On the Path Integral for Non-Commutative (NC) Theories

Christoph Dehne

Institut für Theoretische Physik
Fakultät für Physik und Geowissenschaften
Universität Leipzig
September 27, 2007

Outline of Talk

I Motivation for QFT on non-commutative (NC) spacetime
II Particular set-up of QFT on NC spacetime
III Path integral (Hamiltonian approach):
a) in time/space NC QFT corresponding to T^{\star}-ordering
b) in time/space NC QFT corresponding to T-ordering

IV Summary \& outlook

I Motivation for QFT on NC spacetime

- 1)Snyder 1947, Yang 1947:

Hope to remove divergences by introducing a minimum length

- 2)Gedankenexperiment:
(Doplicher, Fredenhagen, Roberts: [DFR 1995])
Creation of micro-black holes in scattering events with high energy transfer restricts possible resolution of spacetime events. Below Planck scale, measurements become meaningless.
\Longrightarrow spacetime uncertainty relations
- 3)String theory:
(Connes, Douglas, Schwarz; Schomerus ; Seiberg, Witten (1998/ 1999))
Low energy limit of open string attached to a
D-brane in a constant background magnetic field can be desribed by QFT on NC space (, not NC spacetime).

II Particular set-up of QFT on NC spacetime (1)

- Use Weyl-Moyal correspondence \& replace the product of functions on commutative spacetime by Moyal-product (*-product):

$$
\left(f_{1} * f_{2}\right)(x):=\left[\exp \left(\frac{i}{2} \theta^{\mu \nu} \partial_{\mu}^{x} \partial_{\nu}^{y}\right) f_{1}(x) f_{2}(y)\right]_{y=x}
$$

- $\left[\hat{x}_{\mu}, \hat{x}_{\nu}\right]=: i \theta_{\mu \nu} 1 ; \hat{x}_{\mu}, \hat{x}_{\nu}$: coordinate operators; $\theta_{\mu \nu}$: real, antisymmetric, constant matrix $(d=1+3)$
- trace property: $\int d^{4} x f * g(x)=\int d^{4} x f \cdot g(x)$ for $f, g \in \mathcal{S}\left(\mathbb{R}^{3+1}\right)$
(here: time/space non-commutativity $\left(\theta^{0 i} \neq 0, i=1,2,3\right)$)

II Particular set-up of QFT on NC spacetime (2)

Starting point for QFT on NC spacetime

- Ansatz for free (neutral massive scalar) theory:

$$
\begin{aligned}
& S_{k i n}^{N C}=\frac{1}{2} \int d^{4} x:\left(\frac{\partial}{\partial t} \phi * \frac{\partial}{\partial t} \phi\right)(x):+ \\
& :\left(\partial_{i} \phi * \partial^{i} \phi\right)(x):+m^{2}:(\phi * \phi)(x):=S_{k i n}
\end{aligned}
$$

due to trace property for star product
\Longrightarrow free QFT in NC case equals free (ordinary) QFT

- Ansatz for interaction theory:

$$
\begin{aligned}
& S_{I}^{N C} \propto \frac{1}{2} \int d^{4} x \lambda:(\phi * \ldots * \phi)(x): \propto \\
& \lambda \int d^{4} k_{1} \ldots \int d^{4} k_{n}: \check{\phi}\left(k_{1}\right) \ldots \check{\phi}\left(k_{n}\right): e^{\frac{-i}{2} \sum_{i<j} k_{i}^{\mu} \theta_{\mu \nu} k_{j}^{\nu}} \delta^{4}\left(\sum k_{i}\right)
\end{aligned}
$$

\Longrightarrow Perturbation theory (generally): Vertices contain trigonometric functions of momenta (twisting factor)

Illa Path Integral corresponding to T^{\star}-Ordering (1)

- Naïve ansatz for path integral $\left(\theta_{0 i} \neq 0\right)$:

Choose nonlocal interaction: $\mathcal{L}_{\text {int }}(\phi)_{*}:=\phi * \phi * \phi(x)$,
e. g., and plug it in the formula for generating functional of local case $\left(\Delta_{c}(z)\right.$: causal propagator):

$$
\begin{aligned}
& Z[J]=N_{00} \exp \left[i \int d^{4} z \mathcal{L}_{\text {int }}\left(\frac{\delta}{i \delta J(z)}\right)_{*}\right] \times \\
& \times \exp \left[\frac{-1}{2} \int d^{4} a \int d^{4} b J(a) \Delta_{c}(a-b) J(b)\right]
\end{aligned}
$$

- Perturbative expansion leads to naïve Feynman rules: Graphs with causal propagators as internel lines, only difference: every vertex is multiplied by a factor (trigonometric function of momenta)
- Example (fishgraph):

$$
\int \frac{d^{4} q}{(2 \pi)^{4}} \frac{i}{q^{2}-m^{2}+i \epsilon} \cos ^{2}\left(\frac{p_{\mu} \theta^{\mu \nu} q_{\nu}}{2}\right) \frac{i}{(p-q)^{2}-m^{2}+i \epsilon}
$$

Illa Path Integral corresponding to T^{\star}-Ordering (2)

Further remarks:

- These Feynman rules are also obtained by starting from Gell-Mann - Low formula (canonical approach) and applying T^{\star}-operator (T^{\star}-product: all time derivatives of star product act after time ordering, see Heslop \& Sibold [11/04])
- According to Gomis \& Mehen [02,00]: Feynman rules violate unitarity.
- Feynman rules violate causal time-ordering (C.D., in preparation).
- No loss of (manifest) covariance (p. c. with Prof. Fredenhagen.).
- See K. Fujikawa [06/04]: same p. i. from e. o. m.: same Feynman rules as above

IIIb Path Integral corresponding to T-Ordering (1)

Path Integral
for
NC Theories

- Question: In the case of $\theta_{0 i} \neq 0$, can one modify the generating functional (of the local theory) in such a way that the Feynman rules preserve causal time ordering?
- Answer: Yes!

$$
\begin{aligned}
& Z[J]=N_{00} \exp \left[i \int d^{4} z\left[\mathcal{L}_{\text {int }}\left(\frac{\delta}{i \delta(z)}\right)_{*}\right] \vec{\theta}\right] \times \\
& \times \exp \left[\frac{-1}{2} \int d^{4} a \int d^{4} b J(a) T \Delta_{+}(a-b) J(b)\right]
\end{aligned}
$$

- $T \Delta_{ \pm}(z):=\vartheta\left(z^{0}\right) \Delta_{+}(z)+\vartheta\left(-z^{0}\right) \Delta_{+}(-z)=\Delta_{c}(z)$
- $\left[\left(\frac{\delta}{\delta J(x)}\right)_{*}\right]_{\theta}$: For each time-ordered configuration take first the time derivative (associated to $\theta_{0 i}$) of $\Delta_{+}(x)$. Then, realize the time ordering by multiplication with step function. (The argument of the step function never contains $\theta_{0 i}$).

IIIb Path Integral corresponding to T-Ordering (2)

Main result: Feynman rules are the same as those derived within the canonical approach and leading to old-fashioned perturbation theory (OTO) (equivalence between canonical approach and path integral)

- Old-fashioned perturbation theory (OTO) (Liao \& Sibold [05/02], [06/02]; see also Liao \& Dehne [11/02]): Start from Gell-Mann - Low formula and apply T-ordering.
- T-product: all time derivatives of star product act before time ordering is applied (See also Fujikawa [04/06], [04/10]; Heslop \& Sibold [11/04].)
- These Feynman rules maintain unitarity and causal time-ordering.
- Loss of (manifest) covariance.
- Derivation of Feynman rules from generating functional is less tedious than in the canonical case!

IIIb Path Integral corresponding to T-Ordering (3)

Excursion: Time-ordered perturbation theory adapted to NC field theory (OTO), fishgraph example:

$$
\begin{aligned}
& \mathcal{T} \propto \lambda^{2} \sum_{\sigma_{1,2} \in\{-,+\}} \int \frac{d^{3} p_{1}}{\omega_{\bar{p}_{1}}} \int \frac{d^{3} p_{2}}{\omega_{\overrightarrow{p_{2}}}} \frac{1}{4}\left(1+\sigma_{1} \frac{k_{1}^{0}}{\omega_{\overrightarrow{k_{1}}}}\right)\left(1+\sigma_{2} \frac{k_{2}^{0}}{\omega_{\overrightarrow{k_{2}}}}\right) \\
& 2 \pi \delta\left(k_{1}^{0}-k_{2}^{0}\right) \delta^{3}\left(\vec{p}_{1}+\vec{p}_{2}-\vec{k}_{1}\right) \delta^{3}\left(\vec{p}_{1}+\vec{p}_{2}-\vec{k}_{2}\right) \\
& \left(\frac{\left(\sum_{s y m} e^{-i\left(-k_{1}, \sigma_{1}, p_{1}+, p_{2+}\right)} e^{-i\left(-k_{2, \sigma_{2}}, p_{1}+p_{2+}\right)}\right)}{k_{1}^{0}-\omega_{\vec{p}_{1}}-\omega_{\vec{p}_{2}}+i \epsilon}\right. \\
& \left.+\quad \frac{\left(\sum_{s y m} e^{-i\left(-k_{1, \sigma 1}, p_{1}-, p_{2}-\right)} e^{-i\left(-k_{2}, \sigma_{2}, p_{1}-, p_{2}-\right)}\right)}{-k_{2}^{0}-\omega_{\vec{p}_{1}}-\omega_{\overrightarrow{p_{2}}}+i \epsilon}\right) \\
& \text { - } \omega_{\vec{p}}:=\sqrt{m^{2}+\vec{p}^{2}},(a, b, c):=a \wedge b+a \wedge c+b \wedge c, a \wedge b:=\frac{a_{\mu} \theta^{\mu \nu} b_{\nu}}{2} \text {, } \\
& p_{\sigma}:=\left(\sigma \omega_{\vec{p}}, \vec{p}\right)^{\tau}
\end{aligned}
$$

- Feynman graph decomposes into a part with retardation property and advancement property
- Feynman rules corresponding to T-ordering (OTO): four-momenta in the NC phase are on-shell (loss of covariance)
- Just compare to Feynman rules corresponding to T^{\star}-ordering: four-momenta are off-shell (covariance)

IV Summary and outlook

Summary and outlook

- Main result: successful derivation of path integral formula corresponding to the T-product in canonical case (Hamiltonian approach)
- Feynman rules are identical to those of OTO and thus preserve unitarity and causal time-ordering.
- time ordering (or rather quantization prescription) not rigidly implemented in the path integral
- in progress: path integral based on T-operator I) in u-coordinates, II) starting from field equation
- in progress: Wick rotation and Euclidean Feynman rules (reflection positivity: $\theta_{0 k} \rightarrow \pm i \theta_{0 k}(k=1,2,3)$, effect on famous UV/IR-connection (!))
C.D. acknowledges advice from Prof. K. Sibold.

