Open Quantum System Approach to Transient Coherence in Ion-Solid Transport

Marek Seliger and Joachim Burgdörfer
@ Vienna University of Technology

Carlos O. Reinhold and Tatsuya Minami
@ Oak Ridge National Laboratory

International Summer School on Quantum Information
Dresden, Germany, Seminar Sept. 6 $6^{\text {th }}, 2005$

Open Quantum System

coherent control of Rydberg atoms (quantum information)
coherent control of non-unitary systems larger applicability:
quantum coherence in ion-solid transport

Application to Ion-Solid Transport

exchange of energy in collisions
exchange of probability in ionization and electron capture

Outline

- The method:
- Open quantum system approach
- Generalization to exchange of probability
- Solution by quantum trajectory Monte Carlo method
- Application to transport of fast highly charged ions:
- Krypton ${ }^{35+}$
- Argon ${ }^{18+}$
- Summary and conclusions

Open quantum system approach

Liouville equation $\frac{\partial \rho_{\text {total }}(t)}{\partial t}=-i\left[H_{\text {total }}, \rho_{\text {total }}(t)\right]$
$\sigma(t)=\operatorname{Tr}_{R}\left[\rho_{\text {total }}(t)\right]$

Born-Markov approx.

Master equation of Lindblad form:

$$
\begin{aligned}
& \frac{\partial \sigma(t)}{\partial t}=-i\left[H_{S}, \sigma(t)\right]+\underset{\uparrow}{L \sigma}(t) L^{\dagger}-\frac{1}{2}\left[L^{\dagger} L, \sigma(t)\right]_{+}
\end{aligned} \begin{gathered}
\text { + exchange of } \\
\text { probability }
\end{gathered}
$$

solve for large systems:

solved by "wavefunction" Monte Carlo method (Mölmer, Dalibard, Zoller, Gardiner, et al 1990s)

Solving Lindblad master equation by Quantum Trajectory Monte Carlo Method

$$
\frac{\partial \sigma(t)}{\partial t}=-i\left[H_{S}, \sigma(t)\right]+L \sigma(t) L^{\dagger}-\frac{1}{2}\left[L^{\dagger} L, \sigma(t)\right]_{+}
$$

$$
\sigma(0)=|\Psi(0)\rangle\langle\Psi(0)|
$$

$$
\left|\Psi^{(2)}(t)\right\rangle
$$

$$
\sigma(t)=\frac{1}{N} \sum_{\mu=1}^{N}\left|\Psi^{\mu}(t)\right\rangle\left\langle\Psi^{\mu}(t)\right|
$$

state index

$\langle\Psi(0)|$

How do we propagate a quantum trajectory?

non-linear stochastic Schrödinger equation

$$
\left|\mathrm{d} \Psi^{\mu}(\mathrm{t})\right\rangle=[\text { jump }]\left|\Psi^{\mu}(\mathrm{t})\right\rangle+[\text { continuous }] \mathrm{dt}\left|\Psi^{\mu}(\mathrm{t})\right\rangle
$$

- system Hamiltonian
- state-to-state transition operators for different environments:
- scattering with:
- electrons
- atomic nuclei
- radiative decay
[T. Minami et al. PRA 67, 022902 (2003)]

radiative decay

Experimental Observation

Application to Kr^{35+} transport:

results for excited states density matrix

Application to Ar^{18+} transport

Summary

- Generalization of the open quantum system approach
- Solution by means of a quantum trajectory Monte Carlo method
- Application to transport: overall good agreement with experiment

Outlook

- Application to other open quantum systems in quantum information
- Prediction of excited states population in stripping foils of high current GeV tandem accelerators

References:
T. Minami et al, PRA 67, 022902 (2003)
M. Seliger et al, PRA 71, 062901 (2005)
M. Seliger, PhD-thesis (2005)

