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Abstract

The escape-rate formalism and the thermostating algorithm describe relaxation to-
wards a decaying state with absorbing boundaries and a steady state of periodic
systems, respectively. It has been shown that the key features of the transport prop-
erties of both approaches, if modeled by low-dimensional dynamical systems, can
conveniently be described in the framework of multibaker maps. In the present pa-
per we discuss in detail the steps required to reach a meaningful macroscopic limit.
The limit involves a sequence of coarser and coarser descriptions (projections) until
one reaches the level of irreversible macroscopic advection-diffusion equations. The
influence of boundary conditions is studied in detail. Only a few of the chaos char-
acteristics possess a meaningful macroscopic limit, but none of these is sufficient to
determine the entropy production in a general non-equilibrium state.
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1 Introduction

The connection between nonequilibrium statistical physics and the underly-
ing chaotic dynamics has recently attracted great attention [1]-[45]. Central
questions are how the microscopic reversible dynamics can appear as an irre-
versible process on the macroscopic level, and how the macroscopic transport
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coeflicients (like e.g. diffusion or drift coefficients) are related to microscopic
characteristics of the underlying chaotic dynamics. Interestingly, these prob-
lems can even be discussed in the framework of chaotic dynamical systems
with only a few degrees of freedom. Multibaker maps [1,4,8,30]-[45] turned
out to be particularly suited for this purpose since they show all generic fea-
tures of spatially-extended, low-dimensional, hyperbolic dynamical systems,
and are amenable to analytical calculations. Depending on the choice of para-
meters and boundary conditions various approaches to describe transport can
be addressed:

thermostating algorithm An external force is used to invoke currents, and
a constraint force acting on the particles is introduced to avoid the growth
of the kinetic energy without bound [2,5,6,11,16-18,22]. The constraint
force simulates the presence of an internal thermostat. It preserves time-
reversibility, but makes the particle dynamics dissipative on average. The
systems are assumed to be periodic of large spatial extension, and the long-
time dynamics exhibits sustained chaos on an underlying chaotic attractor.
Once the dynamics collapsed to the attractor the transport coefficients can
be connected with the average phase-space contraction rate [2,5,6,11,12].

escape-rate formalism Open systems of large spatial extensions are con-
sidered [3,4,8,10,32-34]. In such cases the particle dynamics is chaotic in
the sense of transient chaos, and there exists an underlying non-attracting
chaotic set, a chaotic saddle in the phase space. The particle motion is a
kind of scattering process, and the transport coefficients are related [10,30,4]
to the chaotic saddle’s escape rate (hence the name escape-rate formalism).

An open system with fixed densities at the boundaries gives rise to a stationary
flow of particles through the system. These systems lie, however, beyond the
scope of dynamical systems theory, and the associated fractal structures have
been analyzed elsewhere in considerable detail [4,25,26,31,35-37,41]. There-
fore, such systems will not further be discussed here.

We investigate a generalized multi-strip baker chain, and show how irreversibil-
ity arises in this system by applying coarse graining. It is illustrated how, via
a sequence of coarser and coarser observations (namely: projection of the dy-
namics onto the transport direction, averaging over the motion inside cells,
taking the limit of continuous time, and of large linear scales) one reaches the
level of macroscopic equations. One of the merits of multibaker maps is that
due to their straightforward chaotic dynamics these steps can explicitly be
worked out — as opposed to the classical discussions of taking these limits in
the 1960s [47-49] where the initial steps could only heuristically be addressed.
The influence of boundary conditions is studied in detail and we come to the
conclusion that their effects are important even in the large system limit.



The aim of the present paper is to show how far one can go in deriving
macroscopic transport equations based on a low-dimensional, dynamical sys-
tem (which, by definition, is resctricted to a finite phase space) as underly-
ing “microscopic” dynamics. Only models with periodic and with absorbing
boundary conditions correspond to dynamical systems. They possess a natural
measure, and we will hence be able to address the question whether the chaos
characteristics associated with this measure can play a role in the macroscopic
description of the related transport processes. Most of the characteristics are
ruled out by the observation that they are not well defined in the macroscopic
limit in which the coarse-grained dynamics gives rise to macroscopic trans-
port equations compatible with irreversible thermodynamics. The two major
exceptions are the average phase-space contraction rate and the escape rate.
We point our, however, that none of these is sufficient to describe the ther-
modynamic entropy production in a general macroscopically inhomogeneous
state.

The paper is organized as follows. In Section 2 the multibaker chain is defined
and the most important special cases are identified. In Section 3 we start from
the microscopic chaotic dynamics of a long chain and go through a sequence of
coarse-graining procedures to end up with the macroscopic advection-diffusion
equation. Technical details of determining the characteristics of the micro-
scopic dynamics are relegated to the Appendix. In Section 4 we discuss the
effects of periodic and absorbing boundary conditions used for the thermo-
stating algorithm and the escape-rate formalism. Section 5 is devoted to a
comparison of quantities with a well defined macroscopic limit (decay and
phase-space contraction rates) in the periodic and open cases. The paper is
concluded by a discussion (Section 6).

2 The multibaker chain

The single-particle phase space of a multibaker model is a rectangle of size
[0, Na] x [0, b]. It comprises a chain of N identical cells of linear size a coupled
to each other along the z axis (Fig. 1a). Each cell possesses the same internal
dynamics, carried out at integer multiples of a discrete time unit 7. This action
is defined here in a pictorial manner in Fig. 1b. The total area ab of the cell is
divided into k£ + 2 vertical columns of widths la, s1a - - - sgya and ra such that

k
l4+r+> s =1 (2.1)

=1

The presence of a bias is expressed by a difference in the areas mapped to the
left (1) and right (7).



Fig. 1b illustrates the action of the map for £ = 2. The branches mapped
into cell m are indicated by the labels L, Si, Sy, and R, respectively. The
branches L and R are mapped onto horizontal strips of width a and of heights
Ib and 7b, respectively, in cells joint immediately to the right and left of the
respective initial cells. The images of the middle vertical columns remain inside
the original cell and are all stretched to horizontal strips of widths a and
height §1b- - S;b. The parameters s;, S; specify the internal dynamics of the
cells, while [, [ and r, 7 characterize the coupling between neighboring cells. We
are interested in cases where these horizontal strips fit into the neighboring
cells without overlapping with the images of the columns not leaving the cell.
Thus, the dynamics is injective on the chain of cells. The sum of the twiggled
quantities can be smaller than unity,

k
l—l—f—l—zgiﬁL (2.2)
i—1

indicating the possibility of global phase-space contraction (the dynamics need
not be surjective).

For more than one strip staying inside a cell, £ > 1, the transient dynamics of
a single cell with open ends is already chaotic. The full chain’s dynamics is,
however, chaotic for any %k (including k£ = 0, 1) due to the coupling of a large
number of identical cells.

This multibaker map represents a rather broad class of dynamical systems,
and we believe that the results not depending on its specific features will be of
general validity for hyperbolic dynamical systems with bias and transport. De-
pending on the choice of the local phase-space contraction ratios (Jacobians)

Jo=1/l, Jp=7/r, Ji=35s;, i=1---k, (2.3)

different classes of time-evolution equations can be modeled:
(a) Hamiltonian (i.e., area-preserving) dynamics

JL:JR:Ji:L iZl--'k}, (2.4&)

(b) homogeneous dissipation

Jp=Jr=Ji=J<1, 1=1---k, (24b)

(c) thermostated dynamics

JL:1/JR:T’/Z, JZ':L 1=1---k. (2.40)
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Fig. 1. The multibaker model (microscopic dynamics). (a) Geometry of the chain:
Every rectangle of size a x b contains a baker map with possible escape to and
entering from its neighbors. The respective cells are labeled by the index m running
from 1 to N. Boundary conditions are implemented by appropriate choices of the
dynamics in additional cells m = 0, N 41 at the outer ends of the chain. (b) Action
of the multibaker map on a single cell in the case of a four element partition, k = 2.
Four vertical columns in cell m — 1, m and m + 1, respectively, are are squeezed
and stretched by the map such that the resulting horizontal strips fit into cell m.
The height and width of the columns and strips are indicated on the margin. (c)
Generating partition for k = 2. The 4 N vertical strips of the chain form a generating
partition for a symbolic dynamics describing the chaotic dynamics. The symbols are
given atop of the columns.

The last choice is a model of thermostating since it reflects the following basic
features:

(1) The dynamics is area-contracting (expanding) if the trajectory moves in the
direction of (against) the bias. This mimics the effect of a slowing down (accel-
eration) of particles moving parallel to (against) the external field [2,3,5,8,34].
(ii) Volume elements that move away but finally come back to the original
position pick up no net contribution to phase-space contraction, i.e., the ther-



mostat only acts when work is done on the system.

(iii) The mapping of the phase space is one-to-one so that the stationary
distribution is supported by the full phase space, on which the dynamics is
ergodic.

3 Dynamics on different levels of coarse graining

3.1  Full microscopic dynamics

The basic dynamics on the phase space introduced in the previous section can
be written as a map

M : (xn,yn) — (Tpi1, Ynt1)

acting at integer multiples of the microscopic time unit 7, i.e., in continuous
time at t = n7. The explicit form of M is easy to find from its action shown
in Fig. 1. From the point of view of statistical properties and transport, the
time evolution of the densities is of central importance. Let g, (z,y) denote
a phase-space distribution at time nr. The Liouville operator £ connects g,
with On+1:

L:0op+— 0pit. (3.1)

In the present system it can be written as a transfer matrix T. To construct the
matrix we observe that due to the piecewise-linear character of the multibaker
map a (piecewise) constant phase-space density o(x, y) remains piecewise con-
stant under the time evolution. Moreover, any smooth initial condition con-
verges to the same asymptotic distribution (which is irregularly changing in
the y direction, but is constant in each cell along the z axis). Therefore, in
what follows we restrict ourselves to piecewise constant initial conditions. In
order to find the constant-density regions, a partitioning of the chain by the
horizontal strips is considered, which are defined by the one-step backward
dynamics in overlap with the vertical columns. There are then, respectively,
k + 2 strips and columns in each cell. In cell m, m = 1,2--- N, the symbols
(k+2ym—(k—1), (k+2m — (k—2)---(k+ 2)m mark the columns, and
the strips are labeled by the same set of numbers running now from bottom
to top (cf. Fig. 1c). This partition is generating and Markovian [51,53]. Con-
sequently, it specifies a symbolic dynamics of (k 4+ 2)N symbols. In such a
situation the transfer matrix plays the role of the Liouville operator [52]. In
the present setting it takes the form
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where — as indicated to the top and right of the matrix — the horizontal
and vertical rules group together k + 2 columns comprising a given cell (cell
m and m + 1 are indicated). All elements that are not explicitly given in (3.2)
vanish. The other elements T;, 3 of T represent non-vanishing probabilities
to be mapped from a column of code « into a column of code (3, where «
and [ label the rows and columns of T, respectively. The time evolution of
the piecewise constant phase-space density amounts to repeated application
of this matrix on a vector representing the initial condition. Consequently,
the long-time properties of the dynamics will be connected with the largest
eigenvalues of the transfer matrix T.

Since the entries in every blocks of k& 4+ 2 columns are identical every left
eigenvector consists of blocks of k + 2 identical components. Consequently,
eigenvector elements do not vary within the k4 2 entries characterizing a cell.
This allows us to restrict our attention to transitions between neighboring cells
only. A reduced transfer matrix T of size N x N [or possibly (N + 2) x (N +
2) when additional cells are needed to implement the boundary conditions,
cf. Sec. 4 and the Appendix]| can be defined with the transition probabilities



ffom a cell of index m to another one as Tm,m_1 =1, Tmm = Zle s; = s, and
Tnm+1 = 7. For the cells in the interior of the chain, all other transitions are
forbidden. Consequently,

(3.3)

=
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is tridiagonal, up to entries in the outermost rows or columns, which depend
on the choice of boundary conditions.

The spectrum of the reduced transfer matrix is worked out in the Appendix.
It fully characterizes all decay rates of the forward dynamics. Moreover, the
thermodynamic formalism of dynamical systems [53] implies that structurally
identical matrices describe the whole set of multifractal properties of the mi-
croscopic dynamics. The various characteristics only differ by the choice of
the non-vanishing matrix elements. Accordingly, in the Appendix the spec-
trum of tridiagonal matrices is worked out for arbitrary positive values for r,
s and [. We thus obtain a description of all relevant dynamical and geomet-
rical (fractal) properties of the invariant sets including Lyapunov exponents,
generalized dimensions along both the stable and the unstable directions, and
Rényi entropies. Since different boundary conditions lead to different positions
of the non-vanishing matrix elements in the outermost rows and columns,
the exact form of the spectrum depends on the type of boundary conditions

(cf. Eq. (A.16), (A.11)].

3.2 Microscopic dynamics reduced to the direction of transport

Having started with the full microscopic treatment of the multibaker dynam-
ics, we now take a successively more macroscopic point of view of the descrip-
tion, and state compatibility conditions.

Due to the special form of the multibaker map, the density does not depend at
any time on the z-coordinate inside a cell. In other words, the y-dependence is
exactly the same for all x values inside a cell. We can therefore easily integrate
the phase-space density over the y coordinate, obtaining the time evolution of
the projected density (beware the different symbols p and o)
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Fig. 2. The one-dimensional map f(z) obtained by projecting the multibaker dy-
namics to the z-axis (k = 2).

%wz/@@ww. (3.4)

As a consequence, the x dynamics can be described by a one-dimensional map
f(z) depicted in Fig. 2. Since the baker map is piecewise linear, f(x) is of the
same character. The time evolution of its reduced density is described by the
Frobenius-Perron equation [51], which takes the general form

pon@) = Y L (35)

ze€f—1(z) | f/(x) |

In the present case every x’ in [0, Na| has k + 2 preimages: x (zg) in the
left (right) neighboring cell, and z;, i = 1--- k inside the same cell as x’. The
corresponding slopes f'(x) are r~! (I71) and s; !, respectively, such that the
Frobenius-Perron equation takes the form

Pnt1 (ZB/) =71 pa(rL) + Z si pn (i) + 1 pn(TR). (3.6)

=1

It is worth noting that even if the original dynamics was invertible (like, for
instance, in the Hamiltonian or thermostated cases), the time evolution of



the probabilities is irreversible due to the projection (3.4) on the z axis. In
other words, the process becomes irreversible since a kind of coarse graining
has been applied. Eq. (3.6) associates the projected dynamics with a dissipa-
tive, ! one-dimensional map which has a unique attracting stationary solution
(possibly identically zero) in the space of the p(x). Owing to the piecewise-
linear character of the map and the stretching property out of the elementary
interval, p,(z) is constant in each cell. ? Therefore, we can represent the
distribution at time n by a vector g, of N elements p,.,, m = 1--- N, and
observe that for every x in cell m the terms appearing in (3.6) take the form
Ton (L) = TPnem—1, 2 SiPn(Ti) = Spn.m, and lp,(xg) = lppm+1. Consequently,
the Frobenius-Perron equation reads

ﬁm—l = Hﬁn- (3'7)

A comparison of (3.6) with the definition of the reduced transfer matrix (3.3)
leads to the observation

H=T+. (3.8)

The Frobenius-Perron operator H is the transpose of the reduced transfer ma-
trix. Correspondingly, the left eigenvectors of T are the right eigenvectors of
H, among which the one belonging to the largest eigenvalue provides the nat-
ural invariant density along the x axis. It is worth noting that the application
of the thermodynamic formalism leads again to tridiagonal transfer matrices
with the same structure as H but with different non-vanishing elements. There-
fore, on this level we are still in a position to recover dynamic characteristics
of the motion along the x axis, but we have already lost information about the
properties along the y axis. In particular, the correct phase-space contraction
rate can only be obtained from the full microscopic dynamics.

3.8 Inter-cell dynamics: the random-walk picture

From the point of view of modeling transport, a restriction of the attention
to the average density in each cell corresponds to the existence of a small-

! The phase-space contraction rate of (3.6) is formally infinite, as for any one-
dimensional map. After all, the phase-space contraction rate diverges in the limit
where a higher-dimensional map reduces to the one-dimensional dynamics.

2 We utilize at this point that any smooth initial density along the multibaker
chain converges exponentially fast (on the time scale of the reciprocal value of the
average positive Lyapunov exponent) to a distribution which is constant in each
cell. Disregarding these short transients, we assume from here on that the density
is constant within each cell.

10



est resolution a in the configuration space (here: the x-axis) below which no
spatial structure is resolved, and to an averaging over all the momenta in the
respective regions. A reduction of the dynamics in this spirit is unavoidable
in order to obtain a thermodynamic description [46-50]. For the multibaker
map this amounts to a projection of the (deterministic) dynamical system
onto a random walk: move left, right or stay with given probabilities. This
projection illustrates that a deterministic chaotic dynamics can lead to a fully
stochastic behavior after appropriate coarse graining (this was the basic as-
sumption underlying e.g. [49]). Note that on this level of the description there
are no partitions inside a cell any longer: the role of mixing of the microscopic
dynamics is taken over by the stochastic character of the random walk.

Let P, denote the probability to find a particle in cell m at discrete time n.
According to the theory of Markov chains [56], the conservation of probability
requires that the net flux through the boundaries of each cell amounts to the
temporal change of the cell probability:

Pn+1;m = (1 — l — T)Pn;m + an;m+1 + TPn;m—l- (39)

Thus, the evolution of the vector ﬁn = (Puy1,---, Pon) is governed by the
matrix equation

P,.1 =APD,, (3.10)

where the matrix elements of A are the transition probabilities between neigh-
boring cells. Its non-vanishing entries are

Amm— =1, Apm=1—-1—1r=s, A1 =T (3.11)

Due to the simple structure of the multibaker map the dynamics of the Markov
chain and the projected 1-d map are described by the same transition matrix:
A = T. However, the Markov chain dynamics is defined only between cells, not
inside a given cell.

3.4 Continuous-time dynamics: the master equation

On the next level of coarse graining we only consider slow “macroscopic” time
evolutions with continuous time t defined as t = nr. We expect that the
continuous-time macroscopic behavior differs from the microscopic one, and
inherits properties of the latter via transport coefficients only. Physically this
implies a separation of time scales. For a meaningful limit, P,.,, — P, (t = n7),
of the probability distribution the jumping probabilities are required to be of

11



the order of the microscopic time unit 7. This induces the staying probability
s =1—r —1 to be of order unity. Writing

l=npr, r=2Ar, (3.12)

where ;2 and A are independent of 7, we recover the master equation of a birth
and death process [56]

AP (t)
dt

= AP (8) + P (t) — (A + p) B (1) (3.13)

with constant coefficients A and p. The matrix governing this continuous-
time dynamics has the same structure as the reduced transition matrix T of
the microscopic Liouville operator. Therefore, its full spectrum can easily be
obtained by the methods applied in the Appendix. The fact that according
to (3.12) the jumping probabilities r and [ scale linearly in 7 assures that the
time evolution on macroscopic scales is slow as compared to the time unit 7.

3.5  Large-scale dynamics: the advection-diffusion equation

As a final step we consider the limit of large spatial extension realized by
a chain of length L = (N + 1)a > a composed of N > 1 cells. To this
end we consider the space variable x = ma to be continuous, i.e., we only
resolve spatial variations on scales x > a. In order to have a meaningful limit
P,.(t) = P(z = ma,t) for m > 1, the sum of the jumping probabilities must
be much larger than their difference. Writing

A+ p=2D/a*, \—pu=v/a, (3.14)

with D and v constant, and assuming weak spatial gradients |P,, — P,—1| <
P,,, the Fokker-Planck (or advection-diffusion) equation

OP(x,t) _ _vaP(x,t) N D82P(a7,t)

ot ox Ox?

(3.15)

is recovered from (3.13) [57]. In this picture D and v are interpreted as diffusion
coefficient and drift (or bias), respectively. By this sequence of projections and
limits, we thus have achieved an equation, which describes the macroscopic
time evolution of the system. For this reason we call [34] the limit the macro-
scopic limit.

From (3.12) and (3.14) we find that the original jump probabilities scale as

12



== 27 (1—ﬁ>, (3.16a)

a? 2D

Dt va
At = (14— ). 1
r=\T e ( —I—2 ) (3.16b)

In order to be compatible with an advection-diffusion description v and D
must not depend on the time and space units 7 and a.

Although not related to the advection-diffusion equation, it is worth introduc-
ing the backward jumping rates 7 and [ as

~ Dt va

Dt va
r=J— — . Nl
=g (1+250) (3.17D)

Here, J denotes the global Jacobian J = (7 + 1)/(r + 1) on the strips con-
tributing to transport, and e is a parameter measuring the deviation from
constant phase-space contraction. The form (3.17) of expressing the backward
rates is convenient for taking the macroscopic limit of the phase-space contrac-
tion rate. The three basic dynamics defined in Section II are recovered by the
choices: (a) J = 1,e = 1 (Hamiltonian case), (b) J < 1,e = 1 (homogeneous
dissipation), and (c¢) J = 1,& = —1 (thermostating).

4 Effects of boundary conditions

The eigenvectors p,, of the tridiagonal matrices T* are exponential functions
of subscript m, which in our case coincides with the cell index. The actual form
of the eigenvectors and the eigenvalues depends on the boundary conditions
defined by the action in boundary cells with indices m = 0 and m = N + 1.
The two cases of periodic and absorbing boundary conditions are considered
in turn.

(1) Periodic boundary conditions: po = pn, and pyy1 = p1. For the transfer
matrices this implies that, besides the tridiagonal structure described above,
there are entries in the lower left and upper right corner chosen such that
the entries of every line and of every column add up to [ + s + r. In this
case, the eigenvector represents a traveling wave (cf. Fig. 3a) of the form
exp(i 2rvm/(N + 1)).3 The largest eigenvalue y, is unity (xo = 1) since a

3 If we take the traveling wave form with a negative exponent the imaginary part
of (4.1a) changes sign. For simplicity we consider these cases to be equivalent.
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Fig. 3. Time evolution of py.,, for N = 500, » = 0.052, and | = 0.048. The initial
density is linear, po.,, = (1.5—m/N). (a) Decay for periodic boundary conditions.

The normalization Z%:l Pnzm = N of pp.m, and hence the averge number of parti-
cles in the system does not change. (b) Decay for absorbing boundary conditions.
Asymptotically the overall density profile is constant in space and exponentially de-
caying in time. For r > [ a maximum appears close to the cells at the right boundary
of the chain.

stable stationary solution (p,,=const) exists. It corresponds to the homoge-
neous distribution along the chain. Formally this is a consequence of the sum
rule (2.1) which expresses the fact that the dynamics can reach any point
along the = axis. The non-vanishing eigenvalues are complex and of the form
(cf. Appendix)

2y
N+1

2rv
N+1

XP=1—-(+1) [1 — cos ] —i(r—1) sin (4.1a)

with v = 0--- N. Their imaginary parts indicate that the relaxation towards
the stationary state takes place via temporal oscillations superimposed on an
exponential decay, as shown in Fig. 3a. For the long-time dynamics the most
relevant eigenvalue besides unity corresponds to the slowest decay v = 1.

(b) Absorbing boundary conditions: po = py+1 = 0. The choice for the bound-
ary cells is determined by the fact that only transitions to these cells are
allowed but there are no transitions from the boundary cells. Thus the trans-
fer matrices do not have additional entries besides those on and immediately
next to the diagonal, and we have to look for eigenfunctions with the property
po = pn+1 = 0. In this case the eigenvectors are standing waves of exponen-
tially changing amplitude (cf. Fig. 3b) of the form (r/1)™? sin(imvm/(N+1)).
The spectrum is real and the non-vanishing eigenvalues are given by

X9 =1—(r+1)+2(Ir)"? cos (4.1b)

N+1’

14



with v = 1,2..- N. Here the largest eigenvalue corresponds to v = 1. It is
smaller than unity, reflecting the fact that no nontrivial (i.e., different from
the empty state, p,,, = 0 for all m) stationary state exists. In this case (Fig. 3b)
the density decays exponentially.

The two spectra x?) and x(*) are not identical, reflecting that the relaxation
processes in open and in periodic systems are, in general, different. On the
other hand, none of the intracell parameters (s;) or characteristics along the
stable manifold (e.g. l, 7) appears in them. This indicates that the temporal
scales in the random-walk picture are independent of the microscopic motion
inside cells. In our simple model this independence already holds for the pro-
jected dynamics of the spatial x variable (c¢f. [29] for a heuristic discussion of
more general cases).

Since the eigenvalues only depend on the jump probabilities [ and r, we can
follow now how the spectra change when taking the macroscopic limit.

4.1 Spectra in the macroscopic limit

One can determine the spectra of the advection-diffusion equation by taking
the limit* a,7 — 0, and using conditions (3.14). By this we obtain

® _ o _ ¥’ v 2

with wavenumbers k = 27v/L, v = 0,1--- N for the periodic case, and

2

a v

with & = mv/L, v = 1--- N for the absorbing-boundary case. These results
show that the macroscopic times are on the order of the diffusion time, L?/D
or of the drift time D/v2. Although the spectra are different, an interesting
relation appears: the transformation k& — (k — iv/D)/2 relates 7 to 79,
The complex shift and the difference in the range of available wave numbers 5
reflects the change of the character of the boundary condition.

4" A more careful discussion of the limit, and justification of the present approach
is given in Sec. 5.

5 The largest wavelength compatible with absorbing and periodic boundary condi-
tions are L/27 and L /7, respectively.
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5 Chaos characteristics with meaningful macroscopic limits

In this section, we investigate which characteristics of the chaotic dynamics
possess a meaningful macroscopic limit. They are of special importance since
they are the only candidates possibly related to macroscopic transport coef-
ficients. After all the latter must not depend on microscopic details of the
dynamics. In classical work (for instance [50]) this independence is attributed
to the vast separation of microscopic and macroscopic scales, which also ap-
plies in the present setting. This is explicitly demonstrated now by writing
the respective quantities in a scaling form with a few scale variables composed
of ratios of the microscopic and macroscopic length scales. The macroscopic
limit is then expressed as a limit where these scaling variables tend to zero.

5.1 Decay rates

An important example of a dynamical characteristics possessing a macroscopic
limit is the spectrum of the decay rates, in particular the slowest one. In a
system with periodic boundary conditions it describes the relaxation to the
steady state, and for open systems amounts to the escape rate.

5.1.1 Scaling form

We write the eigenvalues x?) of the transfer matrix of the periodic case as

P =1- 7‘—2D [1 — cos 2771/@] i gin 2y a
a? a L
2
=15 (1) 5.1)

Here HP) represents a complex-valued bivariate scaling function involving the
ratios of the microscopic scale a with the system size L = a (N 4 1) and the
characteristic length scale

Ly

2 52

of a biased diffusive system, respectively. For this length the time required to
pass it with the drift velocity v is on the same order as the diffusional relaxation
time ,2/D (or, equivalently D/v?) for spatial inhomogeneities of this size.
Typically, the three length scales characterizing the system are arranged like

a<l, <L (5.3)
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This condition already implies a large system limit, which we define as a/l,,a/L —
0.

Similar to the case of periodic boundary conditions, the eigenvalues x (*) of the
transfer matrix for the absorbing-boundary case can be written as

where H(* again is a bivariate scaling function.

5.1.2 Macroscopic limit

It directly follows from (5.1) and (5.4) that in the limit 70?/D < 1, 7v/L <
1 the continuous-time decay rates 7, coincide with those of the advection-
diffusion equation, i.e., x, = exp (—7,7). In particular, in the periodic case
the first nontrivial eigenvalue x; of the transfer matrix approaches towards
the slowest decay rate of the advection-diffusion dynamics as

B logxgp)_ 472 (a>2 2 (a>2
"=-— - —DL2 1+Olv +va 1—|—(9L (5.5)

Similarly, the continuous-time escape rate s coincides with the slowest rate
) of the dynamics:

e [ree(() ) 5 ol @) ()] oo

where we also dropped terms of order (7v/L)(a/l,)? and (tv/L) (a/L)?, which
are smaller than the indicated higher-order terms by the small factor 7v/L.
These formulas show that the leading eigenvalues are related to transport co-
efficients, but in the general case where D and v are nonzero, these eigenvalues
alone do not determine both transport coefficients uniquely.
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5.2 Phase-space contraction rate

5.2.1 Scaling form

Another quantity of interest is the average phase-space contraction rate &,
the average of the negative logarithms of the local Jacobians divided by 7.
At the same time, 7 is the negative sum of the average Lyapunov exponents

— (A1 + A2). It is interesting to observe that the average positive or nega-
tive Lyapunov exponent alone never possesses a meaningful macroscopic limit
[cf. Eq. (A.20)]. Their sum, however, can survive the limit. Using the results of
the Appendix we find for the periodic and open case of our multibaker model

U(p)TZ—<Zsilnﬁ+lln%+rln;>, (5.7a)
i Si
and
l~r~ m
—(a) 21 1/2
G <Z S; ln + (Ir)"/*1In — I S N 1) (5.7b)

respectively. The average phase-space contraction rates do depend on the mi-
croscopic (intercell) parameters: s;, §;, [, and 7 are all present in the expression.

Meaningful thermodynamic limits can only exist when we can get rid of the
dependence on the microscopic parameters. To that end the global Jacobian
J on the strips contributing to transport [c¢f. Eq. (3.17)] must be the same as
the local Jacobians on all the strips staying inside the cell in one time step,
i.e.,

Sifsi=J for i=1---F. (5.8)

The three classes (a)—(c) introduced in Section II obey this requirement.

With Eq. (5.8) we find that in the periodic case

1-— D 1 2
cPr=—InJ—7 D(l—m>ln €2D—l— <1+E>lni
a? 2D 35 a? 2D 1+ 2 %)

V2 a

with S as a single variable scaling function.

Similarly, in the absorbing-boundary case
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1/2 1 eva \2

D 2 — (&va
g Wr =—InJ —7e" = |1— (E> In #D)z cos 2
a? 2D 1—(

2
_ Y7 o(a) (2 2)
InJ 478 1) (5.9b)

The scaling function S® is now bivariate due to the explicit dependence on
L. For J =1, i.e., in the case where the baker map is one-to-one on its phase
space, @@ is an even function of the parameter . Consequently, the phase-
space contraction rate on the saddle of the absorbing-boundary problem is the
same in the thermostated case ¢ = —1 as in the Hamiltonian case ¢ = 1:

@7 = 0. (5.10)
This result can be made plausible by observing that trajectories never escaping
the (finite) system take approximately the same number of steps towards and

against the bias such that the dynamics is area preserving on the average
[¢f. discussion at the end of Sec. 2].

5.2.2  Macroscopic limit

Carrying out the macroscopic limit for the phase-space contraction rates, we
find in the periodic case that

5-(10) —

—IHTJ +5 C _41) ll + O(lﬁﬂ (5.11a)

In the case of absorbing boundaries on the other hand,
InJ 02 a\? /a\?
@) — _ 2 _ Z et
o . +4D (e —1) ll—l_O((lv) ’(L) )] (5.11b)

Notice that the leading order terms are in both cases proportional to v?/D.

6 Discussion

For a simple dynamical model of large spatial extension, the multibaker map,
we explicitly worked out a hierarchy of coarse-graining processes reminiscent of
the reduction of a microscopic dynamics to macroscopic time evolution [47,48].
Already the simplest kind of coarse graining (projection on the transport axis)
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makes the dynamics irreversible and compatible with a kind of random walk.
A further coarsening accounting for a separation of microscopic vs. thermody-
namically relevant large temporal and spatial scales leads to a continuous-time
master equation and an advection-diffusion equation, respectively. The discus-
sion clearly illustrates the relevance of the Markov property for the description
of transport processes (as suggested by Penrose [49]). This property is indis-
pensable to obtain a meaningful description on the random walk level. The
separation of time and length scales required to end up with macroscopically
meaningful equations, expresses that the microscopic parameters (a and 7 of
the multibaker) are negligibly small as compared to the macroscopic scales.
They do not affect transport coefficients or particle densities.

We investigated transport in the framework of a thermostated system with pe-
riodic boundary conditions, and in the escape-rate formalism. The microscopic
dynamics is in both cases given by a well defined dynamical system generating
permanent and transient chaos, respectively. Interestingly, most of the chaos
characteristics (including the average Lyapunov exponents, fractal dimensions,
entropies) do not have a well-defined macroscopic limit. The only exceptions
are the average phase-space contraction rate, i.e., the sum of all Lyapunov
exponents > \;, and the escape rate. They are therefore candidates for being
related to transport coefficients and characteristics of thermodynamic steady
states. In the thermostated setting the average phase-space contraction rate
can indeed coincide with the entropy production, but only for a steady state,
where the coarse-grained density is stationary and uniform [34]. When, in the
spirit of the escape-rate formalism, the same model is subjected to absorbing
boundary conditions the sum of Lyapunov exponents vanishes in spite of the
explicit time evolution of the connected macroscopic densities. Consequently,
the relation between phase-space contraction and the entropy-production rate
must not be viewed as a fundamental property of dynamical systems, but
can at best apply in certain special cases like uniform stationary states of
thermostated systems with absorbing boundary conditions.

Modeling of transport with all aspects of irreversibility, including entropy pro-
duction, is consequently a much more complex task than the mere recovering of
transport equations. In a general non-stationary situation none of the macro-
scopically well-defined chaos characteristics can fully account for the entropy
production since the latter explicitly depends on the instantaneous density
distribution in that case. Moreover, as shown earlier [34,39,43], the expres-
sion for the local entropy production corresponding to the continuous-time,
large-scale dynamics (i.e., the entropy production in the macroscopic limit)
coincides with the one obtained from nonequilibrium thermodynamics [46] in-
cluding all contributions due to local density differences of the macroscopic
state. 6

6 The entropy production per particle is o) (z,t) = [v — D 8,p(z,t)/p(x, t))>/D
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The discussion of multibaker maps clearly shows that non-standard, parame-
ters of the dynamics are essential for the modeling of transport processes.
These parameters are the transition probabilities (, r in the multibaker) be-
tween coarse-grained regions and the associated local Jacobians (I/l, 7/r in
the multibaker). The latter do not influence the transport equations. It is r
and [, a very uncommon set of parameters from the point of view of dynamical
systems, which determine the transport coefficients v and D.

Some descriptions of entropic aspects of dynamical-system models of trans-
port emphasize the importance of the SRB measure on the chaotic attractor
in the thermostated algorithm [12,9,6], of Takagi-function type distributions
of area-preserving models with open boundaries [31,35,37], or fractal struc-
tures of hydrodynamic modes [42,26]. Our results show that none of the usual
asymptotic chaos characteristics of the microscopic dynamics appear in the
transport coefficients.

Based on these observations, we conclude that it is only the tendency of con-
verging towards a microscopically fractal state which is essential in modeling
transport processes. In the spirit of statistical mechanics, coarse graining has
to be carried out on a mesoscopic level (on the cells of size a in the multi-
baker) which is large enough to carry a meaningfully defined density. The
coarse-grained distribution therefore settles down to a steady state much ear-
lier than the microscopic motion. The traditional chaos characteristics, which
focus only on the asymptotic stationary measure of the microscopic dynam-
ics, are therefore inappropriate for the description of the transport process.
Only the presence of microscopic chaos and the resulting Markov property
of the coarse grained dynamics are essential for macroscopic transport — its
characteristic numbers are, however, not.

where p(z, t) denotes the macroscopic limit of projected density (3.4). It corresponds
to the continuous-time, large-scale thermostated dynamics (i.e., J = 1,6 = —1 in
the present paper). In the periodic case the average phase-space contraction rate
(5.11a) turns out to be & = v2/D, and thus ¢("")(z,t) -5 = —2v0,p/p+D(0p/p)?,
which can take a positive as well as a negative sign. In a spatial average with respect
to the density p(z,t), however, the first term on the right-hand side vanishes so
that the average is strictly positive except in the steady state where 0,p = 0.
In the case of absorbing boundary conditions ¢ = 0 [¢f. (5.11b)], and O.p/p =
Oy log p # 0 whenever p(z, t) is not identically vanishing (see [45] for further details).
Consequently, the local entropy production typically differs from the average phase-
space contraction rate.
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A Evaluating chaotic properties from the transfer matrices
A.1 Bivariate thermodynamics

For a complete characterization of invariant chaotic sets of two-dimensional
maps a bivariate thermodynamic formalism is especially well suited. Among
several versions existing in the literature, we choose one that contains the
length scales only. In the most general case the measures are also important
but since our multibaker chain is piecewise linear, the natural measure and
length scales are proportlonal and it is sufficient to consider the length scale
statistics. Let l denote the length scales generated by the backward
(forward) dynamlcs along the unstable (stable) direction after n applications
of the map. Identical subscripts of ! and [ indicate that these length scales
belong to the same symbol sequence in the backward and forward dynamics.
Consider then a Welghted sum over all symbols containing products of different
powers of l§» and [; at a fixed iteration number n. Such sums are shown in
the thermodynamlc theory [53,54] to scale exponentially with n. It defines a
bivariate thermodynamic function G(81, f2) as

n)P1 ) B -
ST G (A1)

where 31 and [, are the weighting factors for the length scales along the
unstable and stable manifolds, respectively.

A few properties of G can be read off immediately. The topological entropy K
is for instance obtained as Ky = —G/(0,0). Taking one of the weighting factors
to be zero, we recover the free energies F; and Fy (the negative of which is
also called the topological pressure) along the unstable and stable directions,
respectively:

G(ﬁ>0) :Fl(ﬁ)> G(07 _ﬁ> :FZ(B)' (AQ)
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The average Lyapunov exponent )\ is obtained as

AL = iFl(ﬁ)

i , (A.3)

The fractal dimensions dgl), d((J2) of the invariant set along the unstable and
stable direction are

Fe(p=dy’) =0, k=12 (A.4)

and the escape rate appears as

k= Fi(1). (A.5)

The free energies contain information on the full spectrum of finite time Lya-
punov exponents, Renyi entropies and generalized dimensions, too. For the
particular formulas describing how to extract them we refer to the literature
[55,53]. Finally we note that the phase-space contraction rate ¢ = —(A1 + \2)
can directly be obtained as a derivative of G:

d
7= 5005 ﬁ)ﬁzo. (A.6)

For systems with Markov partitions the quantity exp (—G7) appears as the
leading eigenvalue of a generalized transition matrix. This matrix has the
same structure as the traditional transition matrix just the entries are the
same as the length scales at level n = 1 raised to powers 3y, #2. Thus we
have the generalized transition matrix T (8, 32) for the baker chain also in a
tridiagonal from with non-vanishing elements

Tmm_l(ﬁl, By) = 1M7P2 =, (A.7a)
mm 61752 Zszﬂls & =S5, (A?b)
Tm,m+1(ﬁl,ﬂz) =P =, (A.7c)

A.2  The spectrum of tridiagonal matrices

Because tridiagonal matrices appear in several forms in our problem, let us
consider the eigenvalue problem of a general N x N matrix with diagonal
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elements s and off diagonal elements r and |. The eigenvalue equation for the
non-vanishing eigenvalues x of T is

M1 + SUpm + U1 = XU, (A.8)
In the case of constant elements exponential solutions are expected for the
eigenvectors u,,,m =1---N.
Let us first assume a traveling wave form for the eigenvectors:

Uy, = ™. (A.9)

A substitution of this into (A.8) yields a complex set of eigenvalues:

Xx=s+(r+1)cosd —i(r—1)sinb. (A.10)

These are consistent with periodicity required by the condition u; = uny1
from which 6, = 27v/(N + 1) follows with v = 0,1--- N. Thus the spectrum
in the presence of periodic boundary conditions reads as

2rv 2rv

Xip):s+(r+l)cosN+1—z'(r—l)sinN+1, (A.11)
with v =0,1--- N. Now the largest eigenvalue
X =s+(r+1) (A.12)

is the only real element of the spectrum (for r # |) and is independent of the
system size.

A different type of solutions is found by looking for real solutions in the form:

Up, = € sin (mf). (A.13)

A direct substitution into (A.8) then specifies exponent « as

In

(A.14)

N |
_|—‘

and yields for the eigenvalue

X = s+ 2Vl cos#. (A.15)
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This solution corresponds to a standing wave with an exponentially increasing
amplitude in space and is only compatible with an absorbing boundary condi-
tion. By requiring free ends with ug = uny4+1 = 0 we find that 6 can only take
on values 0, = v /(N + 1), v = 1--- N. Thus, the entire spectrum belonging
to absorbing boundary conditions is (apart from degenerate zero eigenvalues)

. v=1,2---N. (A.16)

(@) — 5 4+ 2V/rl
Xo s+ \/r_cosN+1, ,

The largest eigenvalue is that of v = 1. Note that the size dependence is
present in all the elements but a large system limit N — oo exists. Note
that the two spectra are qualitatively different, the largest eigenvalues do not
coincide not even in the large N limit (¢f. Fig. A.1).

A.8 Characterizing the invariant sets

Substituting the non-vanishing matrix elements of T((1, B2) for the periodic
and absorbing boundary conditions into the respective largest eigenvalues
yields two different bivariate potentials G?) and G, viz.

o—GP (BB T _ Z siﬂlgi—BQ + P B2  pPrB (A.17a)

e_G(a)(glﬂz)q— _ Z siﬂlg;ﬂ2 + 2(17’)51/2@?)_52/2 oS NZ_ T (Al?b)

The corresponding free energies also depend on the boundary condition, and
therefore, the spectra of local Lyapunov exponents will typically be different
for the open and periodic cases. Here, we just give some important chaos
characteristics explicitly. The topological entropies are obtained as

KW7r=n(k+2), (A.18a)

K7 =1n |k + 2cos (A.18b)

T
N+1]’

which shows that the symbolic dynamics is never complete in a finite, open
system.” Note also that even if the single-cell dynamics is non-chaotic (i.e.,
k = 0 or k = 1) the spatially-extended system, where N > 1, is always
chaotic.

7 The escape of particle trajectories characterized by certain symbol sequences in-
troduces pruning in the symbolic dynamics. Since there is less and less escape for
N — o0, however, K((]a) and K((]p) become identical in the large N limit (cf. Fig. A.1).
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K

N

Fig. A.1. The N-dependence of different quantities characterizing the chaotic set for
a system with absorbing boundary conditions. The crosses at the right border give
the corresponding values for periodic boundary conditions (which do not depend
on N). The symbols are explained in the text, and time is measured in units of 7.
(parameters left: k = 2, s7 = 0.675, s = 0.225, r = 0.052, [ = 0.048, as Fig. 3;
right: k = 2, s = 0.6, s = 0.2, r = 0.18, [ = 0.02).

For the escape rate we find,

kT =—In|(1—1—7r)+2VIrcos (A.19)

T
N +1

It is independent of the microscopic quantities s; but contains the jump prob-
abilities [, r related to the transport coefficients. 51 = 1,32 = 0 is the only
“temperature” setting in the thermodynamic formalism where this can hap-
pen.

The positive Lyapunov exponents for the respective boundary conditions are

Aﬁ”)r: = silns; —llnl —rlnr. (A.20a)

MO = & | =3 sl — (1) In (Ir) cos (4.20b)

Vs
N+1|’

These quantities, for instance, do not possess a macroscopic limit in the spirit
of Sect. 3.5 because the terms [ Inl and r Inr cannot be expressed by means of
Eq. (3.16). As a consequence, the result in the macroscopic limit still depends
on the microscopic time and space units 7 and a, respectively.

The metric entropies are

K1(p) _ )\57’)7 Kla) — )\g“) — K, (A.21)
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and from the second derivative of G (A.6) we obtain for the phase-space con-
traction rates

<Z s; ln — +lln§ +rln-— ) (A.22a)
gl = —e Zsz ln— (Ir)'/? lnz—~ cos ———| . (A.22b)
lr N+1

The information dimension of the chaotic sets unstable manifolds can be writ-
ten as

(p)
A

(a) _

A5

The denominator contains in both cases the Lyapunov exponent characterizing
the stable manifold. Since the Lyapunov exponent does not possess a macro-
scopic limit, neither does the information dimension. It is remarkable, however,
that the combination (2 — Dj)\2, which is the difference of the phase-space
contraction and escape rate, is macroscopically well defined for both boundary
conditions considered (note that k7 = 0 for periodic boundary conditions).
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