Recent ARPES Results from 4d & 5d TMOs (Sr$_2$RhO$_4$, Sr$_2$IrO$_4$)

Changyoung Kim

Dept. Physics, Yonsei University
Effect of the Octahedra Rotation on the Electronic Structure of Sr_2RhO_4

B. J. Kim1, J. Yu1, S. J. Oh1, H. Koh2, I. Nagai3, S. I. Ikeda3, C. Kim

1School of Physics and Center for Strongly Correlated Materials Research, Seoul National University, Seoul, Korea

2Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

3National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan

Outline

- Background - (Sr,Ca)$_2$RuO$_4$
- ARPES data from Sr$_2$RhO$_4$ – Missing d_{xy} Fermi Surface
- Comparison with Band Calculation
- Summary – Octahedra Rotation Effect on the Electronic Structure
Phase diagram of $\text{Ca}_{2-x}\text{Sr}_x\text{RuO}_4$

Mott transition

Orbital Selective Mott Transition (OSMT)
Various ground states are realized by structural distortions.
4d transition-metal oxide

• Large spatial extent of 4d orbitals
 → large bandwidth, large $10Dq$.
 → tends to be weakly-correlated.
• Low-spin configuration is expected.

$\text{Ca}_{2-x}\text{Sr}_x\text{RuO}_4$
Sr_2RhO_4

$10Dq$
t_{2g}
xy
yz, zx
Rotation brings about:

- Doubling of the unit cell
- Decrease of M-O-M bond angle

which cause:

- Band folding
- Bandwidth narrowing

Fig. 1. Structure diagram of the Sr$_2$RhO$_4$ with I4$_1$/acd space group showing the RhO$_6$ octahedra rotation at $z = 1/8$ and $z = 3/8$ in ref. 4. The dotted lines show the structure of Sr$_2$Ru with I4/mmm space group.
Unit cell doubling and band folding

1D

\[a \]

\[2a \]

2D

\[(\pi,\pi) \]

\[\Gamma \]
Band width narrowing

- **Octahedra rotation**
- Decrease of M-O-M bond angle
- Decrease in hopping energy t
- Increase in U/t

Metal, small U/W

Insulator, large U/W
ARPES data on Ca-doped SRO

S.-C. Wang et al. PRL 93,177007 (2004)

ARPES signal is generally broad and weak.
• Share same crystal structure with Sr$_2$RuO$_4$.
• 5 electrons in 4d orbitals.
• Rotation angle $\sim 10^\circ$.
• No superconductivity.

Sr$_2$RhO$_4$ presents an opportunity to study the effect of rotation without “disorder”.
Similar to $\rho(T)$ in Sr_2RuO_4

- Large anisotropy
 \[\frac{\rho_c}{\rho_{ab}} (3K) = 2400 \]
- T^2-dependence
 Fitting with $\rho = \rho_0 + AT^2$
 \[\rho_{ab} (T) \quad A_{ab} = 6.26 \times 10^{-3} \, \mu\Omega \text{cm/K}^2 \]
 \[\rho_c (T) \quad \rho_0 = 20.1 \, \text{m}\Omega \text{cm} \quad A_c = 10.55 \, \mu\Omega \text{cm/K}^2 \]
- Below ~ 250 K, ρ_c decreases with lowering temperature.
- No superconducting transition was observed down to 36 mK.

Sr_2RhO_4 is a two-dimensional Fermi liquid.
Expected FS of Sr_2RhO_4

By doping one electron: (rigid-band model)

α

β

γ

Hase et al. J. of solid state chemistry 123,186 (1996)

We expect basically similar FS topology in Sr_2RhO_4
ARPES measurements

High energy ARPES
- ALS BL 7
 - Analyzer: Scienta 100
 - Temperature: 40K
 - Total Energy Resolution: 40 meV
 - Angular Resolution: 0.25°
 - Photon energy: 85 eV
 - Sample cleaved *in situ*

Low energy ARPES
- SSRL BL
 - Analyzer: Scienta 2002
 - Temperature: 20K
 - Total Energy Resolution: 40 meV
 - Angular Resolution: 0.25°
 - Photon energy: 20 eV
 - Sample cleaved *in situ*
FS of Sr_2RhO_4

Fermi Surface Mapping

Missing xy-band (g)
FS in Sr_2RhO_4!

B.J. Kim et al.
a hole pocket formed by xz/yz orbital band. (α)

an electron pocket formed by x^2-y^2 orbital band. (δ)

two electron pockets formed by xy (γ) and yz,zx band (β)

LDA calculation

WITHOUT distortion (rotation of octahedra)

<table>
<thead>
<tr>
<th>Occupation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>94.8%</td>
</tr>
<tr>
<td>β</td>
<td>66.8%</td>
</tr>
<tr>
<td>γ</td>
<td>72.5%</td>
</tr>
<tr>
<td>δ</td>
<td>7.1%</td>
</tr>
</tbody>
</table>
Effects of the rotational distortion

LDA calculation shows disappearance of γ-FS and x^2-y^2 FS.

Other’s result

F. Baumberger et al., PRL 96, 246402 (2006)
Effects of the rotational distortion

Effects of the rotational distortion

Observation of xy-band sunken under E_r
What about $(\text{Ca,Sr})_2\text{RuO}_4$? - LDA

E. Ko, et al., to appear in PRL
Rotation of the octahedra leads to hybridization of xy and x^2-y^2 bands.

Hybridization of xy and x^2-y^2 bands results in:
1. transfer of electrons from yz/zx to xy band and
2. disappearance of the xy Fermi surface.

e_g states play vital role in determining electronic structures near E_f, and therefore should be included in the theoretical models that deals with 4d TMOs.