Open Quantum System Approach to Transient Coherence in Ion-Solid Transport

Marek Seliger and Joachim Burgdörfer @ Vienna University of Technology

Carlos O. Reinhold and Tatsuya Minami (a) Oak Ridge National Laboratory

International Summer School on Quantum Information Dresden, Germany, Seminar Sept. 6th, 2005

Open Quantum System

coherent control of Rydberg atoms (quantum information)

coherent control of non-unitary systems larger applicability: quantum coherence in ion-solid transport

Application to Ion-Solid Transport

Outline

- The method:
 - Open quantum system approach
 - Generalization to exchange of probability
 - Solution by quantum trajectory Monte Carlo method
- Application to transport of fast highly charged ions:
 - Krypton³⁵⁺
 - Argon¹⁸⁺
- Summary and conclusions

Open quantum system approach

$$\frac{\partial \sigma(t)}{\partial t} = -i [H_s, \sigma(t)] + L \sigma(t) L^{\dagger} - \frac{1}{2} [L^{\dagger} L, \sigma(t)]_{+} + \text{exchange of probability}$$
projection onto subspace: P P P P P

solve for large systems:

solved by "wavefunction" Monte Carlo method (Mölmer, Dalibard, Zoller, Gardiner, et al 1990s)

Solving Lindblad master equation by Quantum Trajectory Monte Carlo Method

 $|\Psi^{(2)}(t)\rangle$

 $\sigma(0) = |\Psi(0)\rangle \langle \Psi(0)|$

$$\frac{\partial \sigma(t)}{\partial t} = -i \left[H_s, \sigma(t) \right] + L \sigma(t) L^{\dagger} - \frac{1}{2} \left[L^{\dagger} L, \sigma(t) \right]_{+}$$

$$\sigma(t) = \frac{1}{N} \sum_{\mu=1}^{N} \left| \Psi^{\mu}(t) \right\rangle \left\langle \Psi^{\mu}(t) \right|$$

stochastic realization = quantum trajectory

How do we propagate a quantum trajectory?

non-linear stochastic Schrödinger equation

 $\left| d\Psi^{\mu}(t) \right\rangle = \begin{bmatrix} jump \end{bmatrix} \left| \Psi^{\mu}(t) \right\rangle + \begin{bmatrix} continuous \end{bmatrix} dt \left| \Psi^{\mu}(t) \right\rangle$

input:

- system Hamiltonian
- state-to-state transition operators for different environments:
 - scattering with:
 - electrons
 - atomic nuclei
- radiative decay [*T. Minami et al. PRA 67, 022902 (2003)*]

Experimental Observation

[1] D. Vernhet et.al., J. Phys. B 31, 177 (1998) 7/10

Application to Kr³⁵⁺ transport: results for excited states density matrix

Application to Ar¹⁸⁺ transport

Summary

- Generalization of the open quantum system approach
- Solution by means of a quantum trajectory Monte Carlo method
- Application to transport: overall good agreement with experiment

Outlook

- Application to other open quantum systems in quantum information
- Prediction of excited states population in stripping foils of high current GeV tandem accelerators

References:

T. Minami et al, PRA 67, 022902 (2003) M. Seliger et al, PRA 71, 062901 (2005) M. Seliger, PhD-thesis (2005)