
Zion Mitrani
School of Physics and Astronomy

Tel-Aviv University, Tel-Aviv 69978, Israel

Qubits versus Bits for measuring an integral 
of a classical field

Under the supervision of: Prof. Lev Vaidman

Phys. Rev. Lett. 92, 217902 (2004)  L.Vaidman Z.Mitrani



TO READ 0,  1 TO READ 0,  1

TO WRITE θ,  φ TO WRITE 0,  1

NO!

QUBIT BIT

θ,  φ { 0 , 1 }



N N N

N/2 NN

N/2

DENSE CODING

N N∞

We can not store and retrieve more than one bit in a qubit HOLEVO

What can we do with a Qubit that we can not do with a Bit?



Measurement of the parity of the integral of a classical field
Galvao and Hardy,Phys. Rev. Lett. 90, 087902 (2003)
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I x dx mφ α= =∫ , α - known real constant , m - integer.

Is m even or odd?
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• qubit starts at .

• the field rotates the qubit by π per a “unit” of α.

• the qubit is measured.
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The Task – Measure the integral of a classical field.

• We are given N bits/qubits.

• The bits/qubits pass trough the field one at a time.

• We know that the integral I is of the order of M.
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Measurement of the integral of a classical field -special case
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I x dx mφ α= =∫ , α - known real constant , m - integer.

What is m?

• qubit starts at .

• at the fisrt step: qubit is rotated by π per a “unit” of α.

• at the second step: qubit is rotated by π/2 per a “unit” of α.

• at the k’th step: .

0

12 −k

π

A

B

)(xφ

0N

1

1

( )
2

k

k k i
i

d iπθ
−

−
=

= ∑

0 , 1

0I∆ =



1002 =θ

010423
πθ ⋅=

1010824
πθ ⋅=

0101016105
πθ ⋅=

001010

…00001010From here on

32106
πθ ⋅=

0

Binary 
Digits

End 
Position

Start 
Position

01 =θ

Correction 
Angle

Example m=10:



What can we do with  bits passing one at a time?
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• The bit starts at the state 0.
• The probability to flip depends on the strength of the field:
• Once the bit has flipped to the state 1, it won't flip back.
• We count the number of 1’s.
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General case – First method – measuring β
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I x dx mφ α β= = +∫ , α - chosen real constant , m - integer.

We can measure β
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Worse than that, we can have errors in the binary digits that cause 
an additional shift in the final angle.



General case – Second method – not measuring β

The digital method works much better!
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• The qubit rotates by an angle: .

• The qubit is then measured at the angle: .
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• The probability for the k’th digit to be correct is:

• The probability of an error      is :χ

For a given M:
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The probability distribution
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Simulation Results



Conclusions

Will be nice if …
• Proof of the classical result to be the lower limit for bits.

• An experiment to show the quantum advantage.

• Use of this idea for other schemes/purposes.

• Special Case - qubits.

• Special/General Case - bits.

• General Case – measuring β .

• General Case – not measuring β . 
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Exponential better precision can be achieved using qubits
instead of bits for measuring the integral of a classical field.

Phys. Rev. Lett. 92, 217902 (2004)  L.Vaidman, Z.Mitrani
• Can be done with a single particle in a superposition of states.

Phys. Rev. A 71, 044303 (2005) L.Vaidman, A.Kalev


