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Abstract

Thermostated tethered harmonic lattices provide good illustrations of the phase-
space dimensionality loss ∆D which occurs in the strange-attractor distributions
characterizing stationary nonequilibrium flows. We use time-reversible nonequilib-
rium molecular dynamics, with two Nosé-Hoover thermostats, one hot and one cold,
to study a family of square heat-conducting systems. We find a phase-space dimen-
sionality loss which can exceed the dimensionality associated with the two driving
Nosé-Hoover thermostats by as much as a factor of four. We also estimate the dimen-
sionality loss ∆DH in the non-thermostated (Hamiltonian) part of phase space. By
measuring the projection of the total dimensionality loss there we show that nearly
all of the loss occurs in the non-thermostated part. Thus this loss, which char-
acterizes the extreme rarity of nonequilibrium states, persists in the large-system
thermodynamic limit.
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1 Introduction

Aoki and Kusnezov stressed the usefulness of the “φ4” model in studying the
size-dependence of classical heat conductivity simulations [1]. They pointed
out that the quartic tethering potential included in the model, which localizes
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each particle in the vicinity of its fixed lattice site, gives a well-behaved Fourier
heat conductivity, even in one- and two-dimensional systems. In his own talk at
this workshop Peter Grassberger likewise emphasized the importance of teth-
ering potentials to low-dimensional conductivity. In the large-system limit the
“φ4” heat flow obeys ordinary irreversible thermodynamics, with an entropy
production varying as the square of the heat flux. The temperature jumps at
the system boundaries, which depend simply on the heat flux and the mean
free path, can be ignored in that limit. Thus Aoki and Kusnezov could use
this model to show that the entropy production associated with steady heat
flow becomes extensive, (∝ N), as the system size N increases. When such
heat-flow simulations are driven with two time-reversible Nosé-Hoover ther-
mostats [2–7] imposing two temperatures, “hot” and “cold”, the steady-state
phase-space distribution function becomes a multifractal object [8–10]. The
information dimension of this multifractal object lies below the corresponding
equilibrium one by an extensive (∝ N) “dimensionality loss” ∆D. The dimen-
sionality loss, like the closely-related thermodynamic entropy production Ṡ, is
approximately quadratic in the force driving the system away from equilibrium
[11], which is brought about here by the temperature gradient ∇T :

∆D ∝ N(∇ lnT )2.

This quadratic dependence is the usual prediction of linear transport the-
ory [3,11,12]. Its evaluation quantifies the rarity of nonequilibrium stationary
states.

About ten years ago [13] we studied phase-space dimensionality loss in a fam-
ily of two-dimensional shear flows. Those simulations were limited to rela-
tively small systems. In that shear-flow work we were able to find systems
for which the dimensionality loss barely, but significantly, exceeded the total
dimensionality associated with the coordinates, momenta, and friction coeffi-
cients {q, p, ζ} of the thermostated boundaries. At that time we stated that
our data definitely showed that nonequilibrium stationary states can exhibit a
reduced dimensionality, relative to equilibrium, even when projected into the
subspace occupied by purely-Hamiltonian degrees of freedom. This interpreta-
tion was controversial [14,15]. Many researchers had difficulty in accepting that
nonequilibrium stationary states are typically associated with reduced dimen-
sionality. In order to confirm that our interpretation was correct, we recently
studied dimensionality reduction for stationary flows using the (Hamiltonian)
φ4 model. Because heat transfer using this model requires only the simplest
of boundaries—a single hot degree of freedom and a single cold one, in the
simplest one-dimensional case—it turned out to be easy to get relatively large
dimensionality losses [2].

A simple but convincing two-dimensional case involves the heat transfer from a
single hot particle (with five phase-space coordinates {xH , yH, pxH , pyH , ζH})
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Fig. 1. Geometry of a 25-particle two-dimensional steady-state system with a
full-phase space dimensionality reduction ∆D = 21.6. The upper righthand par-
ticle is “hot” and the lower lefthand one is “cold”. The remaining 23 particles obey
conventional Hamiltonian mechanics. The trajectories shown were generated with
hot and cold temperatures TH = 0.009 and TC = 0.001 imposed by two Nosé-Hoover
thermostats with relaxation times of τ = 5.

to a single cold one (with its own five coordinates) through a medium of
N − 2 = 23 Hamiltonian particles (with 92 more phase-space coordinates,
for a total of 4N + 2 = 102 phase-space coordinates). Typical (x, y) particle
trajectories in such a 25-particle system are shown in Fig. 1. In the case
of N = 16 particles discussed in Ref. 2 the phase-space strange attractor
turned out to have a dimensionality loss of 12.5, relative to the equilibrium
distribution, exceeding the number of thermostated phase-space coordinates
(five hot and five cold) by 2.5.

The present work has two goals, (i) characterizing the overall loss of phase-
space dimensionality ∆D, and (ii) estimating the corresponding loss ∆DH
in the Hamiltonian unthermostated part of phase space. This two-part study
requires the numerical evaluation of the instantaneous Lyapunov exponents
{λ(t)}, as well as their associated vectors {δ}. The required techniques are
sketched in Sec. II. In Sec. III we describe the φ4 model. We consider a family
of systems of the type illustrated in Fig. 1, where the temperature of the lower-
lefthand particle is cold, TC = 0.001, and that of the upper-righthand particle
hot, TH = 0.009. In Sec. IV we undertake a systematic study of the number-
dependence of the phase-space dimensionality loss ∆D. The numerical work

described in Sec. IV shows convincingly a
√

1/N deviation from the large-
system limit, with an extrapolated dimensionality loss of as much as four
times (40) the number of dimensions (10) associated with the thermal driving
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mechanism. Next, in Sec. V, we study the projection of this dimensionality loss
into the purely Hamiltonian subspace. We find that nearly all of the loss occurs
in that subspace despite the purely Hamiltonian form of the equations of
motion there. We discuss the projection technique and the importance of rapid
rotation in phase space [16] to an understanding of the strange-attractor’s
dimensionality reduction. The conclusions which follow from this work take
up the final section.

2 Lyapunov Exponent Calculations

The usual “Lyapunov exponents”, {λj}, are time averages, over a sufficiently
long time for convergence, of “local” (instantaneous) exponents {λj(t)},

λj ≡ 〈λj(t)〉 .

Here, and in what follows, we use angular brackets 〈. . .〉 to indicate long-
time averages over generic, non-periodic orbits. Each of the instantaneous
exponents has associated with it an “offset” vector δj in phase space which
describes the direction in which the growth or decay of phase-space separation
is measured. If the offset vectors are infinitesimal in length, as in the present
work, they can be replaced by a parallel set of unit vectors in “tangent space”.

The time evolution of the offset vector directions is governed by a continuous
Gram-Schmidt orthonormalization which forces the vectors to remain mutu-
ally perpendicular and to evolve at fixed length. The two types of constraints,
orthogonality and fixed length, can be imposed by a triangular array of La-
grange multipliers, Λij, where 1 ≤ j ≤ i ≤ n in an n-dimensional phase space
[11]. When the usual Cartesian coordinates are used the orthonormal offset
vetors rotate rapidly [16].

The usual Lyapunov exponents {λj} are the long-time-averaged values of the
diagonal Lagrange multipliers {Λjj} required to enforce the orthonormaliza-
tion constraints:

λj = 〈λj(t)〉 ≡ 〈Λjj〉 .
At any instant of time the instantaneous Lyapunov exponents λ(t) represent
the orthogonal measurements of the n growth (or decay) rates determined by
the dynamical matrix D. D, an n × n matrix, is itself a phase function. The
ith row of D is made up of the n derivatives of the ith equation of motion
with respect to the n phase variables.

The eigenvalues and eigenvectors of the dynamical matrix are relatively com-
plicated [17]. The eigenvalues are mainly rapidly varying complex-conjugate
pairs, with the imaginary parts frequently vanishing, at phase-space singu-
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larities corresponding to parallel eigenvectors. Despite this complexity the
orthonormal basis provided by the offset vectors makes it possible to measure
smooth and well-defined growth rates. The time reversibility of the equations
of motion guarantees related reversibility properties for D and its eigenvectors
and eigenvalues. Nevertheless, the past-based Lyapunov vectors governed by
D show a time-symmetry breaking intimately related to the second law of
thermodynamics [3,8,9,11,13,16,17].

Consider a simple textbook [3](Sec. 5.4) illustration of these ideas, the motion
of a driven thermostated particle in one dimension. The motion takes place in
the three-dimensional (q, p, ζ) phase space with three Lyapunov exponents:

λ1 = 〈λ1(t)〉 = 〈Λ11〉
λ2 = 〈λ2(t)〉 = 〈Λ22〉
λ3 = 〈λ3(t)〉 = 〈Λ33〉 .

The equations of motion (with unit mass, force constant, and relaxation time)
are

q̇ = p ; ṗ = +1 − ζp ; ζ̇ = p2 − 1 ,

for which the long-time solution is an attractor:

{q(t), p(t), ζ(t)} −→ {t,+1,+1} .

The matrix of equation-of-motion derivatives D is

D =




0 +1 0

0 −ζ −p
0 2p 0



.

On the attractor the momentum p and friction coefficient ζ can be replaced
by their limiting values, (+1,+1). The three tangent-space δ vectors follow the
ordinary differential equations:

δ̇1 = D · δ1 − Λ11δ1

δ̇2 = D · δ2 − Λ21δ1 − Λ22δ2

δ̇3 = D · δ3 − Λ31δ1 − Λ32δ2 − Λ33δ3 ,

where the six Lagrange multipliers follow easily from the time derivatives of
the six orthonormality conditions:

δ2
1 = δ2

2 = δ2
3 ≡ 1 ;

δ1 · δ2 = δ2 · δ3 = δ3 · δ1 ≡ 0 .

5



δ1

δ2

δ3

q = t, δq

0
5

10
15

20 0

1

2

p, δp

0

1

2

ζ, δζ

-1

0

1

0 < t < 2π (4/7)1/2 

Λ22 Λ33

Λ21

Λ31Λ32

Fig. 2. Bottom: Time dependence of the five nonvanishing Lagrange multipliers for
a field-driven thermostated particle in one dimension, as discussed in Sec. II. The
time dependence of the vectors {δ2, δ3} for this same problem is shown at the top.
The period of the oscillation is 2π

√
4/7 though the phase has no special significance

in the stationary state.

The steady-state time variation of the Lagrange multipliers, and the three δ
vectors are shown in Fig. 2. The three Lyapunov exponents, like their three
instantaneous values {λj(t) = Λjj}, sum to −1:

∂q̇

∂q
+
∂ṗ

∂p
+
∂ζ̇

∂ζ
≡ λ1(t) + λ2(t) + λ3(t) = −1 .

Note that the largest (time-averaged) Lyapunov exponent is 0 in this case,

6



corresponding to a phase-space displacement in the direction of the motion
δ1 = (1, 0, 0). The remaining five Lagrange multipliers, as well as the vectors

δ2 and δ3, oscillate periodically, with a period of 2π
√

4/7.

An analogous computation for an n-dimensional set of vectors typically in-
volves computational work of order n3. Nonequilibrium steady states generate
chaotic attractors rather than the simple fixed point of the damped oscillator
example. Nevertheless, the basic steps are the same: (i) propagating a phase-
space reference trajectory; (ii) simultaneously propagating offset vectors in
the neighborhood of the reference, with Lagrange multipliers and/or Gram-
Schmidt orthonormalization imposing orthonormality; and (iii) averaging the
diagonal multipliers to find the Lyapunov spectrum. Let us now consider the
many-body model for which we carry out such investigations.

3 φ4 Heat Flow in Two Dimensions

A recent account of heat conduction in low-dimensional systems has been
given by Yang and Grassberger [18,19]. In the “φ4” model we use here [1,2] we
choose a square nearest-neighbor harmonic lattice with a quadratic Hooke’s
Law pair potential for neighboring particles i and j,

φ(r) = κ2

2
(r − d)2 ; r = |ri − rj | > 0 .

In addition, each particle is tethered to its lattice site with a quartic potential,
κ4

4
δr4. The quartic tethers have two nice consequences. First, they provide

“external forces”, and so prevent momentum conservation and ballistic energy
transport. Second, they can provide chaos, so that the dynamics can have one
or more positive Lyapunov exponents. The two consequences together can
give Fourier heat conduction, even in one or two space dimensions. The heat
conductivity for the φ4 model remains finite in the large-system limit, unlike
many models, for which the conductivity vanishes or diverges in the large-
system limit [1,19].

Here we simulate nonequilibrium heat-conducting stationary states by impos-
ing thermostating forces on two of the N particles. The thermostating forces
are Nosé-Hoover [3,4] feedback forces {−ζp}, linear in both the time-reversible
friction coefficients {ζ} and the momenta {p} = {(px, py)}. The thermostated
equations of motion for the hot and cold particles (one of each) are:

{ mẋ = px ; mẏ = py }
{ ṗx = Fx − ζpx ; ṗy = Fy − ζpy }

ζ̇(H or C) = [(p2/2mkT(H or C))− 1]/τ 2 ,
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where τ is the characteristic response time of the thermostat forces, {−ζp}.
The full phase space describing this N -body two-dimensional system has 4N+
2 dimensions, with the extra two corresponding to the hot and cold friction
coefficients ζH and ζC .

For convenience in numerical work we choose reduced units by fixing the parti-
cle mass m and the spring constants κ2 and κ4 to unity. The nearest-neighbor
lattice spacing d is taken to be the unit length. The remaining parameters to
set are the hot and cold temperatures, which we arbitrarily choose equal to
the values from Ref. 2,

kTH = 0.009 ; kTC = 0.001 ,

and the thermostat relaxation times. We vary these times in the numerical
work, but with the simplifying restriction that τH and τC have a common value,
which we denote as τ . We use the classic fourth-order Runge-Kutta integrator
throughout, with a timestep dt = 0.001 or 0.002. To avoid numerical errors we
have generated and compared results from two fully-independent simulation
codes, one written in Vienna and the other written in Livermore.

4 Numerical Results—∆D

The numerical evaluation of the dimensionality loss ∆D is based on the con-
nection between the Lyapunov spectrum and the dimensionality of the phase-
space strange attractor. The Lyapunov exponents give the time-averaged rel-
ative growth and decay rates of the principal axes of a comoving infinitesimal
phase-space hypersphere (or “extension in phase”). Kaplan and Yorke con-
jectured, evidently correctly [20], that a partial sum of these exponents (be-
ginning with the largest one and proceeding toward the most negative one)
changes from positive to negative when the (linearly-interpolated) number of
terms in the sum is equal to the dimensionality of the phase-space strange
attractor. This conjecture is “almost obvious”. It is evident that the (hy-
per)volume of any phase-space object with a positive sum of time-averaged
Lyapunov exponents must diverge. Likewise a negative sum of time-averaged
exponents indicates a vanishing hypervolume at long times. Any stationary
process must generate an attractor which neither vanishes nor diverges.

The main difficulty in computing Kaplan-Yorke information dimensions is the
unfavorable time-dependence associated with constraining the phase-space
offset vectors to remain perpendicular to one another. With Gram-Schmidt
orthonormalization in an n-dimensional phase space n vectors, with n com-
ponents each, must all be propagated in time for sufficiently long that the
time-averaged growth rates have converged. The computational work in or-
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Table 1
Representative data for the total phase-space dimensionality loss ∆D and the Hamil-
tonian projection ∆DH as a function of system size and the Nosé-Hoover relaxation
time τ . The largest Lyapunov exponent, λ1 is also tabulated. The two boundary
temperatures (imposed by a single hot and a single cold particle) are 0.009 and
0.001 in all cases. The estimated error is ±0.4 for ∆D and ∆DH, and ±0.0005 for
λ1. √

N τ ∆D ∆DH λ1

√
N τ ∆D ∆DH λ1

4 1 10.3 10.6 0.0633 4 4 17.6 15.6 0.0284

5 1 12.7 13.0 0.0593 5 4 21.2 19.4 0.0332

6 1 14.7 15.2 0.0560 6 4 23.7 22.2 0.0359

7 1 16.4 17.0 0.0540 7 4 26.7 25.3 0.0337

8 1 17.9 18.5 0.0510 8 4 28.6 27.4 0.0337

9 1 19.3 19.8 0.0496 9 4 29.7 28.5 0.0344

10 1 20.2 20.7 0.0474 10 4 31.1 30.0 0.0329

12 1 20.5 21.0 0.0443 12 4 33.8 32.9 0.0305

4 6 18.6 16.0 0.0275 4 8 18.8 15.7 0.0273

5 6 21.9 19.6 0.0323 5 8 22.1 19.3 0.0330

6 6 24.6 22.6 0.0340 6 8 25.0 22.5 0.0340

7 6 27.5 25.5 0.0333 7 8 27.7 25.4 0.0339

8 6 29.5 27.6 0.0339 8 8 29.5 27.4 0.0325

9 6 30.9 28.2 0.0327 9 8 31.0 28.9 0.0324

10 6 32.4 30.8 0.0320 10 8 32.9 30.8 0.0321

12 6 34.2 32.7 0.0317 12 8 34.5 32.7 0.0318

thogonalizing n(n − 1)/2 pairs of n-dimensional vectors varies as the cube of
the number of particles, so that present computer speeds and processor num-
bers allow us to follow no more than a few hundred particles. In the present
work we consider the simplest possible square systems of from 4(2 × 2) to
144(12 × 12) particles. The relaxation time τ is a free parameter. We choose
it in the range 1 . . . 8. Results become insensitive to τ once τ exceeds 6, which
is comparable to the inverse Debye frequency of the lattice. Representative
results for the largest Lyapunov exponent λ1 and the dimensionality loss from
the Kaplan-Yorke conjecture, ∆D, are given in Table 1.

Our own previous work, on color conductivity and shear flow [13], strongly
suggests deviations in the Lyapunov spectrum of order the inverse system

width,
√

1/N in two dimensions. The present results are roughly consistent
with this finding though an even slower variation with N provides a compa-
rable fit. We know of no previous systematic study of the variation of the
Lyapunov spectrum with τ . A cursory investigation shows that the dimen-
sionality loss varies roughly as τ−1. Thus the dimensionality loss, with fixed
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Fig. 3. Comparison of the fit ∆D = 42.7− (89/N 1/2)− (13.2/τ) to the simulation
results for the dimensionality loss in the full 4N + 2-dimensional phase space.

boundary temperatures of 0.009 and 0.001, can be represented by

∆D = 42.7(5) − 89(2)√
N
− 13.2(5)

τ
.

The standard deviation affecting the last digits of the fit parameters are given
in brackets. We compare the second expression with our numerical data in
Fig. 3. The rather good fit indicates that the dimensionality loss persists in
the large-system limit. This limit is also expected from the extensivity of ∆D
stressed in Section 1: Since we keep the boundary temperatures fixed, ∇ lnT
varies according to 1/

√
N , and the equation in Section 1 asserts that ∆D

becomes constant for N →∞. Our results thus confirm the extensivity of the
dimensionality loss. We investigate the loss further in the following section.

10



5 Hamiltonian Projection: ∆DH

Ten years ago [16] we studied the rotation rates of the n phase-space offset vec-
tors {δj}. We found that the rotation rates increase very rapidly with system
size, soon becoming very large relative to the Lyapunov exponents themselves.
This observation suggests that the instantaneous growth and decay rates in
phase space – the instantaneous Lyapunov exponents – may become isotropic
in the large-system limit. This isotropicity suggests that the measured growth
and decay rates also apply in subspaces spanned by the corresponding phase-
space offset vectors {δ}. Because the instantaneous Lyapunov exponents mea-
sure radial expansion and contraction, without any explicit rotational contri-
bution, the instantaneous growth rates {λj(t) = Λjj} associated with every
one of the phase-space directions contributing to a particular vector are iden-
tical. The contributions in any fixed phase-space direction are the summed-up
weighted contributions from the entire set of Lyapunov vectors.

In the full phase space the information dimension of the strange attractor is
given by the number of Lyapunov exponents whose sum is zero:

k∑

j=1

λj = 0 −→ D = k ; ∆D = 4N + 2− k .

It has to be emphasized that k (as well as kH introduced below) is not an
integer. A linear interpolation between two successive values of the Lyapunov
sum is implied, with k chosen such that the interpolated sum is precisely zero.
This is the Kaplan-Yorke formula for the information dimension D.

In the Hamiltonian subspace we assume that the contributions of the principal
axes of the dynamical matrix to the growth of a perturbation δj are given
by pjλj , where the weights pj are determined below. Because the Lyapunov
exponents measure growth or decay in the direction of δ, the same logarithmic
growth rate, (d/dt) ln δ, applies to each component of the vector. Only the rates
λj are replaced by pjλj . Now we apply the same Kaplan-Yorke construction
to the Hamiltonian subspace and find

kH∑

j=1

〈pjλj(t)〉 = 0 −→ DH =
kH∑

j=1

〈pj〉 .

To determine the weights pj note that the projection of a non-fractal object
with a dimension 4N + 2 in the full phase space gives a projected object in
the Hamiltonian subspace with a dimension equal to 4N − 8:

4N+2∑

j=1

pj = 4N − 8.
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The theorem (from Walter Thirring) given in the Appendix confirms the sim-
ple result

4N+2∑

j=1

cos2(θj) = 4N − 8 ,

where θj is the angle difference between the unit vector δj and its projec-
tion into the Hamiltonian subspace. The length of this projection is given by
| cos(θj)|. It follows that we have to identify the weight pj with the square of
this projection, cos2(θj). This leaves the growth rate unchanged if the (arbi-
trary) sign of the offset vectors is changed. We find

kH∑

j=1

〈cos2(θj)λj(t)〉 = 0 −→ DH =
kH∑

j=1

〈cos2(θj)〉 ;

∆DH =
4N+2∑

j=kH

〈cos2(θj)〉 = 4N − 8−
kH∑

j=1

〈cos2(θj)〉 .

Partial sums give an effective number of exponents in the Hamiltonian projec-
tion of the full phase space. Thus the analog of Kaplan and Yorke’s conjecture
for the Hamiltonian subspace is the effective number of exponents,

∑〈cos2(θ)〉,
at which the projected sum,

∑〈λ(t) cos2(θ)〉, vanishes.

We explored the Kaplan-Yorke analog for the present problem, computing the
delta vectors and their projections. The results are interesting. First, we noted
that the summed-up local Lyapunov exponents are not strongly correlated
with the directions in the subspace:

∑
λ〈cos2(θ)〉 '

∑
〈λ(t) cos2(θ)〉 .

This suggests that all the time-averaged projections of the various vectors into
the Hamiltonian subspace are similar,

〈cos2(θ)〉 ' (4N − 8)/(4N + 2) .

See Figs. 4 and 5. Fig. 4 demonstrates that the projection of the vectors
becomes increasingly uniform as system size is increased, and is quite close to
the average value, (4N − 8)/(4N + 2) expected for fully random projection
directions. Fig. 5 compares the two estimates for the projected Lyapunov sums,

∑
λ〈cos2(θ)〉 and

∑
〈λ(t) cos2(θ)〉 .

The two sums vanish at nearly the same projected dimensionality,
∑

cos2(θ),
indicating that the correlation of the exponents with direction is small.

We have used the analog of the Kaplan-Yorke formula to estimate the di-
mensionality reduction in the Hamiltonian subspace, ∆DH, and show these
results in Fig. 6. Just as in the full phase space, the loss of dimensionality
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Fig. 4. Time-averaged projections {〈cos2(θ)〉k} of the full-space {δk} into the Hamil-
tonian portion of phase space for 4×4, 8×8, and 12×12 particles. The Nosé-Hoover
relaxation time τ is 6. It is evident that in the large-system limit the influence of
the boundary degrees of freedom disappears.

varies smoothly with relaxation time and system size, and may be represented
by

∆DH = 41.2(5) − 94(3)√
N
− 10.1(5)

τ
.

It is worth pointing out that a näıve approach to dimensionality loss in the
Hamiltonian subspace could be based on an orthonormalization of the Hamil-
tonian subspace only, propagating δ vectors with the Hamiltonian equations of
motion but using the thermostated equations of motion for the underlying ref-
erence trajectory. This approach, which we explored years ago and which has
recently been considered independently by Ken Aoki [private communications,
2002], is equivalent to considering the Lyapunov spectrum for a Hamiltonian
system subject to time-dependent forces {F (t)}, where the forces are due
to the thermostated particles. Such equations of motion, being Hamiltonian,
satisfy Liouville’s Theorem [9,21], and guarantee that the corresponding Lya-
punov spectrum is made up of pairs of positive and negative exponents, with
zero sum.
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Fig. 5. Typical summed Lyapunov spectra for the full space and for two estimates
of the Hamiltonian projection. The data shown here, for 64 particles and for a ther-
mostat response time τ = 5, show partial sums of the 258 Lyapunov exponents,∑

j≤k λj, and the two projections,
∑

j≤k λj〈cos2(θj)〉 ;
∑

j≤k〈λj(t) cos2(θj)〉 , as

functions of k and
∑

j≤k〈cos2(θj)〉. The two projections are actually different but
indistinguishable on this scale. Kaplan and Yorke’s form for the information dimen-
sion is the linearly-interpolated value of k for which the linearly-interpolated sum
vanishes. The analog, for the Hamiltonian portion of phase space, is the interpolated
value of

∑
cos2(θ) at which the corresponding projected sum of exponents vanishes.

6 Conclusions

The “φ4” model shows conclusively that the nonequilibrium steady-state loss
of phase-space dimensionality can easily exceed the dimensionality associated
with the system boundaries. The present results also confirm that the de-
viations from the large-system limit vary according to a power law, N−p,
1/4

�
p

�
1/2, roughly compatible with the inverse of the system size, 1/

√
N

in two dimensions. For τ ≤ 5 they have in addition deviations in the relaxation
frequency ∝ (1/τ ). The quartic tethers are a particularly useful feature of the
model, which make it possible to carry out the simulations without the need
to take thermal expansion explicitly into account.

The dimensionality loss ∆D is expected to be extensive as has been stressed
by Aoki and Kusnezov [1]. For fixed thermostat temperatures TH and TC
the temperature gradient is determined by the system size, proportional to
1/
√
N in two dimensions, and ∆D becomes independent of N . This is indeed

the case in the large-particle limit N → ∞. Our simulations thus confirm
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Fig. 6. Comparison of the dimensionality loss ∆DH in the Hamiltonian subspace to
a fit, ∆DH = 41.2− 94/

√
N − 10.1/τ , to the data.

the extensivity of the dimensionality reduction for stationary heat flow in
the linear-response limit. Far from equilibrium weak deviations from this N -
dependence are found.

Table 1 reveals that for short Nosé-Hoover relaxation times the dimensionality
loss ∆DH in the purely Hamiltonian part of phase space may even slightly
exceed the dimensionality loss ∆D in the full phase space. This is because
∆DH is overestimated by unity due to the lack of energy conservation in the
Hamiltonian subspace once the thermostats are added.

The projection of the phase-space offset vectors {δ} into the Hamiltonian sub-
space developed here shows that most of the dimensionality loss occurs in a
part of the system which obeys purely conservative Hamiltonian equations
of motion. Rapid rotation is responsible as is explained in [2]. This rotation
nearly eliminates the correlations between phase-space contraction and direc-
tion. Evidently phase-space contraction is not only real, but relatively simple,
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and certainly must persist in the large-system thermodynamic limit. Thus
the present results corroborate our interpretation of the second law of ther-
modynamics for nonequilibrium stationary states [8]. Such states occupy not
just a reduced volume in phase space. They are restricted to a subspace of
reduced dimensionality, with the dimensionality loss simply related to the
rate of external thermodynamic entropy production. Useful models illustrat-
ing dimensionality loss for periodic color conducting or shear flows can now
be developed as extensions of this idea.

Acknowledgements

Work at the University of Vienna was supported by the Austrian Fonds zur
Förderung der wissenschaftlichen Forschung, Project P-15348. Work at Liv-
ermore was performed under the auspices of the United States Department
of Energy through University of California Contract W-7405-Eng-48. We very
much appreciate the interest and encouragement of Kenichiro Aoki, Aurel
Bulgac, Carol Hoover, Dimitri Kusnezov, David Ruelle, and Walter Thirring.

Appendix

Theorem:

Let ej, j = 1, . . . ,D, be an orthonormal set of vectors in a D-dimensional
space M , dimM = D, and εi, i = 1, . . . , d, be an orthonormal set of vectors
in a d-dimensional space U , dimU = d, such that U ⊂ M . Viewed as D-
dimensional vectors in M , the components of εi along the directions not in U
vanish. If (εi · ej) denotes a scalar product, the quantity

∑D
j=1(εi · ej)2 is the

squared norm of εi, which is unity for all i. The sum of this expression over i
gives d,

d∑

i=1



D∑

j=1

(εi · ej)2


 = d =

D∑

j=1

[
d∑

i=1

(ej · εi)2

]
,

and may, according to the second equality, be interpreted also as the sum of
all the squared projections of ej in U .

In Section 5 we indentify M with the (4N + 2)-dimensional extended phase
space, and the vectors ej with the orthonormal offset vectors δj. U corresponds
to the (4N − 8)-dimensional Hamiltonian subspace spanned by the basis vec-
tors εi. If the projections of the offset vectors δj, j = 1, . . . , 4N + 2, into the
Hamiltonian subspace are denoted by cos(θj) ≡

∑d
i=1(δj · εi)2, the theorem
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states that
4N+2∑

j=1

cos2(θj) = 4N − 8 ,

where θj is the angle between δj and its projection into the Hamiltonian sub-
space.
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