Multipartite Bell's Inequalities

Tomasz Paterek
Institute of Theoretical Physics and Astrophysics University of Gdańsk Poland

Collaborators:
Wieslaw Laskowski
Marek Zukowski
Caslav Brukner

Bells Theorem

\checkmark Quantum Probabilities
\checkmark Underlying Theory
reproduces quantum probabilities as averages over inaccessible variables
\checkmark Hidden Variable Theories hidden variables describe the properties of physical objects
\checkmark Bell's Theorem it is impossible to explain all quantum mechanical expectations with local hidden-variable theories
A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).
\square J. S. Bell, Physics 1, 195 (1964).

Clauser-Horne-Shimony-Holt

\checkmark realism
undone measurements have well-defined, yet unknown, results
\checkmark locality
no "action at a distance"
\checkmark For each experimental run:

$$
A_{1}\left[B_{1}+B_{2}\right]+A_{2}\left[B_{1}-B_{1}\right]= \pm 2
$$

\checkmark Average over many runs:

$$
\begin{gathered}
-2 \leq\left\langle A_{1} B_{1}\right\rangle+\left\langle A_{1} B_{2}\right\rangle+\left\langle A_{2} B_{1}\right\rangle-\left\langle A_{2} B_{2}\right\rangle \leq 2 \\
\left|E_{11}+E_{12}+E_{21}-E_{22}\right| \leq 2
\end{gathered}
$$

[J. F Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Lett. 23, 880 (1969).

Quantum Prediction

\checkmark Take the state $\left.\left.\left\langle\psi^{-}\right\rangle=1 / \sqrt{2}[0\rangle 1\right\rangle-|1\rangle 0\right\rangle$
\checkmark Quantum correlation function:

$$
E_{k l}{ }^{Q M}=-\cos \varphi_{k l}
$$

\checkmark All measurements in one plane they are determined by the angle relative to some fixed axis

$$
\begin{array}{ll}
a_{1}=0 & b_{1}=\pi / 4 \\
a_{2}=\pi / 2 & b_{2}=-\pi / 4
\end{array}
$$

\checkmark CHSH expression:

$$
\begin{aligned}
& \left|\boldsymbol{E}_{11}+\boldsymbol{E}_{12}+\boldsymbol{E}_{21}-\boldsymbol{E}_{22}\right| \leq 2 \\
& \cos (\pi / 4)+\cos (\pi / 4)+\cos (\pi / 4)-\cos (3 \pi / 4)=2 \sqrt{2}
\end{aligned}
$$

Correlation Polytope

$$
\left(\begin{array}{l}
E_{11} \\
E_{12} \\
E_{21} \\
E_{22}
\end{array}\right)=\sum_{A_{1}, A_{2}, B_{1}, B_{2}= \pm 1} P\left(A_{1}, A_{2}, B_{1}, B_{2}\right)\binom{A_{1}}{A_{2}} \otimes\binom{B_{1}}{B_{2}}
$$

\checkmark Bell's inequalities $=$ facets of the polytope
\checkmark N\&S condition for local realistic model is a set of inequalities
\checkmark For each experimental run:

$$
\sum_{s_{1}, s_{2}= \pm 1} S\left(s_{1}, s_{2}\right)\left(A_{1}+s_{1} A_{2}\right)\left(B_{1}+s_{2} B_{2}\right)= \pm 4
$$

\checkmark Average over many runs:

$$
\sum_{s_{1}, s_{2}= \pm 1} S\left(s_{1}, s_{2}\right)\left[E_{11}+s_{2} E_{12}+s_{1} E_{21}+s_{1} s_{2} E_{22}\right] \leq 4
$$

\checkmark There are as many inequalities as different sign functions
\checkmark The complete set is equivalent to the single inequality:

$$
\sum_{s_{1}, s_{2}= \pm 1} \mid E_{11}+s_{2} E_{12}+s_{1} E_{21}+s_{1} s_{2} E_{22} \leq 4
$$

\checkmark Works for arbitrary number of qubits and two measurement settings
H. Weinfurter and M. Zukowski, Phys. Rev. A 64, 10102(R) (2001).
\square R. F. Werner and M. W. Wolf, Phys. Rev. A 64, 32112 (2001).

- M. Zukowski and C. Brukner, Phys. Rev. Lett. 88, 210401 (2002).

Nonclassical States

\checkmark General N-qubit state:

$$
\rho=\frac{1}{2^{N}} \sum_{x_{1}, \ldots, x_{N}=0}^{3} T_{x_{1} . \ldots x_{N}} \sigma_{x_{1}}^{1} \otimes \ldots \otimes \sigma_{x_{N}}^{N}
$$

\checkmark Quantum correlation function:

$$
E_{k_{1} \ldots k_{N}}^{Q M}=\operatorname{Tr}\left[\rho\left(\vec{n}_{k_{1}} \cdot \vec{\sigma} \otimes \ldots \otimes \vec{n}_{k_{N}} \cdot \vec{\sigma}\right)\right]=\sum_{x_{1}, \ldots, x_{N} 1}^{3} T_{x_{1} 1 . x_{N}}\left(\vec{n}_{k_{1}}\right)_{x_{1}} \ldots\left(\vec{n}_{k_{N}}\right)_{x_{N}}
$$

\checkmark Condition for the general inequality to hold:

$$
\max \sum_{x_{1}, \ldots, x_{N}=1}^{2} T_{x_{1} \ldots x_{N}}^{2} \leq 1
$$

maximization is taken over all local measurement directions
\checkmark For more than 2 parties this condition is only the necessary one violation of it implies violation of the inequality
\checkmark There are pure entangled states which do not violate the inequality

More Settings

\checkmark Three-particle $4 \times 4 \times 2$ case

$$
\begin{gathered}
A_{12, s^{\prime}} \equiv \sum_{s_{1}, s_{2}= \pm 1} S^{\prime}\left(s_{1}, s_{2}\right)\left(A_{1}+s_{1} A_{2}\right)\left(B_{1}+s_{2} B_{2}\right)= \pm 4 \\
A_{34, S^{\prime \prime}} \equiv \sum_{s_{1}, s_{2}= \pm 1} S^{\prime \prime}\left(s_{1}, s_{2}\right)\left(A_{3}+s_{1} A_{4}\right)\left(B_{3}+s_{2} B_{4}\right)= \pm 4 \\
\sum_{s_{1}, s_{2}= \pm 1} S\left(s_{1}, s_{2}\right)\left(A_{12, S^{\prime}}+s_{1} A_{34, S^{\prime \prime}}\right)\left(C_{1}+s_{2} C_{2}\right)= \pm 16
\end{gathered}
$$

\checkmark There are $\left(2^{4}\right)^{3}$ inequalities
they are generated by one inequality with $\mathrm{S}, \mathrm{S}^{\prime}, \mathrm{S}^{\prime \prime}$ non-factorable
\checkmark Incomplete set
\checkmark Tight inequalities
[W. Laskowski, TP, M. Zukowski, and C. Brukner, Phys. Rev. Lett. 93, 200401 (2004).
$\checkmark N \& S$ for the $4 \times 4 \times 2$ inequality to hold:

$$
\max \sum_{m=1}^{2} \sum_{k_{m}, l_{m}=1}^{2} T_{k_{m} l_{m} m}^{2} \leq 1
$$

\checkmark Necessary for the $2 \times 2 \times 2$ case:

$$
\max \sum_{k, l, m=1}^{2} T_{k l m}^{2} \leq 1
$$

\checkmark New condition is more demanding the settings k_{1}, l_{1} do not have to be equal to k_{2}, l_{2}
\checkmark The generalized GHZ states
violate new inequality for all alpha and arbitrary number of particles

$$
\psi\rangle=\cos \alpha|0 \ldots 0\rangle+\sin \alpha|1 \ldots 1\rangle
$$

