## אוניברOיטת תל-אביב אוֹ

# Qubits versus Bits for measuring an integral of a classical field 

Zion Mitrani<br>School of Physics and Astronomy<br>Tel-Aviv University, Tel-Aviv 69978, Israel

Under the supervision of: Prof. Lev Vaidman

Phys. Rev. Lett. 92, 217902 (2004) L.Vaidman Z.Mitrani
qubit $\oslash$
$\theta, \phi$
BIT $\quad \square$
$\{0,1\}$

TO WRITE $\theta, \phi$
TO READ 0,1
TO WRITE 0,1
to Read 0, 1
$\square \rightleftharpoons \square \square \square \square \square$
$\square \square \mathrm{NO}$


We can not store and retrieve more than one bit in a qubit holevo What can we do with a Qubit that we can not do with a Bit?

Measurement of the parity of the integral of a classical field
Galvao and Hardy,Phys. Rev. Lett. 90, 087902 (2003)

$$
I=\int_{A}^{B} \phi(x) d x=m \alpha \quad, \boldsymbol{\alpha}-\text { known real constant }, \mathbf{m}-\text { integer } .
$$

Is $\mathbf{m}$ even or odd?

- qubit starts at $|0\rangle$.
- the field rotates the qubit by $\boldsymbol{\pi}$ per a "unit" of $\boldsymbol{\alpha}$.
- the qubit is measured.




## Outline

- Define the task.
- Special Case - using qubits.
- Special Case - using bits.
- General Case - using qubits - first method.
- General Case - using qubits - second method (more efficient).
- Simulation results.
- Conclusions.


## The Task - Measure the integral of a classical field.

- We are given N bits/qubits.
- The bits/qubits pass trough the field one at a time.
- We know that the integral $\boldsymbol{I}$ is of the order of $\boldsymbol{M}$.

$$
I=\int_{A}^{B} \phi(x) d x
$$

Measurement of the integral of a classical field -special case

$$
I=\int_{A}^{B} \phi(x) d x=m \alpha \quad, \boldsymbol{\alpha}-\text { known real constant }, \mathbf{m}-\text { integer. }
$$

What is $\mathbf{m}$ ?

- qubit starts at $|0\rangle$.
- at the fisrt step: qubit is rotated by $\boldsymbol{\pi}$ per a "unit" of $\boldsymbol{\alpha}$.
- at the second step: qubit is rotated by $\boldsymbol{\pi} / \mathbf{2}$ per a "unit" of $\boldsymbol{\alpha}$.
- at the $k^{\prime}$ th step: $\frac{\pi}{2^{k-1}}$.



## Example $m=10$ :

| Correction |
| :---: |
| Angle |


| Start |
| :---: |
| Position |

$\theta_{1}=0$
$\theta_{6}=10 \cdot \pi / 32$
$\theta_{2}=2 \cdot \pi / 4$

Position | Binary |
| :---: |
| Digits |

What can we do with bits passing one at a time?

$$
I=\int_{A}^{B} \phi(x) d x
$$



- The bit starts at the state 0 .
- The probability to flip depends on the strength of the field: $d p_{f l i p}=\lambda \phi(x) d x$
- Once the bit has flipped to the state 1 , it won't flip back.
- We count the number of 1 's.

$$
\begin{aligned}
& d p_{\text {flip }}=\lambda \phi(x) d x \\
& d p_{\text {no-flip }}=1-\lambda \phi(x) d x=e^{-\lambda \phi(x) d x} \\
& p_{\text {no- flip }}=\prod d p=\prod e^{-\lambda \phi(x) d x}=e^{-\int \lambda \phi(x) d x}=e^{-\lambda I} \\
& I=\frac{1}{\lambda} \ln \left(1-\frac{N_{\text {count }}}{N}\right), \Delta I=\frac{1}{\lambda} \frac{1}{\sqrt{N}} \sqrt{e^{\lambda I}-1}
\end{aligned}
$$

For a given $M$ :


General case - First method - measuring $\beta$

$$
\begin{aligned}
I=\int_{A}^{B} \phi(x) d x=m \alpha+\beta \quad, \boldsymbol{\alpha} \text { - chosen real constant }, \mathbf{m} \text { - integer. } \\
\delta \theta=\frac{\beta}{\alpha} \frac{\pi}{2^{k-1}} \quad \Psi=\cos \left(\frac{\delta \theta}{2}\right)|0\rangle+\sin \left(\frac{\delta \theta}{2}\right)|1\rangle
\end{aligned}
$$

Worse than that, we can have errors in the binary digits that cause an additional shift in the final angle.
We can measure $\boldsymbol{\beta} \xrightarrow{\square} \square \Delta \beta=\frac{1}{\sqrt{N_{0}}} \xrightarrow{\square} \square \Delta \beta=\frac{1}{N_{0}} \xrightarrow{\longrightarrow} \longrightarrow \beta=\frac{1}{N_{0}{ }^{2}}$
The correction: $\theta_{k}=-\sum_{i=1}^{k-1} \frac{\pi d(i)}{2^{(k-i)}}-\frac{\pi \beta}{2^{k-1} \alpha}$
Probability of an error: $p<\frac{1}{3 N_{0}{ }^{2}}$

$$
\Longrightarrow \quad \alpha=\frac{M}{2^{N-N_{0}}}
$$

For a given $M$ :

$$
\leadsto \Delta I \propto \frac{M}{2^{N-N_{0}} N_{0}}
$$

## General case - Second method - not measuring $\boldsymbol{\beta}$

The digital method works much better!

$$
\Longrightarrow \alpha=\frac{M}{2^{N}}
$$

- The qubit rotates by an angle: $\Theta_{k}=\frac{I \pi}{2^{k-1} \alpha}$.
- The qubit is then measured at the angle: $\tilde{\Theta}_{k}=\frac{\tilde{I} \pi}{2^{k-1} \alpha}$.
- The probability for the $k$ 'th digit to be correct is:

$$
p_{k}=\cos ^{2} \frac{\Theta_{k}-\tilde{\Theta}_{k}}{2}=\cos ^{2} \frac{(I-\tilde{I}) \pi}{2^{k} \alpha}=\cos ^{2} \frac{\chi \pi}{2^{k}}, \chi \equiv \frac{I-\tilde{I}}{\alpha}
$$

- The probability of an error $\chi$ is:

$$
p(\chi)=\prod_{k=1}^{N} \cos ^{2} \frac{\chi \pi}{2^{k}}
$$

For a given $M$ :
If $p(\chi)$ is small than


The probability distribution


## Simulation Results

| $n$ | $I=n \pi \bmod (10)$ | quantum | classical |
| :---: | :---: | :---: | :---: |
| 1 | 3.141592654 | 3.141592494 | 3.175583382 |
| 2 | 6.283185307 | 6.283185389 | 4.577585162 |
| 3 | 9.424777961 | 9.424777867 | 9.594107747 |
| 4 | 2.566370614 | 2.566370611 | 1.689440418 |
| 5 | 5.707963268 | 5.707963268 | 5.016553197 |
| 6 | 8.849555922 | 8.849555813 | 9.594105057 |
| 7 | 1.991148575 | 1.991148466 | 2.619198463 |
| 8 | 5.132741229 | 5.132741166 | 8.395441798 |
| 9 | 8.274333882 | 8.27433385 | 6.706033821 |
| 10 | 1.415926536 | 1.415926495 | 0.929766618 |

TABLE I: The results of simulation of classical and quantum measurements of ten values of $I, I_{n}=(n \pi) \bmod 10$. Quantum method uses 30 qubits and classical method uses 30 bits.


## Conclusions

- Special Case - qubits. $\Delta I=0$
- Special/General Case - bits. $\Delta I \propto \frac{M}{\sqrt{N}}$
- General Case - measuring $\boldsymbol{\beta} . \Delta I \propto \frac{M}{2^{N-N_{0}} N_{0}}$
- General Case - not measuring $\boldsymbol{\beta} . \Delta I \propto \frac{M}{2^{N}}$

Exponential better precision can be achieved using qubits instead of bits for measuring the integral of a classical field.

Phys. Rev. Lett. 92, 217902 (2004) L.Vaidman, Z.Mitrani

- Can be done with a single particle in a superposition of states.

Phys. Rev. A 71, 044303 (2005) L.Vaidman, A.Kalev

## Will be nice if

- Proof of the classical result to be the lower limit for bits.
- An experiment to show the quantum advantage.
- Use of this idea for other schemes/purposes.

