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1. Introduction

Let u(T ) be the solution for the Schrödinger equation

(i~∂T − H(T, x,
~
i
∂x))u(T ) = 0 , u(0) = v .

In the theory of Fourier integral operators, we write u(T ) as

u(T ) =

(
1

2π~

)d ∫
Rd

∫
Rd

K(T, x, ξ0, x0)v(x0)dx0dξ0 .

Using the phase space path integral, we formally write K(T, x, ξ0, x0) as

K(T, x, ξ0, x0) =

∫
e

i
~φ[q,p]D[q, p] .

Here (q, p) : [0, T ] → R2d is the path with q(0) = x0, q(T ) = x and p(0) = ξ0,

φ[q, p] =

∫
[0,T )

p(t) · dq(t) −
∫

[0,T )

H(t, q(t), p(t))dt ,

and the phase space path integral

∫
∼ D[q, p] is a sum over all paths (q, p).



Our results Using piecewise bicharacteristic paths, we prove the exis-

tence of the phase space path integrals∫
e

i
~φ[q,p]F [q, p]D[q, p] ,

with general functional F [q, p] as integrand. More precisely, we give a fairly

general class F such that for any F [q, p] ∈ F , the time slicing approximation

converges uniformly on compact subsets of the endpoints (x, ξ0, x0).

Other mathematical definitions of phase space path integral

• Daubechies-Klauder The definition via analytic continuation

from the phase space Wiener measure.

• Albeverio-Guatteri-Mazzucchi

The definition via Fresnel integral transform

• Smolyanov-Tokarev-Truman The definition via Chernoff formula • • •



2. Existence of phase space path integrals

Assumption H(t, x, ξ) : R × Rd × Rd → R, ∂α
x ∂β

ξ H(t, x, ξ):continuous

|∂α
x ∂β

ξ H(t, x, ξ)| ≤ Cα,β(1 + |x| + |ξ|)max(2−|α+β|,0) .

Examples

H(t, x,
~
i
∂x) =

d∑
j,k=1

(aj,k(t)
~
i
∂xj

~
i
∂xk

+ bj,k(t)xj

~
i
∂xk

+ cj,k(t)xjxk)

+
d∑

j=1

(aj(t)
~
i
∂xj

+ bj(t)xj) + c(t, x) .

Here aj,k(t), bj,k(t), cj,k(t), aj(t), bj(t) and ∂α
x c(t, x) are real-valued

continuous bounded functions.



We can produce many F [q, p] ∈ F
We will define the class F in the last section. Because, even if we do not

state the definition of F here, we can produce many functionals F [q, p] ∈ F .

Examples of F [q, p] ∈ F

(1) The functionals of (t, q) independent of p,

F [q] = B(t, q(t)) ∈ F , F [q, p] ≡ 1 ∈ F .

(2) The Riemann integrals F [q, p] =

∫ T ′′

T ′
B(t, q(t), p(t))dt ∈ F .

(3) If B(t, x, ξ) is bounded, then F [q, p] = e
∫ T ′′
T ′ B(t,q(t),p(t))dt ∈ F .

Theorem 1 F [q, p], G[q, p] ∈ F =⇒ F [q, p] + G[q, p], F [q, p]G[q, p] ∈ F .



The time slicing approximation

Let ∆T,0 = (TJ+1, TJ, . . . , T1, T0) be any division of the interval [0, T ].

∆T,0 : T = TJ+1 > TJ > · · · > T1 > T0 = 0 .

Set tj = Tj − Tj−1 for j = 1, 2, . . . , J + 1. Let |∆T,0| = max1≤j≤J+1 tj.

Set xJ+1 = x. Let xj ∈ Rd and ξj ∈ Rd for j = 1, 2, . . . , J + 1.
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T0 = 0 T1 T2 T3 TJ T = TJ+1

(0, x0)

(T1, x1)
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(T3, x3)

(TJ , xJ) (T, x)

The time slicing on (t, q)-space



The bicharacteristic paths Assume κ2d(Tj − Tj−1) < 1/2.

Let q̄Tj,Tj−1
(t, xj, ξj−1), p̄Tj,Tj−1

(t, xj, ξj−1) satisfy the canonical equation

∂tq̄Tj,Tj−1
(t) = (∂ξH)(t, q̄Tj,Tj−1

, p̄Tj,Tj−1
),

∂tp̄Tj,Tj−1
(t) = −(∂xH)(t, q̄Tj,Tj−1

, p̄Tj,Tj−1
), Tj−1 ≤ t ≤ Tj,

q̄Tj,Tj−1
(Tj) = xj, p̄Tj,Tj−1

(Tj−1) = ξj−1 .
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T0 = 0 Tj−1 Tj T = TJ+1

(0, x0)

(Tj−1, xj−1)

(Tj, xj)

(T, x)

The bicharacteristic path q̄Tj,Tj−1(t, xj, ξj−1)



The piecewise bicharacteristic paths We define

q∆T,0
= q∆T,0

(t, xJ+1, ξJ, . . . , x1, ξ0, x0), p∆T,0
= p∆T,0

(t, xJ+1, ξJ, . . . , x1, ξ0) by

q∆T,0
(t) = q̄Tj,Tj−1

(t, xj, ξj−1), Tj−1 < t ≤ Tj, q∆T,0
(0) = x0

p∆T,0
(t) = p̄Tj,Tj−1

(t, xj, ξj−1), Tj−1 ≤ t < Tj, j = 1, 2, . . . , J, J + 1.
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(TJ , xJ) (T, x)

The piecewise bicharacteristic path q∆T,0



Feynman path integrals exist

Theorem 2 Let T sufficinetly small. Then, for any F [q, p] ∈ F ,

(?)

∫
e

i
~φ[q,p]F [q, p]D[q, p]

≡ lim
|∆T,0|→0

(
1

2π~

)d/2 ∫
R2dJ

e
i
~φ[q∆T,0

,p∆T,0
]
F [q∆T,0

, p∆T,0
]

J∏
j=1

dξjdxj

converges unifomly on compact sets of (x, ξ0, x0), i.e., well-defined.

Remark Even when F [q, p] ≡ 1, each integral of right hand side of (?)

does not converge absolutely. (Oscillatory integral)∫
R2d

1dξjdxj = ∞

Furthermore, the number J of integrals (division points) tends to infinity.

∞ × ∞ × ∞ × ∞ × · · · · · · · · · , J → ∞.



Remark The functionals φ[q∆T,0
, p∆T,0

], F [q∆T,0
, p∆T,0

] are functions, i.e.,

φ[q∆T,0
, p∆T,0

] = φ∆T,0
(xJ+1, ξJ, xJ, . . . , ξ1, x1, ξ0, x0),

F [q∆T,0
, p∆T,0

] = F∆T,0
(xJ+1, ξJ, xJ, . . . , ξ1, x1, ξ0, x0),

In order to treat the integrals one by one as an operator, the Trotter

formula uses a sum of functions as an approximation, e.g.,
J+1∑
j=1

(xj − xj−1)ξj−1 − (tj − tj−1)
ξ2

j−1

2
− (tj − tj−1)V (xj−1).

However the operator does not distinguish the configuration paths and the

phase space paths.

In our approach, treating the multiple integral directly, we keep the phase

space paths in the functionals φ[q∆T,0
, p∆T,0

], F [q∆T,0
, p∆T,0

] of the multiple

integral.



3. Interchange of the order with Riemann integrals

Theorem 3 m ≥ 0, 0 ≤ T ′ ≤ T ′′ ≤ T , B(t, x) : [0, T ] × Rd → C,

∂α
x B(t, x):continuous, |∂α

x B(t, x)| ≤ Cα(1 + |x|)m , Let T sufficiently small.

Then∫
e

i
~φ[q,p]

(∫ T ′′

T ′
B(t, q(t))dt

)
D[q, p] =

∫ T ′′

T ′

(∫
e

i
~φ[q,p]B(t, q(t))D[q, p]

)
dt

Remark We can also interchange the order with an analytic limit.

Therefore, if |∂α
x B(t, x)| ≤ Cα,∫

e
i
~φ[q,p]+ i

~
∫ T
0 B(τ,q(τ ))dτD[q, p]

=
∞∑

n=1

(
i

~

)n ∫ T

0

dτn

∫ τn

0

dτn−1 · · ·
∫ τ2

0

dτ1

×
∫

e
i
~φ[q,p]B(τn, q(τn))B(τn−1, q(τn−1)) · · · B(τ1, q(τ1))D[q, p] .



Proof of Theorem 3 For simplicity, set 0 = T ′ < T ′′ = T .

By Theorem 2, we have∫
e

i
~φ[q,p]

(∫ T

0

B(t, q(t))dt

)
D[q, p]

= lim
|∆T,0|→0

(
1

2π~

)dJ ∫
R2dJ

e
i
~φ[q∆T,0

,p∆T,0
]
∫ T

0

B(t, q∆T,0
(t))dt

J∏
j=1

dξjdxj .

We devide the interval [0, T ] into the subintervals [Tl−1, Tl], l = 1, 2, . . . , J+1.

= lim
|∆T,0|→0

J+1∑
l=1

(
1

2π~

)dJ ∫
R2dJ

e
i
~φ[q∆T,0

,p∆T,0
]
∫ Tl

Tl−1

B(t, q̄Tl,Tl−1
(t))dt

J∏
j=1

dξjdxj .



Since we do not approximate q̄Tl,Tl−1
(t) by the endpoint xl or xl−1,

B(t, q̄Tl,Tl−1
(t)) is continuous on [Tl, Tl−1], together with all its derivatives in

xl and ξl−1.
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T0 = 0 Tl−1 Tl T = TJ+1

(0, x0)

(Tl−1, xl−1)

(Tl, xl)

(T, x)

The particle moves continuously on [Tl−1, Tl]

Therefore, we can interchange the order of the Riemann integration on

[Tl−1, Tl] and the oscillatory integration on R2dJ .



= lim
|∆T,0|→0

J+1∑
l=1

∫ Tl

Tl−1

(
1

2π~

)dJ ∫
R2dJ

e
i
~φ[q∆T,0

,p∆T,0
]
B(t, q̄Tl,Tl−1

(t))
J∏

j=1

dξjdxjdt

= lim
|∆T,0|→0

∫ T

0

(
1

2π~

)dJ ∫
R2dJ

e
i
~φ[q∆T,0

,p∆T,0
]
B(t, q∆T,0

(t))
J∏

j=1

dξjdxjdt .

By Theorem 2, the convergence of the time slicing approximation is uniform

with respect to t on [0, T ]. Therefore, we can interchange the order of

lim
|∆T,0|→0

and

∫ T

0

∼ dt.

=

∫ T

0

lim
|∆T,0|→0

(
1

2π~

)dJ ∫
R2dJ

e
i
~φ[q∆T,0

,p∆T,0
]
B(t, q∆T,0

(t))
J∏

j=1

dξjdxjdt

=

∫ T

0

(∫
e

i
~φ[q,p]B(t, q(t))D[q, p]

)
dt . ¤



4. Semiclassical approximation ~ → 0

Let 4κ2dT < 1/2. Then, for any (xJ+1, ξ0) ∈ Rd × Rd, there exists the

stationary point (x∗
J, ξ∗

J, . . . , x∗
1, ξ∗

1) of the phase function φ∆T,0
, i.e.,

(∂(xJ,1,ξJ,1)φ∆T,0
)(xJ+1, ξ∗

J, x∗
J, . . . , ξ∗

1, x∗
1, ξ0) = 0 .

We define D∆T,0
(xJ+1, ξ0) by

D∆T,0
(xJ+1, ξ0) = (−1)dJ det(∂2

(ξJ ,xJ ,...,ξ1,x1)
φ∆T,0

)(xJ+1, x∗
J, ξ∗

J, . . . , x∗
1, ξ∗

1, ξ0) .

Lemma There exists a limit function D(T, x, ξ0) such that

|∂α
x ∂β

ξ0
(D∆T,0

(x, ξ0) − D(T, x, ξ0))| ≤ Cα,β|∆T,0|T ,

We use this limit function D(T, x, ξ0) = lim
|∆T,0|→0

D∆T,0
(x, ξ0) as a Hamiltonian

version of the Morette-Van Vleck determinant.



Theorem 4 (Semiclassical approximation ~ → 0)

Let T be sufficiently small. Then, for any F [q, p] ∈ F ,∫
e

i
~φ[q,p]F [q, p]D[q, p] = e

i
~φ[qT,0,pT,0](D(T, x, ξ0)

−1/2F [qT,0, pT,0]+~Υ (~, x, ξ0, x0)).

Here qT,0 = qT,0(t, x, ξ0, x0), pT,0 = pT,0(t, x, ξ0) is the piecewise bicharacter-

istic path for the simplest division 0 < T and

|∂α
x ∂β

ξ0
Υ(T, ~, x, ξ0, x0)| ≤ Cα,β(1 + |x| + |ξ0| + |x0|)m .

x
h

x

T0 = 0 T = TJ+1

(0, x0)

(T, x)

The path qT,0 for the simples division 0 < T .



5. Proof of Theorem 1,2,4

In order to prove the convergence of the multiple integral

(?) lim
|∆T,0|→0

(
1

2π~

)d/2 ∫
R2dJ

e
i
~φ[q∆T,0

,p∆T,0
]
F [q∆T,0

, p∆T,0
]

J∏
j=1

dξjdxj

∞ × ∞ × ∞ × ∞ × · · · · · · · · · , J → ∞

mathematically, we have only to add many assumptions.

• We have no assumption for F [q, p] ∈ F until this section.

• We will probably have at least one example F [q, p] ≡ 1

as the solution for the Schrödinger equation.

Do not consider other things.

• Then the class F will become large as a set.

• If lucky, F may contain other examples.



Since the oscillatory integral is defined by the integration by parts,

we repeat the integration by parts for the multiple oscillatory integral.

We add ‘ |αj|, |βj−1| ≤ M ’ so that

the multiple integral (?) can be controlled by

C × C × C × C × · · · · · · · · · , J → ∞

Tentative Assumption Let m ≥ 0. For any integer M ≥ 0, there exist

AM > 0, XM > 0 such that for any |αj|, |βj−1| ≤ M , j = 1, 2, . . . , J, J + 1,

|(
J+1∏
j=1

∂
αj
xj ∂

βj−1

ξj−1
)F (xJ+1, ξJ, . . . , x1, ξ0, x0)|

≤ AM(XM)J+1(1 +
J+1∑
j=1

(|xj| + |ξj−1|) + |x0|)m.



By the stationary phase method, the main term of integral with respect

to (ξ1, x1) implies the division T = TJ+1 > TJ > · · · > T2>T0 = 0, i.e.,(
1

2π~

)d/2 ∫
R2d

e
i
~φ[q∆T,0

,p∆T,0
]
F [q∆T,0

, p∆T,0
]dξ1dx1

= e
i
~φ[q(∆T,T2

,0),p(∆T,T2
,0)]DT2,T1,0(x2, ξ0)

−1/2F [q(∆T,T2
,0), p(∆T,T2

,0)] + ~(Remainder).

Repeating this process with respect to (ξ2, x2), . . . , (ξJ, xJ), we get

the main term e
i
~φ[qT,0,pT,0]D∆T,0

(x, ξ0)
−1/2F [qT,0, pT,0] of Theorem 4.
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T0 = 0 T1 T2 T3 TJ T = TJ+1

(0, x0)
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(T3, x3)

(TJ , xJ) (T, x)

The main term of integral with respect to (ξ1, x1)



Furthermore, we add ‘ any ∆T,0 ’ and small terms ‘ tj ’ so that

the multiple integral (?) can be controlled by

C, independent of J → ∞.

Tentative Assumption Let m ≥ 0. For any integer M ≥ 0, there exist

AM > 0, XM > 0 such that for any ∆T,0, any |αj|, |βj−1| ≤ M ,

j = 1, 2, . . . , J, J + 1,

|(
J+1∏
j=1

∂
αj
xj ∂

βj−1

ξj−1
)F∆T,0

(xJ+1, ξJ, . . . , x1, ξ0, x0)|

≤ AM(XM)J+1(
J+1∏
j=1

(tj)
min(|βj−1|,1))(1 +

J+1∑
j=1

(|xj| + |ξj−1|) + |x0|)m .

Remark Note that q∆T,0
(t) ≈ xj − tjξj−1 when Tj−1 < t ≤ Tj.

I do not treat the example F [q, p] = B(t, q(t), p(t)) because I do not know

how to have sharp q(t) and p(t) at the same time t.



At last, we add ‘ uk ’ for the difference with respect to the height F [q, p]

so that the multiple integral (?) becomes a Cauchy sequence. ¤

Assumption of F [q, p] ∈ F Let m ≥ 0, uj ≥ 0,
∑J+1

j=1 uj ≤ U < ∞. For any

integer M ≥ 0, there exist AM > 0, XM > 0 such that for any ∆T,0, any

|αj|, |βj−1| ≤ M , j = 1, 2, . . . , J, J + 1 and any 1 ≤ k ≤ J ,

|(
J+1∏
j=1

∂
αj
xj ∂

βj−1

ξj−1
)F∆T,0

(xJ+1, ξJ, . . . , x1, ξ0, x0)|

≤ AM(XM)J+1(
J+1∏
j=1

(tj)
min(|βj−1|,1))(1 +

J+1∑
j=1

(|xj| + |ξj−1|) + |x0|)m ,

|(
J+1∏
j=1

∂
αj
xj ∂

βj−1

ξj−1
)∂xk

F∆T,0
(xJ+1, ξJ, . . . , x1, ξ0, x0)|

≤ AM(XM)J+1uk(
∏
j 6=k

(tj)
min(|βj−1|,1))(1 +

J+1∑
j=1

(|xj| + |ξj−1|) + |x0|)m .


