Decoherence with a Chaotic Environment: Quantum Walk with the Quantum Baker Map

L. Ermann^{1,2}, J.P. Paz^{2,3}and M. Saraceno^{1,4}

Departamento de Física (TANDAR), C.N.E.A., Buenos Aires, Argentina.
 Departamento de Física (FCEyN), Universidad de Buenos Aires, Argentina.
 Theoretical Division, LANL, MSB213, Los Alamos, NM 87545, U.S.A.
 Escuela de Ciencia y Tecnología, U.N.S.M., Buenos Aires, Argentina.

Decoherence with a Chaotic Environment

Systems

•

- Environment: Quantum Baker Map
- ► The system: → Quantum Walk

Systems

- ► Environment: → Quantum Baker Map
- ► The system: → Quantum Walk
- Evolution of QW coupled to QBM
 - Standard Deviation of the particle
 - Entanglement (Entropy)
 - Distance in phase-space

- Systems
 - ► Environment: → Quantum Baker Map
 - ► The system: → Quantum Walk
- Evolution of QW coupled to QBM
 - Standard Deviation of the particle
 - Entanglement (Entropy)
 - Distance in phase-space
- Spectrum analysis

- Systems
 - ► Environment: → Quantum Baker Map
 - ► The system: → Quantum Walk
- Evolution of QW coupled to QBM
 - Standard Deviation of the particle
 - Entanglement (Entropy)
 - Distance in phase-space
- Spectrum analysis
- Conclusions

Classical Baker Map

Transformation in $q, p \in [0, 1]$

$$q_{i+1} = 2q_i - [2q_i]$$

 $p_{i+1} = (p_i + [2q_i])/2$

Symbolic Dynamics $q = 0.\epsilon_0 \epsilon_1 \dots, \ p = 0.\epsilon_{-1} \epsilon_{-2} \dots$ $(p,q) = \dots \epsilon_{-2} \epsilon_{-1} \bullet \epsilon_0 \epsilon_1 \epsilon_2 \epsilon_3 \dots$ $\downarrow \mathcal{B}$ $(p',q') = \dots \epsilon_{-2}\epsilon_{-1}\epsilon_0 \bullet \epsilon_1\epsilon_2\epsilon_3\dots$

Quantum Baker Map

- Prequantization
 - D-dimensional Hilbert space
 - Imposing periodicities:

$$q_j = \frac{j+\eta}{D}; \quad p_k = \frac{k+\kappa}{D}$$

- $hD = 1; j, k = 0, \dots, D-1$
- $\eta, \kappa \in [0, 1) \rightarrow \mathsf{Floquet}$ angles

Quantum Baker Map

- Prequantization
 - D-dimensional Hilbert space
 - Imposing periodicities:
 - $q_j = \frac{j+\eta}{D}; \quad p_k = \frac{k+\kappa}{D}$
 - hD = 1; j, k = 0, ..., D 1
 - $\eta, \kappa \in [0, 1) \rightarrow \mathsf{Floquet}$ angles

Quantization

Converting $MSB(q) \rightarrow MSB(p)$ (Most Significative Bit)

$$B_{\text{BVS}} \equiv B_{pos}^{\eta,\kappa} = \left(F_D^{\eta,\kappa}\right)^{-1} \begin{pmatrix} F_{\frac{D}{2}}^{\eta,\kappa} & 0\\ 0 & F_{\frac{D}{2}}^{\eta,\kappa} \\ 0 & F_{\frac{D}{2}}^{\eta,\kappa} \end{pmatrix}$$

 $(\hat{F}_{D}^{\eta,\kappa})_{kj} \equiv \langle p_k | q_j \rangle = \frac{1}{\sqrt{D}} e^{i k \eta \eta}$

Quantum Baker Map Families

• QBM families on N qubits, for n = 1, ..., N

$$\hat{B}_{N,n} \equiv \hat{G}_{n-1} \circ \hat{S}_n \circ \hat{G}_n^{-1} = \left(\hat{I}_{2^{n-1}} \otimes \hat{B}_{N-n+1, 1}\right) \circ \hat{S}_n$$

Quantum Baker Map Families

• QBM families on N qubits, for n = 1, ..., N

$$\hat{B}_{N,n} \equiv \hat{G}_{n-1} \circ \hat{S}_n \circ \hat{G}_n^{-1} = \left(\hat{I}_{2^{n-1}} \otimes \hat{B}_{N-n+1, 1}\right) \circ \hat{S}_n$$

 \hat{S}_n : Shift operator acting only on the first n qubits

$$\hat{S}_n |x_1\rangle |x_2\rangle \dots |x_n\rangle \dots |x_N\rangle = |x_2\rangle \dots |x_n\rangle |x_1\rangle \dots |x_N\rangle$$

 \hat{G}_{n-1} : Partial Fourier Transform

$$\hat{G}_n \equiv \hat{I}_{2^n} \otimes \hat{F}_{2^{N-n}}^{\eta,\kappa}, \qquad n = 0, \dots, l$$

Quantum Baker Map Families

• QBM families on N qubits, for n = 1, ..., N

$$\hat{B}_{N,n} \equiv \hat{G}_{n-1} \circ \hat{S}_n \circ \hat{G}_n^{-1} = \left(\hat{I}_{2^{n-1}} \otimes \hat{B}_{N-n+1, 1}\right) \circ \hat{S}_n$$

 \hat{S}_n : Shift operator acting only on the first n qubits

$$\hat{S}_n |x_1\rangle |x_2\rangle \dots |x_n\rangle \dots |x_N\rangle = |x_2\rangle \dots |x_n\rangle |x_1\rangle \dots |x_N\rangle$$

 \hat{G}_{n-1} : Partial Fourier Transform

$$\hat{G}_n \equiv \hat{I}_{2^n} \otimes \hat{F}^{\eta,\kappa}_{2^{N-n}}, \qquad n = 0, \dots, l$$

 \checkmark Circuit Representation \rightarrow

Quantum Walk

• Hilbert space: $\mathcal{H} = \mathcal{H}_P \otimes \mathcal{H}_C$

- ▶ Particle: \mathcal{H}_P , $\{|j\rangle; j \in \mathbb{Z}\}$ (line)
- ► Coin: \mathcal{H}_C , $\{|0\rangle, |1\rangle\}$

Quantum Walk

• Hilbert space: $\mathcal{H} = \mathcal{H}_P \otimes \mathcal{H}_C$

- ▶ Particle: \mathcal{H}_P , $\{|j\rangle; j \in \mathbb{Z}\}$ (line)
- ► Coin: \mathcal{H}_C , $\{|0\rangle, |1\rangle\}$
- Evolution: $|\Psi(t+1)\rangle = \hat{U}^{\sigma_z} \circ \left(\hat{I} \otimes \hat{C}\right) |\Psi(t)\rangle$
 - $\blacktriangleright~\hat{U}$: Translation operator in particle's space $\hat{U}|j\rangle = |j+1\rangle$

 \blacktriangleright σ_z, \hat{C} in coin's space

Quantum Walk

• Hilbert space: $\mathcal{H} = \mathcal{H}_P \otimes \mathcal{H}_C$

- ▶ Particle: \mathcal{H}_P , $\{|j\rangle; j \in \mathbb{Z}\}$ (line)
- Coin: \mathcal{H}_C , $\{|0\rangle, |1\rangle\}$
- Evolution: $|\Psi(t+1)\rangle = \hat{U}^{\sigma_z} \circ \left(\hat{I} \otimes \hat{C}\right) |\Psi(t)\rangle$
 - \hat{U} : Translation operator in particle's space $\hat{U}|j\rangle = |j+1\rangle$ • σ_z, \hat{C} in coin's space

Hadamard Walk

$$\hat{C} = \hat{H} \equiv \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right)$$

• Hilbert space: $\mathcal{H} = \mathcal{H}_P \otimes \mathcal{H}_B$, $\dim(\mathcal{H}_B) = D = 2^N$

- Hilbert space: $\mathcal{H} = \mathcal{H}_P \otimes \mathcal{H}_B$, $\dim(\mathcal{H}_B) = D = 2^N$
- Evolution: $|\Psi(t+1)\rangle = \hat{M}|\Psi(t)\rangle$

$$\blacktriangleright \quad \hat{M} = \left(\hat{U} \otimes \hat{P}_{0 \text{ MSQ}} + \hat{U}_{-1} \otimes \hat{P}_{1 \text{ MSQ}} \right) \left(\hat{I} \otimes \hat{B}_{N,n} \right)$$

- Hilbert space: $\mathcal{H} = \mathcal{H}_P \otimes \mathcal{H}_B$, $\dim(\mathcal{H}_B) = D = 2^N$
- Evolution: $|\Psi(t+1)\rangle = \hat{M}|\Psi(t)\rangle$
 - $\blacktriangleright \quad \hat{M} = \left(\hat{U} \otimes \hat{P}_{0 \text{ MSQ}} + \hat{U}_{-1} \otimes \hat{P}_{1 \text{ MSQ}}\right) \left(\hat{I} \otimes \hat{B}_{N,n}\right)$
 - Circuit Representation of \hat{M}

- Hilbert space: $\mathcal{H} = \mathcal{H}_P \otimes \mathcal{H}_B$, $\dim(\mathcal{H}_B) = D = 2^N$
- Evolution: $|\Psi(t+1)\rangle = \hat{M}|\Psi(t)\rangle$
 - $\blacktriangleright \quad \hat{M} = \left(\hat{U} \otimes \hat{P}_{0 \text{ MSQ}} + \hat{U}_{-1} \otimes \hat{P}_{1 \text{ MSQ}}\right) \left(\hat{I} \otimes \hat{B}_{N,n}\right)$
 - Circuit Representation of \hat{M}

• Momentum Representation: $\langle k | \hat{M} | k' \rangle = \delta_{k,k'} \hat{M}_k$

$$\hat{M}_{k} = \begin{pmatrix} e^{-\varphi_{k}} & 0\\ 0 & e^{\varphi_{k}} \end{pmatrix} \hat{B}_{N,n}; \quad \varphi_{k} = \begin{cases} k & \text{in a line} \\ \frac{2\pi k}{M} & \text{in a cycle} \end{cases}$$

- Hilbert space: $\mathcal{H} = \mathcal{H}_P \otimes \mathcal{H}_B$, $\dim(\mathcal{H}_B) = D = 2^N$
- Evolution: $|\Psi(t+1)\rangle = \hat{M}|\Psi(t)\rangle$
 - $\blacktriangleright \quad \hat{M} = \left(\hat{U} \otimes \hat{P}_{0 \text{ MSQ}} + \hat{U}_{-1} \otimes \hat{P}_{1 \text{ MSQ}}\right) \left(\hat{I} \otimes \hat{B}_{N,n}\right)$
 - Circuit Representation of \hat{M}

• Momentum Representation: $\langle k | \hat{M} | k' \rangle = \delta_{k,k'} \hat{M}_k$

$$\hat{M}_{k} = \begin{pmatrix} e^{-\varphi_{k}} & 0\\ 0 & e^{\varphi_{k}} \end{pmatrix} \hat{B}_{N,n}; \quad \varphi_{k} = \begin{cases} k & \text{in a line} \\ \frac{2\pi k}{M} & \text{in a cycle} \end{cases}$$

Probability distribution for $|\Psi_0\rangle = |0\rangle \otimes |\Phi_0\rangle$

 $p(x,t) = \int \frac{dk}{4\pi^2} \int dk' e^{-ix(k-k')} \langle \Phi_0 | (\hat{M}_k^{\dagger})^t (\hat{M}_{k'})^t | \Phi_0 \rangle$

Standard Deviation

•
$$\sigma = \sqrt{\langle x^2 \rangle - \langle x \rangle^2} \sim \begin{cases} \mathsf{CRW} \to O(\sqrt{t}) \\ \mathsf{QW} \to O(t) \end{cases}$$

Standard Deviation

Classical: $(0 \le t \le N)$, Transition: $(N \le t \le D)$, Quantum: $(t \ge D = 2^N)$

Decoherence with a Chaotic Environment 8

Standard Deviation

 $|\psi_0 = \frac{1}{\sqrt{2}}(|0\rangle + i|1\rangle), \eta = \kappa = 0.5, \text{ (left)}, \eta = \kappa = 0, \text{ (right)}.$

Entanglement

 $S_L \equiv -\ln{(Tr[
ho_P^2])}$: entanglement between Particle and Environment.

Distance in phase-space

Wigner function $\longrightarrow W(q,p) = \frac{1}{M}Tr[\rho A(q,p)]$

Distance in phase-space

Wigner function $\longrightarrow W(q,p) = \frac{1}{M}Tr[\rho A(q,p)]$

$$A(q,p) = U^{q}RV^{-p}\exp(i\pi pq/M);$$

$$U|n\rangle = |n+1\rangle, \ R|n\rangle = |-n\rangle, \ V|k\rangle = |k+1\rangle$$

• $W \in \Re$

• W is complete $\rho = \sum_{q,p} W(q,p)A(q,p)$

• Marginal probabilities = $\sum_{\text{line}} W$

Distance to QRW (Δ):

$$\Delta = \sum_{q,p} [W_{crw}(q,p) - W(q,p)]^2 \propto Tr[(\rho_{crw} - \rho)^2]$$

Distance in phase-space

n =

Decoherence with a Chaotic Environment

$$\hat{B}_{N,n}|\Phi_j\rangle = e^{i\theta_j}|\Phi_j\rangle$$

 $\hat{B}_{N,n}|\Phi_j\rangle = e^{i\theta_j}|\Phi_j\rangle$

 $B_{N,n}$ differs with RMT prediction because of the dimension ($D = 2^N$) and the simmetries

 θ/π

 $\hat{B}_{N,n}|\Phi_j\rangle = e^{i\theta_j}|\Phi_j\rangle$

"most chaotic maps" (middle members) — *"best environments"*

 Exact numerical simulation for a system and its chaotic environment.

- Exact numerical simulation for a system and its chaotic environment.
- Analysis of *decoherence* and *recoherence* of the particle studying σ , S_L and Δ .

- Exact numerical simulation for a system and its chaotic environment.
- Analysis of *decoherence* and *recoherence* of the particle studying σ , S_L and Δ .
- *Recoherence* time for $B_{N,n}$ with n = N is O(N), and with $n \neq N$ is $O(D = 2^N)$.

- Exact numerical simulation for a system and its chaotic environment.
- Analysis of *decoherence* and *recoherence* of the particle studying σ , S_L and Δ .
- *Recoherence* time for $B_{N,n}$ with n = N is O(N), and with $n \neq N$ is $O(D = 2^N)$.
- Saturation value of entanglement for $B_{N,n}$ with n = N is $O(\log N)$, and with $n \neq N$ is O(N).

- Exact numerical simulation for a system and its chaotic environment.
- Analysis of *decoherence* and *recoherence* of the particle studying σ , S_L and Δ .
- *Recoherence* time for $B_{N,n}$ with n = N is O(N), and with $n \neq N$ is $O(D = 2^N)$.
- Saturation value of entanglement for $B_{N,n}$ with n = N is $O(\log N)$, and with $n \neq N$ is O(N).
- B_{N,N} (Many Coins map) does not produce entanglement between qubits, and for this reason differs significatively with the rest of QBMs.

- Exact numerical simulation for a system and its chaotic environment.
- Analysis of *decoherence* and *recoherence* of the particle studying σ , S_L and Δ .
- *Recoherence* time for $B_{N,n}$ with n = N is O(N), and with $n \neq N$ is $O(D = 2^N)$.
- Saturation value of entanglement for $B_{N,n}$ with n = N is $O(\log N)$, and with $n \neq N$ is O(N).
- B_{N,N} (Many Coins map) does not produce entanglement between qubits, and for this reason differs significatively with the rest of QBMs.
- Middle members of QBM are the best environments and the most chaotic maps.

References

L. Ermann, J.P. Paz and M. Saraceno in preparation.

• QW:

 J. Kempe, Contemporary Physics 44, 307-327 (2003), e-print quant-ph/0303081.

T.A. Brun, H.A. Carteret and A. Ambainis, Phys. Rev. A 67, 052317 (2003).

C.C. López and J.P. Paz , Phys. Rev. A 68, 052305 (2003).

QBM:

N.L. Balazs and A. Voros, Ann. Phys, **190** (1989) 1.

M. Saraceno , Ann. Phys., **199** (1990) 37.

A.J. Scott y M.C. Caves, J. Phys. A 36 9553 (2003), quant-ph/0305046.

 R. Shack and M.C. Caves, Applicable Algebra in Engineering, Communication and Computing, 10, 305 (2000).

L. Ermann and M. Saraceno in preparation.

