Path Integral for NC Theories

Outline of Talk

I Motivation

II Set-up

IIIa Path Integral: T^{*}–Produc

IIIb Path Integral: *T*–Produc

IV Summary & outlook

On the Path Integral for Non–Commutative (NC) Theories

Christoph Dehne

Institut für Theoretische Physik Fakultät für Physik und Geowissenschaften Universität Leipzig

September 27, 2007

Outline of Talk

Path Integral for NC Theories

Outline of Talk

I Motivation

II Set-up

IIIa Path Integral: T^{*}–Product

IIIb Path Integral: *T–*Product

IV Summary & outlook Motivation for QFT on non-commutative (NC) spacetime

II Particular set-up of QFT on NC spacetime

III Path integral (Hamiltonian approach):
a) in time/space NC QFT corresponding to T*-ordering
b) in time/space NC QFT corresponding to T-ordering

IV Summary & outlook

I Motivation for QFT on NC spacetime

Path Integral for NC Theories

Outline of Talk

I Motivation

II Set-up

IIIa Path Integral: T^{*}–Produc

IIIb Path Integral: *T–*Product

IV Summary & outlook

• 1)<u>Snyder 1947, Yang 1947:</u> Hope to remove divergences by introducing a minimum length

2)Gedankenexperiment: (Doplicher, Fredenhagen, Roberts: [DFR 1995]) Creation of micro-black holes in scattering events with high energy transfer restricts possible resolution of spacetime events. Below Planck scale, measurements become meaningless. ⇒ spacetime uncertainty relations

• 3)String theory:

(Connes, Douglas, Schwarz; Schomerus ; Seiberg, Witten (1998/ 1999)) Low energy limit of open string attached to a D-brane in a constant background magnetic field can be desribed by QFT on NC *space* (, not NC *spacetime*).

II Particular set-up of QFT on NC spacetime (1)

Path Integral for NC Theories

Outline of Talk

I Motivation

II Set-up

IIIa Path Integral: T^{*}-Product

IIIb Path Integral: *T*–Product

IV Summary & outlook Popular idea to implement non-commutative structure :

• Use Weyl–Moyal correspondence & replace the product of functions on commutative spacetime by Moyal–product (*–product):

$$(f_1 * f_2)(x) := \left[\exp(\frac{i}{2} heta^{\mu
u}\partial^x_\mu\partial^y_
u)f_1(x)f_2(y)
ight]_{y=x}$$

- $[\hat{x}_{\mu}, \hat{x}_{\nu}] =: i\theta_{\mu\nu}1; \hat{x}_{\mu}, \hat{x}_{\nu}:$ coordinate operators; $\theta_{\mu\nu}:$ real, antisymmetric, constant matrix (d = 1 + 3)
- trace property: $\int d^4x f * g(x) = \int d^4x f \cdot g(x)$ for $f, g \in \mathcal{S}(\mathbb{R}^{3+1})$
- (• here: time/space non-commutativity ($\theta^{0i} \neq 0$, i = 1, 2, 3))

II Particular set-up of QFT on NC spacetime (2)

Path Integral for NC Theories

Outline of Talk

I Motivation

II Set-up

IIIa Path Integral: T*–Produc

IIIb Path Integral: *T*–Product

IV Summary & outlook

- Starting point for QFT on NC spacetime
- Ansatz for free (neutral massive scalar) theory:

$$\begin{split} S_{kin}^{NC} &= \frac{1}{2} \int d^4 x : \left(\frac{\partial}{\partial t} \phi * \frac{\partial}{\partial t} \phi \right)(x) : + \\ & (\partial_i \phi * \partial^i \phi)(x) : + m^2 : (\phi * \phi)(x) := S_{kin} \end{split}$$

due to trace property for star product

- \implies free QFT in NC case equals free (ordinary) QFT
- Ansatz for interaction theory:

$$S_{I}^{NC} \propto \frac{1}{2} \int d^{4}x \lambda : (\phi * ... * \phi)(x) : \propto$$

$$\lambda \int d^{4}k_{1} ... \int d^{4}k_{n} : \check{\phi}(k_{1}) ... \check{\phi}(k_{n}) : e^{\frac{-i}{2} \sum_{i < j} k_{i}^{\mu} \theta_{\mu\nu} k_{j}^{\nu}} \delta^{4}(\sum k_{i})$$

 \implies Perturbation theory (generally): Vertices contain trigonometric functions of momenta (twisting factor)

IIIa Path Integral corresponding to T^* -Ordering (1)

Path Integral for NC Theories

Outline of Talk

I Motivation

II Set-up

IIIa Path Integral: T*-Product

IIIb Path Integral: *T*–Product

IV Summary & outlook • Naïve ansatz for path integral $(\theta_{0i} \neq 0)$:

Choose *nonlocal* interaction: $\mathcal{L}_{int}(\phi)_* := \phi * \phi * \phi(x)$, e. g., and plug it in the formula for generating functional of *local* case ($\Delta_c(z)$: causal propagator):

$$Z[J] = N_{00} \exp[i \int d^4 z \mathcal{L}_{int}(\frac{\delta}{i\delta J(z)})_*] \times \\ \times \exp[\frac{-1}{2} \int d^4 a \int d^4 b J(a) \Delta_c(a-b) J(b)]$$

• Perturbative expansion leads to naïve Feynman rules: Graphs with causal propagators as internel lines, only difference: every vertex is multiplied by a factor (*trigonometric function* of momenta)

• Example (fishgraph):

$$\int \frac{d^4q}{(2\pi)^4} \frac{i}{q^2 - m^2 + i\epsilon} \cos^2\left(\frac{p_\mu \theta^{\mu\nu} q_\nu}{2}\right) \frac{i}{(p-q)^2 - m^2 + i\epsilon}$$

IIIa Path Integral corresponding to T^* -Ordering (2)

Path Integral for NC Theories

Further remarks:

• These Feynman rules are also obtained by starting from <u>Gell-Mann - Low formula</u> (canonical approach) and applying <u> T^* -operator</u> (T^* -product: all time derivatives of star product act after time ordering, see Heslop & Sibold [11/04])

• According to Gomis & Mehen [02,00]: Feynman rules violate unitarity.

• Feynman rules violate causal time-ordering (C.D., in preparation).

• No loss of (manifest) covariance (p. c. with Prof. Fredenhagen.).

 \bullet See K. Fujikawa [06/04]: same p. i. from e. o. m.: same Feynman rules as above

IIIa Path Integral: T^{*}-Product

IIIb Path Integral: *T–*Product

IV Summary & outlook

IIIb Path Integral corresponding to T-Ordering (1)

Path Integral for NC Theories

Outline of Talk

I Motivation

II Set-up

IIIa Path Integral: T*–Produc

IIIb Path Integral: *T*-Product

IV Summary & outlook

- <u>Question</u>: In the case of $\theta_{0i} \neq 0$, can one modify the generating functional (of the local theory) in such a way that the Feynman rules preserve *causal time ordering*?
- Answer: Yes!

$$Z[J] = N_{00} \exp[i \int d^4 z [\mathcal{L}_{int}(\frac{\delta}{i\delta J(z)})_*]_{\theta}^{\rightarrow}] \times \\ \times \exp[\frac{-1}{2} \int d^4 a \int d^4 b J(a) T \Delta_+(a-b) J(b)]$$

•
$$T\Delta_{\pm}(z) := \vartheta(z^0)\Delta_{+}(z) + \vartheta(-z^0)\Delta_{+}(-z) = \Delta_c(z)$$

• $[(\frac{\delta}{\delta J(x)})_*]_{\theta}^{\rightarrow}$: For each time-ordered configuration take first the time derivative (associated to θ_{0i}) of $\Delta_+(x)$. Then, realize the time ordering by multiplication with step function. (The argument of the step function never contains θ_{0i}).

IIIb Path Integral corresponding to *T*-Ordering (2)

Path Integral for NC Theories

Outline of Talk

I Motivation

II Set–up

IIIa Path Integral: T*–Product

IIIb Path Integral: *T-*Product

IV Summary & outlook <u>Main result</u>: Feynman rules are the same as those derived within the canonical approach and leading to old–fashioned perturbation theory (OTO) (equivalence between canonical approach and path integral)

• Old-fashioned perturbation theory (OTO) (Liao & Sibold [05/02], [06/02]; see also Liao & Dehne [11/02]): Start from <u>Gell-Mann - Low formula</u> and apply *T*-ordering.

• <u>*T*-product</u>: all time derivatives of star product act before time ordering is applied (See also Fujikawa [04/06], [04/10]; Heslop & Sibold [11/04].)

- These Feynman rules maintain unitarity and causal time-ordering.
- Loss of (manifest) covariance.
- Derivation of Feynman rules from generating functional is less tedious than in the canonical case!

IIIb Path Integral corresponding to T-Ordering (3)

Path Integral for NC Theories

Outline of Talk

I Motivation

II Set-up

IIIa Path Integral: T*–Produc

IIIb Path Integral: *T*-Product

IV Summary & outlook $p_{\sigma} := (\sigma \omega_{\vec{p}}, \vec{p})^{\tau}$

Excursion: Time-ordered perturbation theory
adapted to NC field theory (OTO), fishgraph example:

$$\mathcal{T} \propto \lambda^{2} \sum_{\sigma_{1,2} \in \{-,+\}} \int \frac{d^{3}p_{1}}{\omega_{\vec{p}_{1}}} \int \frac{d^{3}p_{2}}{\omega_{\vec{p}_{2}}} \frac{1}{4} (1 + \sigma_{1} \frac{k_{1}^{0}}{\omega_{\vec{k}_{1}}}) (1 + \sigma_{2} \frac{k_{2}^{0}}{\omega_{\vec{k}_{2}}})$$

$$\cdot 2\pi \delta(k_{1}^{0} - k_{2}^{0}) \delta^{3}(\vec{p}_{1} + \vec{p}_{2} - \vec{k}_{1}) \delta^{3}(\vec{p}_{1} + \vec{p}_{2} - \vec{k}_{2})$$

$$\cdot \left(\frac{(\sum_{sym} e^{-i(-k_{1,\sigma_{1}}, p_{1-}, p_{2-})}e^{-i(-k_{2,\sigma_{2}}, p_{1+}, p_{2+})})}{k_{1}^{0} - \omega_{\vec{p}_{1}} - \omega_{\vec{p}_{2}} + i\epsilon} \right)$$

$$+ \frac{(\sum_{sym} e^{-i(-k_{1,\sigma_{1}}, p_{1-}, p_{2-})}e^{-i(-k_{2,\sigma_{2}}, p_{1-}, p_{2-})})}{-k_{2}^{0} - \omega_{\vec{p}_{1}} - \omega_{\vec{p}_{2}} + i\epsilon}}$$

$$+ \omega_{\vec{p}} := \sqrt{m^{2} + \vec{p}^{2}}, (a, b, c) := a \wedge b + a \wedge c + b \wedge c, a \wedge b := \frac{a_{\mu}\theta^{\mu\nu}b_{\nu}}{2}$$

• Feynman graph decomposes into a part with retardation property and advancement property

 \bullet Feynman rules corresponding to T-ordering (OTO): four-momenta in the NC phase are on-shell (loss of covariance)

• Just compare to Feynman rules corresponding to T^* -ordering: four-momenta are off-shell (covariance)

IV Summary and outlook

Path Integral for NC Theories

Outline of Talk

I Motivation

II Set-up

IIIa Path Integral: T^{*}–Product

IIIb Path Integral: *T-*Product

IV Summary & outlook

Summary and outlook

- <u>Main result</u>: successful derivation of path integral formula corresponding to the *T*-product in canonical case (Hamiltonian approach)
- Feynman rules are identical to those of OTO and thus preserve unitarity and causal time–ordering.
- time ordering (or rather quantization prescription) not rigidly implemented in the path integral
- in progress: path integral based on *T*-operator
- I) in u-coordinates, II) starting from field equation

• in progress: Wick rotation and Euclidean Feynman rules (reflection positivity: $\theta_{0k} \rightarrow \pm i\theta_{0k}$ (k = 1, 2, 3), effect on famous UV/IR-connection (!))

C.D. acknowledges advice from Prof. K. Sibold.