Phase space path integrals and their semiclassical approximations

Naoto Kumano-go (Kogakuin University, Japan)
Daisuke Fujiwara (Gakushuin University, Japan)

[1] N. Kumano-go and D. Fujiwara, Phase space Feynman path integrals via piecewise bicharacteristic paths and their semiclassical approximations. Bulletin des Sciences Mathematique, In press, Available online 2007.

1. Introduction

Let $u(T)$ be the solution for the Schrödinger equation

$$
\left(i \hbar \partial_{T}-H\left(T, x, \frac{\hbar}{i} \partial_{x}\right)\right) u(T)=0, \quad u(0)=v
$$

In the theory of Fourier integral operators, we write $u(T)$ as

$$
u(T)=\left(\frac{1}{2 \pi \hbar}\right)^{d} \int_{\mathrm{R}^{d}} \int_{\mathrm{R}^{d}} K\left(T, x, \xi_{0}, x_{0}\right) v\left(x_{0}\right) d x_{0} d \xi_{0}
$$

Using the phase space path integral, we formally write $K\left(T, x, \xi_{0}, x_{0}\right)$ as

$$
K\left(T, x, \xi_{0}, x_{0}\right)=\int e^{\frac{i}{\hbar} \phi[q, p]} \mathcal{D}[q, p]
$$

Here $(q, p):[0, T] \rightarrow R^{2 d}$ is the path with $q(0)=x_{0}, q(T)=x$ and $p(0)=\xi_{0}$,

$$
\phi[q, p]=\int_{[0, T)} p(t) \cdot d q(t)-\int_{[0, T)} H(t, q(t), p(t)) d t
$$

and the phase space path integral $\int \sim \mathcal{D}[q, p]$ is a sum over all paths (q, p).

Our results Using piecewise bicharacteristic paths, we prove the existence of the phase space path integrals

$$
\int e^{\frac{i}{\hbar} \phi[q, p]} F[q, p] \mathcal{D}[q, p]
$$

with general functional $F[q, p]$ as integrand. More precisely, we give a fairly general class \mathcal{F} such that for any $F[q, p] \in \mathcal{F}$, the time slicing approximation converges uniformly on compact subsets of the endpoints $\left(x, \xi_{0}, x_{0}\right)$.

Other mathematical definitions of phase space path integral

- Daubechies-Klauder The definition via analytic continuation from the phase space Wiener measure.
- Albeverio-Guatteri-Mazzucchi

The definition via Fresnel integral transform

- Smolyanov-Tokarev-Truman The definition via Chernoff formula •••

2. Existence of phase space path integrals

Assumption $H(t, x, \xi): \mathrm{R} \times \mathrm{R}^{d} \times \mathrm{R}^{d} \rightarrow \mathrm{R}, \partial_{x}^{\alpha} \partial_{\xi}^{\beta} H(t, x, \xi):$ continuous

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} H(t, x, \xi)\right| \leq C_{\alpha, \beta}(1+|x|+|\xi|)^{\max (2-|\alpha+\beta|, 0)} .
$$

Examples

$$
\begin{aligned}
H\left(t, x, \frac{\hbar}{i} \partial_{x}\right) & =\sum_{j, k=1}^{d}\left(a_{j, k}(t) \frac{\hbar}{i} \partial_{x_{j}} \frac{\hbar}{i} \partial_{x_{k}}+b_{j, k}(t) x_{j} \frac{\hbar}{i} \partial_{x_{k}}+c_{j, k}(t) x_{j} x_{k}\right) \\
& +\sum_{j=1}^{d}\left(a_{j}(t) \frac{\hbar}{i} \partial_{x_{j}}+b_{j}(t) x_{j}\right)+c(t, x)
\end{aligned}
$$

Here $a_{j, k}(t), b_{j, k}(t), c_{j, k}(t), a_{j}(t), b_{j}(t)$ and $\partial_{x}^{\alpha} c(t, x)$ are real-valued continuous bounded functions.

We can produce many $\boldsymbol{F}[q, p] \in \mathcal{F}$

We will define the class \mathcal{F} in the last section. Because, even if we do not state the definition of \mathcal{F} here, we can produce many functionals $F[q, p] \in \mathcal{F}$.

Examples of $\boldsymbol{F}[\boldsymbol{q}, \boldsymbol{p}] \in \mathcal{F}$
(1) The functionals of (t, q) independent of p,

$$
\boldsymbol{F}[\boldsymbol{q}]=\boldsymbol{B}(\boldsymbol{t}, \boldsymbol{q}(\boldsymbol{t})) \in \mathcal{F}, \quad \boldsymbol{F}[\boldsymbol{q}, \boldsymbol{p}] \equiv 1 \in \mathcal{F}
$$

(2) The Riemann integrals $F[q, p]=\int_{T^{\prime}}^{T^{\prime \prime}} B(t, q(t), p(t)) d t \in \mathcal{F}$.

Theorem $1 \underset{F}{ } \boldsymbol{q}, p], G[q, p] \in \mathcal{F} \Longrightarrow \boldsymbol{F}[q, p]+\boldsymbol{G}[q, p], \boldsymbol{F}[q, p] G[q, p] \in \mathcal{F}$.

The time slicing approximation

Let $\Delta_{T, 0}=\left(T_{J+1}, T_{J}, \ldots, T_{1}, T_{0}\right)$ be any division of the interval $[0, T]$.

$$
\Delta_{T, 0}: T=T_{J+1}>T_{J}>\cdots>T_{1}>T_{0}=0
$$

Set $t_{j}=T_{j}-T_{j-1}$ for $j=1,2, \ldots, J+1$. Let $\left|\Delta_{T, 0}\right|=\max _{1 \leq j \leq J+1} t_{j}$.
Set $x_{J+1}=x$ Let $x_{j} \in \mathrm{R}^{d}$ and $\xi_{j} \in \mathrm{R}^{d}$ for $j=1,2, \ldots, J+1$.

The bicharacteristic paths Assume $\kappa_{2} d\left(T_{j}-T_{j-1}\right)<1 / 2$.
Let $\bar{q}_{T_{j}, T_{j-1}}\left(t, x_{j}, \xi_{j-1}\right), \bar{p}_{T_{j}, T_{j-1}}\left(t, x_{j}, \xi_{j-1}\right)$ satisfy the canonical equation

$$
\begin{aligned}
& \partial_{t} \bar{q}_{T_{j}, T_{j-1}}(t)=\left(\partial_{\xi} H\right)\left(t, \bar{q}_{T_{j}, T_{j-1}}, \bar{p}_{T_{j}, T_{j-1}}\right), \\
& \partial_{t} \bar{p}_{T_{j}, T_{j-1}}(t)=-\left(\partial_{x} H\right)\left(t, \bar{q}_{T_{j}, T_{j-1}}, \bar{p}_{T_{j}, T_{j-1}}\right), \quad T_{j-1} \leq t \leq T_{j}, \\
& \bar{q}_{T_{j}, T_{j-1}}\left(T_{j}\right)=x_{j}, \quad \bar{p}_{T_{j}, T_{j-1}}\left(T_{j-1}\right)=\xi_{j-1} .
\end{aligned}
$$

The piecewise bicharacteristic paths We define

$$
q_{\Delta_{T, 0}}=q_{\Delta_{T, 0}}\left(t, x_{J+1}, \xi_{J}, \ldots, x_{1}, \xi_{0}, x_{0}\right), p_{\Delta_{T, 0}}=p_{\Delta_{T, 0}}\left(t, x_{J+1}, \xi_{J}, \ldots, x_{1}, \xi_{0}\right) \text { by }
$$

$$
\begin{aligned}
& q_{\Delta_{T, 0}}(t)=\bar{q}_{T_{j}, T_{j-1}}\left(t, x_{j}, \xi_{j-1}\right), \quad T_{j-1}<t \leq T_{j}, \quad q_{\Delta_{T, 0}}(0)=x_{0} \\
& p_{\Delta_{T, 0}}(t)=\bar{p}_{T_{j}, T_{j-1}}\left(t, x_{j}, \xi_{j-1}\right), \quad T_{j-1} \leq t<T_{j}, \quad j=1,2, \ldots, J, J+1
\end{aligned}
$$

Feynman path integrals exist

Theorem 2 Let T sufficinetly small. Then, for any $\boldsymbol{F}[q, p] \in \mathcal{F}$,

$$
\begin{aligned}
& \text { (夫) } \int e^{\frac{i}{\hbar} \phi[q, p]} F[q, p] \mathcal{D}[q, p] \\
& \equiv \lim _{\left|\Delta_{T, 0}\right| \rightarrow 0}\left(\frac{1}{2 \pi \hbar}\right)^{d / 2} \int_{\mathrm{R}^{2 d J}} e^{\frac{i}{\hbar} \phi\left[q_{\Delta_{T, 0}}, p_{\Delta_{T, 0}}\right]} \boldsymbol{F}\left[\boldsymbol{q}_{\Delta_{T, 0}}, \boldsymbol{p}_{\Delta_{T, 0}}\right] \prod_{j=1}^{J} d \xi_{j} d x_{j}
\end{aligned}
$$

converges unifomly on compact sets of $\left(x, \xi_{0}, x_{0}\right)$, i.e., well-defined.
Remark Even when $F[q, p] \equiv 1$, each integral of right hand side of (\star)
does not converge absolutely. (Oscillatory integral)

$$
\int_{\mathrm{R}^{2 d}} 1 d \xi_{j} d x_{j}=\infty
$$

Furthermore, the number J of integrals (division points) tends to infinity.

Remark The functionals $\phi\left[\boldsymbol{q}_{\Delta_{T, 0}}, \boldsymbol{p}_{\Delta_{T, 0}}\right], \boldsymbol{F}\left[\boldsymbol{q}_{\Delta_{T, 0}}, \boldsymbol{p}_{\Delta_{T, 0}}\right]$ are functions, i.e.,

$$
\begin{aligned}
& \phi\left[q_{\Delta_{T, 0}}, p_{\Delta_{T, 0}}\right]=\phi_{\Delta_{T, 0}}\left(x_{J+1}, \xi_{J}, x_{J}, \ldots, \xi_{1}, x_{1}, \xi_{0}, x_{0}\right), \\
& F\left[q_{\Delta_{T, 0}}, p_{\Delta_{T, 0}}\right]=F_{\Delta_{T, 0}}\left(x_{J+1}, \xi_{J}, x_{J}, \ldots, \xi_{1}, x_{1}, \xi_{0}, x_{0}\right)
\end{aligned}
$$

In order to treat the integrals one by one as an operator, the Trotter formula uses a sum of functions as an approximation, e.g.,

$$
\sum_{j=1}^{J+1}\left(x_{j}-x_{j-1}\right) \xi_{j-1}-\left(t_{j}-t_{j-1}\right) \frac{\xi_{j-1}^{2}}{2}-\left(t_{j}-t_{j-1}\right) V\left(x_{j-1}\right)
$$

However the operator does not distinguish the configuration paths and the phase space paths.

In our approach, treating the multiple integral directly, we keep the phase space paths in the functionals $\phi\left[q_{\Delta_{T, 0}}, p_{\Delta_{T, 0}}\right], F\left[q_{\Delta_{T, 0}}, p_{\Delta_{T, 0}}\right]$ of the multiple integral.

3. Interchange of the order with Riemann integrals

$$
\text { Theorem } 3 m \geq 0,0 \leq T^{\prime} \leq T^{\prime \prime} \leq T, B(t, x):[0, T] \times \mathrm{R}^{d} \rightarrow \mathrm{C},
$$

$\partial_{x}^{\alpha} B(t, x)$:continuous, $\left|\partial_{x}^{\alpha} B(t, x)\right| \leq C_{\alpha}(1+|x|)^{m}$, Let T sufficiently small.
Then

$$
\int e^{\frac{i}{\hbar} \phi[q, p]}\left(\int_{T^{\prime}}^{T^{\prime \prime}} B(t, q(t)) d t\right) \mathcal{D}[q, p]=\int_{T^{\prime}}^{T^{\prime \prime}}\left(\int e^{\frac{i}{\hbar} \phi[q, p]} B(t, q(t)) \mathcal{D}[q, p]\right) d t
$$

Remark We can also interchange the order with an analytic limit.
Therefore, if $\left|\partial_{x}^{\alpha} B(t, x)\right| \leq C_{\alpha}$,

$$
\begin{aligned}
& \int e^{\frac{i}{\hbar} \phi[q, p]+\frac{i}{\hbar} \int_{0}^{T} B(\tau, q(\tau)) d \tau} \mathcal{D}[q, p] \\
& =\sum_{n=1}^{\infty}\left(\frac{i}{\hbar}\right)^{n} \int_{0}^{T} d \tau_{n} \int_{0}^{\tau_{n}} d \tau_{n-1} \cdots \int_{0}^{\tau_{2}} d \tau_{1} \\
& \times \int e^{\frac{i}{\hbar} \phi[q, p]} B\left(\tau_{n}, q\left(\tau_{n}\right)\right) B\left(\tau_{n-1}, q\left(\tau_{n-1}\right)\right) \cdots B\left(\tau_{1}, q\left(\tau_{1}\right)\right) \mathcal{D}[q, p]
\end{aligned}
$$

Proof of Theorem 3 For simplicity, set $0=T^{\prime}<T^{\prime \prime}=T$.
By Theorem 2, we have

$$
\begin{aligned}
& \int e^{\frac{i}{\hbar} \phi[q, p]}\left(\int_{0}^{T} B(t, q(t)) d t\right) \mathcal{D}[q, p] \\
& =\lim _{\left|\Delta_{T, 0}\right| \rightarrow 0}\left(\frac{1}{2 \pi \hbar}\right)^{d J} \int_{\mathrm{R}^{2 d J}} e^{\frac{i}{\hbar} \phi\left[q_{\Delta_{T, 0}}, p_{\Delta_{T, 0}}\right]} \int_{0}^{T} B\left(t, q_{\Delta_{T, 0}}(t)\right) d t \prod_{j=1}^{J} d \xi_{j} d x_{j}
\end{aligned}
$$

We devide the interval $[0, T]$ into the subintervals $\left[T_{l-1}, T_{l}\right], l=1,2, \ldots, J+1$.

$$
=\lim _{\left|\Delta_{T, 0}\right| \rightarrow 0} \sum_{l=1}^{J+1}\left(\frac{1}{2 \pi \hbar}\right)^{d J} \int_{\mathrm{R}^{2 d J}} e^{\frac{i}{\hbar} \phi\left[q_{\Delta_{T, 0}}, p_{\Delta_{T, 0}}\right]} \int_{T_{l-1}}^{T_{l}} B\left(t, \bar{q}_{T_{l}, T_{l-1}}(t)\right) d t \prod_{j=1}^{J} d \xi_{j} d x_{j}
$$

Since we do not approximate $\bar{q}_{T_{l}, T_{l-1}}(t)$ by the endpoint x_{l} or x_{l-1}, $B\left(t, \bar{q}_{T_{l}, T_{l-1}}(t)\right)$ is continuous on $\left[T_{l}, T_{l-1}\right]$, together with all its derivatives in x_{l} and ξ_{l-1}.

Therefore, we can interchange the order of the Riemann integration on $\left[T_{l-1}, T_{l}\right]$ and the oscillatory integration on $\mathbf{R}^{2 d J}$.

$$
\begin{aligned}
& =\lim _{\left|\Delta_{T, 0}\right| \rightarrow 0} \sum_{l=1}^{J+1} \int_{T_{l-1}}^{T_{l}}\left(\frac{1}{2 \pi \hbar}\right)^{d J} \int_{\mathrm{R}^{2 d J}} e^{\frac{i}{\hbar} \phi\left[{\Delta^{T}, 0}^{0} \boldsymbol{p}_{\Delta_{T, 0}}\right]} B\left(t, \bar{q}_{l, T_{l-1}}(t)\right) \prod_{j=1}^{J} d \xi_{j} d x_{j} d t \\
& =\lim _{\left|\Delta_{T, 0}\right| \rightarrow 0} \int_{0}^{T}\left(\frac{1}{2 \pi \hbar}\right)^{d J} \int_{\mathrm{R}^{2 d J}} e^{\frac{i}{\hbar} \phi\left[q_{\Delta_{T, 0}} p_{\Delta_{T, 0}}\right]} B\left(t, q_{\Delta_{T, 0}}(t)\right) \prod_{j=1}^{J} d \xi_{j} d x_{j} d t .
\end{aligned}
$$

By Theorem 2, the convergence of the time slicing approximation is uniform with respect to t on $[0, T]$. Therefore, we can interchange the order of $\lim _{\left|\Delta_{T, 0}\right| \rightarrow 0}$ and $\int_{0}^{T} \sim d t$.

$$
\begin{aligned}
& =\int_{0}^{T} \lim _{\left|\Delta_{T, 0}\right| \rightarrow 0}\left(\frac{1}{2 \pi \hbar}\right)^{d J} \int_{\mathrm{R}^{2 d J}} e^{\frac{i}{\hbar} \phi\left[q_{\Delta_{T, 0}, p} p_{T, 0}\right]} B\left(t, q_{\Delta_{T, 0}}(t)\right) \prod_{j=1}^{J} d \xi_{j} d x_{j} d t \\
& =\int_{0}^{T}\left(\int e^{\frac{i}{\hbar} \phi[q, p]} B(t, q(t)) \mathcal{D}[q, p]\right) d t .
\end{aligned}
$$

4. Semiclassical approximation $\hbar \rightarrow 0$

Let $4 \kappa_{2} d T<1 / 2$. Then, for any $\left(x_{J+1}, \xi_{0}\right) \in \mathbf{R}^{d} \times \mathbf{R}^{d}$, there exists the stationary point $\left(x_{J}^{*}, \xi_{J}^{*}, \ldots, x_{1}^{*}, \xi_{1}^{*}\right)$ of the phase function $\phi_{\Delta_{T, 0}}$, i.e.,

$$
\left(\partial_{\left(x_{J, 1}, \xi_{J, 1}\right)} \phi_{\Delta_{T, 0}}\right)\left(x_{J+1}, \xi_{J}^{*}, x_{J}^{*}, \ldots, \xi_{1}^{*}, x_{1}^{*}, \xi_{0}\right)=0 .
$$

We define $D_{\Delta_{T, 0}}\left(x_{J+1}, \xi_{0}\right)$ by

$$
D_{\Delta_{T, 0}}\left(x_{J+1}, \xi_{0}\right)=(-1)^{d J} \operatorname{det}\left(\partial_{\left(\xi_{J}, x_{J}, \ldots, \xi_{1}, x_{1}\right)}^{2} \phi_{\Delta_{T, 0}}\right)\left(x_{J+1}, x_{J}^{*}, \xi_{J}^{*}, \ldots, x_{1}^{*}, \xi_{1}^{*}, \xi_{0}\right) .
$$

Lemma There exists a limit function $D\left(T, x, \xi_{0}\right)$ such that

$$
\left|\partial_{x}^{\alpha} \partial_{\xi_{0}}^{\beta}\left(D_{\Delta_{T, 0}}\left(x, \xi_{0}\right)-D\left(T, x, \xi_{0}\right)\right)\right| \leq C_{\alpha, \beta}\left|\Delta_{T, 0}\right| T
$$

We use this limit function $D\left(T, x, \xi_{0}\right)=\lim _{\left|\Delta_{T, 0}\right| \rightarrow 0} D_{\Delta_{T, 0}}\left(x, \xi_{0}\right)$ as a Hamiltonian version of the Morette-Van Vleck determinant.

Theorem 4 (Semiclassical approximation $\hbar \rightarrow 0$)
Let \boldsymbol{T} be sufficiently small. Then, for any $\boldsymbol{F}[\boldsymbol{q}, \boldsymbol{p}] \in \mathcal{F}$,
$\int \boldsymbol{e}^{\frac{i}{\hbar} \phi[\boldsymbol{q}, p]} \boldsymbol{F}[\boldsymbol{q}, \boldsymbol{p}] \mathcal{D}[\boldsymbol{q}, \boldsymbol{p}]=\boldsymbol{e}^{\frac{i}{\hbar} \phi\left[q_{T, 0}, p_{T, 0}\right]}\left(\boldsymbol{D}\left(\boldsymbol{T}, \boldsymbol{x}, \boldsymbol{\xi}_{0}\right)^{-1 / 2} \boldsymbol{F}\left[q_{T, 0}, p_{T, 0}\right]+\hbar \Upsilon\left(\hbar, x, \xi_{0}, x_{0}\right)\right)$.
Here $q_{T, 0}=q_{T, 0}\left(t, x, \xi_{0}, x_{0}\right), p_{T, 0}=p_{T, 0}\left(t, x, \xi_{0}\right)$ is the piecewise bicharacteristic path for the simplest division $0<T$ and

$$
\left|\partial_{x}^{\alpha} \partial_{\xi_{0}}^{\beta} \Upsilon\left(T, \hbar, x, \xi_{0}, x_{0}\right)\right| \leq C_{\alpha, \beta}\left(1+|x|+\left|\xi_{0}\right|+\left|x_{0}\right|\right)^{m}
$$

5. Proof of Theorem 1,2,4

In order to prove the convergence of the multiple integral

$$
\begin{gathered}
(\star) \lim _{\left|\Delta_{T, 0}\right| \rightarrow 0}\left(\frac{1}{2 \pi \hbar}\right)^{d / 2} \int_{\mathrm{R}^{2 d J}} e^{\frac{i}{\hbar} \phi\left[q_{\Delta_{T, 0}}, p_{\Delta_{T, 0}}\right]} F\left[q_{\Delta_{T, 0}}, p_{\Delta_{T, 0}}\right] \prod_{j=1}^{J} d \xi_{j} d x_{j} \\
\infty \times \infty \times \infty \times \infty \times \cdots \cdots, \quad J \rightarrow \infty
\end{gathered}
$$

mathematically, we have only to add many assumptions.

- We have no assumption for $F[q, p] \in \mathcal{F}$ until this section.
- We will probably have at least one example $\boldsymbol{F}[q, p] \equiv 1$ as the solution for the Schrödinger equation.

Do not consider other things.

- Then the class \mathcal{F} will become large as a set.
- If lucky, \mathcal{F} may contain other examples.

Since the oscillatory integral is defined by the integration by parts, we repeat the integration by parts for the multiple oscillatory integral. We add ' $\left|\alpha_{j}\right|,\left|\beta_{j-1}\right| \leq M$ ' so that the multiple integral (\star) can be controlled by

$$
C \times C \times C \times C \times \cdots \cdots, \quad J \rightarrow \infty
$$

Tentative Assumption Let $m \geq 0$. For any integer $M \geq 0$, there exist $A_{M}>0, X_{M}>0$ such that for any $\left|\alpha_{j}\right|,\left|\beta_{j-1}\right| \leq M, j=1,2, \ldots, J, J+1$,

$$
\begin{aligned}
& \left|\left(\prod_{j=1}^{J+1} \partial_{x_{j}}^{\alpha_{j}} \partial_{\xi_{j-1}}^{\beta_{j-1}}\right) \boldsymbol{F}\left(x_{J+1}, \xi_{J}, \ldots, x_{1}, \xi_{0}, x_{0}\right)\right| \\
& \leq A_{M}\left(X_{M}\right)^{J+1}\left(1+\sum_{j=1}^{J+1}\left(\left|x_{j}\right|+\left|\xi_{j-1}\right|\right)+\left|x_{0}\right|\right)^{m}
\end{aligned}
$$

By the stationary phase method, the main term of integral with respect to (ξ_{1}, x_{1}) implies the division $T=T_{J+1}>T_{J}>\cdots>T_{2}>T_{0}=0$, i.e.,

$$
\begin{aligned}
& \left(\frac{1}{2 \pi \hbar}\right)^{d / 2} \int_{\mathrm{R}^{2 d}} e^{\frac{i}{\hbar} \phi\left[q_{\Delta_{T, 0}}, p_{\Delta_{T, 0}}\right]} \boldsymbol{F}\left[\boldsymbol{q}_{\Delta_{T, 0}}, \boldsymbol{p}_{\Delta_{T, 0}}\right] d \xi_{1} d x_{1} \\
& =e^{\frac{i}{\hbar} \phi\left[q_{\left(\Delta_{T, T_{2}}, 0\right)}, \boldsymbol{p}_{\left(\Delta_{T, T_{2}}, 0\right)}\right.} D_{T_{2}, T_{1}, 0}\left(x_{2}, \boldsymbol{\xi}_{0}\right)^{-1 / 2} \boldsymbol{F}\left[\boldsymbol{q}_{\left(\Delta_{T, T_{2}}, 0\right)}, \boldsymbol{p}_{\left(\Delta_{T, T_{2}}, 0\right)}\right]+\hbar \text { (Remainder) }
\end{aligned}
$$

Repeating this process with respect to $\left(\xi_{2}, x_{2}\right), \ldots,\left(\xi_{J}, x_{J}\right)$, we get the main term $e^{\frac{i}{\hbar} \phi\left[q_{T, 0}, p_{T, 0}\right]} D_{\Delta_{T, 0}}\left(x, \xi_{0}\right)^{-1 / 2} \boldsymbol{F}\left[q_{T, 0}, p_{T, 0}\right]$ of Theorem 4.

Furthermore, we add' any $\Delta_{T, 0}$ ' and small terms ' t_{j} ' so that the multiple integral (\star) can be controlled by

$$
C, \quad \text { independent of } J \rightarrow \infty
$$

Tentative Assumption Let $m \geq 0$. For any integer $M \geq 0$, there exist $A_{M}>0, X_{M}>0$ such that for any $\Delta_{T, 0}$, any $\left|\alpha_{j}\right|,\left|\beta_{j-1}\right| \leq M$, $j=1,2, \ldots, J, J+1$,

$$
\begin{aligned}
& \left|\left(\prod_{j=1}^{J+1} \partial_{x_{j}}^{\alpha_{j}} \partial_{\xi_{j-1}}^{\beta_{j-1}}\right) \boldsymbol{F}_{\Delta_{T, 0}}\left(x_{J+1}, \xi_{J}, \ldots, x_{1}, \xi_{0}, x_{0}\right)\right| \\
& \leq \boldsymbol{A}_{M}\left(\boldsymbol{X}_{M}\right)^{J+1}\left(\prod_{j=1}^{J+1}\left(t_{j}\right)^{\min \left(\left|\beta_{j-1}\right|, 1\right)}\right)\left(1+\sum_{j=1}^{J+1}\left(\left|x_{j}\right|+\left|\xi_{j-1}\right|\right)+\left|x_{0}\right|\right)^{m}
\end{aligned}
$$

Remark Note that $q_{\Delta_{T, 0}}(t) \approx x_{j}-t_{j} \xi_{j-1}$ when $T_{j-1}<t \leq T_{j}$.
I do not treat the example $F[q, p]=B(t, q(t), p(t))$ because I do not know how to have sharp $q(t)$ and $p(t)$ at the same time t.

At last, we add ' u_{k} ' for the difference with respect to the height $F[q, p]$ so that the multiple integral (\star) becomes a Cauchy sequence.

Assumption of $\boldsymbol{F}[\boldsymbol{q}, \boldsymbol{p}] \in \mathcal{F}$ Let $\boldsymbol{m} \geq 0, \boldsymbol{u}_{j} \geq 0, \sum_{j=1}^{J+1} \boldsymbol{u}_{j} \leq \boldsymbol{U}<\infty$. For any integer $M \geq 0$, there exist $A_{M}>0, X_{M}>0$ such that for any $\Delta_{T, 0}$, any $\left|\alpha_{j}\right|,\left|\beta_{j-1}\right| \leq M, j=1,2, \ldots, J, J+1$ and any $1 \leq k \leq J$,

$$
\left|\left(\prod_{j=1}^{J+1} \partial_{x_{j}}^{\alpha_{j}} \partial_{\xi_{j-1}}^{\beta_{j-1}}\right) F_{\Delta_{T, 0}}\left(x_{J+1}, \xi_{J}, \ldots, x_{1}, \xi_{0}, x_{0}\right)\right|
$$

$$
\leq A_{M}\left(X_{M}\right)^{J+1}\left(\prod_{j=1}^{J+1}\left(t_{j}\right)^{\min \left(\left|\beta_{j-1}\right|, 1\right)}\right)\left(1+\sum_{j=1}^{J+1}\left(\left|x_{j}\right|+\left|\xi_{j-1}\right|\right)+\left|x_{0}\right|\right)^{m}
$$

$$
\left|\left(\prod_{j=1}^{J+1} \partial_{x_{j}}^{\alpha_{j}} \partial_{\xi_{j-1}}^{\beta_{j-1}}\right) \partial_{x_{k}} F_{\Delta_{T, 0}}\left(x_{J+1}, \xi_{J}, \ldots, x_{1}, \xi_{0}, x_{0}\right)\right|
$$

$$
\leq A_{M}\left(X_{M}\right)^{J+1} u_{k}\left(\prod_{j \neq k}\left(t_{j}\right)^{\min \left(\left|\beta_{j-1}\right|, 1\right)}\right)\left(1+\sum_{j=1}^{J+1}\left(\left|x_{j}\right|+\left|\xi_{j-1}\right|\right)+\left|x_{0}\right|\right)^{m}
$$

