Classification of Tripartite Entanglement with one Qubit

Marcio F. Cornelio and A. F. R. de Toledo Piza

Universidade de São Paulo, Instituto de Física, CP 66318, 05315 São Paulo, S.P., Brazil July 05, 2005 - quant-ph/0507041

Introduction

Local operation on a shared entangled states*

Stochastical local operations and classical communication (SLOCC).
Bipartite case $\Rightarrow|\psi\rangle=\sum_{i}^{n} \sqrt{\lambda_{i}}\left|\lambda_{i}\right\rangle \otimes\left|\lambda_{i}^{\prime}\right\rangle \Rightarrow$ Schmidt Rank
*C. H. Bennett, S. Popescu, D. Rohrlich, J. A. Smolin, and A. V. Thapliyal, arXiv:quant-ph/9908073 (2000).

- Three qubits case \Rightarrow two classes: W and GHZ^{*}

$$
\begin{gathered}
|W\rangle=\frac{1}{\sqrt{3}}(|001\rangle+|010\rangle+|100\rangle) \\
|G H Z\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)
\end{gathered}
$$

*W Dür, G. Vidal and J. I. Cirac, Phys. Rev. A63, 062314 (2000).

- Other works concerning SLOCC classification:

1. Four qubits*
2. 2 qubits and one n-level system ${ }^{\dagger}$
3. Aspects of SLOCC classification ${ }^{\ddagger}$
*F. Verstraete, J. Dehaene, B. De Moor and H. Verschelde, Phys. Rev. A65, 052112 (2002).
${ }^{\dagger}$ A. Miyake and F. Verstraete, Phys. Rev. A69, 012101 (2004).
${ }^{\ddagger}$ A. Miyake, Phys. Rev. A67, 012108 (2003).

- Our work

1. the number of products in the smallest decomposition is a SLOCC invariant.*
2. Describe how to find these decompositions for entangled states with local supports $(n, n, 2)$.
3. Use these decompositions to get the SLOCC classification.
*W Dür, G. Vidal and J. I. Cirac, Phys. Rev. A63, 062314 (2000).

Tripartite states with one qubit

1. Let $|\psi\rangle$ an entangled state with local supports ($n, n, 2$).
2. The local support of $|\psi\rangle$ on $s_{a b}=s_{a}+s_{b}$ is a 2D plane $\mathcal{P} \subset C_{a}^{n} \otimes C_{b}^{n}$.
3. $\mathcal{P} \subset C_{a}^{2} \otimes C_{b}^{2}$ generated by entangled states has either:*

$$
\begin{aligned}
& \text { one product state } \Rightarrow W \text { class } \\
& \text { two product states } \Rightarrow G H Z \text { class }^{\dagger}
\end{aligned}
$$

*A. Sanpera, R. Tarrach and G. Vidal, Phys. Rev. A58, 826 (1998).
†W Dür, G. Vidal and J. I. Cirac, Phys. Rev. A63, 062314 (2000).
4.

$$
|\psi\rangle=\sum_{k=0,1} c_{k}\left|r_{k}\right\rangle|k\rangle \Rightarrow|\phi\rangle=\alpha_{0}\left|r_{0}\right\rangle+\alpha_{1}\left|r_{1}\right\rangle
$$

where $\left|r_{k}\right\rangle \in \mathcal{P} \subset C_{a}^{n} \otimes C_{b}^{n} \Rightarrow\left|r_{k}\right\rangle$ span \mathcal{P}.
5. $|\phi\rangle$ can be seen as the linear mapping

$$
\begin{aligned}
|\phi\rangle: C_{a}^{n *} & \rightarrow C_{b}^{n} \\
\left\langle u_{a}\right| & \rightarrow\left\langle u_{a} \mid \phi\right\rangle
\end{aligned}
$$

The rank of this linear mapping is the Schmidt rank of $|\phi\rangle$.
6. We are looking for α_{0} and α_{1} such that the equation

$$
\begin{equation*}
\left\langle u_{a}\right|\left(\alpha_{0}\left|r_{0}\right\rangle+\alpha_{1}\left|r_{1}\right\rangle\right)=0 \tag{1}
\end{equation*}
$$

has a at least one non-trivial solution $\left\langle u_{a}\right| \in C_{a}^{n *}$.
7. Interpretation of $\left|u_{a}\right\rangle$:

If we found s_{a} in state $\left|u_{a}\right\rangle \Rightarrow|\psi\rangle$ reduces to a product state.*
*Three qubits: A. Acín, A. Andrianov, L. Costa, E. Jané, J. I. Latorre and R. Tarrach, Phys. Rev. Lett. 85, 1560 (2000).
8. Let $\{|i\rangle\}$ and $\{|j\rangle\}$ being basis in C_{a}^{n} and C_{b}^{n}

$$
\left(\alpha_{0} R_{0}+\alpha_{1} R_{1}\right) u_{a}^{*}=0 \Rightarrow\left(R_{1}^{-1} R_{0}-\lambda\right) u_{a}^{*}=0
$$

where $\left[R_{k}\right]_{i j}=\left\langle j i \mid r_{k}\right\rangle, u_{a_{i}}^{*}=\left\langle u_{a} \mid i\right\rangle$ and $\lambda=-\alpha_{1} / \alpha_{0}$.
9. Choosing another base $\left\{\left|\phi_{k}\right\rangle\right\}$ for \mathcal{P}

$$
|\phi\rangle=\beta_{0}\left|\phi_{0}\right\rangle+\beta_{1}\left|\phi_{1}\right\rangle \Rightarrow\left(\Phi_{1}^{-1} \Phi_{0}-\mu\right) u_{a}^{*}=0
$$

where $\mu=-\beta_{1} / \beta_{0}$ and $\left[\Phi_{k}\right]_{i j}=\left\langle j i \mid \phi_{k}\right\rangle$.
10. What aspects are common to matrices $R_{1}^{-1} R_{0}$ and $\Phi_{1}^{-1} \Phi_{0}$ and how are their respective eigenvalues λ_{l} and μ_{l} related?

11. Definition 2: Jordan family

two matrices, A and B, are at the same Jordan family iff

$$
\begin{gathered}
\lambda_{l} \text { of } A \Leftrightarrow \mu_{l} \text { of } B \\
\operatorname{rank}\left(A-\lambda_{l}\right)^{k}=\operatorname{rank}\left(B-\mu_{l}\right)^{k}
\end{gathered}
$$

12. Theorem 1:

Let R_{0} and R_{1} be two n by n matrices, R_{1} invertible

$$
\begin{aligned}
& \Phi_{0}=a R_{0}+b R_{1} \quad \text { with } \quad(a d-b c)=1 \text { and } \Phi_{1} \text { invertible } \\
& \Phi_{1}=c R_{0}+d R_{1} \\
& \Rightarrow R_{1}^{-1} R_{0} \text { and } \Phi_{1}^{-1} \Phi_{0} \text { are at the same Jordan family and }
\end{aligned}
$$

$$
\mu_{l}=\frac{a \lambda_{l}+b}{c \lambda_{l}+d} .
$$

13. Interchanging the subsystems s_{a} and s_{b}, the result is equivalent.
R_{k} goes to R_{k}^{T} and $R_{1}^{-1} R_{0}$ goes to $\left(R_{0} R_{1}^{-1}\right)^{T}$ which is similar to

$$
R_{1}^{-1} R_{0}
$$

14. Let $\left|\phi_{1}\right\rangle$ and $\left|\phi_{2}\right\rangle$ to states in \mathcal{P} with Schmidt rank smaller than n

$$
\begin{equation*}
|\psi\rangle=\left|\phi_{1}\right\rangle\left|c_{1}\right\rangle+\left|\phi_{2}\right\rangle\left|c_{2}\right\rangle, \tag{2}
\end{equation*}
$$

where $\left|c_{1}\right\rangle$ and $\left|c_{2}\right\rangle$ are appropriate non-normalized states in C_{c}^{2}.
15. $R_{1}^{-1} R_{0}$ may have only one eigenvalue.
16. In general, $R_{1}^{-1} R_{0}$ has m solutions, there are $\binom{m}{2}$ combinations.
17. For each Jordan family of $R_{1}^{-1} R_{0}$ we can associate a family of entangled states $|\psi\rangle$. States which belong to distinct families belong also to distinct SLOCC classes.

Example 1: Three qubits.
two Jordan families

$$
\begin{aligned}
& \text { (a): }\left(\begin{array}{cc}
\lambda_{1} & 1 \\
0 & \lambda_{1}
\end{array}\right) \Rightarrow|W\rangle=\frac{1}{\sqrt{3}}(|001\rangle+|010\rangle+|100\rangle) \\
& \text { (b): }\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) \Rightarrow|G H Z\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)
\end{aligned}
$$

where $\lambda_{1} \neq \lambda_{2}$.

Example 2: $|\psi\rangle$ has local supports 3, 3 and 2 - Five Jordan families:
(a): $\left(\begin{array}{ccc}\lambda_{1} & 1 & 0 \\ 0 & \lambda_{1} & 1 \\ 0 & 0 & \lambda_{1}\end{array}\right) \Rightarrow\left|\psi_{a}\right\rangle=\frac{1}{\sqrt{5}}[(|10\rangle+|21\rangle)|0\rangle+(|00\rangle+|11\rangle+|22\rangle)|1\rangle]$.
(b): $\left(\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{1} & 1 \\ 0 & 0 & \lambda_{1}\end{array}\right) \Rightarrow\left|\psi_{b}\right\rangle=\frac{1}{2}[|21\rangle|0\rangle+(|00\rangle+|11\rangle+|22\rangle)|1\rangle]$.
(c): $\left(\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 1 \\ 0 & 0 & \lambda_{2}\end{array}\right) \Rightarrow\left|\psi_{c}\right\rangle=\frac{1}{2}[(|00\rangle+|21\rangle)|0\rangle+(|11\rangle+|22\rangle)|1\rangle]$.
(d): $\left(\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{2}\end{array}\right) \Rightarrow\left|\psi_{d}\right\rangle=\frac{1}{\sqrt{3}}[|00\rangle|0\rangle+(|11\rangle+|22\rangle)|1\rangle]$.
(e): $\left(\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3}\end{array}\right) \Rightarrow\left|\psi_{e}\right\rangle=\frac{1}{2}[(|00\rangle+|11\rangle)|0\rangle+(|11\rangle+|22\rangle)|1\rangle]$.
where $\lambda_{l} \neq \lambda_{l^{\prime}}$ for $l \neq l^{\prime}$.

Example 3: $|\psi\rangle$ has local supports 4, 4 and 2-13 Jordan families

$$
\left.\begin{array}{rl}
A & =\left(\begin{array}{cccc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \lambda_{1} & 0 & 0 \\
0 & 0 & \lambda_{2} & 0 \\
0 & 0 & 0 & \lambda_{2}
\end{array}\right) \Rightarrow \begin{array}{c}
|G H Z\rangle \otimes\left|\phi^{+}\right\rangle= \\
\frac{1}{2}[(|00,00\rangle+|01,01\rangle)|0\rangle \\
+(|10,10\rangle+|11,11\rangle)|1\rangle]
\end{array} \\
B=\left(\begin{array}{ccc}
\lambda_{1} & 1 & 0
\end{array} 0\right. \\
0 & \lambda_{1} \\
0 & 0
\end{array}\right)
$$

Note that the Jordan family corresponding to B differs from that corresponding to
$C=\left(\begin{array}{cccc}\lambda_{1} & 0 & 0 & 0 \\ 0 & \lambda_{1} & 1 & 0 \\ 0 & 0 & \lambda_{1} & 1 \\ 0 & 0 & 0 & \lambda_{1}\end{array}\right) \Rightarrow \begin{array}{r}\left|\psi_{c}\right\rangle=\frac{1}{\sqrt{6}}[(|00,00\rangle+|01,01\rangle+|10,10\rangle+|11,11\rangle)|0\rangle \\ +(|10,01\rangle+|11,10\rangle)|1\rangle]\end{array}$
only in that the ranks of $\left(B-\lambda_{1}\right)^{k}$ and $\left(C-\lambda_{1}\right)^{k}$ differ for $k=2$.

$$
\left|\psi_{c}\right\rangle=\frac{1}{\sqrt{6}}[(|00,00\rangle+|01,01\rangle+|10,10\rangle+|11,11\rangle)|0\rangle+(|10,01\rangle+|11,10\rangle)|1\rangle]
$$

$$
\begin{array}{ccccccccccc}
|00\rangle & \vdots & |01\rangle & & & & |10\rangle & & & & |11\rangle \\
\uparrow & \vdots & \uparrow & & & & \uparrow & & & & \\
\hline
\end{array}
$$

$$
\begin{aligned}
& |W\rangle \otimes\left|\phi^{+}\right\rangle=\frac{1}{\sqrt{6}}[(|00,10\rangle+|01,11\rangle+|10,00\rangle+|11,01\rangle)|0\rangle+(|00,00\rangle+|01,01\rangle)|1\rangle]
\end{aligned}
$$

Another interesting family is
(d) $\left(\begin{array}{cccc}\lambda_{1} & 0 & 0 & 0 \\ 0 & \lambda_{2} & 0 & 0 \\ 0 & 0 & \lambda_{3} & 0 \\ 0 & 0 & 0 & \lambda_{4}\end{array}\right) \Rightarrow \quad\left|\psi_{d}\right\rangle=\frac{1}{\sqrt{4+2|a|^{2}}}\left[(|11\rangle+a|22\rangle+|33\rangle)|0\rangle \begin{array}{r}+(|00\rangle+a|11\rangle+|22\rangle)|1\rangle]\end{array}\right.$
which is the only one at this entanglement dimensionality that needs to be subdivided into an infinity of SLOCC classes and where $0 \neq a \neq 1$.

SLOCC Classification

$$
|\psi\rangle \xrightarrow{\text { SLOCC }}\left|\psi^{\prime}\right\rangle \text { iff }\left|\psi^{\prime}\right\rangle=A \otimes B \otimes C|\psi\rangle
$$

where A, B and C are linear operators in C_{a}^{n}, C_{b}^{n} and C_{c}^{2} respectively*.

$$
\left|\psi^{\prime}\right\rangle=\sum_{k=0,1} A \otimes B\left|r_{k}\right\rangle C\left(c_{k}|k\rangle\right)=\sum_{k=0,1}\left|\phi_{k}^{\prime}\right\rangle\left|c_{k}^{\prime}\right\rangle
$$

where $\left|c_{k}^{\prime}\right\rangle=C\left(c_{k}|k\rangle\right)$ and $\left|\phi_{k}^{\prime}\right\rangle=A \otimes B\left|r_{k}\right\rangle$.
There exist C which maps $c_{k}|k\rangle$ into any two distinct $\left|c_{k}^{\prime}\right\rangle$.

$$
\Phi_{k}^{\prime}=B R_{k} A^{T} \Rightarrow \Phi_{1}^{\prime-1} \Phi_{0}^{\prime}=A^{T-1} R_{1}^{-1} R_{0} A^{T}
$$

interchanging the subsystems s_{a} and s_{b},

$$
\left(\Phi_{0}^{\prime} \Phi_{1}^{\prime-1}\right)^{T}=B^{T^{-1}}\left(R_{0} R_{1}^{-1}\right)^{T} B^{T} .
$$

+ Theorem $1 \Rightarrow|\psi\rangle \underset{\longleftrightarrow}{\text { SLOCC }}\left|\psi^{\prime}\right\rangle$ only if they are in the same Jordan family.
*W Dür, G. Vidal and J. I. Cirac, Phys. Rev. A63, 062314 (2000).

$$
\operatorname{rank}\left(R_{1}^{-1} R_{0}-\lambda_{l, r}\right)^{k}=\operatorname{rank}\left(R_{1}^{\prime-1} R_{0}^{\prime}-\lambda_{l, r^{\prime}}\right)^{k}
$$

look for two matrices, Φ_{1}^{\prime} and Φ_{2}^{\prime} that are superpositions of R_{1}^{\prime} and R_{0}^{\prime} and such that $\Phi_{1}^{\prime-1} \Phi_{0}^{\prime}$ are similar to $R_{1}^{-1} R_{0}$.

$$
\lambda_{l, r}=\mu_{l, \phi^{\prime}}=\frac{a \lambda_{l, r^{\prime}}+b}{c \lambda_{l, r^{\prime}}+d} \Rightarrow \lambda_{l, r} \lambda_{l, r^{\prime}} c+\lambda_{l, r} d-\lambda_{l, r^{\prime}} a-b=0
$$

with the additional condition that $(a d-b c)=1$.
Any non-trivial solution of linear system intersects $(a d-b c)=1$.
There always exist at least one solution if that $L \leq 3$.

Discussion: More General Tripartite Entangled States

- When neither one of the subsystems is a qubit, we get the equation

$$
\left(\sum_{k} \alpha_{k} R_{k}\right) u_{a}^{*}=0
$$

- When the entanglement has local supports n, m and 2 , with $m \neq n$, there is no invertible matrix.

Conclusion

- We have described a constructive method to find decompositions of tripartite entangled pure states which involve a number of terms smaller than one obtains using two successive Schmidt decompositions for entangled states with local supports on each part n, n and 2.
- We use these decompositions to classify these states according their inter-convertibility through SLOCC.
- We show how to find the SLOCC operation which transform one state in another when they are in the same SLOCC class.

Acknowledgments

D. Tausk for crucial helping on the proof of Theorem 1.

MFC acknowledges financial support of FAPESP (Fundação de Amparo a Pesquisa do Estado de São Paulo).

