### Charged Composite Complexes in Landau Levels: Magnetic Translations and Coherent States

Alexander Dzyubenko

Department of Physics, California State University at Bakersfield Department of Physics, University at Buffalo, SUNY General Physics Institute, RAS, Moscow



### **Collaborators**

University at Buffalo, SUNY, USA: H.A. Nickel, C. Meining, B.D. McCombe, A. Petrou

Technion, Israel: B. Ashkinadze University of Würzburg, Germany University of Dortmund, Germany D.R. Yakovlev, G. Astakhov

A.Yu. Sivachenko, Weizmann Inst. of Science, Israel

T. Sander, University at Buffalo, SUNY, USA

# Outline

- Motivation X<sup>-</sup>, charged e-h complexes in B
- Charged 2D magnetoexcitons X<sup>-</sup>

Magnetic Translations Classification of states Dark and Bright X<sup>-</sup> states Relation to the "Hidden Symmetry"

> "Applications": X<sup>-</sup> Internal transitions  $\begin{array}{c} v_e \rightarrow 0 \\ v_e = 1, 2 \end{array}$ 

Coherent States and Symmetry Driven Squeezing

Summary

## **Experiment: Motivation**

## **Negatively Charged Excitons and MIT**



## X<sup>-</sup> Photoluminescence and Shake-Ups (SU<sub>n</sub>)



### Singlet and Triplet X<sup>-</sup> States



# **Magnetic Translations**

### **Orbit Radius and Orbit Center**



Kinematic Momentum Operator  $\hat{\boldsymbol{\pi}}$ 

LL #: n=0, 1, 2, ...

**Orbit radius, Energy** 

$$\hat{\pi}^2 \Leftrightarrow r'^2 = (2n+1)I_B^2$$

 $\hat{\mathbf{K}} = \hat{\boldsymbol{\pi}} + \frac{e}{c} \mathbf{r} \times \mathbf{B}$ Magnetic Translation Operator
Oscillator #: m=0, 1, 2, ...
Orbit center, Degeneracy  $\hat{\mathbf{K}}^2 \Leftrightarrow \mathbf{r_0}^2 = (2\mathbf{m}+1)\mathbf{I_B}^2$ 

$$l_B = \sqrt{\frac{\hbar c}{eB}}$$

### Magnetic Translations: Single particle -e < 0

Operator of finite Magnetic Translations (MTs):

$$\hat{T}(\mathbf{a}) = \exp\left(i\frac{\hat{\mathbf{K}}\cdot\mathbf{a}}{\hbar}\right)$$

Generator of MTs: 
$$\hat{\mathbf{K}} = \hat{\boldsymbol{\pi}} - \frac{(-e)}{c}\mathbf{r} \times \mathbf{B} = -i\hbar \nabla - \frac{e}{2c}\mathbf{B} \times \mathbf{r}$$

Finite MTs: 
$$\hat{T}(\mathbf{a})\Psi(\mathbf{r}) = \exp\left(-i\frac{e(\mathbf{B}\times\mathbf{r})\cdot\mathbf{a}}{2\hbar c}\right)\Psi(\mathbf{r}+\mathbf{a})$$

Non-commutative (Non-Abelian)  $\hat{T}(\mathbf{a})\hat{T}(\mathbf{b}) = \exp\left(-i\frac{(\mathbf{a} \times \mathbf{b}) \cdot \hat{z}}{2l_B^2}\right)\hat{T}(\mathbf{a} + \mathbf{b}) \neq \hat{T}(\mathbf{b})\hat{T}(\mathbf{a})$ Group:

**Ray representation (an extra phase factor)** 

Zak PRB 1964 Brown PRB 1964

### **Raising and Lowering Operators I**



Non-commutative algebras  $[\hat{K}_x, \hat{K}_y] = ie\hbar B_z / c = -[\hat{\pi}_x, \hat{\pi}_y]$ 

Like for momentum-coordinate  $[\hat{p}, \hat{q}] = -i\hbar$ 

2D  $e^-$  in B = *two* oscillators:

Lippmann and Johnson 1949 Malkin and Man'ko 1968



### **Raising and Lowering Operators II**

Hamiltonian

$$H = \frac{\hat{\boldsymbol{\pi}}^2}{2M} = \hbar \omega_c (A^+ A + \frac{1}{2})$$

**Generator of MTs squared** 

$$\hat{\mathbf{K}}^2 = \hat{K}_x^2 + \hat{K}_y^2 = l_B^{-2}(B^+B + \frac{1}{2})$$

Operator of Orbital Angular Momentum Projection

$$\hat{L}_z = (A^+ A - B^+ B)$$

Common eigenstates

$$\left|nm\right\rangle = \left(A^{+}\right)^{n} \left(B^{+}\right)^{m} \left|00\right\rangle / \sqrt{n!m!}$$

### **Composite Complexes: Magnetic Translations**

$$\hat{\mathbf{H}} = \sum_{j} \frac{\hat{\boldsymbol{\pi}}_{j}^{2}}{2m_{j}} + \sum_{i \neq j} U(\mathbf{r}_{i} - \mathbf{r}_{j})$$

$$\hat{\pi}_{j} = -i\hbar \nabla_{j} - \frac{e_{j}}{c} \vec{A}(\vec{r}_{j})$$

**Exact Symmetry – Magnetic Translations:**  $[\hat{H}, \hat{K}] = 0$ 

**Generator of MTs**  
**for the whole system** 
$$\hat{\mathbf{K}} = \sum_{j} (\hat{\boldsymbol{\pi}}_{j} - (e_{j}/c)\vec{r}_{j} \times \vec{B})$$

 $[\hat{K}_x, \hat{K}_y] = \frac{i\hbar B_z}{c}Q$ Total charge $<math>Q = \sum_i e_i$ 

## **Composite Complexes: Magnetic Translations**

**Neutral Systems** 

$$Q = \sum_{i} e_{i} = 0$$

Hydrogen atom H Exciton X

Lamb 1952 Gor'kov & Dzyaloshinskii 1967

**Commutative MTs** 

QuasiMomentum

$$\hat{\mathbf{K}} \rightarrow \mathbf{K} = (K_x, K_x)$$

**Continuous quantum #** 

### Continuous spectra (magnetoexciton bands)

$$[\hat{K}_x, \hat{K}_y] = \frac{i\hbar B_z}{c}Q$$

$$[\hat{H}, \hat{K}] = 0$$

$$Q = \sum e_i \neq 0$$

Hydrogen ion H<sup>-</sup> Trions X<sup>-</sup>, X<sup>+</sup>

Avron, Herbst & Simon 1978

### **Non-commutative MTs**

**Oscillator quantum** #  
$$\hat{\mathbf{K}}^2 \Leftrightarrow k = 0, 1, ...$$
  
"cyclotron orbit center"

**Continuous+Discrete spectra** 

## **X<sup>-</sup>: Symmetries and Optical Selection Rules**

$$\hat{H} = \sum_{i=1,2} \frac{\hat{\pi}_{e_i}^2}{2m_e} + \frac{\hat{\pi}_{h}^2}{2m_h} + \frac{e^2}{\epsilon |\vec{r}_i - \vec{r}_2|} - \sum_{i=1,2} \frac{e^2}{\epsilon |\vec{r}_i - \vec{r}_h|} \hat{\pi}_j = -i\hbar \nabla_j - \frac{e_j}{\epsilon} \vec{A}(\vec{r}_j)$$
Axial Symmetry:  $[\hat{H}, \hat{L}_z] = 0$ 

$$\Delta M_z = \pm 1 \qquad \text{FIR } \sigma^{\pm}$$
$$\Delta M_z = 0 \qquad \text{PL}$$

Total angular momentum projection  $M_z$ 

Exact Symmetry – Magnetic Translations:  $[\hat{H}, \hat{K}] = 0$ 

$$\hat{\mathbf{K}} = \sum_{j} (\hat{\boldsymbol{\pi}}_{j} - (e_{j}/c)\vec{r}_{j} \times \vec{B})$$

$$[\hat{K}_x, \hat{K}_y] = \frac{i\hbar B_z}{c}Q$$

 $\hat{\mathbf{L}}_{z} = \sum (\vec{\mathbf{r}}_{i} \times -i\hbar \nabla_{i})_{z}$ 

total charge 
$$Q = \sum_{i} e_i \neq 0$$

oscillator quantum #  $\hat{\mathbf{K}}^2 \Leftrightarrow k = 0, 1, ...$ "cyclotron orbit center"

 $\Delta k = 0$ 

Avron, Herbst & Simon 1978

ABD & Sivachenko 1999

### **2D Magneto-X<sup>-</sup> : Quantum Numbers**



# **Magneto-PL: Probing 2DEG**



# Magneto-PL and the "Hidden Symmetry"

**Symmetric** e-h systems

$$U_{ee} = U_{hh} = -U_{eh}$$
  
 $\varphi_h = \varphi_e^*$  LL degeneracy

Lerner & Lozovik 1981, 1982 ABD& Lozovik 1983, 1984 Apalkov & Rashba 1992 MacDonald, Rezayi & Keller 1992

**Exact Quantum Equation of Motion** 

$$[H_{\rm int}, Q_0] = -E_0 Q_0 \begin{bmatrix} \text{Ideal Gas of} \\ \text{Composite Bosons} \end{bmatrix}$$

$$E_0 = \sqrt{\frac{\pi}{2}} \frac{e^2}{\varepsilon l_B} \propto \sqrt{B}$$

$$\hat{L}_{PL} = p_{cv}Q_0 \qquad v_e \le 2$$

In symmetric QWs in high fields:

**Recombination Energy**= $E_{\rm gap} - E_0$ 

$$-1.043E_0 X_t$$

$$2D + High B: DARK$$
Palacios, Yoshioka & MacDonald 1996

### X<sup>-</sup>: *Exact* Magneto-PL Selection Rules



### **Bright and Dark X<sup>-</sup> States**



## Why are X<sup>-</sup> Dark Triplet and Shake-Ups Observed?



#### **Charged Excitons in the Fractional Quantum Hall Regime**

G. Yusa, H. Shtrikman, and I. Bar-Joseph

Department of Condensed Matter Physics, The Weizmann Institute of Science, Rehovot 76100, Israel (Received 12 March 2001; published 1 November 2001)



Ashkinadze et al. PRB 69, 115303 (2004)

v < 1: Multiple (4) peaks Possible relevance of disorder

# Another "applications"

## **Combined Exciton-Cyclotron Resonance (ExCR)**



## **X<sup>-</sup>** Internal Transitions : Theory



## **X<sup>-</sup>** Internal Transitions: Experiment



### Internal transitions of X<sup>-</sup>- Summary Plot



## **Keeping the symmetries intact**

### Laughlin's State: electrons in Zero LL

*N*-electron state in lowest LL:

$$\prod_{i < j} (z_i^* - z_j^*)^m \exp \left[ \frac{\sum_{i=1}^{n} \mathbf{r}_i}{4 l_B^2} \right]$$

A uniform polynomial in  $Z_i^*$  of degree m(N-1)  $z^*=x-iy$ 

Axial Symmetry Satisfied:  $M_z = -m(N-1)$ 

**Permutational Symmetry Satisfied:** *m* is odd

For a large disk: a uniform state with electron filling factor

$$v = \frac{1}{m}$$

### X<sup>-</sup>: Two electrons + one hole in Zero LL

**Possible basis states:** 

$$\langle \mathbf{r}_{e1}\mathbf{r}_{e2}\mathbf{r}_{h} | X^{-} \rangle = Z_{h}^{l} (Z_{e1}^{*} - Z_{e2}^{*})^{m} \exp \left(-\frac{\mathbf{r}_{e1}^{2} + \mathbf{r}_{e2}^{2} + \mathbf{r}_{h}^{2}}{4l_{B}^{2}}\right)$$

Axial Symmetry Satisfied: Total Angular Momentum Projection is fixed

$$M_z = l - m$$

Permutational Symmetry Satisfied: Electron Singlet : *m* is even Electron Triplet : *m* is odd

What about translations?

### **Charged Trions X<sup>-</sup> in Zero LL**

**Basis states compatible with all symmetries:** 

$$\langle \mathbf{r}_{e1} \mathbf{r}_{e2} \mathbf{r}_{h} | k = 0, M_z = l - m \rangle =$$

$$= Z_{h}^{l} (Z_{e1}^{*} - Z_{e2}^{*})^{m} \exp\left(-\frac{\mathbf{r}_{e1}^{2} + \mathbf{r}_{e2}^{2} + \mathbf{r}_{h}^{2} - (z_{e1}^{*} + z_{e2}^{*})z_{h}}{4l_{B}^{2}}\right)$$

**Axial Symmetry Satisfied: Total Angular Momentum Projection is fixed** 

 $M_{z} = l - m$ 

Permutational Symmetry Satisfied:

Electron Singlet : m is even

Electron Triplet : m is odd

Magnetic Translations Satisfied:

Oscillator #: quantum k

t is fixed 
$$(= 0)$$

### **Composite Charged Complex: Ladder Operators**

MT operator  
$$\hat{\mathbf{K}} = \sum_{j} (\hat{\pi}_{j} - (\mathbf{e}_{j}/\mathbf{c})\vec{\mathbf{r}_{j}} \times \vec{\mathbf{B}})$$
 $[\hat{\mathbf{K}}_{x}, \hat{\mathbf{K}}_{y}] = \frac{i\hbar B}{c}Q < 0$   
Negatively Charged $\hat{k}_{\pm} = \frac{1}{\sqrt{2\hbar}} (\hat{K}_{x} \pm i\hat{K}_{y})\tilde{l}_{B}$  $[\hat{k}_{x}, \hat{k}_{y}] = \frac{1}{c}$   
Negatively ChargedBose Ladder Operators  
for the whole system $[\hat{k}_{+}, \hat{k}_{-}] = 1$   
Newering  
 $\mathbf{X}^{-}$   
 $\hat{l}_{B} = \sqrt{\frac{\hbar c}{|Q|B}}$ Raising  
 $\hat{k}_{+} = B_{e}(\mathbf{r}_{1}) + B_{e}(\mathbf{r}_{2}) - B_{h}^{+}(\mathbf{r}_{h})$ Magnetic length $\hat{k}_{-} = B_{e}^{+}(\mathbf{r}_{1}) + B_{e}^{+}(\mathbf{r}_{2}) - B_{h}(\mathbf{r}_{h})$ 

### **Electron vs Hole States in B**

**Electron Raising intra-LL operator:** 

$$B_e^{+}(\mathbf{r}) = \frac{1}{\sqrt{2}} \left( \frac{z^*}{2l_B} - 2l_B \frac{\partial}{\partial z} \right)$$

Hole Raising intra-LL operator:

$$B_h^{+}(\mathbf{r}) = \frac{1}{\sqrt{2}} \left( \frac{z}{2l_B} - 2l_B \frac{\partial}{\partial z^*} \right)$$

**Lowering** 
$$\hat{k}_{+} = B_e(\mathbf{r}_1) + B_e(\mathbf{r}_2) - B_h^+(\mathbf{r}_h)$$
  
**X**<sup>-</sup>  
**Raising**  $\hat{k}_{-} = B_e^+(\mathbf{r}_1) + B_e^+(\mathbf{r}_2) - B_h(\mathbf{r}_h)$ 

How to Handle 
$$\hat{k}_{+}$$
?  
Lowering!?  $\hat{k}_{+}|0\rangle \neq 0$   
 $\hat{k}_{+} = B_{e}(\mathbf{r}_{1}) + B_{e}(\mathbf{r}_{2}) - B_{h}^{+}(\mathbf{r}_{h})$   
 $\begin{vmatrix} 0 \rangle = |00,00,00\rangle \\ e_{1} e_{2} h \\ \mathbf{Vacuum} \\ \langle \mathbf{r}_{1}\mathbf{r}_{2}\mathbf{r}_{h}|0\rangle = \exp\left(-\frac{\mathbf{r}_{1}^{2} + \mathbf{r}_{2}^{2} + \mathbf{r}_{h}^{2}}{4l_{B}^{2}}\right)$ 

The old vacuum does not have a specific value of the Oscillator Q. # => Is not compatible with MTs

Solve for the new vacuum 
$$\hat{k}_{+} \left| \widetilde{0} \right\rangle = 0$$

### and find its coordinate representation

### How to Handle the Ladder Operators?

**Lowering** 
$$\hat{k}_{+} | \widetilde{0} \rangle = 0$$
  
 $\hat{k}_{+} = B_{e}(\mathbf{r}_{1}) + B_{e}(\mathbf{r}_{2}) - B_{h}^{+}(\mathbf{r}_{h})$ 

Mixture of raising and lowering operators. Bogoliubov Transformation for Bosons?

Step I: Orthogonal coordinate transformation  $\{\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_h\} \rightarrow \{\mathbf{R} = \frac{\mathbf{r}_1 + \mathbf{r}_2}{\sqrt{2}}, \mathbf{r} = \frac{\mathbf{r}_1 - \mathbf{r}_2}{\sqrt{2}}, \mathbf{r}_h\}$ 

2e: center-of-charge relative

$$\hat{k}_{+} = \sqrt{2}B_{e}(\mathbf{R}) - B_{h}^{+}(\mathbf{r}_{h})$$
$$\hat{k}_{-} = \sqrt{2}B_{e}^{+}(\mathbf{R}) - B_{h}(\mathbf{r}_{h})$$

### **Bogoliubov Transformation for Bosons**

$$u = \sqrt{2} \qquad v = 1 \qquad u^{2} - v^{2} = 1$$
$$\hat{k}_{+} = \sqrt{2}B_{e}(\mathbf{R}) - B_{h}^{+}(\mathbf{r}_{h}) \qquad u^{2} - v^{2} = 1$$
$$u = \cosh \Theta$$
$$v = \sinh \Theta$$
$$\hat{k}_{+} = SB_{e}(\mathbf{R})S^{+}$$
$$S = \exp\left\{\Theta\left(B_{h}^{+}(\mathbf{r}_{h})B_{e}^{+}(\mathbf{R}) - \mathrm{H.c.}\right)\right\} \qquad \tanh \Theta = v/u$$

A new vacuum  $\left| 0 \right\rangle \rightarrow \left| \widetilde{0} \right\rangle = S \left| 0 \right\rangle$ 

$$\hat{k}_{+} \left| \widetilde{0} \right\rangle = SB(\mathbf{R})S^{+}S \left| 0 \right\rangle = SB(\mathbf{R}) \left| 0 \right\rangle = 0$$

A coherent state with built-in R-r<sub>h</sub> correlations

### **Squeezed Coherent States**



### 2D, high-B limit: Triplet X<sup>-</sup> in Zero LL



A two-mode squeezed state with built-in (symmetry driven) e-h correlations => Already ensures binding

E

**Total Coulomb Interaction Energy** 

Variational functions With four-mode squeezing

ABD JETP Lett. 74, 318 (2001)

$$= \left(\frac{\sqrt{2}}{4} - \frac{\sqrt{5}}{6}\right) E_0 = -1.007 E_0 < -E_0$$

Binding energy  $E_b = 0.007E_0$ 17% of numerically exact value  $0.043E_0$ 

## **Keeping Magnetic and Axial Symmetries**

**Bogoliubov transformations effectively generate new charged particles in a** magnetic field with coordinates

$$\boldsymbol{\rho}_1 = \sqrt{2}\mathbf{R} - \mathbf{r}_h \quad \boldsymbol{\rho}_2 = \sqrt{2}\mathbf{r}_h - \mathbf{R} \quad \text{and} \quad \mathbf{r} = \frac{\mathbf{r}_1 - \mathbf{r}_2}{\sqrt{2}}$$
$$SB_e(\mathbf{R})S^+ = B_e(\boldsymbol{\rho}_1) \qquad SB_h(\mathbf{r}_h)S^+ = B_e(\boldsymbol{\rho}_2)$$

The interaction Hamiltonian becomes  $H = H_{ee} + H_{eh} = \frac{e^2}{\sqrt{2}r} - \frac{\sqrt{2}e^2}{|\mathbf{0}_2 - \mathbf{r}|} - \frac{\sqrt{2}e^2}{|\mathbf{0}_2 + \mathbf{r}|} \qquad \text{depend on } \rho_1$ 

H does not

### A two-particle problem?

ABD PRB 65, 035318 (2002)

and to be published

- All symmetries maintained
- Variables separate
- Built-in correlations (squeezing)
- Fast (exponential) convergence
- Complicated Coulomb matrix elements

## Summary

- Magnetic Translations for Charged e-h complexes: classification of states, exact selection rules, squeezing ..
- Dark triplet X<sup>-</sup> states relevance of scattering (disorder? 2DEG?)
- Internal transitions of isolated X<sup>-</sup> in B observed experimentally (ODR), are in excellent agreement with theory
- Theory of Shake-ups in depleted 2DEG magneto-photoabsorption
- "X<sup>-</sup>-like"= Many electrons + X<sup>-</sup> observed e-CR and additional blue-shifted resonances when v < 2</li>

Collective response of "many electron/few hole" system

Magnetoplasmon bound to mobile VB hole