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France

collaborators: F. Baumann, M. Pleimling

arXiv:0709.3228

Path Integrals, MPIPKS Dresden, 25th of September 2007



Contents :

I. Ageing phenomena
physical ageing ; scaling behaviour and exponents

II. Hidden dynamical symmetries
Local scaling with z = 2 ; stochastic field-theory ; computation
of response and correlation functions

III. Local scale-invariance for z 6= 2
Mass terms ; integrability ; test through responses and
correlators in 2D disordered Ising model

IV. Conclusions



I. Ageing phenomena

why do materials ‘look old’ after some time ?

which (reversible) microscopic processes lead to such
macroscopic effects ?

physical ageing known since historical (or prehistorical) times

systematic studies first in glassy systems Struik 78

a priori behaviour should depend on entire prehistory
but evidence for reproducible and universal behaviour

for better conceptual understanding : study ageing first in
simpler systems (i.e. disordered ferromagnets)

ageing : defining characteristics and symmetry properties :
1 slow dynamics (i.e. non-exponential relaxation)
2 breaking of time-translation invariance
3 dynamical scaling

new evidence for larger, local scaling symmetries



easier to study : ageing in simple systems without disorder
consider a simple magnet (ferromagnet, i.e. Ising model)

1 prepare system initially at high temperature T � Tc > 0

2 quench to temperature T < Tc (or T = Tc)
→ non-equilibrium state

3 fix T and observe dynamics Bray 94

competition :
at least 2 equivalent ground states
local fields lead to rapid local ordering
no global order, relaxation time ∞

formation of ordered domains, of linear size L = L(t) ∼ t1/z

dynamical exponent z



Snapshots of spin configurations in several 2D/3D Ising models
quenched to T < Tc , for three different times t = 25, 100, 225.
Left : pure Middle : disordered Right : 3D spin glas



Scaling behaviour & exponents

single relevant time-dependent length scale L(t) ∼ t1/z

Bray 94, Janssen et al. 92, Cugliandolo & Kurchan 90s, Godrèche & Luck 00, . . .

correlator C (t, s; r) := 〈φ(t, r)φ(s, 0)〉 = s−bfC

(
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s
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r

(t − s)1/z

)
response R(t, s; r) :=

δ〈φ(t, r)〉
δh(s, 0)
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h=0

= s−1−afR
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)
No fluctuation-dissipation theorem : R(t, s; r)6=T∂C (t, s; r)/∂s
values of exponents : equilibrium correlator → classes S and L

Ceq(r) ∼
{

exp(−|r|/ξ)

|r|−(d−2+η) =⇒
{

class S
class L

=⇒
{

a = 1/z
a = (d − 2 + η)/z

if T < Tc : z = 2 and b = 0 if T = Tc : z = zc and b = a
for y →∞ : fC ,R(y , 0) ∼ y−λC ,R/z , λC ,R independent exponents
Question : general arguments to find form of scaling functions ?



II. Hidden dynamical symmetries

Consider possible symmetries of Langevin equations (model A)
Hohenberg-Halperin 77

2M∂φ

∂t
= ∆φ− δV[φ]

δφ
+ η

non-conserved order-parameter φ(t, r), centreded noise η :

〈η(t, r)η(t ′, r′)〉 = 2T δ(t − t ′)δ(r − r′)

fully disordered initial conditions (centered gaussian noise)
Question : extended dynamical scaling for given z 6= 1? MH 92, 94, 02

motivation :

1. conformal invariance in equilibrium critical phenomena, z = 1
2. Schrödinger-invariance of simple diffusion, z = 2

Lie 1881, Niederer 72, Hagen 71, Kastrup 68

t 7→ αt

γt + δ
, r 7→ Rr + vt + a

γt + δ
, αδ = 1

Lie algebra aged ⊂ schd , projective representations



Stochastic field-theory

Langevin equations do not have non-trivial dynamical symmetries !
compare results of deterministic symmetries to stochastic models ?
go to stochastic field-theory, action Janssen, de Dominicis,. . . 70s-80s

J [φ, φ̃] =

∫
φ̃(2M∂t −∆)φ + φ̃V ′[φ]︸ ︷︷ ︸
J0[φ,eφ] : deterministic

−T

∫
φ̃2 −

∫
φ̃t=0Cinit φ̃t=0︸ ︷︷ ︸

+ Jb[eφ] : noise

φ̃ : response field ; C (t, s) = 〈φ(t)φ(s)〉, R(t, s) = 〈φ(t)φ̃(s)〉
averages : 〈A〉0 :=

∫
DφDφ̃ A[φ, φ̃] exp(−J0[φ, φ̃])

masses :
Mφ = −Meφ

Theorem : IF J0 is Galilei- and spatially translation-invariant,
then Bargman superselection rules hold true :〈

φ1 · · ·φn φ̃1 · · · φ̃m

〉
0
∼ δn,m (1)



computation of a response function Picone & MH 04

R(t, s) =
〈
φ(t)φ̃(s)

〉
=
〈
φ(t)φ̃(s)e−Jb[eφ]

〉
0

=
〈
φ(t)φ̃(s)

〉
0

= R0(t, s)

Bargman eq. (1) =⇒ response function does not depend on noise !
left side : computed in stochastic models
right side : local scale-symmetry of deterministic equation
application to ageing : aged -covariant two-point response function

R(t, s; r) = r0s
−1−a

( t

s

)1+a′−λR/z( t

s
− 1
)−1−a′

exp

(
−M

2

r2

t − s

)
find C (t, s) = 〈φ(t)φ(s)〉 = 〈φ(t)φ(s)e−Jb[eφ]〉0 from Bargman rule
‘initial’ and ‘thermal’ contributions ; contain four-point responses
explicit tests in Ising/Potts models H & P 03, MH et al. 04, Lorenz & Janke 07



III. Local scale-invariance for z 6= 2

Extend to z 6= 1, 2 by generators with mass terms (for d = 1) :
MH 02 ; Baumann & MH 07

Y1−1/z := −t∂r − µzr∇2−z
r − γz(2− z)∂r∇−z

r Galilei

X1 := −t2∂t −
2

z
tr∂r −

2(x + ξ)

z
t − µr2∇2−z

r special

−2γ(2− z)r∂r∇−z
r − γ(2− z)(1− z)∇−z

r

depend on two parameters γ,µ and on two dimensions x , ξ

contains fractional derivative (f̂ : Fourier transform)

∇α
r f (r) := iα

∫
Rd

dk

(2π)d
|k|αe ir·k f̂ (k)

some properties : ∇α
r ∇

β
r = ∇α+β

r , [∇α
r , ri ] = α∂ri∇α−2

r

∇α
r exp(iq · r) = iα|q|α exp(iq · r)



Fact 1 : simple algebraic structure :

[Xn,Xn′ ] = (n − n′)Xn+n′ , [Xn,Ym] =
(n

z
−m

)
Yn+m

→ Generate Ym from Y−1/z = −∂r .
Fact 2 : LSI-invariant Schrödinger operator :

S := −µ∂t + z−2∇z
r

Let x0 + ξ = 1− 2/z + (2− z)γ/µ. Then [S,Ym] = 0 and

[S,X0] = −S , [S,X1] = −2tS +
2µ

z
(x − x0)

=⇒ Sφ = 0 is lsi-invariant equation, if xφ = x0.



Fact 3 : non-trivial conservation laws :
iterated commutator with G := Y1−1/z , ad G . = [.,G ]

M` := (adG )2`+1 Y−1/z = a`µ
2`+1∇(2`+1)(1−z)+1

r

For z = 2, a` = 0 if ` ≥ 1. For a n-point function
F (n) = 〈φ1 . . . φn〉, M`F

(n) = 0 gives in momentum space(
n∑

i=1

µ2`−1
i |ki |2`−(2`−1)z

)
F̂ (n)({ti , ki}) = 0(

n∑
i=1

ki

)
F̂ (n)({ti , ki}) = 0

=⇒ momentum conservation & conservation of |k|α !
analogous to relativistic factorisable scattering Zamolodchikov2 79, 89



Consequence : a lsi-covariant 2n-point function F (2n) is only
non-zero, if the ‘masses’ µi can be arranged in pairs (µi , µσ(i))

with i = 1, . . . , n such that µi = −µσ(i) .

generalized Galilei-invariance with z 6= 2 =⇒ ‘integrability’
Corollary 1 : Bargman rule : 〈φ1 . . . φn φ̃1 . . . φ̃m〉0 ∼ δn,m

Corollary 2 : treat (linear) stochastic equations with lsi-invariant
deterministic part, reduction formulæ
Corollary 3 : response function noise-independent

R(t, s; r) = R(t, s)F (µ1,γ1)(|r|(t − s)−1/z)

R(t, s) = r0 s−a
( t

s

)1+a′−λR/z ( t

s
− 1
)−1−a′

F (µ,γ)(u) =

∫
Rd

dk

(2π)d
|k|γ exp (iu · k− µ|k|z)

Corollary 4 :
Correlators obtained from factorised 4-point responses.



How to test the foundations of LSI

describes dynamic symmetries of deterministic part of Langevin eq.
local scaling theory is built on :

a) simple scaling – domain sizes L(t) ∼ t1/z

b) invariance under Möbius transformation t 7→ t/(γt + δ)
c) Galilei-invariance generalised to z 6= 2

together with spatial translation-invariance
=⇒ extended Bargman rules
=⇒ factorisation of 2n-point functions

Möbius transformation autoresponse R(t, s)
generalised Galilei-invariance space-time response R(t, s; r)
factorisation two-time correlation function



Tests of LSI for z 6= 2 :

spherical model with conserved order-parameter, T = Tc ,
z = 4 Baumann & MH 06

Mullins-Herring model for surface growth, z = 4
Röthlein, Baumann, Pleimling 06

spherical model with long-ranged interactions, T ≤ Tc ,
0 < z = σ < 2 Cannas et al. 01 ; Baumann, Dutta, MH 07

2D Ising model with disorder, T < Tc (non-frustrated)
Hamiltonian H = −

∑
i ,j Jijσiσj

uniform disorder Jij ∈ [1− ε/2, 1 + ε/2] =⇒ Tc(ε) ≈ Tc(0)
disorder defects ‘pin’ domain walls =⇒ thermal activation

if logarithmic barrier heights =⇒ z = 2 + ε/T .
Paul, Puri & Rieger 04

change contrôle parameters to vary z



Practical tests of LSI, I : autoresponse

(a) ε = 0.5, T = 0.6 (b) ε = 1, T = 1 (c) ε = 2, T = 0.6

Thermoremanent susceptibility
χTRM(t, s) =

∫ s
0 du R(t, u) = s−afM(t/s) + O(s−λR/z)

Full curve : LSI-prediction, with a = a′ = 1/z .
Confirm z = 2 + ε/T : agreement with Paul, Puri & Rieger 04.

MH & Pleimling, Europhys. Lett. 76, 561 (2006).



Practical tests of LSI, II : space-time response

(a) ε = 2, T = 1 (b) ε = T = 1 (c) ε = T = 0.5 (d) ε = 0.5, T = 1

χTRM(t, s; r) =
∫ s
0 du R(t, u; r) = s−ar0fM(t/s, rs−1/z)+O(t−λR/z)

Scaling function fM only depends on ratio ε/T =⇒ universality
Full curve : LSI-prediction, with y = t/s fixed and a = a′ = 1/z .

first test of ‘Galilei-invariance’ for z 6= 2 in a non-linear model

Baumann, MH & Pleimling, arXiv :0709.3228.



Practical tests of LSI, III : autocorrelation

(a) ε = 0.5, T = 1, (b,c) ε = 2, T = 1 (d) t = [200, 300, 500, 1000, 2000]

No simple scaling with y = t/s for z & 4 ! P, S & R 06 ; H & P 06

↘ indication for ‘superageing’ ? Paul, Schehr, Rieger 07

1. subtract finite-time correction, C (t, s) = fC (t/s)− s−b′
gC (t/s)

2. then scaling of C (t, s) according to simple ageing with y = t/s
* Scaling function fC only depends on ratio ε/T =⇒ universality
* ageing sets in at late time scale τ = t − s ∼ sζ

Zippold, Kühn, Horner 00

use C (s + τ, s; r) ∼ exp(−νr2s−2/z) generalised from Ohta,Jasnow,Kawasaki 82



(a) ε = 2, T = 1 (b) ε = T = 1 (c) ε = T = 0.5 (d) ε = 0.5, T = 1

Dashed line : LSI with fully disordered initial correlator
Full curve : LSI prediction

fC (y) = c2y
ρ

∫
Rd

dk

(2π)d
|k|2β exp

(
−α|k|z(y − 1)− k2

4ν

)
with β = λC − λR , ρ = (2β + d − λC )/z . Used ‘initial’ correlator
C (s + τ, s; r) ∼ exp(−νr2s−2/z) : asymptotic, enough for z > 2

Baumann, MH & Pleimling, arXiv :0709.3228.



IV. Conclusions

1 look for extensions of dynamical scaling in ageing systems
recently, scaling derived for phase-ordering Arenzon et al. 07

2 here : hypothesis of generalised Galilei-invariance
3 leads to Bargman rule if z = 2

and further to ‘integrability’ if z 6= 1, 2.
4 hidden dynamical symmetry of deterministic part of (linear)

Langevin equations
5 Tests : derive two-time response and correlation functions
6 LSI exactly proven for linear Langevin equations

very good numerical evidence for non-linear systems

Some questions (the list could/should be extended) :

how to physically justify Galilei-invariance ?

how to extend to non-linear equations ? first attempts Stoimenov & MH 05

choice of the type of fractional derivative ?

what is the algebraic (non-Lie !) structure of LSI ?

treatment of master equations with LSI ?


