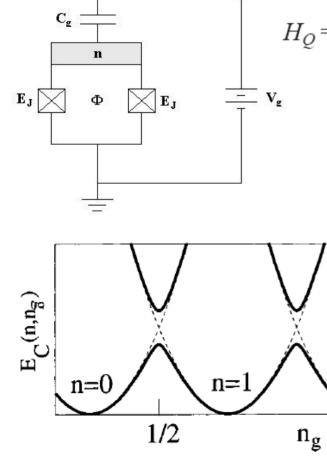

Cavity QED on a Chip

Fernando de Melo IF-UFRJ

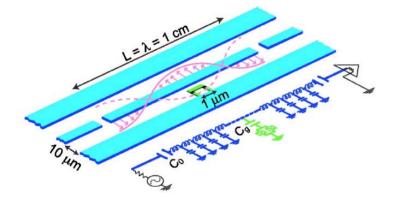

Experimental System -Numbers to keep in mind

Parameter	Symbol	3D optical	3D microwave	1D circuit
Resonance or transition frequency	$\omega_{ m r}/2\pi,\Omega/2\pi$	350 THz	51 GHz	10 GHz
Vacuum Rabi frequency	$g/\pi, g/\omega_{ m r}$	220 MHz, 3×10^{-7}	47 kHz, 1×10^{-7}	100 MHz, 5×10^{-3}
Transition dipole	d/ea_0	~ 1	1×10^{3}	2×10^{4}
Cavity lifetime	$1/\kappa, Q$	10 ns, 3×10^{7}	1 ms, 3×10^{8}	160 ns, 10 ⁴
Atom lifetime	$1/\gamma$	61 ns	30 ms	$2 \ \mu s$
Atom transit time	t _{transit}	≥50 µs	100 μ s	∞
Critical atom number	$N_0 = 2 \gamma \kappa / g^2$	6×10^{-3}	3×10^{-6}	$\leq 6 \times 10^{-5}$
Critical photon number	$m_0 = \gamma^2 / 2g^2$	3×10^{-4}	3×10^{-8}	$\leq 1 \times 10^{-6}$
Number of vacuum Rabi flops	$n_{\text{Rabi}}=2g/(\kappa+\gamma)$	$\sim \! 10$	~5	$(\sim 10^2)$

Superconducting Qubit Charge Type

$$I_Q = 4E_c \sum_N (N - N_g)^2 |N\rangle \langle N| - \frac{E_J}{2} \sum_N (|N + 1\rangle \langle N| + \text{H.c.})$$

Where: $N_g = C_g V_g / 2e$

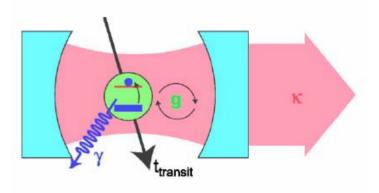

Two Level System

$$H_{\mathcal{Q}} = -\frac{E_{\text{el}}}{2}\overline{\sigma^{z}} - \frac{E_{J}}{2}\overline{\sigma^{x}}$$

Qubit + Cavity: Jaynes-Cummings

 $V_g \rightarrow V_g + V_{AC}$

$$\hat{V}_{AC}(t) = \sqrt{\frac{\hbar\omega}{Lc}} [\hat{a}(t) + \hat{a}^{\dagger}(t)].$$


Setting
$$N_g = 1/2$$
:

$$H = \hbar \omega_{\rm r} \left(a^{\dagger} a + \frac{1}{2} \right) + \frac{\hbar \Omega}{2} \sigma^{z} + \hbar g (a^{\dagger} \sigma^{-} + \sigma^{+} a)$$

$$H = \hbar \omega_{\rm r} \left(a^{\dagger} a + \frac{1}{2} \right) + \frac{\hbar \Omega}{2} \sigma^{z} - e \frac{C_{g}}{C_{\Sigma}} \sqrt{\frac{\hbar \omega_{\rm r}}{Lc}} (a^{\dagger} + a)$$
$$\times [1 - 2N_{g} - \cos(\theta) \sigma^{z} + \sin(\theta) \sigma^{x}].$$

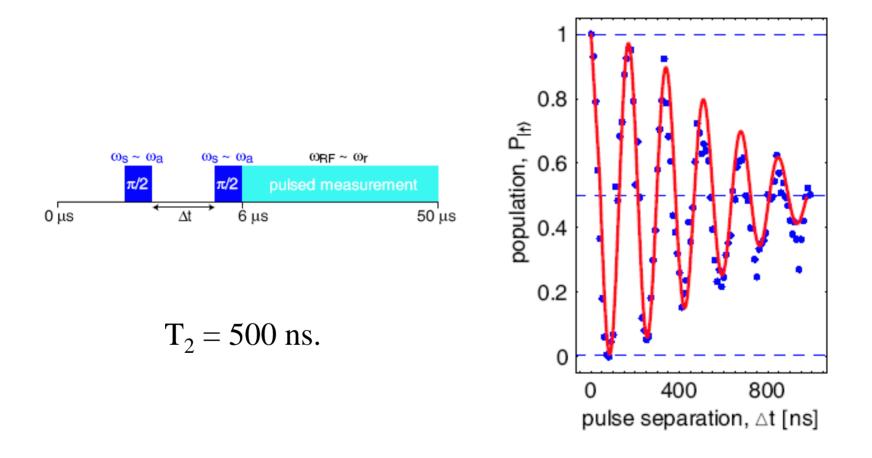
Where:
$$\Omega = \sqrt{E_J^2 + [4E_C(1 - 2N_g^{dc})]^2}/\hbar$$

$$\theta = \arctan[E_J/4E_C(1-2N_g^{dc})]$$

Readout Scheme:

Dispersive Regime:

$$UHU^{\dagger} \approx \hbar \left[\omega_{\rm r} + \frac{g^2}{\Delta} \sigma^z \right] a^{\dagger} a + \frac{\hbar}{2} \left[\Omega + \frac{g^2}{\Delta} \right] \sigma^z$$


Phase Measurement (QND Measurement for the "atom"):

External Driving Field $\omega_{\mu w} = \omega_{r}$ $H_{\mu w}(t) = \hbar \varepsilon(t) (a^{\dagger} e^{-i\omega_{\mu w}t} + a e^{+i\omega_{\mu w}t})$

$$(a|e\rangle + b|g\rangle) \otimes |\alpha\rangle \to a|e, e^{i\phi}\alpha\rangle + b|g, e^{-i\phi}\alpha\rangle$$

where $\phi~=~g^2/\kappa\Delta$

•Example: Ramsey Fringes.

References :

- Cavity quantum eletrodynamics for superconducting eletrical circuits: An architeture for quantum computation. PRA **69**, 062320 (2004).
- Prospects for Strong Cavity Quantum Eletrodynamics with Superconducting Circuits. Cond-mat/0310670.
- Strong coupling of a single photon to a superconducting qubit using circuit quantum eletrodynamics. Nature **431**, 162 (2004).
- Approaching Unit Visibility for Control of a Superconducting Qubit with a Dispersive Readout. Cond-mat/0502645.
- Schoelkopf's group at Yale: http://www.eng.yale.edu/rslab/