Chemical
Physics

ELSEVIER Chemical Physics 252 (2000) 323-335

www.elsevier.nl /locate/chemphys

Effect of collisions on the orientational relaxation of
photofragments

A.P. Blokhin *, M.F. Gelin

Ingtitute of Molecular and Atomic Physics, National Academy of Sciences of Belarus, Skaryna pr.70, Minsk, 220072, Belarus
Received 21 July 1998

Abstract

Effect of collisions is investigated on the photofragment anisotropy decay. We restrict ourselves to studying linear
fragments, and no rotational predissociation is assumed. Photoproducts are produced with a nonequilibrium rotational
distribution, basically due to the applied torque and the parent molecule rotation. A kinetic equation, describing rotational
relaxation of linear fragments under nonequilibrium conditions, is derived and solved for angular momentum correlation
functions (CFs), rotational energy CFs, and also orientational CFs (OCFs). The characteristic decay times for the angular
momentum and rotational energy CFs are shown to be insensitive to the mechanism of the photofragmentation. On the
contrary, OCF of the second rank, that completely determines anisotropy of the photoproduct emission, is demonstrated to
be very sensitive to peculiarities of the dissociation process and collision dynamics. This is confirmed by comparison of the
calculated photoproduct anisotropies with experimental [M. Volk, S. Gnanakaran, E. Gooding, Y. Kholodenko, N. Pugliano,
R.M. Hochstrasser, J. Phys. Chem. A 101 (1997) 638] and simulated [I. Benjamin, U. Banin, S. Ruhman, J. Chem. Phys. 98
(1993) 8337] ones. The fragment ensemble is proved to retain some memory about its initial nonequilibrium distribution.
This pertains not only to the short time behavior for the anisotropy, but aso for its long time decay. Therefore, the study of
the polarization response of the ensemble of photoproducts allows one to know about features of the photofragmentation
dynamics, and also to get information about peculiarities of collisions of fragments with buffer medium species. © 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction light is proportional to (€ )2, with & being the light
polarization and 1 being the transition dipole mo-
ment. The latter is a direct consequence of the
observation that rotational excitation of fragments is
determined by the parent molecule geometry and
peculiarities of the dissociation process. That is why
the investigation of the anisotropy of the photo-
product emission alows one to know about the
photofragmentation mechanism in considerable de-
~* Corresponding author. Fax: +7-375-0172-840-030; E-mail: tail. Treditionally, experimental and theoretical ef-
1sfm@imaph.bas-net.by forts were directed to studying the steady state ani-

Ensemble of products produced through the
photofragmentation of an ensemble of parent mole-
cules is rotationally and orientationally anisotropic
[1,2]. Schematically, this anisotropy has both optical
and dynamic origin. The former is due to the fact
that the probability of absorption and/or emission of
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sotropy, both for diatomic [1-17] and polyatomic
[18,19] fragments. The advent of the femtosecond
polarization spectroscopy made it possible to moni-
tor the fragment anisotropy decay in rea time [20—
22]. However, these experiments (both in the steady
state and in the time domain) have been performed
in the gas phase under collision free conditions,
where the main source of the anisotropy decay is due
to the free rotation of products. On the other hand, a
collisional environment is a natural medium for the
majority of photoreactions, including those of biolog-
ical significance [23-25]. Recently, a number of
‘real time' measurements [24—32] and computer sim-
ulations [23,33—36] was reported, where the anisot-
ropy decay of diatomic photoproducts was studied in
the condensed phase.

Evidently, intermolecular collisions destroy the
initially produced nonequilibrium distribution. So,
the natural question arises: * Whether is it possible to
extract information about the photofragmentation dy-
namics by monitoring the photoproduct anisotropy
decay, or a few collisions are enough to maintain an
equilibrium distribution so that the observed data
reflect orientational relaxation under equilibrium
conditions? On the other hand, our knowledge about
rotational and orientational relaxation in gases and
liquids is due to the numerous spectroscopic experi-
ments and computer simulations. The great bulk of
these studies was carried out under equilibrium con-
ditions [37-41]. Fragments produced through the
photolysis of parent molecules have a nonequilib-
rium, nonthermal rotational distribution. So, the study
of the relaxation of such nonequilibrim distribution
to an equilibrium one will provide us with a crucia
test for a collision model invoked for the description
of intermolecular collisions.

The present work is aimed at presenting a rela
tively simple model for the description of the photo-
product anisotropy decay due to intermolecular colli-
sions. The model contains a few parameters with a
clear-cut physical meaning. This makes it convenient
enough for the interpretation of results of experi-
ments and simulations. We restrict ourselves to
studying linear parent and product molecules, that
mimics dissociation of a triatomic molecule into a
diatomic and an atom. The photofragment distribu-
tion over angular momenta is derived in Section 2.
The kinetic equations governing the collisional relax-

ation of the nonequilibrium distribution are intro-
duced in Section 3 and solved for the angular mo-
mentum, rotational energy correlation functions
(CFs), and orientational CFs (OCFs) of the second
rank. The obtained results are discussed in Section 4,
where our theoretical predictions are tested against
experimental results [31] and computer simulations
[34]. In Section 5, which is the Conclusion, the
essence of the work is summarized.

Note that the rotational predissociation is ignored
in the subsequent analyses. This assumption is obeyed
quite well for at least dissociation of a number of
triatomics [20—-22,26—36]. If necessary, predissocia
tion can aso be included into consideration by an
appropriate generalization of the results of papers
[42] to collisional environments.

2. Photoproduct angular momentum distribution

We consider the photofragmentation dynamics in
the reaction A + ho — B + products under the fol-
lowing assumptions [19,22,42—-46]:

molecules A and B are rigid tops,

. photofragmentatlon proceeds instantaneously,
- classical mechanics is an adequate description of
the process.

The most crucial assumption here is that concern-
ing the promptness of the photofragmentation. It
fulfils quite well on the time scale of molecular
rotation. Indeed, a characteristic time for the rota-
tional reorientation 7, = /1 /KT = 1.1y/I /T ps. Here
| is the main moment of inertiain au. A%, and T is
the rotational temperature in kelvins. So, at a room
temperature, 7, falls normally into the picosecond
time region. On the other hand, the photofragmenta-
tion time was estimated to be as small as 50—-200 fs
[20—22,26—36]. There exist two basic sources for the
rotational excitation of photoproducts, viz. the torque
due to the rapture of chemical bonds and the parent
molecule rotation. By using the assumptions men-
tioned above and the angular momentum conserva-
tion low one can establish the following relationship
between the parent and product angular momenta
[19,22,42—-46]:

=Gl +4. (1)
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Here the first summand describes mapping of the
parent angular momentum into the product one, and
the second summand is merely the additional angular
momentum ascribed by the product due to the torque.
Explicitly,

Gab=|BaRab(E)|Ab' (2)

with I, and 1, ,, being the main moments of inertia
of molecules A and B, R, (=) being the matrix of
rotation from the frame of the main moments of
inertia of B to that of A, and = are the pertinent
Euler angles. While the direction of A is known (A
is conventionally assumed to be pointed along the
direction of the ruptured bond), one can invoke the
energy balance to estimate the magnitude of A asit
is conventionally done in the impulsive models [22].

Being specialized to the case when A and B are
linear rotors with their axes being parallel to each
other (5= 0), Eq. (1) reduces to

‘TB=(IB/IA)‘TA+Z' (3)

where j?,,j;,A_) are the two-dimensional vectors. By
assuming that the parent molecules possess a Boltz-
mann equilibrium distribution at the temperature T#,
one arrives at the following distribution over the
photofragment angular momenta:

po( Ja) = (n/ﬂ)exp{ (JE - 5)2} :

n=1y/(2KT412), (4

(compare with Refs. [47-49)). This is evidently a
Gaussian but not a Boltzmann distribution. It is
centered in the vicinity of J; = A. For the further
implementation of distribution (4) one should invoke
symmetry arguments. While a triatomic molecule
dissociates from a bent configuration, a diatomic
fragment is produced with an additional angular
momentum A, either due to the applied torque or the
recoil of a heavy atom. In any case, there is no
preferential orientation of A in the photoproduct
frame. Therefore, Eq. (4) should be averaged over all
possible directions of A. This can immediately be

done by introducing the polar coordinates
Jy=Jcos ¢y, Jy=Jsin¢y;

A,=Acosg,, Ay=Asing,. (5)

and integrating Eq. (4) over ¢,:

po(3) = (27) " [“"dey po( )

= (n/m)1o(2ndA)exp{—n(JI*+ 4%)},
(6)
where
o (#
lo( )—EO (K1)’ (7)

is the modified Bessel function. This is the distribu-
tion which is implemented in all the subsequent
calculations. It depends only on |J] and is centered
near J= A. Hereafter, the subscript B, denoting the
fragment angular momenta, is omitted for brevity.

3. Rotational and orientational CFs

The standard kinetic equation for describing rota-
tional motion of linear molecules reads as follows
[40,50,51]:

8, p(J,0,t) =

-

~{i 152330 0) + 2.}p(3.0.)

+2,[dI T(3NT)p(3,2,0) . (8)

Here J is the (two-dimensional) angular momentum
in the molecular frame, the Euler angles (2 specify
orientation of the molecular frame with respect to the
laboratory one, J0) is the angular momentum op-
erator in the molecular frame, and z, is the collision
frequency. To describe the collision dynamics we
chose the Keilson—Storer kernel [52]:

T(J1J7) =

[2m1kTg(1—v2)]
xexp(-(J-7)

/(2161 - )]} (9)

with T, being the (equilibrium) rotational tempera-
ture of the buffer medium. It is evident that generally
Toq # Ta- The parameter —1<y <1 specifies the
coIhson process. When y = 1, T(J]J') —» 8(J— J),
the angular momentum is conserved, and Eq. (8)
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reduces to the free rotor Liouville equation. Provided
that y = 0O, intermolecular interactions are so strong
that a single collision is enough to establish a Boltz-
mann equilibrium distribution: T(J]J) = p(I)

peal 3) = (2715KT) "exp{ — T2/ (21KT,) } -
(10)

By letting y= —1, one gets T(J]J') - §(J+ J),
so that the angular momentum is reversed due to a
collision. Eq. (8) with kernel (9) contains, as a
special case, the J-diffusion model (y = 0) [40,50,53]
and the rotational Fokker—Planck equation (z, —
o,y = 1,z(1—vy) = v;=const) [40,50,51,53]. If
0<y<1 the Keilson—Storer model interpolates
smoothly between these two models, and generalizes
the approaches to the description of the preferential
reorientation of the angular momentum in the course
of collisions. The Keilson—Storer kernel obeys the
detailed balance conditions

- = - -
! !

T(IT) puf ) =T(T13) (7). (11)

The requirement ensures relaxation of an arbitrary
initial distribution to the equilibrium one (10). Ki-
netic Eq. (8) with the Keilson—Storer kernel (9) has
extensively been studied in the literature in case of
an equilibrium initial conditions, i.e., p(J,0,t=0)
= pey(J) [40,54,55]. However, the photogragmenta-
tion process manifests itself _in the nonequilibrium
initial conditions (6), i.e., p(J,02,t=0) = p,(J). To
calculate the rotational and orientational CFs under
these nonequilibrium conditions is the goa of the
present section.

By simply multiplying Eq. (8) by J, and J, Jg,
one can immediately calculate the angular momen-
tum and rotational energy CFs:

(J(0) J(1)) = exp{ — wyt} (I'?,
(I =A+n7 Y, (12)

(T2(1)) = (I + exp{ = vt} ((I?) = (T2)q |
(13)

(J2(0) I2(t)) = (I2)(I?)eq + exp{ — vet)

X[(I*) = (I2N(TD) |
(14)

(J*y =202+ 4~ U2+ A%, (I = 215 KT ;

V= 731 =Zc(1_ ')’)' Vg = TE1=ZC(1_ 72) .
(15)

So, the angular momentum and rotational energy
CFs exhibit simple exponential damping with the
decay times 7, and 7¢ (15), identically as in case of
an equilibrium initial distribution [40]. So the charac-
teristic decay times are not sensitive to the mecha-
nism of the photofragmentation. Only the averaged
values of even moments of J do depend on n and
A. On the contrary, as it is demonstrated below,
OCFs are very sensitive to the peculiarities of the
dissociation process.
OCFs are defined as follows:

Glo(1) = [dIGL(J1t)

J
L (Dl =£2(0)) Din(£2(1)))

m= - |

(16)

where D] () are the Wigner D-functions. Under
the certain assumptions [18—35], anisotropy of the
photoproduct emission is determined by the second
rank OCF:

r(t) =2/5(P?( jiy(0) Ko(1)))

2
=2/5 Z Dék(_ﬁl)eil(t)Dlzo(ﬁz)'
Kl=-2

(17)
with i, and i, being the unit vectors dong the
pump and probe transitions. On inserting definition

(16) into Eq. (8), one arrives at the following kinetic
equation for OCFs:

j
3GL(TN = —1 Y TH,Gh(30) ~28h(T)
m=—j

+2,/dI T(J1T)G)(Jt),  (18)
Gl (Jt=0) = po(J) 8. (19)
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Here
Dt = s/(ixD(jFI1+1),
Ha=dh—i<kl<j, (20)

are the matrix elements of the angular momentum
operators over the D-functions. Hereafter, dimen-
sionless variables are used throughout the article:
time is measured in units \/Ig /KT, and angular

momenta in /15 KT, . In these new variables
n= IATeq/(ZTAIB)'

pe(J) = (27) exp(—3%/2) . (21)

Eqg. (18) with nonequilibrium distribution (19) can
easily be solved analytically in the rarefied gas (z, =
0) and in the diffusive (z, > 1) limit. In the former
case, one should merely average the free linear rotor
OCF [56]

i
ijn(‘it) = Z df<m( _Tr/z)dgnn(ﬂ/z)
m= |
xexp{—ig(n—k) —imJt} . (22)

over the nonequilibrium distribution (6) (see also
Refs. [20—22]). The result reads

z,=0= Gl (1) = Gi(1) 8, ,

GU(1) = (dho(7/2))"+ [ 3d3po(9)

X i (di(m/2)) cos(mdt) . (23)

By applying the projection operator technique [57,58]
to Eq. (18), one finds that in the diffusion limit the
standard small angle rotational diffusion [40,50—
55,57,58] takes place, irrespectively of the particular
form of distribution (19):

z.> 1= Glil(t) = Gli(t) Skjl’
Gi(t) = exp{—tr,(i(i +1) —K?*)}. (24)

The result is quite obvious, since angular momenta
are quick variables in the diffusion limit (7, < 1).

So, any anisotropic distribution over angular mo-
menta relaxes to a Boltzmann distribution on the
time scale characteristic of molecular reorientation

ri = [CdGi(t) (25)
0

because in the diffusion limit

r={n(i(i+1) -K)} ">1. (26)
This expression is known as the Hubbard relation
[39,40,50-55,57-59]. So, in the diffusion limit, all
the information concerning the photofragmentation
dynamics is lost.

We further restrict ourselves to the calculation of
the second rank OCF for w, and &, pointing along
the axis of the linear photofragment, because such a
situation is of a considerable practical significance
[20-36]. In this case

r(t) = 2/5G2(1) . (27)

The solution of Eg. (18) for G3,(t) in case of an
arbitrary collision frequency z, is quite complicated
task (see Appendix). The final result is however
rather simple and compact: the Fourier image of the
OCF can be calculated according to the following
three-term recurrence relations for coefficients by,

Gho(w) = [ dtexp{ —iwt) Giy(1)
0

= (1+2/6by)/iw, (28)
16(m+ 2)
- Mm+1
Om+1
8m+10 8m+6
- + + ¢ b
Um+l (Tm
4m V6
Bl L)
m 2 (Tm+1 Um

where the explicit expressions for coefficients
OrmiSmidm @€ given by Eqg. (A13) and (A15). The
caculation of G3,(w) from such recursive relations
is very effective and rapidly convergent routine (see
Ref. [60] for general discussion). In order to get
G2,(t) in the time domain, the inverse Fourier trans-
form must adso be performed numericaly. While
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equilibrium initial conditions (10) are assumed, ¢, =
80, and recursive formulas (29) can be solved in
terms of a continued fraction. The result generalizes
the approach developed by Sack [54] for the calcula-
tion of the first order OCF.

4. Results and discussion

In the present approach, the rotational motion of
fragments is governed by the following four parame-
ters. v;, v, m, and A. The first two parameters
specify dynamics of collisions of fragments and
buffer species, and the last two parameters reflect the
photofragmentation dynamics. The time dependen-
cies of G3,(t) for various values of these parameters
are presented in Figs. 1 and 2. The solid curves
correspond to the equilibrium ensemble of linear
rotors. Under the collision free conditions v; < 1
and in case of the large applied torque (4> 1),
OCFs (23) evidently reduce to

Ggo(t) = cos( At),GZ(t) = (1 + 3cos(24t)) /4.
(30)

These functions are periodic with the period .7/ =
2m:j4, j=1,2. When A > 1, the short time behav-

OCF

0.2 —

-0.4

0 1 2 3 4 5
t
Fig. 1. Time development of the second rank OCF, v, = 1. Solid
lines are used for n = 0.5, A = 0 (equilibrium conditions), dashed
lines for n=2, A=0, dotted lines for n=2, A=3. In the
vicinity of the point t=1.5, from top to bottom, the curves
correspondto y = —0.9, y=0,and y = 1.

OCF

0.0

Fig. 2. Sameasin Fig. 1 but for ;= 5.

ior for OCFs is determined by the applied torque,
and peculiarities of the collision dynamics (v;,y) are
of minor importance, because it is no time for colli-
sions to completely destroy these oscillations. So, a
few characteristic periodic features are transparently
seen in the dotted curves (A=3, .#2=1.05). It
should be pointed out that the inverse proportionality
of the oscillation period .7’ and the OCF rank j is
accidental, because it holds true for j = 1,2 only. For
instance, when j=3and A>1

G3,(t) = {5cos(3A4t) + 3cos( At)} /8. (31)

Evidently, .73 = 2w /A.

Additional angular momentum A manifests itself
characteristically in the OCF spectra, viz. G3,(w)
possesses a pronounced far wing shoulder (Fig. 3).
In polar liquids, the very similar feature is a direct
consequence of the librational motion of a molecule
in the cage of its nearest neighbors, and the fre-
quency corresponding to this shoulder is a character-
istic librational frequency [40,61—64]. In our case, as
it is evident from Eq. (30), wl,, ~j4, j=12. So,
examining OCFs both in the time and frequency
domain allows one to estimate the additional angular
momentum A. However, the procedure must be
carried out with some caution. The point is that one
must be surethat A > 1. What is actually a criterion
for fulfilling this strong inequality, depends, among
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OCF

I I | I ' I
0 2 4 6 8 10

Fig. 3. Fourier spectrum of the second rank OCF, v;=1. Solid
lines are used for n = 0.5, A = 0 (equilibrium conditions), dashed
lines for n =2, A=0, dotted lines for n=2, A=3. (1) stands
fory=-0.9, (2) for y =0, and (3) for y =1.

other things, on the collision dynamics. This state-
ment is immediately illustrated by Figs. 1-3. Indeed,
in case of y= — 0.9 (angular momentum reorienting
collisions) and y = 0 (strong collisions) one observes
oscillations of the OCFs with the period .72 =m/A
(Figs. 1 and 2) and maximums of the OCF spectra at
wla = 2A (Fig. 3). However for y =1 (weak colli-
sions) the oscillation periods and maximums of spec-
tra are shifted from the values given above (Figs.
1-3). To put it differently, if the transmitted torque
is not high enough, a complex interplay between
dissociation and relaxation results in more sophisti-
cated behavior for OCFs. So, one should actually
perform fitting of experimental and theoretical
curves, to be convinced that oscillations of OCFs are
indeed due to the transmitted angular momentum A.

While the primarily origin of the fragment rota-
tion is that of the parent molecules (A < 1), orienta-
tional relaxation can considerably slow down: ac-
cording to Eq. (3), the product angular momentum is
scaled by the factor ~1/2 (the dimensionless quan-
tity n=I1,To/(2T,1g) is introduced in Eq. (21)).
For example, y(J?) = n~ Y2, So, when the parent
molecules are considerably more massive than the
product ones (1, > I3) or when T, > T,, the prod-

uct angular momentum is quite small. This is the
reason of the orientationa relaxation slowing down
(compare solid and dotted curves in Figs. 1 and 2).
By the method described in Refs. [55,65], starting
from Eq. (A7) one can conveniently calculate the
first few terms of the Tailor expansion for OCF:

Glo(t) =1-j(j +1)(1—2¢)t?/2!

+i(i+ ) vy(1—2[2+ y])t3 /3!

+ O(t%) (32)
—0<{=1/2-1/(4n) — A%/4<1/2. (32)

It is well known from the analysis of the orienta-
tional relaxation under equilibrium conditions that
the coefficient near t? in the Tailor expansion for
OCFs of colliding molecules coincides with that for
OCFsof freerotors, reflecting thereby that a molecule
rotates freely at a short enough time interval after a
collision [37-40]. The coefficient near t* is com-
pletely determined by the angular momentum relax-
ation frequency v, [40,55]. Further, provided that v,
isfixed, the higher is the angular momentum reorien-
tation due to a collision (the closer is y to —1) the
slower is orientational relaxation [55,65]. These ex-
pectations are certainly confirmed by Eq. (32) being
specialized to equilibrium conditions (n=1/2, A=
0, ¢, = 0), seeaso Figs. 1 and 2, solid curves. When
nonequilibrium initial conditions (6) are presumed,
the situation is very different. On explicitly rewriting
Eqg. (32) as

Glo(t) =1—j(j+1)(n "+ 4%)t%, 4+ O(t?)
(33)

one sees that there exists no free rotor initial behav-
ior. However, the rank dependence of the term is
essentially the same as in case of afree rotor, so that
the quantity y/(n~* + A%) /2 can be regarded as the
effective photofragment temperature. When 7 in-
creases (‘rotational cooling’) orientational relaxation
slows down. When A increases the initia decay
hastens (Figs. 1 and 2). Further, by considering the
third term in Eq. (32) it is possible to infer the
following observations. In case of no torque (A = 0)
and n>1/2, one can state that the higher is the
angular momentum collisional reorientation, the
slower runs orientational relaxation (Figs. 1 and 2,
dotted lines). On the contrary, when the torque is
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high enough, the opposite situation occurs: the greater
is y (the closer molecular rotation resembles the
Fokker—Planck limit) the greater is OCF (Figs. 1 and
2, dashed lines). For an ensemble of rotors under
equilibrium conditions (n=1/2,A=0,{, = 0), the
third (and also the fourth [55]) term in Tailor expan-
sion of OCF is essentialy independent of the colli-
sion efficiency y. Summarizing, one can characterize
the short time behavior for OCF as a competition
between ‘redity’ (intermolecular collisions) and
“memory’ (dynamics of the photofragmentation). It
is remarkable and very helpful for practical applica-
tions that the peculiarities of the photofragmentation
manifest themselves markedly not only at a short but
aso at the long time behavior for OCFs (compare
the corresponding solid, dotted, and dashed curvesin
Figs. 1 and 2).

The long time behavior for OCFs transparently
manifests itself in the orientational relaxation times
(ORTS) 7/, because these quantities are defined as
integrals of OCFs over the entire time domain (Eq.
(25)). In fact, ORTSs can be regarded as anisotropy
dephasing times. It is a popular procedure to investi-
gate 7} vs. the angular momentum relaxation time 7,
[40,53,59] or, that is equivalent, vs. the angular
momentum relaxation frequency v, = 7;*. For equi-
librium ensembles, it is a direct consequence of the
above analyses for OCFs that the less is y the more
is 7} (Fig. 4). The distinction between ORTS corre-
sponding to different y is more pronounced in the
dilute gas limit. Due to the universal Hubbard rela-
tions (26), ORTs in the hindered rotation limit are
independent of y and completely determined by 7,
(Fig. 4). A very similar behavior is established when
the bulk part of the fragment rotational excitation is
due to the parent molecule rotation (Fig. 4, dotted
curves). In the dilute gas limit (v, < 1), these ORTs
are less than eguilibrium ORTs. While v, increases,
the opposite behavior is observed (Fig. 4). So, high
enough values of ORTs in the hindered rotation limit
could be indicative not only of a substantial angular
momentum collisional reorientation, but also of ‘ro-
tational cooling’. When a substantial torque is im-
parted on the fragment, an inverse situation takes
place. The so calculated ORTSs are greater than equi-
librium ORTs in the dilute gas limit. If v, increases,
the torque manifests itself in a considerable reduc-
tion of the ORT value (Fig. 4). When collisions do

1000.0 —

/

100.0 — .

/
/

0.1 T T T T T T TTTTT

0.01 0.10 1.00 10.00 100.00

Fig. 4. The second rank ORT vs. v, Solid lines are used for
n=0.5 A=0 (equilibrium conditions), dashed lines for n =2,
A =0, dotted lines for n =2, A= 3. In the vicinity of the point
vy=1, from top to bottom, the curves correspond to y = —0.9,
y=0,andy=1

not reverse the photoproduct angular momentum (y
>0) and v;~ 1 (intermediate densities) ORTs are
tangibly less than their equilibrium counterparts.
Moreover, the ORTs values turn out to be signifi-
cantly less then the minima values of ORTs under
equilibrium conditions, that correspond to the
Fokker—Planck limit of molecular collisions
[40,55,66,67]. So, the photofragmentation consider-
ably expands the ‘corridor’ of the allowed values of
ORTs as compared with that for equilibrium condi-
tions [40,67].

Now we shall try to apply the developed approach
to the interpretation of the experimental data of the
Hocstrasser’'s group on dissociation of Hgl, in
ethanol for 270-nm pump and 490-nm probe [30,31].
First, we fit the results of the equilibrium molecular
dynamics simulations for diatomic Hgl at 300 K
(7, = 1.5 ps). Asit is described above, we choose the
angular momentum relaxation frequency v;= 3.5 to
ensure the short time coincidence of the simulated
and calculated OCFs. After so doing, we vary y to
adjust the curves at latter times. The results are
depicted in Fig. 5 where y= —0.93 is seen to
provide excellent coincidence of the OCFs (all the
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r(t)
\

0.00

0.00 0.66 1.32 1.98 2.64 3.30

Fig. 5. Comparison of the calculated and simulated anisotropy
decays for Hgl. (1) for experimental measurements; (2) for equi-
librium molecular dynamics simulations at 300 K. Curves 3—-6
correspond to n = 0.5, A= 0, v; = 3.5. (3) stands for y = —0.999;
(4) for y=-0.93; (5) for y=0; (6) for y=1. Curves 7-10
correspond to n=0.5, A=0, v;=1. (7) stands for y = —0.99;
(8) for y = —0.9; (9) for y = 0; (10) for y = 1. Curves 1 and 2 are
taken from Ref. [31].

calculated OCFs are scaled to yield G3;(0) = 0.16).
This value of y corresponds to a considerable reori-
entation of the angular momentum due to a collision.
This fact is indicative of the quasilibrational charac-
ter of the molecular rotation in liquids, that is con-
firmed by a number of computer simulations, includ-
ing those reported in [30,31]. It is very important for
the further analyses, that we were unable to perform
the above mentioned fitting procedure for Hgl pro-
duced through the photofragmentation of Hgl,.
While trying to fit experimental Hgl anisotropy by
equilibrium Keilson—Storer OCFs, we can provide
the short time (at t < 1) resembles of the curves
(v;=1), but further we evidently fail to achieve afit
of theoretical and experimental curves by varying y
(Fig. 5). It is our opinion, that thisis an indication of
the fact that photoproducts retain their memory of
the initially nonequilibrium distribution over angular
momenta, despite of quite frequent collisions with
buffer spices. To confirm this observation, we at-
tempted to adjust experimental anisotropies by
nonequilibrium Keilson—Storer OCFs. For the exper-
iment described in [30,31] one should assume that
Teq = Ta, SO that the dimensionless parameter 7 is
entirely determined by the ratio of the parent and

0.16 —

0.12 —

0.08

r(t)

0.04 —|

0.00

0.00 0.66 132 1.98 2.64 3.30
t

Fig. 6. Comparison of the calculated and experimental anisotropy
decays for Hgl. (1) for experimental measurements; (2) for equi-
librium molecular dynamics simulations at 300 K. Curves 3-5
correspond to v; =35, A=14; (3) y=-099, (4) y=-0.J9,
(5) y =1. Curves 1 and 2 are taken from Ref. [31].

product moments of inertiaz n = 1729/(2 X 529) =
1.63. In atria to fit the experimental anisotropy one
is alowed to vary v,;, v and A. The results of this
procedure are depicted in Figs. 6 and 7. By taking
vy;=3.5 (as in the case of equilibrium conditions)
experimental anisotropies are fitted reasonably well
by y=—0.99, A=14 (Fig. 6). However, a better
fit one gets for v;=8, y= —0.99, A =2 (Fig. 7).
Note that the measured anisotropy exhibits a small
scale oscillations that originate from the vibrational
modulation of the interatomic length. These oscilla-

0.16 —

r(t)
|

0.00

0.00 0.66 132 1.98 2.64 3.30
t

Fig. 7. Sameasin Fig. 6 but for v;=8, A= 2.
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tions certainly can not be reproduced within the
assumption that the fragment is a rigid body. Such a
large scale scatter of parameters v; and A is ex-
plained by formulas 32) and (33). A simultaneous
increase of v; and A does not result in alternations
of the short time decay for the OCF. So the fitting
procedure should be carried out more carefully.
Nonetheless, a high degree of the angular momentum
reorientation should be stressed, because it is the
same for both sets of fitting parameters. Note that the
values of parameters n and A, that are used here to
adjust the experimental results [30,31], differ
markedly from those determined in [22] for the same
reaction under collisionless conditions. Evident ex-
planations for this discrepancy are as follows. First,
nonequilibrium distribution [17] is distinguished from
the shifted Gaussian pS$®(J) ~ exp{((J— Jy)/
A;)?} used in [22], where J, and A, were taken as
high as 80 and 90, respectively. Second, the influ-
ence of the surrounding molecules can show itself in
a significant alternation of the parameters. Third, and
by all means the most important reason is that the
authors of paper [22] performed averaging of the free
rotor OCF (22) either over [7JdJp(J)... or over
JdIpg=(J)... Both Jp,(J) and p§***(J) reach
their maxima at some J,,, # O, that allows one to
reproduce the observed anisotropy deep [22]. So J,,
that is the analogue of our A, can not be regarded as
the transferred angular momentum, because just the
same behavior for the anisotropy decay can be mod-
eled by an equilibrium distribution Jp,(J), i.e,
with J, = 0. According to the present analyses, the
averaging should be done over [5JdJpy,(J)... Itis
in this case A can be considered as the transmitted
angular momentum.

The results of the comparison of the present
theory and computer simulations of the reaction I3
+ hv— 15+ 1 in ethanol at 295 K [34] are presented
in Fig. 8. In this case T, =T,, 7, =15 ps, and
n = 2. The equilibrium OCF for |, is satisfactory
fitted by the equilibrium Keilson—Storer OCF with
v;=10.3, y= —0.96. The behavior for the iodine
ion OCF after the photofragmentation is reasonably
well adjusted by the curve corresponding to the same
collision parameters v;=10.3, y= —0.96, and the
acquired angular momentum A = 1.7. So, one can
conclude that the collision dynamics is relatively
insensitive to the photofragmentation (v,,y), while

10 —

08 — 1\

o 1|

OCF
I

0.2 —

0.0 T T T T I
0.0 1.0 2.0 3.0 4.0

Fig. 8. Comparison of the calculated and simulated anisotropy
decays for 1. (1) 1; equilibrated in ethanol at 295 K; (2) 15 in
ethanol following |53 photodissociation. Curves 3—7 correspond
to v;=10.3, n=1/2, A=0.(3) y=—0.99; (4) y = —0.96; (5)
y=-0.8; 6 y=0; (7) y=1. Curves 8-11 correspond to
v;=103,n=2,y=-096.(8) 4=0;(9 A=17; (10) A=3,
(11) A= 4. Curves 1 and 2 are taken from Ref. [34].

the latter manifests itself through the nonequilibrium
initial conditions (n and A). In Fig. 1 of paper [34],
the time relaxation of the rotational energy is de-
picted. The dependence was found to be nearly time
independent, that was indicative of

(I2) = (I, (34)

(see Eg. (13)). It is a direct consequence of the
present analyses, that the requirement (34) is not a
manifestation of the fact that |, is produced with an
equilibrium distribution. Indeed, by invoking explicit
formulas (14), one finds that Eq. (34) is obeyed for
A?=2—n L ltisonly inthecase n=1/2 (I, =
Iz, in fact, no dissociation takes place) Eq. (34)
resultsin A = 0. Otherwise, Eq. (34) predicts A # 0.
For n =2, one obtains A = 1.2. Thisis in the order
of magnitude in a correspondence with the value of
A used for the fitting of the simulated OCFs.

Of course, we can not definitely ascertain that the
dynamic parameters v;, y and A listed above are the
‘actual’ parameters for the Hgl, + hv — Hgl + | and
I3 +hv—1;+1 reactions. However, the main find-
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ing of the present work is that the photoproduct
anisotropy decay in collisional environments does
contain information both of the photofragmentation
and collision dynamics, which can be extracted by an
appropriate theoretical anaysis.

In this paper, no attempt was made to fit
anisotropies of CO fragments produced through pho-
todissociation from heme [23-25], since external
confining potentials contribute significantly into the
fragment dynamics and result in an appreciable retar-
dation of the fragment reorientation. We merely
would like to point out that, in principle, a consider-
able slowing down of the fragment rotation can have
not only a static origin (confining potentials), but
also a dynamic origin (1, > I, see Eqg. (3)).

5. Conclusion

In this paper, a simple approach is developed for
the investigation of the photofragment anisotropy
decay. The approach treats the photofragmentation as
an instantaneous process, which produces photo-
products with a nonequilibrium rotational distribu-
tion which father relaxes to an equilibrium due to
collisions of fragments with buffer species. The the-
ory presented here can (and should) be further im-
proved to a more redlistic description of the
photofragmentation dynamics (predissociation, cage
effects) and of the fragment rotational dynamics
(non-Markovian effects). However, the main result
of the present analyses can be formulated as follows.
The time evolution of the photoproduct anisotropy is
very sengitive both to the collision and photofrag-
mentation dynamics. This is pertain not only to the
short time behavior for the anisotropy, but also for
its long time decay.
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Appendix A

In order to solve Eq. (17) subjected to initial
condition (18), it is convenient to introduce the
Fourier transformed function
H) (T,t) = exp{uz/z}/m dfexp{—iUf}G&,(f,t) ,

(A1)
(compare with [54,55,65]). Evidently,
Gl(t) =HL(O,t) . (A2)

On taking the Fourier transformation of Eq. (17), one
gets

j
8t HIiI(U't) = Z ) (aﬁ_ H) ‘]IgmHIJm( U)’t)
m=—j
- ZCHIEI(U’t) + chlil('yU’t) ' (A3)
The initial condition for this equation reads

H), (U,0) = exp{(217 -1) U2/477}Jo( ud) 8
(A4)

where J,(z) = 1 (i 2) is the Bessel function. Eq. (A4)
evidently depends only upon the magnitude of vector
U, but not upon its direction. Keeping this fact in
mind, it is convenient to introduce the polar coordi-
nates

U, = ucosg,, U, = using, . (A5)
After so doing, one can immediately verify that
HY (U,1) = exp{—ig,(k—1)}hj(u.t).hi;(u.t)

= hj—k—l(u’t) , (A6)

(to establish these identities, the explicit form (19) of
the matrix elements over D-functions was used). On
inserting (A6) into (A3), one finds

ol (ut) = XA, (K)(4+ [1+ (k=1)]
/_u_u)hliil,l(u’t) —z:hjy(u,t)
+zhi(yust) (A7)

ALK ={(iFK(itk+1),

hi;(u,0) = Hjy(U.0), G (1) =h(0.t) . (A8)
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On taking the Fourier transformation of Eq. (A7)
over the time variable, one arrives at the equivalent
equation

—hj,(u,0) +iwhj(u,0)
= LA (K)(q+ [1£(k=1)]

Ju=uhl,, (u0) - zh(uo)
+zh (yu,0) , (A9)

where

Rl (Uyw) = /:dtexp{—iwt}hﬂ(,(u,t) . (A10)

In order to solve Eq. (A9) for h2,(0,w) = GZ(w),
one should put | = 0 and seek for the solution in the
following form:

h2(u,@)= Y a,u?™/ml,
m=0

ﬁio(u’w) =) bmu2m+l/m!,ﬁgo(u,w)
m=0

= i Cuu?m/ml . (A1)
m=0
Further, one should note that
hzo(u,0) = 5k20exp{(2n -1) U2/47I}‘]0( ud)
= 5k20 Z gnUZn/n! !
n=0
6= Y [(2n—1)/49])""" (- 4%/4)
1=0
n!
. Al12
><(|!)2(n—|)! (A1)

Actually, better by far isto use, instead of Eq. (A12),
the recursive formulas

3 (8an+4a—,8)§n—4a2§n71

= , = 1,
bn+1 4(n+1)2 o
{1=a—B/4,
a=1/2—1/(4n),B =A% (A13)

Eqg. (13) are immediately derivable from the differen-
tia equation for the Bessel function J,(x). Now one

can insert Eq. (A1l) into (A9) to get the following
system for coefficients a,,, by, C:

_gm = ‘/E{Z(m+ l) bm_ mbmfl} — 0@y,
0= (V6 /2){2a,,,—a,} +2(m+2)

/(m+ 1)Cm+l_cm} - gmbm'

0=2mb,—mb,_; — 0,,Cpy- (A14)

Here

op=iw+z(1- yzm), sm=lo+z(1- 72m+1) .
(A15)

By excluding a,, c, from this system, one ob-
tains Eq. (28). By utilizing the procedure described
above, one can also solve Eq. (A9) for h},(0,w) =
G} () with an arbitrary j and k.
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