a fusion-like plasma generates carbon
microstructures

Very high H fluxes: experiment approaching simulation!



PLASMA ETCHING

CVHD
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H uptake [H/C]

PLASMA ETCHING
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Much more efficient erosion at lower fluxes + CVHD
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CLOSING REMARKS



CONLUSION

The CVHD method combines aspects from different well-established biasing
methods (hyperdynamics and metadynamics)

Quite easy to apply to different systems
Does not require much system-specific optimization
Spans a broad range of time scales
Probably not useful (for now?) if
You want to recycle states/barriers
Low-barrier events are a problem
The future
Apply to different and more complicated systems (like nanoscale growth)

Applications will lead to new CVs being used in CVHD
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