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Abstract

We study the hydrodynamic Lyapunov exponents of the hard disk fluid in the
dilute limit. These exponents appear in discrete groups and their values depend on
the system size. In a previous paper [1], we presented a theory for these exponents,
explaining them as the growth rate of collective, organized perturbations in phase
space. That theory successfully described the basic features of the hydrodynamic
exponents, but it had some difficulties. Many of these difficulties can be removed
by considering the dilute limit.
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1 Introduction

There have been many recent studies dealing with the relation between Lya-
pounov exponents and transport properties. Some general relations have been
obtained (Gaspard, Nicolis, Dorfman [2,3]), as well as computations in some
model systems linking the largest Lyapounov exponent to a transport coef-
ficient (van Beijeren, et al. [4]). These studies investigated in a quantitative
way the intuitive idea which connects the divergence of perturbed trajectories
to the collision process, the latter being in turn related to transport coeffi-
cients as it is known from kinetic theories (Resibois and DeLeener [5]). The
computed values of transport coefficients is known to depend on the particle
interaction potential and not on the system size or geometry.

It therefore came as a surprise when Posch et al [6] found a somewhat different
behavior. For hard-sphere and hard-disk systems, while increasing the system’s
size, a few Lyapounov exponents appear, disconnected from the main part of
the spectrum, and corresponding to perturbation directions in phase space
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which involve coherent deviations in positions or velocities of essentially all
particles of the system (Posch [6], McNamara and Mareschal [1], hereafter
MM1). Those new exponents are smaller when compared to the others, with
the corresponding times being proportional to the system size. Recent results
both on hard-core potential systems and on systems interacting with smooth
potentials (Forster and Posch [7]) confirm the existence of those large-scale
collective perturbation directions associated with these exponents.

Theoretical explanations have already been attempted for those exponents.
First, Eckman and Gat [8] have considered random matrices, sharing certain
features with the linearized dynamics of hard spheres, and they have shown
that they display a similar Lyapounov spectrum. In a previous article, McNa-
mara and Mareschal (MM1) have presented a theory, based on a generalized
Enskog equation, linking the collective exponents to collisional invariant per-
turbation directions: because of the link between collisional invariants and the
hydrodynamic modes of fluids, we have proposed to name those exponents and
the perturbation directions “hydrodynamic Lyapounov modes” because their
origin is analogous to that of the usual hydrodynamic modes. This terminol-
ogy is not meant to suggest that there is a relation between these exponents
and the transport coefficients of hydrodynamic theory. In fact, the following
theoretical development suggests that there is no such relation. We character-
ize the hydrodynamic Lyapunov modes further and refer specifically to shear
modes and sound modes, relating to the kind of collective perturbation direc-
tions displayed. (In a different but related approach, de Wijn and van Beijeren
name these modes “Goldstone modes” [9]).

In this paper, we present a more detailed theory than the one developed in
MM1, but, given the complexity of the computation, we limit ourselves to
the dilute limit: this limitation permits us to avoid the uncontrolled approx-
imations that were done in MM1. We introduce a Boltzmann equation that
describes the time evolution of the perturbed trajectories as a kind of internal
degree of freedom of the particles. We then introduce spatial fields related to
the perturbation directions which do not grow at collision and derive equa-
tions describing the space and time variation of those fields. The analysis of
those equations is then performed, restricted to equilibrium systems, in a limit
where one can use scale separation, both in time and space, in a way similar to
the derivation of hydrodynamic equations for the fields of conserved variables.
This allows us to predict the largest time scales and to compare them with
those computed in molecular dynamics simulations done with hard disks. In
the conclusion, we end the paper by discussing the strengths and weaknesses
of this approach. In particular, we insist on the fact that the same physics
takes place at finite and large density and that the consideration of dilute
fluids is not a physical limitation.
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Fig. 1. The Lyapunov spectrum of a hard disk system with N = 500 disks in a
periodic domain with aspect ratio 25. The disks cover 0.5 of the available space.
a) All 1000 positive exponents. b) the spectrum for 900 ≤ i ≤ 1000, showing the
hydrodynamic exponents.

2 Description of the hydrodynamic Lyapunov modes

In this paper, we study the Lyapunov spectrum of the hard disk fluid with
periodic boundary conditions. N disks are confined in a Lx × Ly periodic
domain. We take Ly > Lx because this simplifies the analysis of the hydro-
dynamic modes. Our algorithm for calculating the Lyapunov spectrum was
given by Dellago, Posch, Hoover [10]. All figures show results in simulation
units, where the unit of distance is a particle radius, the unit of mass is the
particle mass and the unit of time is determined by setting the average kinetic
energy per particle equal to 1/2.

The hydrodynamic Lyapunov modes have already been described in MM1 [1]
and by Posch et al. [6]. Here we present a very brief review, and add some
new findings.

In Fig. 1a, we present the Lyapunov spectrum of a relatively dense (area
fraction ν = 0.5) hard sphere fluid at equilibrium in a periodic domain with
an aspect ratio of 25. At this resolution, the spectrum can be divided into
two parts. There is a smooth curve for 1 ≤ i

�
920, where i is the index of

the exponent. Near i ≈ 920, there is a sharp break as the slope descends with
constant slope to zero. In Fig. 1b we show a magnification of this linear region.
As one can see, it is made up of numerous, roughly equally spaced groups of
exponents. These are the hydrodynamic exponents.

Our analysis of the hydrodynamic Lyapunov exponents is based on the idea
that particles possess “Lyapunov coordinates”. To explain this idea, we present
a loose definition of the Lyapunov spectrum. Let Γ(t) = (r1, r2, . . . rN ,v1 . . .vN)
be a trajectory in phase space. Note that Γ contains as components the posi-
tions and velocities of all the particles. Now, let Γ′(t) be a second trajectory
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in phases space that is infinitesimally close to Γ(t). The separation between
these two trajectories is

δΓ = Γ′ −Γ = (δr1, δr2, . . . δrN , δv1 . . . δvN). (1)

At time t = 0, Γ and Γ′ are infinitesimally close together. As the systems ad-
vance through time, their separation δΓ will change. The Lyapunov exponent
λ is the average growth rate of δΓ:

λ = lim
t→∞

1

t
ln
|δΓ(t)|
|δΓ(0)| . (2)

It is important to realize that each Lyapunov exponent λi is associated with a
vector δΓi that gives the perturbation whose growth rate is λi. The vector δΓi

allows us to characterize the exponents and to know what physical processes
underlie the different exponents. The components of δΓ are the Lyapunov co-
ordinates mentioned above; (δri, δvi) are the Lyapunov coordinates of particle
i. They give the difference between the coordinates that particle i possesses
on trajectory Γ(t) and those it posses on trajectory Γ′(t). If particle i is at ri
on Γ(t), it is at ri + δri on Γ′(t). In the theory we develop below, we consider
the Lyapunov coordinates to be internal degrees of freedom of the particles.

In Fig. 2, we show the Lyapunov coordinates for several different exponents.
For nonhydrodynamic exponents (represented by λ10 in Fig. 2), the Lyapunov
coordinates are disorganized and uncorrelated to the physical velocities. On
the other hand, for the hydrodynamic Lyapunov exponents, they are orga-
nized into sinusoidal patterns or strongly coupled to the velocities. When the
Lyapunov coordinates are organized into global sinusoidal patterns such as
those shown in Fig. 2, i > 10, the perturbation δΓ is called a “hydrodynamic
Lyapunov mode”. The hydrodynamic modes come in two different types: shear
modes and sound modes. In “shear modes” (i = 231 and i = 237 in Fig. 2), δr
and δv are directed perpendicular to the wave vector, like the particle veloci-
ties in a usual hydrodynamic shear wave. In the “sound modes” (i = 234 and
i = 235 in Fig. 2), δr and δv are directed parallel to the wave vector. This
is harder to see, because in sound modes, the Lyapunov coordinates are also
correlated with the velocities.

In Ref. [1], we postulated that the hydrodynamic exponents obey

λ =
ncλ
Ly

+
n2dλ
L2
y

+
n3eλ
L3
y

+O(L−4
y ), (3)

where n is the mode number, i.e. the number of wavelengths that fits into the
length of the system Ly. The wavelength of the perturbation is thus Ly/n. In
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Fig. 2. The Lyapunov coordinates for various exponents. The exponents are taken
from an N = 120, ν = 0.5 system with periodic boundary conditions and an aspect
ratio of 6. The nonhydrodynamic modes are represented by i = 10, the shear modes
by i = 231 (second harmonic, mode number n = 2) and i = 237. Arrows show the
direction and length of δr. For i = 235, particles with v · δr > 0 are shaded gray;
this is a way to show correlations between v and δr.

Fig. 3a, we plot λLy/n against n/Ly for all the shear modes of the spectrum
shown in Fig. 1. Fitting a parabola through the points enables one to extract
estimates for cλ, dλ, and eλ. In the remaining panels of Fig. 3, we plot cλ, dλ
and eλ as a function of density. On the graph of cλ we also give the theoretical
predictions for the zero density limit given in the next section. There seems
to be a transition at the density ν ≈ 0.25. For ν < 0.25, c(shear) > c(sound) and
both dλ and eλ change rapidly with density. For ν > 0.25, c(shear) < c(sound)

and dλ and eλ change slowly. At ν = 0.25, no points are shown because it is
not possible to seperate the sound and shear modes at this density.

5



0 0,01 0,02 0,03 0,04
n/Ly

9,5

9,6

9,7

9,8

9,9

λL
y/n

a)

0 0,1 0,2 0,3 0,4 0,5 0,6
ν

0

5

10

15

20

c λ

b)

0 0,1 0,2 0,3 0,4 0,5
ν

0

10

20

30

40

50

60

d λ

c)

0 0,1 0,2 0,3 0,4 0,5 0,6
ν

0

1000

2000

3000

4000

5000

e λ

d)

Fig. 3. Figures showing estimates of cλ, dλ, and eλ [defined in Eq. (3)] from the
simulations. a) A plot of λLy/n against n/Ly for the shearing modes of the spectrum
shown in Fig. 1. A parabola is fit through the points and cλ, dλ, and eλ appear as
the coefficients. The error bars are based on the fluctuations of the exponent during
the simulation, which ran for 5× 106 collisions. All points in the other three panels
of this figure were determined from similar simulations. b) observed values of cλ
plotted against area fraction ν. The circles indicate the shearing mode and stars are
the sound modes. The dark symbols at ν = 0 are the theoretical predictions given
in Eqs. (65) and (87). c) observed values of dλ. d) observed values of eλ. The value
at ν = 0.05 is not shown; it is eλ = (1.43 ± 0.06) × 104 for the shear mode, and
eλ = (1.77± 0.09)× 104 for the sound mode.

3 Theory

3.1 General approach

The rationale of our approach is to approximate the exact dynamics in phase
space by a statistical treatment, as it is done at the level of the Boltzmann
equation, and to neglect all correlations built by collisions among particles.
This is not only done for the dynamics itself but also for the evolution of the
infinitesimal deviation vectors associated with each trajectory. The physical
argument behind this scheme is based on the fact that the evolution of the
deviation vectors is driven by the dynamics but they do not in turn influence
the latter. The approach formulated here at the level of one-body distributions
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could therefore be formulated at the level of the Liouville equation.

We therefore begin by defining a generalization of Boltzmann’s one-body ve-
locity density function,

φ = φ(v, δr, δv; r, t), (4)

that gives the density of particles with velocity v and Lyapunov coordinates
δr and δv at position r at time t. We can recover the usual velocity density
function by integrating out the Lyapunov coordinates:

f(v) =
∫ ∫

φdδr dδv =
n

2πT
e−v

2/2T . (5)

Since we restrict ourselves to systems in thermal equilibrium, f(v) is always
a Gaussian.

We will investigate the behavior of fields defined as moments of φ. We use the
notation

〈ψ〉 =
1

n

∫
ψ φ(v, δr, δv; r, t) dvdδr dδv, (6)

where n is the number density of the fluid. Since we consider only systems in
equilibrium, n is a constant. Not all moments of φ are equally important. We
will show in Sec. 3.2.2 that four of them are more significant than the rest.
Two important fields are

X(r, t) = 〈δr〉, U(r, t) = 〈δv〉. (7)

They resemble the macroscopic velocity u = 〈v〉. On the other hand, the fields

D(r, t) =
1

2
〈v · δr〉, E(r, t) =

1

2
〈v · δv〉, (8)

resemble the temperature T = 1
2
〈v · v〉. Now we will develop evolution equa-

tions for these fields and study their stability. The hydrodynamic Lyapunov
modes will appear as hydrodynamic instabilities.

We will derive equations for the fields from generalized Boltzmann equation:

∂φ

∂t
+ v · ∇rφ+ δv · ∇δrφ = C. (9)

The notation ∇rφ in Eq. (9) indicates the gradient of φ with respect to r and
∇δrφ indicates the gradient of φ with respect to δr. The third term on the left
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represents the change in δr during the free motion when δ̇r = δv. The term
on the right hand side gives the change in φ induced by collisions:

C(q, r, t) = σ
∫
φAφB [δ(q′A − q)− δ(qA − q)] V cos θ dqA dqB dθ. (10)

To lighten the notation, we have used q to indicate the coordinates v, δr, and
δv, and the subscript on φ to show which particle it represents:

qi = (vi, δri, δvi),
dqi = dvi dδri dδvi,
φi =φ(qi, r, t). (11)

C is an integral over all possible collisions. The colliding particles and their
coordinates are labeled A and B. The δ functions in Eq. (10) select those
collisions where a particle with coordinates q is either created or destroyed.

We will not solve the Eq. (9) for φ but rather use it to derive equations for
the new hydrodynamic fields. Multiply the Boltzmann equation, Eq. (9), by
ψ, integrate over q, and divide by n. The result is

∂〈ψ〉
∂t

+∇ · 〈vψ〉+ 〈ψδv · ∇δrφ〉 = 〈ψC〉. (12)

The second term in Eq. (12) gives the streaming transport of ψ. The third
term vanishes unless ψ depends on δr. This term reflects the amplification of
δr by δv during the free motion. The right hand side is the collisional change
of ψ. This last term can be simplified to

〈ψC〉 =
σ

2

∫
[ψ′A + ψ′B − ψA − ψB]φA(r)φB(r)V cos θ dqA dqB dθ, (13)

where ψi = ψ(qi), and the definitions of Eq. (11) have been used again. The
factor ∆ψ = [ψ′A + ψ′B − ψA − ψB] in the integrand is the change of ψ during a
collision. ∆ψ must be calculated from the collision rules that give the change of
(v, δr, δv) during a collision. These collision rules have two special properties
which shape all of Lyapunov hydrodynamics. Let us discuss them now.

3.2 Properties of the collision rules

3.2.1 Nonclassical δv collision rule

The Lyapunov coordinates do not affect the motion of the particles, but they
are modified at each collision according to a “collision rule”. These collision
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rules have been derived by Dellago et al [10] and by van Zon [11]. The collision
rule for δr is

δr′A = δrA + fr, δr′B = δrB − fr, fr ≡ (δrB − δrA) · n̂n̂, (14)

where A and B label the colliding particles. Primes indicate post-collisional
values; unprimed variables are pre-collisional. The unit vector n̂ points along
the line of centers.

It is important to realize that δr obeys exactly the same collision rule as the
velocities:

vA
′ = vA + f , vB

′ = vB − f , f ≡ (vB − vA) · n̂n̂. (15)

On the other hand, δv does not follow the velocity collision rule. This is the
first important fact about the collision rules. δv obeys

δv′A = δvA + fv + f∗v , δv′B = δvB − fv − f∗v ,
fv≡ (δvB − δvA) · n̂n̂,

f∗v ≡V σ−1 sec θ(δrB − δrA) · ûû′, (16)

where θ is the angle between vB − vA and n̂. We define û to be a unit vector
perpendicular to the pre-collisional relative velocity and û′ to be perpendicular
to the post-collisional relative velocity, so that (vB−vA)×û = (v′B−v′A)×û′ =
|vB − vA| = V . (Here, we define the cross product to be a scalar: a × b ≡
axby− aybx. If our two dimensional space were embedded in three dimensions,
a× b gives the magnitude and direction of the usual vector cross product.)

The change of δv during a collision given in Eq. (16) can be divided into two
parts. The first part, denoted fv, has the same form as the velocity collision
rule, Eq. (15). The second part, denoted f ∗v arises because perturbations in par-
ticle position can modify the geometry of the collision, and the post-collisional
velocities are sensitive to the collision geometry, especially in grazing collisions
(i.e. when θ is close to ±π/2), which explains the factor of sec θ in Eq. (16). f ∗v
is essential for the existence of the hydrodynamic Lyapunov modes. Suppose
for a moment that f ∗v = 0. Then all the coordinates would obey the velocity
collision rule, and transformation (v, δr, δv)→ (v′, δr′, δv′) would share with
the transformation v→ v′ all the special properties that enable one to prove
the H-theorem, microscopic balance, and all the properties of dilute gases at
equilibrium. The hydrodynamic Lyapunov exponents would not exist, because
any perturbations of the X, U or any other field would decay. The distribution
function φ would approach a Gaussian. It would even be impossible for δΓ to
grow exponentially, because δv2 and δr2 would be conserved during collisions.
δΓ could grow only linearly with time during the free motion of the particles,
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when δ̇v = 0 and δ̇r = δv. This difference between f ∗v and the other collisional
changes is so important that when we evaluate the collisional term in Eq. (12),
we will separate it into two pieces:

〈Cψ〉 = C◦[ψ] + C∗[ψ]. (17)

C◦[ψ] contains all the parts of ∆ψ depending only on f , fr and fv. We will call
it the “dissipative” part of the collision integral because it drives φ toward
a Gaussian, just like the collision integral of classical kinetic theory. C ∗[ψ]
contains all the changes depending on f ∗v . We call it the “growth” part of the
collisional integral, because it contains the terms which cause the Lyapunov
modes to grow, and the hydrodynamic Lyapunov exponents to be nonzero.

3.2.2 Conserved quantities

Another important property of the collision rule is that certain quantities are
conserved during collisions. It is a consequence of Eqs.(14), (15) and (16) that

δr′A + δr′B = δrA + δrB,
δv′A + δv′B = δvA + δvB,

v′A · δr′A + v′B · δr′B = vA · δrA + vB · δrB,
v′A · δv′A + v′B · δv′B = vA · δvA + vB · δvB. (18)

These conservation rules are important because they indicate the existence of
the Lyapunov hydrodynamic modes. Recall that hydrodynamic modes exist in
ordinary fluids because particle interactions conserve certain quantities. For
example, momentum cannot be created or destroyed by collisions. Thus, a
local concentration of momentum decays slowly because the collisions cannot
destroy momentum; the momentum must be transported by diffusion. As a
consequence, the fluid velocity u changes on a time scale much longer than
the collision frequency and is thus a hydrodynamic field. In the same way,
introducing a local concentration of any of the quantities in Eq. (18) will
change slowly since none of these quantities can be destroyed by collisions.
Each one of these quantities will give rise to a Lyapunov hydrodynamic field.
The fields X, U, D and E that we introduced in Eqs. (7) and (8) are the
Lyapunov hydrodynamic fields.

We can generate equations for the Lyapunov hydrodynamic fields by setting
ψ equal to each quantity in Eq. (18) and using Eq. (12). For these quantities,
∆ψ = 0, so the collision integral on the left hand side of Eq. (12) vanishes.
The results are:
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∂X

∂t
+∇ · 〈v δr〉= U,

∂U

∂t
+∇ · 〈v δv〉= 0,

∂D

∂t
+∇ · 〈v (v · δr)〉=E,

∂E

∂t
+∇ · 〈v (v · δv)〉= 0. (19)

The quantities in angle brackets are the streaming fluxes. They give the trans-
port of the concerned quantity by the free motion of the particles. To get a set
of closed equations, we must make a closure hypothesis, relating the streaming
fluxes to the hydrodynamic fields.

3.3 Closure hypothesis for the fluxes

We denote the flux of X by the tensor J:

J ≡
( 〈vxδrx〉 〈vxδry〉
〈vyδrx〉 〈vyδry〉

)
= 〈vδr〉. (20)

Likewise, we denote the flux of U by the tensor K:

K ≡ 〈vδv〉. (21)

Note that the diagonal components of these tensors are related to the hydro-
dynamic fields D and E:

D =
1

2
(Jxx + Jyy) , E =

1

2
(Kxx +Kyy) . (22)

Using Eq. (12), we can generate equations for the fluxes

∂J

∂t
+∇ · L = C◦[vδr] + K,

∂K

∂t
+∇ ·M = C◦[vδv] + C∗[vδv]. (23)

The tensors L and M are defined as:

Lijk = 〈vivjδrk〉, Mijk = 〈vivjδvk〉. (24)

We can get equations for them, too:
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∂Lijk
∂t

+
∂〈vxvivjδrk〉

∂x
+
∂〈vyvivjδrk〉

∂y
= C◦[vivkδrk] +Mijk,

∂Mijk

∂t
+
∂〈vxvivjδvk〉

∂x
+
∂〈vyvivjδvk〉

∂y
= C◦[vivkδvk] + C∗[vivkδvk]. (25)

In this way, we could define an infinite hierarchy of equations. But we need
to truncate the hierarchy somewhere. For the analysis of the shear modes, it
suffices to truncate the hierarchy after J and K. When Lijk or Mijk appear,
we replace them with the approximations

Lijk = 〈vivjδrk〉 ≈ 〈vivj〉〈rk〉 = TδijXk. (26)

Likewise, we have Mijk = TδijUk.

To study the sound modes, it is necessary to keep L and M. In that case, we
need an approximation for their fluxes. We will use

〈vivjvkδrl〉= 〈vivj〉〈vkδrl〉+ 〈vivk〉〈vjδrl〉 + 〈vjvk〉〈viδrl〉,
= (δijJkl + δikJjl + δjkJij)T. (27)

An analogous approximation holds for 〈vivjvkδvl〉. This rule seems quite odd,
but consider the average 〈vivjvkvl〉, which can be calculated exactly because
after integrating over the Lyapunov coordinates, the distribution function is
a Gaussian. It can be shown that

〈vivjvkvl〉 = (δijδkl + δikδjl + δjkδij)T
2, (28)

which is the same as Eq. (27) after replacing Jij with Tδij.

3.4 Evaluation of collision integrals

In this section, we describe our method of estimating the collision integrals,
〈Cψ〉. These integrals have the form

〈Cψ〉= σ

2n

∫
V cos θ φAφB [ψ′A + ψ′B − ψA − ψB)] dn̂ dqA dqB,

=
σn

2

〈〈
V

π/2∫

−π/2

cos θ∆ψ

〉〉
, (29)

where V = |vA − vB|. The double angle brackets are defined as

〈〈ψ〉〉 = n−2
∫
ψ φAφB dqA dqB. (30)
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This notation is intended to suggest two interwoven single particle averages.
Indeed, according to molecular chaos, 〈〈ψAξB〉〉 = 〈ψ〉〈ξ〉.

To illustrate this notation, let us calculate the collision frequency ω that will
play an important role in our theory. To calculate ω, let ξ count the number
of collision suffered by a given particle. Each particle carries a counter ξ with
it, and every time it collides with another particle, it adds one to ξ. During a
collision, ∆ξ = ξ′A + ξ′B − ξA − ξB = 2 because both particles increment their
counters. We can thus write the collision frequency very simply as

nω = 〈Cξ〉. (31)

(Note that ω is the frequency of collisions suffered by a single particle, not the
frequency of collisions everywhere in the gas.) Using Eq. (30), this expands to

ω = σn 〈〈V 〉〉
π/2∫

−π/2

cos θ dθ. (32)

Doing the integral over θ, we have

ω = 2σn 〈〈V 〉〉 . (33)

Now the quantity in the double angle brackets is just an integral over the
usual distribution function f . It can be evaluated to give

ω = 2σn
√
πT. (34)

Comparing the two expressions for ω, Eqs. (33) and Eq. (34), we find 〈〈V 〉〉 =√
πT = ω/(2nσ). We will return to this when we approximate the collision

integrals.

Another quantity that will be important is the mean free path

`mfp =
〈|v|〉
ω

=
1

2
√

2σn
. (35)

3.4.1 Estimation of the dissipation collisional integrals

We will show how we estimate C◦[vxδry], and give the results for the remaining
integrals. Note that the collision rule for δr does not involve f ∗v , so 〈vxδryC〉 =
C◦[vxδry].
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From the collision rule, we can show that

∆(vxδry) = −V {∆r · n̂(v̂x − n̂x cos θ)ny + ∆ryn̂x cos θ} , (36)

where ∆r ≡ δrA − δrB.

Using Eq. (29), we have

〈vxδryC〉 = C◦[vxδry] =
nσ

2

〈〈
V

π/2∫

−π/2

cos θ∆(vxδry) dθ

〉〉
. (37)

Setting n̂ = v̂ cos θ−û sin θ where v̂ is a unit vector in the direction of vB−vA
allows us to eliminate n̂, and then do the integral over θ. Since û and v̂ are
perpendicular, we use ûx = −v̂y and ûy = v̂x to eliminate û. The integral
becomes

C◦[vxδry] = +
2nσ

15

〈〈
V 2∆r · v̂ v̂xv̂y

〉〉
− nσ

5

〈〈
V 2∆r · û (1 + 3v̂2

y)
〉〉

−2nσ

3

〈〈
V 2∆ry v̂x

〉〉
. (38)

Let us consider the average in the last term 〈〈V 2∆ry v̂x〉〉 which we can rewrite

as 〈〈V (vAx − vBx)(δrAy − δrBy)〉〉. The factor of V =
√

(vA − vB)2 in the inte-
grand is quite awkward, because the coordinates of the two particles are mixed
together. If this factor was not there, we would have simply 〈〈(vAx − vBx)(δrAy − δrBy)〉〉 =
2Jxy. This suggests that 〈〈V (vAx − vBx)(δrAy − δrBy)〉〉 ∝ 〈〈V 〉〉Jxy. Combin-
ing this with Eq. (33), we have

〈〈V (vAx − vBx)(δrAy − δrBy)〉〉 = α
ω

nσ
Jxy, (39)

where α is an unknown constant. This is the approximation used to evaluate
all the dissipation collision integrals. We always assume the same unknown
constant α appears. The factor of nσ conveniently cancels when we put this
expression back into Eq. (38).

There is a slight complication in the other terms, because they include several
factors of the components of the unit vectors:

〈〈
V 2∆r · v̂ v̂xv̂y

〉〉
=
〈〈
V 2∆rxv̂

2
xv̂y
〉〉

+
〈〈
V 2∆ryv̂xv̂

2
y

〉〉
. (40)

How do we handle these extra components of the unit vectors û and v̂? First,
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one can show that 〈〈V v̂iv̂j〉〉 = δij 〈〈V 〉〉 /2. Then we apply the same factor-
ization as in Eq. (27) and write

〈〈
V 2v̂iv̂j v̂k∆rl

〉〉
=
α

4

ω

nσ
(δijJkl + δjkJil + δkiJjl) . (41)

The 4 under the α is required to make this equation consistent with with
Eq. (39), i.e. we must have 〈〈V 2v̂x∆ry〉〉 =

〈〈
V 2(v̂2

x + v̂2
y)v̂x∆ry

〉〉
. Applying

these rules we can reduce Eq. (38) to

C◦[vxδry] =
αω

60
(11Jyx − 31Jxy) . (42)

We can obtain C[vyδrx] by simply exchanging x and y.

Following the same method, we find

C◦[vxδrx] =
7αω

20
[Jyy − Jxx] . (43)

Although these expressions look awkward, certain combinations of them are
simpler, and will be useful in later sections:

C◦[vxδry + vyδrx] =−7αω

10
(Jxy + Jyx),

C◦[vxδry − vyδrx] =−αω
3

(Jxy − Jyx),
C◦[v · δr] = 0,

C◦[vxδrx − vyδry] =−7αω

10
(Jxx − Jyy). (44)

3.4.2 The growth terms

In the growth terms, the integrand is simply a polynomial of velocities times
a Lyapunov coordinate. They can be easily evaluated using Eq. (27). As an
example, we will evaluate C∗[vxδvy]. The part of ∆vxδvy that depends on f ∗v is

∆vxδvy = V 2σ−1 sec θ (v̂x − 2n̂x cos θ) (δrB − δrA) · ûû′y. (45)

We use û′ = −v̂ sin 2θ − û cos 2θ, integrate over θ and eliminate û as before
to obtain

C∗[vxδvy] = −π
〈〈
V 3(δrB − δrA) · û

〉〉
. (46)
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The quantity inside the angle brackets is just a long polynomial

C∗[vxδvy] = π
〈〈

(vA − vB)2 [(δrAy − δrBy)(vAx − vBx)− (δrAx − δrBx)(vAy − vBy)]
〉〉
.(47)

With patience, these terms can all be multiplied out to obtain

C∗[vxδvy] = 8πnT (Jyx − Jxy). (48)

In the same way, we have

C∗[vxδvx] = 0. (49)

3.5 Scaling arguments and solution

We now are in a position to present our theory of the hydrodynamic Lyapunov
modes. We adopt the situation presented in the simulations. We suppose that
Lx � Ly, so that all gradients in x vanish. We will first analyze the shear
modes. We obtain from Eq. (19) the equations for Xx and Ux, the two fields
implicated in the shearing modes:

∂Xx

∂t
+
∂J−
∂y

+
∂J+

∂y
=Ux, (50)

∂Ux
∂t

+
∂K−
∂y

+
∂K+

∂y
= 0. (51)

Instead of Jyx and Kyx, we have used

J− ≡
1

2
(Jyx − Jxy), J+ ≡

1

2
(Jyx + Jxy), (52)

and analogously for K+ and K−. This choice renders the equations for the
fluxes simpler. The fluxes J−, J+, K−, and K+ obey

∂J−
∂t

+
T

2

∂Xx

∂y
=−α−ωJ− +K−, (53)

∂J+

∂t
+
T

2

∂Xx

∂y
=−α+ωJ+ +K+, (54)

∂K−
∂t

+
T

2

∂Ux
∂y

=−α−ωK− + βnTJ−, (55)

∂K+

∂t
+
T

2

∂Ux
∂y

=−α+ωK+, (56)
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where the constants can be read off from Eq. (44): α− = α/3, α+ = 7α/10,
and β = 8π.

Now we assume that the hydrodynamic fields change on a time scale much
longer that the collision frequency. This means that the time derivative on the
left hand side of Eqs. (53) through (56) is small compared to the first term on
the right hand side. In symbols, we would write

O

(
∂

∂t

)
= εω, (57)

where ε� 1 is the ratio between the hydrodynamic time scale and the collision
frequency. We therefore neglect all the time derivatives in Eqs. (53) through
(56). Physically, we are assuming that the fluxes are slaved to the gradients
of the hydrodynamic fields.

Once the time derivatives are removed, we have simply four equations for the
four unknowns J−, J+, K−, and K+. We can solve for these four quantities in
terms of the gradients of Xx and Ux. For example,

K− =
T

2

∂Xx

∂y
+

α−ωT

2βnT − α2
−ω2

(
∂Ux
∂y

+ α−ω
∂Xx

∂y

)
. (58)

When we examine this expression more closely, we see that simplifications can
be made in the limit of vanishing density. Consider

2βnT − α2
−ω

2 = nT

(
2β − α2

−
ω2

nT

)
. (59)

Using our previous expressions for the collision frequency and the mean free
path, Eqs. (34) and (35), we see that

ω2

nT
=

π√
2

σ

`mfp
� 1, (60)

because in the low density limit, the particle diameter is much smaller than
the mean free path.

Eliminating all the terms that vanish in the low density limit, and putting the
resulting expressions for the fluxes into Eqs. (50) and (51), we obtain

∂Xx

∂t
− T

2α+ω

∂2X

∂y2
+

T

4α2
+ω2

∂2U

∂y2
=Ux,
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∂Ux
∂t

+
T

2

∂2X

∂y2
− T

2α+ω

∂2U

∂y2
= 0. (61)

Now we make two additional scaling assumptions. First, we assume that the
hydrodynamic fields vary on a length scale much longer than the mean free
path. This means that

O

(
∂

∂y

)
=

ε

`mfp
. (62)

The second scaling assumption is that the term Ux on the right hand side of
Eq. (50) is the same size as the time derivative ∂Xx

∂t
.

O

(
∂Xx

∂t

)
= O(Ux) =⇒ εωO(Xx) = O(Ux). (63)

This amounts to assuming that the growth of δr during the free movement of
the particles is important. With these assumptions, only one of the flux terms
survives, and Eqs. (61) become

∂Xx

∂t
=Ux,

∂Ux
∂t

=−T
2

∂2Xx

∂y2
. (64)

Taking Xx, Ux ∼ est+ikx, we obtain the dispersion relation for Eqs. (64):

s = ±q
√
T

2
. (65)

This is our prediction for the dilute limit. It is compared with simulations in
Fig. 3. This result does not depend on the details of how the collision integrals
where approximated, i.e. it does not depend on α, α−, α+ or β.

3.6 The sound modes

To get the complete equations for the sound modes, start with the y component
of X and U :

∂Xy

∂t
+
∂D

∂y
+
∂D′

∂y
=Uy, (66)
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∂Uy
∂t

+
∂E

∂y
+
∂E ′

∂y
= 0, (67)

where D and E are the fields defined in Eq. (8) and E ′ and D′ are given by

D′ ≡ 1

2
(Jxx − Jyy), E ′ ≡ 1

2
(Kxx −Kyy). (68)

These fields are governed by

∂D

∂t
+
∂L

∂y
+
T

2

∂Xy

∂y
=E, (69)

∂D′

∂t
+
∂L′

∂y
+
T

2

∂Xy

∂y
=−α′ωD′ + E′, (70)

∂E

∂t
+
∂M

∂y
+
T

2

∂Uy
∂y

= 0, (71)

∂E ′

∂t
+
∂M ′

∂y
+
T

2

∂Uy
∂y

=−α′ωE ′, (72)

where

L ≡ 1

2
(Lxyx + Lyyy − TXy), L′ ≡ 1

2
(Lxyx − Lyyy + TXy), (73)

with analogous definitions for M and M ′. We can now show that D′ and E ′

play no role in the dynamics because they are always much smaller than D
and E. To see why this is so, compare the equation for E, Eq. (71) to the
equation for E ′, Eq. (72). These equations have almost exactly the same form,
except Eq. (72) contains the additional term −α′ωE ′. This difference arises
because E is an average of a collisional invariant while E ′ is not. As we argued
in Eq. (57), this additional term will dominate the time derivative so that E ′

will be slaved to the hydrodynamic fields. E, however, is a hydrodynamic field.
After neglecting ∂E′

∂t
, the two equations can be rewritten

∂E

∂t
=−∂M

∂y
− T

2

∂Uy
∂y

, (74)

−α′ωE ′=−∂M
′

∂y
− T

2

∂Uy
∂y

. (75)

From this pair of equations, we can see that ωO(E ′) = O(∂E
∂t

) so that O(E ′) =
εO(E). A similar argument can be applied to show O(D′) = εO(D).

Now we must calculate L and M in terms of the gradients of E and D. To
do this, one must consider the equations for the various components of L and
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M. After applying Eqs. (57), (60), and (63), the equations for the relevant
components of L and M become:

3T

2

∂D

∂y
=−α1ωL+M, (76)

−T
2

∂D

∂y
=α7ωL +M∗, (77)

0 =−α1ωM + α2ωM∗ − β1L∗, (78)

0 =−α6ωM∗ + α7ωM + β2L∗, (79)

where L∗ = 1
2
(L′xxy − L′xyx), and likewise for M∗. The constants α1 = α2 =

31α/60, α6 = 121α/60 and α7 = α/60, β1 = π, β2 = 3π come from evaluating
the collision integrals. Solving these equations for M gives

M ≈
(
β1α6

β2
− α2

)
T

2

∂D

∂y
= γ

∂D

∂y
, (80)

where γ = β1α6

β2
−α2. (We have neglected α7 compared to the other αi because

it is at least 30 times smaller.) When this result is put into Eqs. (66), (67),
(69), and (71), the result is

∂Xy

∂t
+
∂D

∂y
=Uy, (81)

∂Uy
∂t

+
∂E

∂y
= 0, (82)

∂D

∂t
+ γ

∂Xy

∂y
=E, (83)

∂E

∂t
+ γ

∂2D

∂y2
+
T

2

∂Uy
∂y

= 0, (84)

which yields the dispersion relation

(
s2 +

k2T

2

)2

−
(
s2 − k2T

2

)
γk2 = 0, (85)

From the dispersion relation, we have

s2 =
k2

2

[
γ − T ±

√
γ2 − 4γT

]
=
k2T

2


5

6
±
√

2

3


 . (86)

Unlike Eq. (65), this result depends on the precise results of evaluating the
integrals, as one can see from the presence of the γ (which in turn depends on
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the various constants αi in the integrals). Putting in the values of α2, α6, β1,
and β2, we find γ ≈ T

6
. Evaluating s numerically, we find

s ≈ k
√
T (0.38 ± i0.66). (87)

Unlike Eq. (65), this result is sensitive to the approximations of the integrals.
The difference between Eq. (87) and the observed values suggest that our
method of approximating the integrals gives the correct dependence on the
fluxes and the collision frequency, but not the correct constant of proportion-
ality.

4 Conclusions

This work supports the hypothesis of the existence of the Lyapunov hydro-
dynamic modes because it has shown a way to overcome several difficulties
with MM1. In MM1, we obtained terms which were not time reversible and
hence were not observed in the simulations. In this article, we show that those
terms are small. While this is not the same thing as showing that they vanish,
it means that they could be suppressed by some small and yet undiscovered
effect. What this effect might be is an open question. Another problem with
MM1 was that we obtained λ = 0 for the sound waves. In this article, we
have obtained a frequency with the correct form (i.e. with both a real and
imaginary part, indicating a growing or decaying oscillating perturbation).
However, the predicted value of λ appears to be too small by a factor of about
1
2
. This discrepancy probably arises because our prediction for λ is sensitive to

our method of approximating collision integrals. Finally, we believe that the
finite density case will not be qualitatively different from the zero density limit
considered here, at least for equilibrium states. We have used the zero den-
sity limit in two places: first to avoid calculating the collisional fluxes (these
fluxes were calculated for some quantities in MM1), and to simplify some of
the coefficients appearing in the equations. We conclude that our theory gives
an accurate and informative explanation of the smallest positive Lyapunov
exponents of the hard disk fluid.
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