ENTROPY-INDUCED SEPARATION OF STAR POLYMERS IN POROUS MEDIA Yurij Holovatch

ICMP, National Acad. Sci. of Ukraine, Lviv, Ukraine

Johannes Kepler University, Linz, Austria

In collaboration with:

Victoria Blavats'ka (ICMP, Lviv, Ukraine &

University of Leipzig, Germany)

Christian von Ferber, Coventry University, Great Britain &

Freiburg University, Germany)

Supported by

Project P19583

Star polymers

theory:

industry:

- viscosity modifiers
- coating materials
- pharm., med.

experiment:

monodisperse

- polymer physics polyisoprene f = 8, 18 \Leftrightarrow polybutadiene f = 128 colloid physics (SANS, SAXS)

Polymer \leftrightarrow self-avoiding walk (SAW)

Polymer:

- continuous space
- C-C bonds (109.47°)
- non-trivial energy surface
- compl. mon.-mon. interaction self-avoidance

SAW:

- discrete lattice
- 90°. 180°
- indep. on angle energy

Scaling exponents

Chain polymers

Star polymers

Phenomena influenced by star exponents

• Short distance force between star polymers:

$$< F(r) > \sim \Theta_{ff}/r, \
u \Theta_{ff} = 2\gamma_f - \gamma_{2f} - 1$$

H. Löwen, C.N. Likos *et al.*, '98-.

• Diffusion limited reactions involving polymers:

$$nA + B \rightarrow B$$
, reaction rate: $k_n \sim (r/\ell)^{-\lambda_n}$.

C. von Ferber, Yu.H.,'01.

• Multifractality of Laplacian field for fractal boundary conditions:

$$\frac{\langle \phi^n(\vec{x}+\vec{r}) \rangle}{\langle \phi(\vec{x}+\vec{r}) \rangle^n} \sim (R/r)^{-\tau_n}, \quad \vec{x} \in \partial X.$$

M.E. Cates, T. Witten, '86

• DNA denaturation

Y. Kafri, E. Carlon, '02

Phenomenon of current interest

Consider star polymers immersed in a good solvent, part of which is in a porous medium:

How will star polymers of different architechture behave?

Is static segregation possible? Dependence on correlation of the medi-

um?

Choice of the model for the porous medium

A. Weak disorder, $c_{perc} < c \leq 1$

B. Strong disorder, $c = c_{\text{perc}}$

- $\delta < \varepsilon/2$ ($\varepsilon = 4 d$, $\delta = 4 a$): $\epsilon > 0$ ($\epsilon = 6 d$): $\nu = \nu^{\text{SaW}} = 1/2 + \varepsilon/16$,
 - $\nu = 1/2 + \epsilon/42$,
- $\varepsilon/2 \leq \delta \leq \varepsilon$: $\nu = 1/2 + \delta/8$. V. Blavats'ka et al.'01

Y. Meir, A. B. Harris'89, C. von Ferber *et al.*'04

Here: case A

Field-theoretical description of a polymer star

•Edwards continuous chain model:
$$s = 0$$

 $\mathbf{r}_{1}(s)$
 $\mathbf{r}_{2}(s)$
 $\mathbf{r}_{1}(0)$
 $\mathbf{r}_{1}(0)$
 $\mathbf{r}_{1}(0)$
 $\mathbf{r}_{1}(0)$
 $\mathbf{r}_{1}(s)$
 $\mathbf{r}_{2}(s)$
The partition function of the *f*-arm polymer
star: $\mathcal{Z}_{f}\{S_{a}\} = \int D[\mathbf{r}_{1}, \dots, \mathbf{r}_{f}] \times$
 $\exp\left[-\mathcal{H}_{f}\right] \prod_{a=2}^{f} \delta^{d}(\mathbf{r}_{a}(0) - \mathbf{r}_{1}(0)).$

$$\mathcal{H}_{f} = \frac{1}{2} \sum_{a=1}^{f} \int_{0}^{S_{a}} \mathrm{d} \, s \left(\frac{\mathrm{d} \, \mathbf{r}(s)}{\mathrm{d} s} \right)^{2} + \frac{u_{0}}{4!} \sum_{a,b=1}^{f} \int_{0}^{S_{a}} \mathrm{d} \, s \int_{0}^{S_{b}} \mathrm{d} \, s' \delta^{d}(\mathbf{r}_{a}(s) - \mathbf{r}_{b}(s')).$$

• Mapping to the m = 0 limit of the field theory:

$$Z_{f}\{\mu_{a}\} = \int \prod_{b=1}^{f} \mathrm{d} S_{b} \exp[-\mu_{b}S_{b}] \mathcal{Z}_{f}\{S_{a}\} = \int D[\phi] \exp[-\mathcal{L}]|_{m=0},$$
$$\mathcal{L} = \frac{1}{2} \int \mathrm{d}^{d}x \left[\left(\mu_{0}^{2} |\vec{\phi}(x)|^{2} + |\nabla\vec{\phi}(x)|^{2}\right) + \frac{u_{0}}{4!} S_{i_{1},...,i_{4}} \phi^{i_{1}}(x) \dots \phi^{i_{4}}(x) \right].$$

•A polymer star \iff the traceless local composite operator:

$$\sum_{i_1,\dots,i_f=1}^m N^{i_1,\dots,i_f} \phi^{i_1}(x) \dots \phi^{i_f}(x), \text{ with } \sum_{i=1}^m N^{i,i,\dots,i_f} = 0.$$

•Quenched disorder: $\mu_0^2 \rightarrow \mu_0^2 + \delta \mu_0(x)$, with

 $\langle \langle \delta \mu_0(x) \rangle \rangle = 0, \qquad \langle \langle \delta \mu_0(x) \delta \mu_0(y) \rangle \rangle = g(|x-y|).$

•Replicated effective Lagrangean (Weinrib, Halperin'83):

$$\mathcal{L}_{eff} = \frac{1}{2} \sum_{\alpha=1}^{n} \int d^{d}x [(\mu_{0}^{2} | \vec{\phi}_{\alpha}(x) |^{2} + |\nabla \vec{\phi}_{\alpha}(x) |^{2}) + \frac{u_{0}}{4!} S_{i_{1},...,i_{4}} \phi_{\alpha}^{i_{1}}(x) \dots \phi_{\alpha}^{i_{4}}(x)] \\ + \sum_{\alpha,\beta=1}^{n} \int d^{d}x d^{d}y g(|x-y|) \vec{\phi}_{\alpha}^{2}(x) \vec{\phi}_{\beta}^{2}(y), \qquad m, n \to 0.$$

For small k: $\tilde{g}(k) \sim v_0 + w_0 |k|^{a-d}$.

•Further reduction: $(u_0 + v_0) \rightarrow u_0$ (Kim'83, Blavats'ka *et al.'01*):

$$\mathcal{L}(\vec{\phi}) = \sum_{k} \sum_{\alpha}^{n} \frac{1}{2} (\mu_{0}^{2} + k^{2}) (\vec{\phi}_{k}^{\alpha})^{2} + \frac{u_{0}}{4!} \sum_{\alpha}^{n} \sum_{\{k\}'} (\vec{\phi}_{k_{1}}^{\alpha} \vec{\phi}_{k_{2}}^{\alpha}) (\vec{\phi}_{k_{3}}^{\alpha} \vec{\phi}_{k_{4}}^{\alpha})$$

$$+\frac{w_0}{4!}\sum_{\alpha\beta}^{n}\sum_{\{k\}''}|k|^{a-d}(\vec{\phi}^{\alpha}_{k_1}\vec{\phi}^{\alpha}_{k_2})(\vec{\phi}^{\beta}_{k_3}\vec{\phi}^{\beta}_{k_4}).$$

Renormalization

• Correlations: renormalized vertex functions

$$Z_{\phi}\Gamma^{(2)}, Z_{u}\Gamma^{(4)}_{u}, Z_{w}\Gamma^{(4)}_{w}, Z_{\phi^{2}}\Gamma^{(2,1)}, Z_{f}\Gamma^{(*f)}, Z_{f}\Gamma^{($$

• Change of scale κ : RG functions

$$\beta_u(u,w) = \frac{d}{d\kappa} \ln Z_u, \ \beta_w(u,w) = \frac{d}{d\kappa} \ln Z_w,$$
$$\eta_{\phi}(u,w) = \frac{d}{d\kappa} \ln Z_{\phi}, \qquad \eta_{\phi^2}(u,w) = \frac{d}{d\kappa} \ln Z_{\phi^2}, \qquad \eta_f(u,w) = \frac{d}{d\kappa} \ln Z_f.$$

- Scale invariance: fixed points $\beta_u(u^*, w^*) = \beta_w(u^*, w^*) = 0$.
- Scaling exponents (in the stable accessible FP)

$$\eta = \eta_{\phi}(u^*), \ \nu = [2 - \eta_{\phi}(u^*) + \eta_{\phi^2}(u^*)]^{-1}, \ \eta_f = \eta_f(u^*, w^*).$$

Results for a polymer chain: scaling is governed by a new law

• ε , δ -expansion, with $\varepsilon = 4 - d$, $\delta = 4 - a$ (Blavats'ka *et al.*'01):

$$\nu = \begin{cases} \nu^{\text{pure}} = 1/2 + \varepsilon/16, & \delta < \varepsilon/2, \\ \nu^{\text{LR}} = 1/2 + \delta/8, & \varepsilon/2 < \delta < \varepsilon, \end{cases}$$

• fixed d, a technique (Blavats'ka et al.'02):

The lines of zeroes of the d=3 two-loop β -functions resummed by the Chisholm-Borel method at a = 2.9. The fixed point **LR** is stable.

Results for a polymer star: ε , δ -expansion

Diagram contributions to the vertex function $\Gamma^{(f)}$ up to the 2-loop order. (a): *f*-point vertex $N^{i_1,\ldots,i_f}\phi^{i_1}\ldots\phi^{i_f}$, (b): oneloop contribution, (c)-(f): two-loop contributions.

$$\gamma_f = 1 + \nu \eta_f(u^*, w^*) + (\nu(2 - \eta) - 1)f.$$

$$\eta_f = \begin{cases} \eta_f^{\mathsf{pure}} = -\frac{1}{8}\varepsilon f(f-1), \\ \eta_f^{\mathsf{LR}} = -\frac{1}{4}\delta f(f-1), \end{cases} \quad \gamma_f = \begin{cases} \gamma_f^{\mathsf{pure}} = 1 - \frac{1}{16}\varepsilon f(f-3), \ \delta < \varepsilon/2, \\ \gamma_f^{\mathsf{LR}} = 1 - \frac{1}{8}\delta f(f-3), \ \varepsilon/2 < \delta < \varepsilon. \end{cases}$$

Results for a polymer star: fixed d = 3, a technique

a	f = 1,2	3	4	5
(3) [1]	1.18	1.06	0.86	0.61
(3) [2]	1.1573(2)	1.0426(7)	0.8355(10)	0.5440(12)
3	1.17	0.99	0.83	0.57
2.9	1.25	0.87	0.78	0.46
2.8	1.26	0.81	0.76	0.43
2.7	1.28	0.74	0.72	0.40
2.6	1.30	0.73	0.70	0.37
2.5	1.34	0.71	0.70	0.35
2.4	1.35	0.70	0.70	0.31
2.3	1.38	0.70	0.69	0.29

Critical exponents γ_f for the *f*-arm star in d = 3 and different values of *a*. [1]: Pure system. Field-theoretical RG (three-loop): v. Ferber, Holovatch '95. [2]: Pure system. Monte Carlo simulations, Hsu, Grassberger '04.

Contact exponents

The mean force F(r) between two star polymers of f and f' arms at distance r:

$$\frac{1}{k_B T} F^{(a)}(r) = \frac{\Theta_{ff'}^{(a)}}{r},$$

with $\Theta_{ff'}^{(a)} = \gamma_f^{(a)} + \gamma_{f'}^{(a)} - \gamma_{f+f'}^{(a)} - 1.$

 $\Theta_{ff}^{(a)}$ as a function of f and a at d = 3.

 $\Theta_{ff'}^{(a)}$ as a function of f and f' for a = 2.7 at d = 3.

What can be learned from these data?

Recall: Segregation behavior depends on $(\gamma_f^{(a)} - \gamma_f)$

• Strong segregation of:

chain polymers, f = 1, 2 and star polymers, f > 3 $(\gamma_1^{(a)} - \gamma_1) > 0$ $(\gamma_f^{(a)} - \gamma_f) < 0$

• For given *a* (given 'medium'):

$$\gamma_{f_1}^{(a)} > \gamma_{f_2}^{(a)}, \qquad f_1 < f_2.$$

• Entropy-induced softening of short distance star-star force:

$$< F^{(a)}(r) > \sim \Theta^{(a)}_{f_1 f_2}/r.$$