Vorticity-based Analytical Models for Internal Bores and Gravity Currents

> Zac Borden and Eckart Meiburg UC Santa Barbara

- Motivation
 - Hydraulic jumps
 - Internal bores
 - Gravity currents
- Earlier modeling approaches
- Circulation-based modeling
- Summary and outlook

Hydraulic jumps

Laminar circular hydraulic jump:

Hydraulic jumps Hydraulic jump in a dam spillway:

Hydraulic jumps Hydraulic jump in a dam spillway:

Hydraulic jumps

Tidal bore on the river Severn:

Internal bore

Undular bore in the atmosphere (Africa):

Internal bore

Atmospheric bore (Iowa):

Analytical models for stratified flows

Single-layer hydraulic jump (Rayleigh 1914):

Note: Simulation based on continuity + NS eqns. (mass, momentum)

In reference frame moving with the bore: steady flow

Task: Find U, U_1 as $f(h_f, h_a)$

Mass conservation: $Uh_{a} = U_{1}h_{f}$ Horiz. momentum conservation: $U^{2}h_{a} + \frac{1}{2}gh_{a}^{2} = U_{1}^{2}h_{f} + \frac{1}{2}gh_{f}^{2}$ $\rightarrow u_{f} = \sqrt{\frac{1}{2}R(R+1)}$ where $u_{f} = \frac{U}{\sqrt{gh_{a}}}$ and $R = \frac{h_{f}}{h_{a}}$ Analytical models for stratified flows (cont'd)

Two-layer internal bore for small density contrast (Boussinesq):

Find U, U_1 , U_2 as $f(h_f, h_a, H, g')$

Have 3 conservation laws:

- mass in lower layer: - mass in upper layer: - overall horiz. mom.: $\begin{aligned} U_1h_f &= Uh_a \\ U_2(H - h_f) &= U(H - h_a) \\ \int_0^H (p_l + \rho U^2) dz &= \int_0^H (p_r + \rho u_r^2) dz \end{aligned}$

But: pressure difference $p_{tr} - p_{tl}$ appears as additional 4th unknown \rightarrow closure assumption needed!

Closure assumption by Wood and Simpson (1984): no energy dissipation in the upper layer \rightarrow apply Bernoulli eqn. along the top wall:

$$\rightarrow \qquad u_{ws} = \left\{ \frac{R\left(1+R\right)\left(1-Rr\right)^2}{R^2r - 3Rr + 2} \right\}^{1/2}$$

where
$$u = U/(g'h_a)^{1/2}$$
, $R = h_f/h_a$ and $r = h_a/H$

Alternative closure assumption by Klemp et al. (1997): no energy dissipation in lower layer \rightarrow apply Bernoulli along lower wall:

$$\qquad \qquad \rightarrow \qquad u_{krs} = \left\{ \frac{R^2 \left[2 - r \left(1 + R\right)\right] \left(1 - Rr\right)}{R^2 r - 3Rr + R + 1} \right\}^{1/2}$$

- Why did Wood and Simpson (1984) and Klemp et al. (1997) need to invoke energy-based closure assumption, whereas DNS simulations require only conservation of mass and momentum?
- Need to find: U, U_1 , U_2 , Δp across the bore
- DNS simulation uses:
- conservation of mass in each layer (2 eqns.)
- conservation of overall horizontal momentum
- conservation of overall vertical momentum

Analytical models:

- conservation of mass in each layer (2 eqns.)
- conservation of overall horizontal momentum
- DO NOT employ conservation of overall vertical momentum

 \rightarrow existing analytical models do not satisfy conservation of vertical momentum. They use empirical energy closure assumption instead, to have enough equations to determine U, U_1 , U_2 , Δp

Can we develop an analytical model that satisfies the conservation of vertical momentum, so that it does not require an empirical energy closure assumption?

Approach:

- combine horizontal and vertical momentum eqns. \rightarrow vorticity eqn.:

$$\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{\omega} = -g' \frac{\partial \rho^*}{\partial x} + \nu \nabla^2 \boldsymbol{\omega}$$

- vorticity is generated at the interface between the two layers;
- it is then convected along by the fluid velocity
- it spreads diffusively as a result of viscosity

Integrate over control volume containing the hydraulic jump:

$$\oint \omega \boldsymbol{u} \cdot \boldsymbol{n} \, \mathrm{d}S = \iint -g' \frac{\partial \rho^*}{\partial x} \, \mathrm{d}A + \oint \nu \boldsymbol{\nabla} \omega \cdot \boldsymbol{n} \, \mathrm{d}S$$

- for inviscid flow:

vorticity outflow = vorticity inflow + baroclinic vorticity production
- vorticity inflow = 0

- vorticity outflow = $(U_1 - U_2) (U_1 + U_2)/2 = (U_1^2 - U_2^2)/2$

- *baroclinic vorticity production* = $-g'(h_f - h_a)$

Conservation of vorticity yields:

$$\frac{1}{2} \left(U_2^2 - U_1^2 \right) = g' \left(h_f - h_a \right)$$

combine with conservation of mass in both layers:

$$U_1 h_f = U h_a$$
$$U_2 (H - h_f) = U (H - h_a)$$

 \rightarrow have 3 equations for U, U₁ and U₂; note: p no longer shows up!

The present vortex sheet model for two-layer internal bores yields:

$$u_{vs} = \left\{ \frac{2R^2 \left(Rr - 1 \right)^2}{R - 2Rr + 1} \right\}^{1/2}$$

Note: We used only linear combination of horizontal and vertical momentum conserv. eqns. \rightarrow could still use horizontal momentum eqn. by itself to determine Δp , but p-information is not needed to get bore velocity \rightarrow consistent with NS simulations in (ψ, ω)-form

Comparison of different bore models: vorticity flux

Where the flow is approximately steady-state, the new circulation model yields the closest agreement with the DNS simulations

Comparison of different bore models: bore velocity

Circulation model does not agree very closely with NS data Why?

Have to analyze the effects of turbulent mixing in the bore

Two-layer internal bores: effects of turbulent mixing

Approximate velocity and density profiles by linear functions over mixing layer of thickness δ :

Two-layer internal bores: effects of turbulent mixing Modified conservation equations:

- mass in lower layer:

$$Uh_{a} = U_{1} \left(h_{f} - \frac{\delta}{2} \right) + \int_{0}^{\delta} u(z^{*}) \rho^{*}(z^{*}) dz^{*}$$
$$= U_{1}h_{f} + \frac{1}{6}\delta \left(U_{2} - U_{1} \right)$$
$$U\left(H - h_{a} \right) = U_{2} \left(H - h_{f} - \frac{\delta}{2} \right) + \int_{0}^{\delta} u(z^{*}) \left[1 - \rho^{*}(z^{*}) \right] dz^{*}$$
$$= U_{2} \left(H - h_{f} \right) - \frac{1}{6}\delta \left(U_{2} - U_{1} \right)$$
$$\frac{1}{2} \left(U_{2}^{2} - U_{1}^{2} \right) = g' \left(h_{f} - h_{a} \right)$$

- mass in upper layer:

- vorticity:

Vorticity conservation equation remains the same as before → mixing affects bore only via mass conservation, not via vorticity conservation

Bore velocity with mixing:

$$u_{dvs} = \frac{\left(R^2r - R + \delta^*/6\right) \left[-6\left(6Rr - 3R - 3 + \delta^*\right)\right]^{1/2}}{6Rr - 3R - 3 + \delta^*}$$

Two-layer internal bores: effects of turbulent mixing Determine interface thickness δ *from DNS simulations:*

Can fit smooth function through the DNS data to obtain $\delta(R)$, then substitute $\delta(R)$ into the finite interface thickness model

Two-layer internal bores: effects of turbulent mixing Comparison with DNS simulations:

Diffuse vortex sheet model closely agrees with DNS data

Summary

- by employing the vertical momentum equation, in addition to the conservation of mass and horizontal momentum, we avoid the need for an empirical closure condition based on energy considerations
- pressure equation becomes decoupled, so that information on the pressure is not required for predicting the bore velocity
- *new circulation-based model yields very close agreement with DNS simulation data with regard to the vorticity flux*
- *in order to obtain good agreement regarding the bore velocity, we need to account for turbulent mixing effects*

Related problem: gravity currents Haboob (atmospheric gravity current):

Driven by hydrostatic pressure gradient due to density difference

Sandstorms

Pyroclastic flow

- Small particles rise with buoyant ambient gas
- Large particles form pyroclastic avalanche

Mt. St. Helens (USGS)

Thunderstorm outflow

Borden and Meiburg (2010)

Avalanche

- Non-Boussinesq
- Formation
- Growth / Amplification
- Front velocity
- Particle-particle interaction
- Erosion / Resuspension
- Deposition
- Influence of bottom topography
- Runout length

Coastal margin processes

Turbidity current

- Underwater sediment flow down the continental slope
- Can transport many km³ of sediment
- Can flow O(1,000)km or more
- Often triggered by storms or earthquakes
- Repeated turbidity currents in the same region can lead to the formation of hydrocarbon reservoirs

Turbidity current. http://www.clas.ufl.edu/

Model problem: Lock-exchange gravity current

Lock exchange configuration

Dense front propagates along bottom wall

Light front propagates along top wall

Model problem: Lock-exchange gravity current 3D DNS simulation (M. Nasr-Azadani 2012):

Can we develop simplified analytical model for predicting the front velocity?

Analytical models for gravity currents von Karman (1940):

Goal: determine $F_h = U/\sqrt{g'h}$ where $g' = g(\rho_1 - \rho_2)/\rho_1$

Assumptions:

- infinitely deep ambient
- apply Bernoulli along C-O and O-A

$$\rightarrow F_h = \sqrt{\frac{2}{\sigma}} \quad where \ \sigma = \rho_2/\rho_1$$

Boussinesq: $\sigma \approx 1 \rightarrow F_h = \sqrt{2}$

Benjamin (1968): Bernoulli should not be applied along the interface, where turbulent mixing and dissipation occurs → alternative model:

Goal: determine U, U_2 as f(h, H, g')

- mass conservation in ambient $UH = U_2(H h)$
- horizontal momentum conservation

$$p_C H + \rho_2 U^2 H = p_B H + \frac{1}{2} g \left(\rho_1 - \rho_2\right) h^2 - g \left(\rho_1 - \rho_2\right) H h + \rho_2 U_2^2 \left(H - h\right)$$

But: pressure difference $p_B - p_C$ appears as additional 3rd unknown \rightarrow closure assumption needed!

Benjamin assumes Bernoulli along C-O and O-B:

Obtains:

$$F_{H,B} = \frac{U}{\sqrt{g'H}} = \left[\frac{\alpha(1-\alpha)(2-\alpha)}{\sigma(1+\alpha)}\right]^{1/2} \quad \text{where} \quad \alpha = h/H$$

By applying Bernoulli along D-E, Benjamin shows that an energyconserving current requires $\alpha = 1/2$. Currents with $\alpha < 1/2$ lose energy, currents with $\alpha > 1/2$ require external energy input.

Shin et al. (2004) consider entire current, not just one front:

Apply Bernoulli along D-F, obtain:

$$F_{H,S} = \left\{ \frac{\beta(\beta - \alpha)(1 - \alpha)}{2\alpha \left[1 - \alpha \left(1 - \sigma\right)\right]} \right\}^{1/2} \text{ where } \beta = D/E$$

Above models do not employ vertical momentum eqn. As a result, they require additional energy-related closure assumption. By contrast, NS simulations reproduce gravity currents based on mass and momentum conservation only \rightarrow develop new model that satisfies vertical momentum eqn., doesn't require empirical energy closure

Consider same set-up as Benjamin (1968):

*Task: determine U, U*₂, Δp_{ED} as f(h, H, g')

Available equations:

- mass conservation in ambient flow
- conservation of overall horizontal momentum
- conservation of overall vertical momentum

Combine two momentum eqns to get vorticity equation (Boussinesq):

for inviscid flow:

vorticity outflow = vorticity inflow + baroclinic vorticity production

- *vorticity inflow* = 0
- vorticity outflow = $U_2^2/2$
- *baroclinic vorticity production* = g'h

Conservation of vorticity yields:

$$\frac{1}{2}U_2^2 = g'h$$

combine with conservation of mass in ambient stream:

$$UH = U_2(H - h)$$

 \rightarrow have 2 equations for U and U₂; pressure problem is decoupled

The circulation model for Boussinesq gravity currents yields:

$$F_{H,C} = \sqrt{2\alpha} (1 - \alpha)$$

Note: We used only linear combination of horizontal and vertical momentum conserv. eqns. \rightarrow can still use horizontal momentum eqn. by itself to determine Δp_{ED} , but p-information not needed to get current velocity \rightarrow consistent with NS simulations in (ψ, ω)-form

$$\Delta p^* = \frac{p_E - p_D}{\rho_1 g' H} = -\frac{1}{2} \alpha^2 \left(5 - 4\alpha \right)$$

Comparison of gravity current models: vorticity flux

Where the flow is approximately steady-state (near the current front), the new circulation model yields the closest agreement with the DNS simulations

Comparison of gravity current models: Δp_{ED}

All models predict similar pressure drops across the current front

Comparison of gravity current models: head loss

Shin et al. (2004) model predicts a head gain along C-O

Comparison of gravity current models: current velocity Need to determine current height:

Given the uncertainty associated with determining the current velocity, no model appears to yield better agreement than others

Gravity currents: effects of turbulent mixing

Approximate velocity and density profiles by linear functions over mixing layer of thickness δ_1 and δ_2 :

Gravity currents: effects of turbulent mixing Determine δ_1 *and* δ_2 *from DNS simulations:*

Substitute into the conservation equations for mass and vorticity:

 \rightarrow obtain good agreement between model predictions and DNS data

Extensions: Strong density difference (non-Boussinesq)

 $\gamma = \frac{\rho_2}{\rho_1} \approx 1$:

• small density contrast (Boussinesq case): fronts are symmetric

 $\gamma = 0.4$:

• large density contrast (non-Boussinesq): asymmetric fronts

Gravity currents in stratified ambients: Intrusions

- generation of internal waves
- complex interaction of the current with the stratified ambient

Stratification: Internal wave generation

• Excitation of internal waves in the ambient fluid

Reversing buoyancy currents

- propagates along bottom over finite distance, then lifts off
- subsequently propagates along top

Summary

- *it is possible to develop simplified models for gravity-driven interfacial flows without invoking empirical energy arguments, by employing the vertical momentum eqn., in addition to the conservation equations for mass and horizontal momentum*
- pressure information is not required for determining the velocity of bores and gravity currents, consistent with NS simulations based on vorticity-streamfunction formulation
- circulation-based models yield very close agreement with DNS simulation data regarding the vorticity flux
- by accounting for turbulent mixing, we can also obtain good agreement regarding the velocities of bores and gravity currents
- current extensions to non-Boussinesq flows and intrusions

Acknowledgments

• Zac Borden, Hedi Romani, Jim Rottman

• National Science Foundation

University of California at Santa Barbara

- Founded 1944
- ~ 20,000 students
- 5 Nobel Prizes since 1997
- Reputation for outstanding scientific research and interdisciplinary collaboration

Mechanical and Environmental Engineering

- ~ 500 undergrads
- ~ 85 graduate students, 50 of them international
- ~ 30 faculty members, 10 members of the NAE

Research Areas

- Computational Science and Engineering
- Dynamics, Control, and Robotics
- Fluids and Thermal Transport
- Microscale and Nanoscale Engineering
- Solid Mechanics, Materials, and Structures