# Atomic Bose-Einstein condensates and Rydberg gases 

Sebastian Wüster

Summer-term 2013



International Max Planck Research School
"Dynamical Processes in Atoms,
Molecules and Solids"


TECHNISCHE
UNIVERSITÄT
DRESDEN

## Information

- contact details: Sebastian Wüster, Max Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, Dresden Office: 2B8
email://sew654@pks.mpg.de
Phone: +49 35I 87I 2208
web: http://www.mpipks-dresden.mpg.de/~sew654/teaching.html
- Lecture:

Wednesdays: 16:40-18:10
Room BZW/AI201 P
13 lectures (I0.4. - I7.7., not 22.5, 5.6.)
beamer introduction, then chalk and blackboard + movies and images

## Literature

(I) C.J. Pethick and H. Smith, "Bose-Einstein Condensation in Dilute Gases", Cambridge University Press (2002)
(2) L.P. Pitaevskii and S. Stringari "Bose-Einstein Condensation", Oxford University Press (2003)
(3) F. Dalfovo, S. Giorgini, L.P. Pitaevskii, and S. Stringari "Theory of BoseEinstein condensation", Rev. Mod. Phys. 7I, 463 (I999)
(4) T. F. Gallagher, "Rydberg atoms", Cambridge University Press (1994)

## Outline

I. Introduction
I.I. Motivation
I.2. Revision
2. Ultra-cold atomic gases
2.1. Quantum statistical physics
2.2. Trapping and cooling of atoms
2.3. Interactions between atoms
3. Bose-Einstein condensates
3.I. Field operator
3.2. Gross-Pitaevskii theory
3.3. Excitations of the condensate
4. Rydberg atoms
4.I. Quantum defects
4.2. Rydberg interactions and external fields
4.3. Rydberg excitation and decay
4.4. Dipole blockade
4.5. Field ionization
4.6. Applications in quantum information

## I. Introduction

- Purpose of I.I.motivation:
* get you excited about the field of ultra-cold atoms (quantum-atom-optics)
* show for what the material presented later is important
* personal view: highlight use of BEC for inter-disciplinary physics (quantum simulation)
- Purpose of I.2. revision:
* remind you of required material from quantum mechanics and atomic physics
* make sure everyone has similar starting point
* will not replace prior study of these topics, if you notice that you are not familiar with some of the physics, please recap.


## Survey:

Please indicate for the following physics topics how familiar you feel that you are with them:

|  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| quantum oscillator: | $\square$ | never <br> heard |
| second quantisation: | not had in <br> lecture | remember what it is, <br> but no details |
| quantum field theory: |  |  |
| quant and can |  |  |
| revise the details |  |  |

## I.I.Motivation

## (partl) Bose-Einstein Condensation



Albert Einstein

Bose 1924: Identical quantum particles (e.g. photons) have to be treated as indistinguishable. This affects the counting of the possible ways to realize a given state.
S. N. Bose, Z. Phys. 26 (1924) 178.


Satyendra Nath Bose
Einstein 1925: This results at $\mathrm{T}=0$ in a case where all bosons occupy the same quantum state.
A.Einstein, Sitzungsber. Kgl. Preuss.Akad.Wiss. page 26 (I924).
A.Einstein, Sitzungsber. Kgl. Preuss. Akad.Wiss. page 3 (I925).
=> Bose-Einstein Statistics:
=> Bose-Einstein Condensation: At T=0, all Bosons will occupy the same lowest energy quantum state

## What is Bose-Einstein condensation (BEC)?



## High <br> Temperature T:

thermal velocity v
density $\mathrm{d}^{-3}$
"Billiard balls"

$$
\sum_{i}^{s i q n} \lambda_{\mathrm{dBy}}^{2} \sum_{2}^{2}
$$



-     - 

Low
Temperature T :
De Broglie wavelength $\lambda_{\mathrm{dB}}=\mathrm{h} / \mathrm{mv} \propto \mathrm{T}^{-1 / 2}$
"Wave packets"
$\mathrm{T}=\mathrm{T}_{\text {crit }}$ :
Bose-Einstein Condensation
$\lambda_{\mathrm{dB}} \approx \mathrm{d}$
"Matter wave overlap"
T=0: Pure Bose condensate
"Giant matter wave"

## Experimental Condensation in dilute alkali gases

theoretical prediction of BEC 1925 experimental realization 1995


Fig. 4. Horizontal sections taken through the velocity distribution at progressively lower values of
$v_{\text {evap }}$ show the appearance of the condensate fraction.

SCIENCE - VOL. 269 • 14 JULY 1995

Nobel Prize in Physics (2001),
W. Ketterle ,E.A. Cornell and C.E. Wieman

K.B. Davis et al., Phys. Rev. Lett. 75 (I995) 3969.
M. H.Anderson et al., Science 269 (1995) 198.
C.C. Bradley et al., Phys. Rev. Lett. 75 (I995) 1687.
$T_{\text {crit }}=170 n K$
crucial techniques: laser-cooling, magneto-optical trap, evaporative cooling => chapter 2

## BEC in other physical systems

(some examples)
Cooper-pair condensates in superconductors


- more complicated than direct BEC of alkali-gases, since we first have to bind two Fermions to make a Boson.
- Can see similar effect in degenerate Fermi gases.
liquid helium, superfluidity

-Helium is strongly interacting, only shows very small condensed fractions
exciton-polaritons in semi-conductor micro cavities


## Various atom traps

-Experimental techniques to cool down to the nK regime are anyway quite sophisticated => They then also allow a tremendous degree of control over the BEC/ ultra-cold gas, once it has been created.
magneto optical trap

http://www.physics.otago.ac.nz/research/ jackdodd/resources/ResourceFiles/galleryimages/
-Can confine atoms using magnetic field, electrical fields (from lasers) or both.

I. Bloch, Nature Phys. I (200I) 23.
ring trap


FIG. 2 (color). Atoms in a ring-shaped magnetic trap. Shown S. Gupta et al., Phys. Rev. Lett. 95 (2005) I4320।.
atom chip

http://www.physics.uq.edu.au/BEC/images/ experimental/research_combinedtrap.jpg

## Experimental control

Feshbach resonance (interaction control)



Figure 2 Observation of the Feshbach resonance at 907 G using time-of-flight
absorption imaging. a, Number of atoms in the condensate versus magnetic field.
S. Inouye et al., Nature I 5 I (I998) 392.

Phase imprinting (motion control)


Fig. 1. (A) Writing a phase step onto the condensate. A far-detuned uniform light puls


Fig. 3. Experimental ( $\mathbf{A}$ to $\mathbf{E}$ ) and theoretical ( $\mathbf{F}$ to J) images of the integrated $B E C$ density for various times after we imprinted a phase step of $\sim 1.5 \pi$ on the top half of the condensate with a

## transitions

(internal state control)

$100 \mu \mathrm{~m}$

D. S. Hall et al., Phys. Rev. Lett. 8 I (I998) I539.

## Macroscopic matter waves

- single quantum wave-function occupied by many atoms can easily be imaged
-the system is analogous to many photons in a laser cavity => atom optics
two condensates
interfering

M.R.Andrews et al., Science 275 (1997) 637.
scattering partial waves


FIG. 1. (a) Optical density of the scattering halo of two ${ }^{87} \mathrm{Rb}$ condensates for collision energy $E / k_{B}=138(4) \mu \mathrm{K}$, measured
atom laser


Fig. 4. (A to C) One, three, and six 6- $\mu$ s Raman pulses, respectively, were applied to the condensate. (D) Firing 1- $\mu \mathrm{s}$ Raman pulses at the

## Vortices

Rotating condensates: Circulation is quantized, condensate must rotate via vortices.

$$
\oint_{\mathcal{C}} \mathbf{v} \cdot \mathbf{d} \mathbf{l}=\frac{h}{m} q
$$

Vortices in stirred BEC (q=I)


FIG. 1. Transverse absorption images of a Bose-Einstein condensate stirred with a laser beam (after a 27 ms time of flight).

## Abrikosov Lattice


J.R.Abo-Shaeer et al., Science 292 (200I) 476.

## Giant vortices (q>>1)



## Quantum simulation

quantum simulation: new ways to understand complicated (many-body) quantum systems that cannot be fully simulated on a classical computer.

$$
\text { R. Feynman, Int.J.Theor. Phys. } 2 \text { I (I982) } 467 .
$$

Size of Hilbert space of N particle, M mode system: $M^{N}$
analog quantum simulator: find a quantum system with the same Hamiltonian but easier access to parameters and measurements.


FIG. 1. (a) Realization of the BHM in an optical lattice (see text). The offset of the bottoms of the wells indicates a trapping
D. Jaksch et al., Phys. Rev. Lett. 8 I (1998) 3 I08.
digital quantum simulator: find a system that flexibly can evolve according to a Trotter decomposition of the time-evolution operator.

$$
5^{-2 H E \&}=\varliminf_{n \rightarrow \infty}\left(\prod_{R} e^{-2 H_{k} t / m K}\right)^{n}
$$


H.Weimer et al., Nature Phys. 6 (2010) 382.

## Condensed matter analogues

## (more on quantum simulation)

Mott-Insulator / Superfluid quantum phase transition

$$
H=-J \sum_{i, i, j}^{i} \hat{a}_{j}+\sum_{i} \epsilon_{i} \hat{n}_{i}+\frac{1}{2} U \sum_{i} \hat{n}_{i}\left(\hat{n}_{i}-1\right)
$$

Lattice strength decides type of ground-state


Figure 2 Absorption images of multiple matter wave interference patterns. These were obtained after suddenly releasing the atoms from an optical lattice potential with different potential depths $V_{0}$ after a time of flight of 15 ms . Values of $V_{0}$ were: $\mathbf{a}, 0 E_{\mathrm{E}} ; \mathbf{b}, 3 E_{r} ; \mathbf{c}, 7 E_{\mathrm{r}}$; $\mathbf{d}, 10 E_{r} ; \mathbf{e}, 13 E_{r} ; \mathbf{f}, 14 E_{r} ; \mathbf{g}, 16 E_{r} ;$ and $\mathbf{h}, 20 E_{r}$.
M. Greiner et al. Nature 415 (2002) 39.

collapse and revival

M. Greiner et al. Nature 419 (2002) 5I.

## General relativity analogues

(more on quantum simulation)
Analog Gravity: excitations (sound-waves) in a BoseEinstein condensate behave in some regime like particles propagating in general relativistic space-times. C. Barcelo et al., Living Rev. Relativity I4, (201I), 3

Hawking radiation

S. Hawking, Nature 248 (1974) 30.

analogue Hawking radiation in (fluids) Bose Einstein condensates
W. G. Unruh, Phys. Rev. Lett. 46 (I98I) I35I.


O. Lahav, et al. Phys. Rev. Lett. I 05 (2010) 24040 I.
analogue cosmological particle creation radiation

## (part 2) Rydberg atoms



Johannes Rydberg

- atoms in states with large principal quantum number $n \sim 40-100$.
- Large size $\sim \mathrm{n}^{2}(85 \mathrm{~nm}$ for $\mathrm{n}=40)$
- Large polarizability $\sim \mathrm{n}^{7}$
- Long life times $\sim n^{3} \quad(40 \mu \mathrm{~s}$ for $\mathrm{n}=40)$
- long range interactions

$$
\begin{array}{ll}
\mathrm{V} \sim \mathrm{n}^{4} / \mathrm{d}^{3} & \text { dipole-dipole } \\
\mathrm{V} \sim \mathrm{n}^{11} / \mathrm{d}^{6}
\end{array}
$$

Li, $n=40$, radial density


## Almost classical orbits

semi-classical description: de-Broglie wavelength compared to orbital radius becomes smaller and smaller => Understanding that can be gained from classical pictures increases
circular wave packet, Bohr-atom

J.J. Mestayer et al., Phys. Rev. Lett. IOO (20IO) 243004.
classical and quantum dynamics


Fig. 9.10 (a) Scaled energy spectrum at $\tilde{W}=-0.45$ as a function of $\gamma^{-1 / \beta}$. Range of excitation energy $-77.7 \mathrm{~cm} \mathrm{c}^{-1} \leq \mathrm{W} \leq-54.3 \mathrm{~cm}^{-1}$ and field strength $5.19 \mathrm{~T} \geq B \geq 3.0 \mathrm{~T}$.
(b) Fourier transformed action spectrom of (a); closed orbits correlated to respective resonances in $\rho, z$ projection; $z$ coordinate vertical (from ref. 27).
W.Wintgen et al., Phys. Rev.A. 36 (I987) I3I.

## Rydberg-dipole blockade

Interactions between Rydberg atoms at micrometer distances is 12 OOM larger than between ground-state atoms. Micrometer distances allow individual laser addressing. => interesting for quantum computation

The blockade effect

b

E. Urban et al., Nature Phys. 5 (2009) IIO.

Application to quantum gates


FIG. 2. (Color online) Rydberg blockade controlled phase gate
D. Jaksch, et al. Phys. Rev. Lett. 85 (2000) 2208.
M. D. Lukin, et al. Phys. Rev. Lett. 87 (200I) 03790I.
M. Saffman, et al. Rev. Mod. Phys. 82 (2010) 23 I2.
A. Gaëtan, et al., Nature Phys. 5 (2009) II 5.

## Rydberg dressing and EIT

Dressing: Off resonant coupling between ground-state and Rydberg state: Very small Rydberg admixture makes ground-state inherit some of the extreme Rydberg properties.

EIT: Electromagnetically induced transparency. Quantum interference effects leads to zero population in middle level. Extremely sensitive to interactions acting on $\mid 3>$.

S. Sevincli, et al. , Phys. Rev. Lett. I07, I5300 (20II).

## Excitation transport

(more on quantum simulation)

## resonant dipole-dipole interactions:

Fluctuations between dipoles of different atoms (molecules) can lead to excitation transport.


Chain of Rydberg atoms

1.2. Revision

Let's move to blackboard

## Appendix

## BEC in other physical systems

(some examples)
exciton polaritons in semiconductor microcavity
a

quantum well inside resonator

$k$ (arb. units)
dispersion relation

condensation


Figure 2 | Far-field emission measured at 5 K for three excitation intensities. Left panels, $0.55 P_{\text {thr }}$; centre panels, $P_{\text {thr }}$; and right panels,

## Atom interferometry

interferometer on an atom-chip

atom interferometer vs. optical interferometer


$$
\Delta \Phi_{\mathrm{light}}=\frac{4 \pi}{\lambda c} \Omega \cdot \mathrm{~A}
$$

(Sagnac)

$$
\begin{aligned}
\Delta \Phi_{\mathrm{atom}} & =\frac{4 \pi}{\lambda_{\mathrm{dB}} v} \Omega \cdot \mathrm{~A} \\
& =\frac{\lambda c}{\lambda_{\mathrm{dB}} v} \Delta \Phi_{\text {light }} \\
& =\frac{m c^{2}}{\hbar \omega} \Delta \Phi_{\text {light }}
\end{aligned}
$$

atoms are I\| orders of magnitude more sensitive than photons

## Ultra-cold phase transition

statistical mechanics and phase transition of interacting system


T. Donner et al., Science 3 I5 (2007) I556.

$$
\frac{\Delta T_{c}}{T_{c}}=C_{0} a n^{1 / 3} \quad \mathrm{C} 0=1.3
$$

V.A. Kashurnikov et al., Phys. Rev. Lett. 87 (200I) I 20402.
thermometry


FIG. 1. Observation of thermal phase fluctuations. The experi-


FIG. 4. Heating up of a Bose gas. The filled circles correspond
R. Gati et al., Phys. Rev. Lett. 96 (2006) I 30404..

