TEL AUIU UNIVERSITY אוניברסיטת תל-אביב איניברסיטת אוניברסיטת אביב

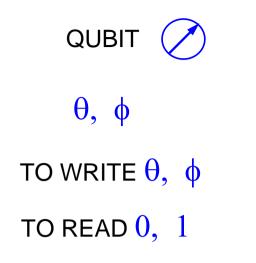
Qubits versus Bits for measuring an integral of a classical field

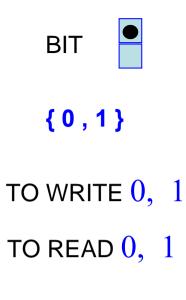
Zion Mitrani

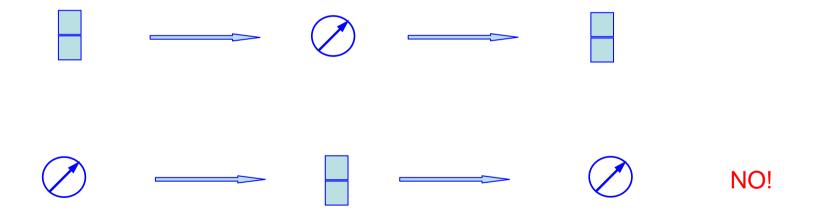
School of Physics and Astronomy Tel-Aviv University, Tel-Aviv 69978, Israel

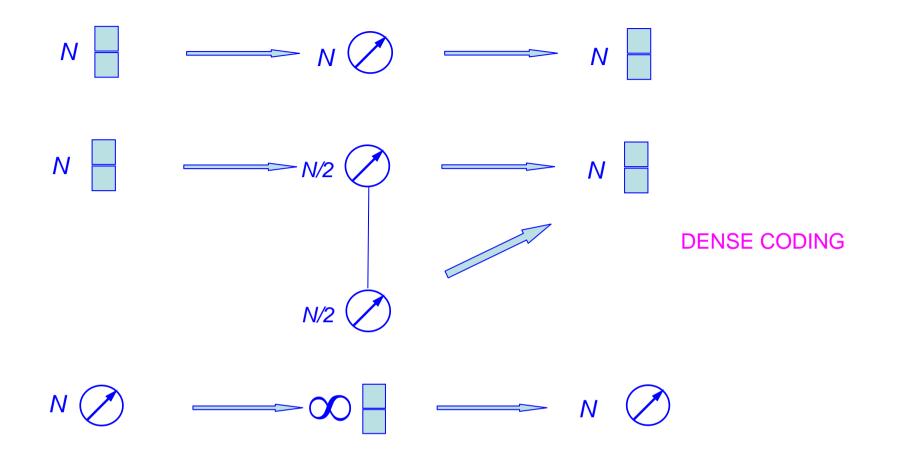
Under the supervision of: Prof. Lev Vaidman

Phys. Rev. Lett. 92, 217902 (2004) L.Vaidman Z.Mitrani









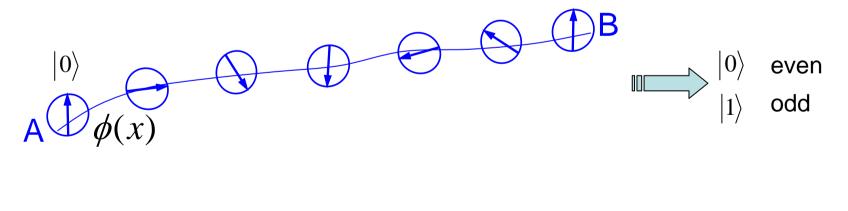
We can not store and retrieve more than one bit in a qubit HOLEVO What can we do with a **Qubit** that we can not do with a **Bit**?

Measurement of the parity of the integral of a classical field Galvao and Hardy, Phys. Rev. Lett. 90, 087902 (2003)

$$I = \int_{A}^{B} \phi(x) dx = m\alpha$$
, α - known real constant, m - integer.

Is **m** even or odd?

- qubit starts at $|0\rangle$.
- the field rotates the qubit by $\boldsymbol{\pi}$ per a "unit" of $\boldsymbol{\alpha}$.
- the qubit is measured.



Outline

- Define the task.
- Special Case using qubits.
- Special Case using bits.
- General Case using qubits first method.
- General Case using qubits second method (more efficient).
- Simulation results.
- Conclusions.

The Task – Measure the integral of a classical field.

- We are given N bits/qubits.
- The bits/qubits pass trough the field one at a time.
- We know that the integral *I* is of the order of *M*.

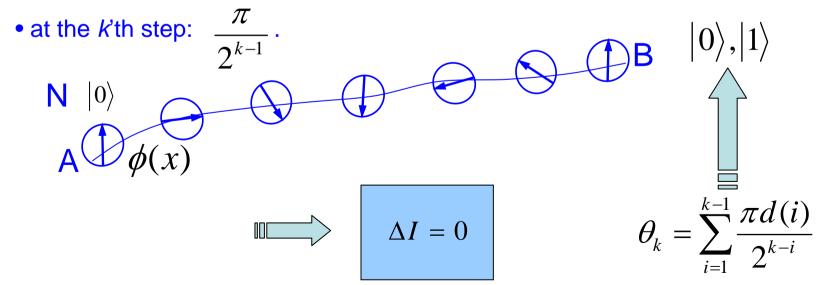
 $I = \int_{A}^{B} \phi(x) dx$

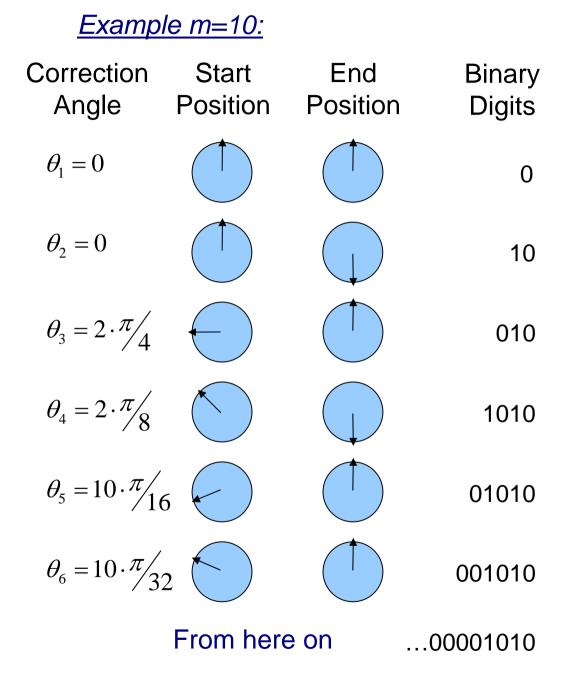
Measurement of the integral of a classical field -special case

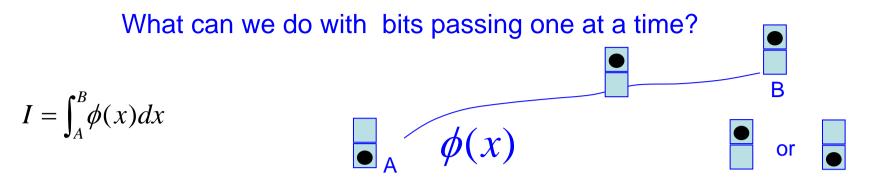
$$I = \int_{A}^{B} \phi(x) dx = m\alpha$$
, α - known real constant, m - integer.

What is **m**?

- qubit starts at $|0\rangle$.
- at the fisrt step: qubit is rotated by $\boldsymbol{\pi}$ per a "unit" of $\boldsymbol{\alpha}$.
- at the second step: qubit is rotated by $\pi/2$ per a "unit" of α .







- The bit starts at the state *0*.
- The probability to flip depends on the strength of the field: $dp_{flip} = \lambda \phi(x) dx$
- Once the bit has flipped to the state 1, it won't flip back.
- We count the number of 1's.

$$dp_{flip} = \lambda \phi(x) dx$$

$$dp_{no-flip} = 1 - \lambda \phi(x) dx = e^{-\lambda \phi(x) dx}$$
For a given M:
$$p_{no-flip} = \prod dp = \prod e^{-\lambda \phi(x) dx} = e^{-\int \lambda \phi(x) dx} = e^{-\lambda I}$$

$$I = \frac{1}{\lambda} \ln\left(1 - \frac{N_{count}}{N}\right), \Delta I = \frac{1}{\lambda} \frac{1}{\sqrt{N}} \sqrt{e^{\lambda I} - 1}$$

General case – First method – measuring β

$$I = \int_{A}^{B} \phi(x) dx = m\alpha + \beta \quad \text{, } \alpha \text{ - chosen real constant , } \mathbf{m} \text{ - integer.}$$

$$\int_{A}^{1} \frac{1}{\beta} \frac{1}{\beta} \frac{\pi}{2^{k-1}} \quad \Psi = \cos(\frac{\delta\theta}{2}) |0\rangle + \sin(\frac{\delta\theta}{2}) |1\rangle$$

Worse than that, we can have errors in the binary digits that cause an additional shift in the final angle.

We can measure
$$\beta$$
 $\Delta \beta = \frac{1}{\sqrt{N_0}}$ $\Delta \beta = \frac{1}{N_0}$ $\Delta \beta = \frac{1}{N_0^2}$
The correction: $\theta_k = -\sum_{i=1}^{k-1} \frac{\pi d(i)}{2^{(k-i)}} - \frac{\pi \beta}{2^{k-1} \alpha}$
Probability of an error: $P < \frac{1}{3N_0^2}$ $\alpha = \frac{M}{2^{N-N_0}}$
For a given M :
 $\Delta I \propto \frac{M}{2^{N-N_0}N_0}$

General case – Second method – not measuring β

The digital method works much better!

- The qubit rotates by an angle: $\Theta_k = \frac{I\pi}{2^{k-1}\alpha}$. The qubit is then measured at the angle: $\widetilde{\Theta}_k = \frac{\widetilde{I}\pi}{2^{k-1}\alpha}$.
- The probability for the k'th digit to be correct is:

$$p_{k} = \cos^{2} \frac{\Theta_{k} - \tilde{\Theta}_{k}}{2} = \cos^{2} \frac{(I - \tilde{I})\pi}{2^{k} \alpha} = \cos^{2} \frac{\chi \pi}{2^{k}}, \chi \equiv \frac{I - \tilde{I}}{\alpha}$$

• The probability of an error χ is :

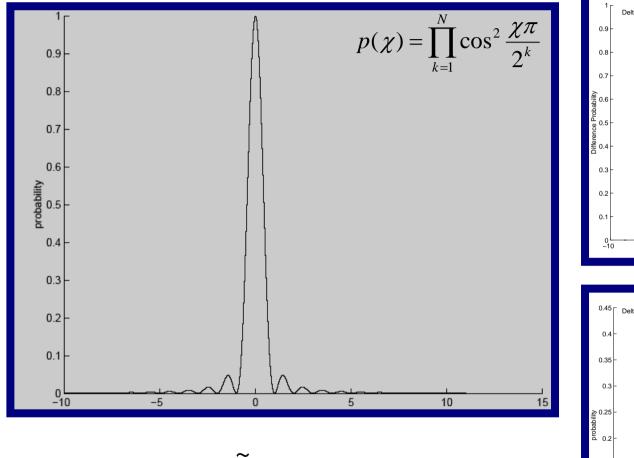
$$p(\chi) = \prod_{k=1}^{N} \cos^2 \frac{\chi \pi}{2^k}$$

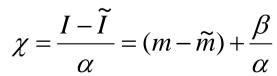
For a given *M*:

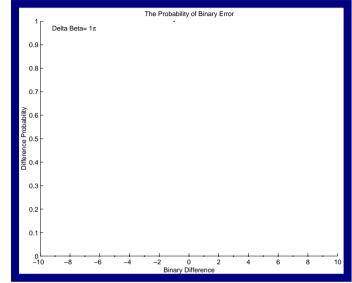
 $\alpha = \frac{M}{2^N}$

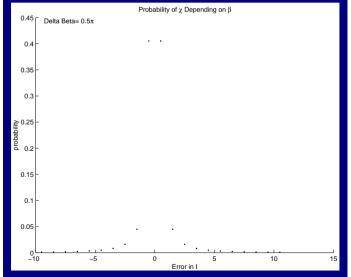
If
$$p(\chi)$$
 is small than $\square \square \square \square \square \square \square \square \square \square \square$

The probability distribution





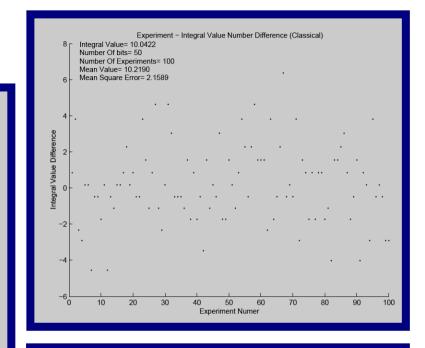


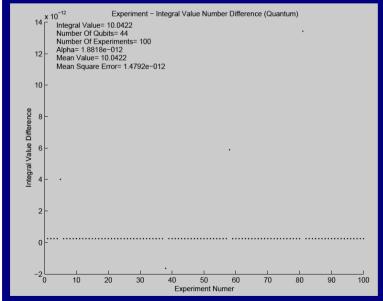


Simulation Results

n	$I = n\pi mod(10)$	quantum	classical
1	3.141592654	3.141592494	3.175583382
2	6.283185307	6.283185389	4.577585162
3	9.424777961	9.424777867	9.594107747
4	2.566370614	2.566370611	1.689440418
5	5.707963268	5.707963268	5.016553197
6	8.849555922	8.849555813	9.594105057
7	1.991148575	1.991148466	2.619198463
8	5.132741229	5.132741166	8.395441798
9	8.274333882	8.274333865	6.706033821
10	1.415926536	1.415926495	0.929766618

TABLE I: The results of simulation of classical and quantum measurements of ten values of I, $I_n = (n\pi) \mod 10$. Quantum method uses 30 qubits and classical method uses 30 bits.





Conclusions

- Special Case qubits. $\Delta I = 0$
- Special/General Case bits. $\Delta I \propto \frac{M}{\sqrt{N}}$ General Case measuring $\beta \cdot \Delta I \propto \frac{M}{2^{N-N_0}N_0}$
- General Case not measuring $\boldsymbol{\beta}$. $\Delta I \propto \frac{M^{\circ}}{2^{N}}$

Exponential better precision can be achieved using qubits instead of bits for measuring the integral of a classical field. Phys. Rev. Lett. 92, 217902 (2004) L.Vaidman, Z.Mitrani • Can be done with a single particle in a superposition of states. Phys. Rev. A 71, 044303 (2005) L.Vaidman, A.Kalev

Will be nice if ...

- Proof of the classical result to be the lower limit for bits.
- An experiment to show the quantum advantage.
- Use of this idea for other schemes/purposes.