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Abstract

We show in detail how methods of time series analysis such as dimen-
sion and entropy estimates support the idea that fast low-dimensional
chaos can be modeled properly by noise. Motivated by this observation,
we derive a formalism by which fast chaotic degrees of freedom in sys-
tems with time scale separation can be replaced by a suitable stochastic
process. A Fokker Planck equation for the phase space density of the
slow degrees of freedom is derived from the full deterministic system by
a projection operator technique together with a perturbation expansion.
We compare two different projection strategies and illustrate the resulting
equations by specifying them for a simple model system.

1 Introduction

The distinction between chaos and noise from observed data is a notoriously
difficult task. Recently, this issue has gained new attention when the potential
verification of the presence of so called microscopic chaos from the observation of
a physical diffusion experiment was discussed. More precisely, by data analysis,
in Ref. [1] it is claimed to prove that the seemingly stochastic motion of an
observed Brownian particle is due to the deterministic chaotic motion of the pool
of small particles colliding with the large one. As a response to this work, a set
of papers appeared [2] in all of which strong arguments against the correctness
of the reasoning were made. Despite the fact that there is no good reason for
any doubts about microscopic chaos, there are many reasons why it should be
impossible to prove its existence on the basis of data analysis.

The present paper starts with a review of results which even show the exact
opposite, namely, that fast chaotic motion is indistinguishable from a suitable
stochastic process in a well defined sense. This serves as motivation and as
justification for the second part, where we present a scheme by which fast chaos
is replaced by a stochastic process. We will focus on continuous time dynamical
systems with time scale separation, i.e., on ordinary differential equations where
one set of variables can be called fast and the remaining set of variables is slow,
where the ratio between the fast time scale and the slow time scale will be a
small parameter κ. In the limit of κ→ 0, we will replace the full deterministic
system in a formally exact perturbation theory by a stochastic differential equa-
tion for the slow variables alone, provided that the fast variables are chaotic.
Our approach will yield as additional result the fact that fast chaotic degrees of
freedom are in some sense small amplitude perturbations of the slow variables
(regardless of the magnitude of the coupling terms from the fast to the slow
variables), since their effective magnitude is of order of

√
κ. Moreover, for peri-
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odic fast variables, the stochastic term vanishes and the averaging principle [3]
yields the full leading order approximation.

One property of a stochastic process which will be essential for the following
discussion lies in the fact that a more precise knowledge about the present
state will, asymptotically, not increase our knowledge about the future. As a
consequence, the analogue of the Kolmogorov-Sinai (KS) entropy of a stochastic
process is infinite. In physics, the concept of a heat bath of harmonic oscillators
is a well established way of how to introduce randomness into a deterministic
system through a thermodynamic limit. In this case, the infinite entropy comes
from the infinite amount of information needed to specify the initial condition
of the heat bath in this limit – transport of this information into the observables
generates an effectively infinite KS-entropy of this non-chaotic system.

In the situation we are interested in, only a small, definitely finite number
of fast degrees of freedom will be responsible for the generation of stochasticity.
We require our fast variables to be chaotic themselves. Hence, they possess
positive but finite KS-entropy, which, under a suitable rescaling of time, can
diverge. To recall, KS-entropy is information production per unit time, such
that it scales under t→ αt like hKS → hKS/α.

Before we proceed to a sketch of the derivation of the main result, the deriva-
tion of an effective stochastic model for a given deterministic system, and to its
thorough discussion, we show in some detail in which sense chaotic determin-
istic dynamics and stochastic processes are (in-)distinguishable, by dwelling on
the concept of ε-entropy per unit time. Let us emphasize that C. Beck has
studied in great detail the transition from chaos to stochasticity in a variety
of low-dimensional chaotic maps, where the observables indicating this transi-
tion have been higher-order correlation functions, invariant densities, attractor
dimensions, and others [4, 5, 7, 6]. For specific systems he has derived rig-
orous results, whereas our more general and model free discussion focuses on
qualitative aspects.

2 Entropy and dimension estimates

Let x ∈ Γ ⊂ Rd be a state vector, subject to the equation of motion

ẋ = f (x) . (1)

We assume that f is Lipschitz continuous, such that the initial value problem
x(0) = x0 has a unique solution. A time series S = {s1, . . . , sN} is obtained
from a trajectory x(t) by recording the values of a measurement function sk =
s(x(t = k∆)), where ∆ is the sampling interval. If x(t) are confined to a
bounded invariant set A, then sk are elements of an interval I on the real
axis. The celebrated theorems of Takens and of Casdagli et al. [8] state that
m-dimensional vectors sk = (sk, sk−1, . . . , sk−m+1) form an immersion of the
invariant set A to which the trajectory x(t) is confined, if m > 2Df (A), i.e., if
the dimension m of the embedding space is larger than twice the box-counting
dimension of the set A. This has two important implications for the distinction
of chaos from noise: If a given time series S represents a trajectory on an Df -
dimensional invariant set, then also the set of delay vectors sk is confined to an
Df -dimensional set, and the finite KS-entropy of the dynamical system Eq.(1) is
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uniquely related to the KS-entropy of the system in the delay embedding space,
whose trajectory is represented by the sequence of sk.

The model free distinction between chaos and noise based on observed data
consists in the verification or falsification whether a given time series represents
a finite dimensional object and possesses a finite KS-entropy. The difficulty in
this approach lies in the need for a suitable extrapolation, since formally the
dimension of a finite number of points (as it is given by the time series) is zero.
The benefit of this discussion, however, will be that we will not only be able to
distinguish between chaos and noise, but we will also see the equivalence of chaos
and a corresponding noise process in a certain sense. Hence, dimension and en-
tropy estimates will be the tools for characterization of an invariant probability
measure including all of its (possibly nonlinear) temporal correlations and its
scale dependent properties.

2.1 Dimension estimates

In the field of nonlinear time series analysis, numerical dimension analysis has
some tradition. The most suitable generalized dimension is the correlation di-
mension, since it can be computed without systematic finite sample effects [14]
and with the largest scaling range employing the Grassberger-Procaccia corre-
lation sum [9] for suitable k > 0 (to suppress temporal correlations between
vectors si and sj)

C2(m, ε) =
2

(N −m − k)(N −m − k − 1)

N∑

i,j:j>i+k,i>m−1

Θ(ε−||si− sj ||) , (2)

where m is the dimensionality of the delay vectors si. If the unobserved state
vectors x(t = k∆) are confined to a subset with correlation dimension D2 of the
state space, then for m > D2 the correlation sum C2(m, ε) typically exhibits
a scaling range for small ε with C2(m, ε) ∝ εD2 . On the large scales, finite
size effects of the set (edge effects) destroy the scaling evidently, but in addition
entropic folding effects can occur for either high entropic signals or for unsuitably
large sampling intervals of the data. In order to keep the presentation short, we
refer the interested reader to Ref.[10] for details.

As an illustration of the effect, we recall some features of a very simple
2-dimensional map:

xn+1 = e−µxn +
√
µyn

yn+1 = 1− 2y2
n . (3)

C. Beck called this “dynamical system of Langevin type” and showed [4] that
in the limit µ → 0 the dynamics of the variable x converges to an Ornstein-
Uhlenbeck process. In [11], the detailed entropy and dimension analysis of this
family of systems was performed. For vanishing µ, the entropy per correlation
time of x diverges. In Fig.1 the dimension estimates for one fixed small value
of µ are shown: Whereas on the small scales the dimension D2 = 2 is clearly
recovered, on the large scales the data seem to fill volumes in any arbitrarily
high-dimensional embedding space, which is the typical signature of a stochastic
system. For even smaller values of µ, the deterministic regime is almost inac-
cessible and the data appear stochastic for any numerical analysis, even if they
were created from the same low-dimensional deterministic system.
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Figure 1: Numerical dimension estimates for a time series of xn of the system Eq.(3)
with µ = 1/16, embedding dimension m = 1, . . . , 6 from bottom to top (technical
remark: time lag 3 in the delay vectors, i.e., sj = (sj, sj−3, . . . , sj−3m+3)). Due to
folding effects, on the large length scales the data seem to be stochastic, since they fill
volumes in arbitrarily high embedding dimensions m.

In summary, data from systems with high entropy per unit time appear
stochastic on the large length scales when analyzed in terms of dimension. This
is neither related to the particular algorithm nor to the choice of the correlation
dimension but a consequence of the folding of the invariant set in the time delay
embedding space.

2.2 Coarse grained dynamical entropies

The Kolmogorov-Sinai entropy of a dynamical system can be estimated through
the computation of the positive Lyapunov exponents and the usage of the Pesin
identity. In time series analysis, however, it is typically necessary to go back to
its proper definition. Let P be a partition of the interval I ⊂ R to which the
time series data sk are confined, i.e., P is a set of NP disjoint cells satisfying
∪ici ⊃ I. One defines the joint probabilities pi1,...,im that a subsequence of m
successive observations fulfils sk ∈ ci1 , sk+1 ∈ ci2 , etc.. Block entropies of block
length m are defined through

Hm = −
∑

i1,...,im

pi1,...,im lnpi1,...,im (4)

and conditional entropies as

hm = Hm+1 −Hm . (5)

The Kolmogorov-Sinai entropy of a dynamical system is given by

hKS = sup
P

lim
m→∞

hm(P) , (6)

where supP denotes the supremum over all possible partitions P. For time series
data, the probabilities pi1,...,im are estimated through the relative frequencies
of the occurrence of the corresponding events (maximum likelihood estimators).
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Figure 2: Prototypic behavior of the ε-entropy for m > D for a chaotic process plus
measurement noise (continuous line), for the same process without noise (dashed line)
and the stochastic large scale behavior (dotted line). For more explanation see text.

Consequently, the strict upper limit in m for which a meaningful block entropy
can be computed is when NP

m > N (N : length of the time series, NP : number
of cells). Hence, the limm→∞ is unaccessible, but also the supremum over all
possible partitions cannot be computed.

Apart from the practical impossibility to compute hKS , there are also many
systems with interesting scale dependent structure. This makes entropy expres-
sions with an explicit scale dependence desirable. If a partition Pε is labeled by
the scale ε = max{diam ci : ci ∈ P}, Gaspard and Wang [13] show that

h(ε) = inf
Pε

lim
m→∞

hm(Pε) (7)

is a meaningful definition of the ε-entropy. The ε-entropy is, unlike the KS-
entropy, not invariant under coordinate transforms. Still, Eq.(7) cannot be
exploited with a finite amount of data.

It is reasonable to introduce two approximations: First, one replaces the infi-
mum over all ε-partitions by a unique ε-covering. Second, one replaces the Shan-
non entropy −∑ pi lnpi by the second order Renyi entropy − ln

∑
p2
i (which

lacks the additivity property) in order to eliminate systematic finite sample er-
rors [14]. In the limit ε → 0 this entropy is known to be a lower bound of the
KS-entropy [15]. An estimate of the ε-entropy with block length m is given by
[13, 12]:

hm(ε) = lnC(m, ε)− lnC(m+ 1, ε) , (8)

where C(m, ε) is the normalized correlation sum Eq.(2).
The behavior of hm(ε) as a function of the spatial resolution ε yields addi-

tional insight into the nature of the process underlying the data. The typical
behavior for deterministic chaotic and for stochastic processes is summarized in

the following table, where the constants H
(c)
m and h

(c)
m will be discussed later:

process Hm(ε) hm(ε) = Hm+1(ε)−Hm(ε)

deterministic, H
(c)
m −D2 ln ε H

(c)
m+1 −H

(c)
m ≈ hKS

m� D2, ε sufficiently small

stationary stochastic H
(c)
m −m ln ε h

(c)
m − ln ε

deterministic m < D2 or large ε
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The KS-entropy of a deterministic system can only be seen at sufficiently
small scales. On the large length scales, where hm(ε) < hKS , deterministic
data are indistinguishable from stochastic data, i.e. hm(ε) ∝ − ln ε. This is a
consequence of the trivial bound hm(ε) ≤ − ln ε together with the nontrivial
entropy reduction by non-uniformity of the coarse grained measure. Deviations
from the − ln ε behavior on even larger length scales can have different origins.
In deterministic data, these are edge effects because of the finite range of the
invariant set and hence the finite range of the observable. In stochastic data,
when no such limitations exists (e.g., Gaussian random variables), the lack of
recurrence governs the large scale cross-over regime, which we will neglect in
the following.

Coarse grained dynamical entropies hence contain nontrivial information for
both deterministic and stochastic data, since they can possess a rich structure as
a function of the length scale. The lack of invariance of hm(ε) under coordinate
changes can be turned into a virtue: For smooth probability densities ρ(s) (the

density in the m-dimensional embedding space), the constant h
(c)
m := H

(c)
m+1 −

H
(c)
m is given by the continuous entropy

H(c)
m = − ln

∫
ρ2(s)dms . (9)

If the probability distribution factorizes into identical one-dimensional distribu-

tions, one has evidently H
(c)
m = mH

(c)
1 and hence h

(c)
m = h

(c)
0 = const.. Equally

straightforward considerations show that for a Markov-chain of order m, all
continuous entropies for m′ > m are identical and so are the corresponding
hm′ (ε)-curves. If the m-dimensional density ρ(s) is a multivariate Gaussian

with the co-variance matrix C
(m)
ij := 〈sisj〉, the continuous entropies read

H(c)
m =

m

2
lnπ + ln[det C(m)] . (10)

The co-variance matrix is fully determined by the auto-correlation function
c(τ ) = 〈s(t)s(t − τ )〉 of the signal s(t), hence one finds

det C(1) = c(0) (11)

det C(2) = c(0)2

(
1− c(∆)2

c(0)2

)
(12)

det C(3) = c(0)3

(
1− 2

c(∆)2

c(0)2
+
c(2∆)

c(0)

)(
1− c(2∆)

c(0)

)
. (13)

In the special case of exponentially decaying correlations one finds c(2∆) =

c(∆)2/c(0), and hence again h
(c)
2 = h

(c)
1 as expected.
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Figure 3: The ε-entropies obtained numerically from a time series of the Ornstein-
Uhlenbeck process. The straight lines are the theoretical predictions with the constants
hc0 and hc1 replaced by their numerical values (no fitting parameters), see text. The
curves for m = 1 to m = 10 are almost perfectly superimposing each other and almost
indistinguishable. Fluctuations of the curves for m > 7 and small ε are statistical
finite sample effects.

2.3 Linearly filtered Lorenz system

Let us consider a simple extension of the Lorenz system,

ẋ = −αx+ y1

ẏ1 =
1

κ
s(y2 − y1)

ẏ2 =
1

κ
(y1(r − y3)− y2)

ẏ3 =
1

κ
(y1y2 − by3) (14)

with the standard parameters s = 10, r = 28, and b = 8/3, and κ = 1 here.
We record a time series of the variable x(t) with a sampling interval which is
arbitrarily chosen to be ∆ = α/10, hence we record 10 samples per correlation
time 1/α. Since the negative Lyapunov exponent of the Lorenz system for the
standard parameters is about −10, for α > −10 the linear degree of freedom
increases the attractor dimension roughly by unity [16]. Hence, we expect in
the numerical dimension and entropy analysis a dimension slightly above three
and an entropy given by the positive Lyapunov exponent of the Lorenz system
times the sampling interval.

Before we study the ε-entropies of this system, we show in Fig.3 those for
data from the Ornstein-Uhlenbeck process, i.e., data generated by ẋ = −αx+ξ,
where ξ is white Gaussian noise of unit variance. We observe hm(ε) ∝ − ln ε,

where the offsets h
(c)
0 = H

(c)
1 = ln(

√
πσ) (where the variance of the data is σ2),

and hm>1 = h
(c)
1 = H

(c)
2 −H(c)

1 = ln(
√
πσ)+ln

√
1− c(∆)/σ4 (c(∆) is the value

of the auto-correlation function for lag ∆, i.e. in this case c(∆) = σ2 exp(−∆α)).

In summary, h
(c)
1 ≈ h

(c)
0 + 1

2 ln(2α∆). These values are in fact recovered with
high accuracy by the numerics.
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Figure 4: The ε-entropies hm(ε) for the linearly filtered Lorenz system for (a) α = 0.1,
(b) α = 0.5, (c) α = 2. Apart from statistical fluctuations, the continuous curves show
m = 0 to m = 10 from top to bottom.
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Having fully interpreted the curves of the Ornstein-Uhlenbeck-process, we
will now discuss the curves of the deterministic processes Eq.(14) for different
α shown in Fig.4. For α = 0.1 (panel (a)) the deterministic nature of the whole
system is clearly visible, since for m > 4 the convergence of hm(ε) to a constant
is evident (compare the table following Eq.(8)). We can estimate an entropy of
about 0.25 per time unit, which is in fact the value we expect from the knowl-
edge of the maximal Lyapunov exponent of the Lorenz system and the way how
we have sampled the data. For m < 3, the block length is too short to yield
the deterministic properties and we see the signature of a stochastic process,
as argued before. On the large length scales, also the (m > 3)-curves possess
an unspecific crossover regime. For α = 0.5 (panel (b)), a finite value of the
entropies is still found. Since we sampled the time continuous process Eq.(14)
with a sampling interval proportional to α, larger α implies a larger entropy
per sampling interval. Consequently, the asymptotic value of the ε-entropy for
large m and small ε has increased by a factor of 5 with respect to the case
α = 0.1. The relevant feature which illustrates our statements from the last
section can be seen on the large length scales: A stochastic regime starts to
emerge, where the different hm for m > 0 cannot be distinguished from each
other. For α = 2, this stochastic regime covers about one order of magni-
tude. Within the given spatial resolution, joint probabilities pi1,...,im factorize
into the following product of marginal and two-point conditional probabilities:
pi1,...,im ≈ p(im|im−1) . . . p(i2|i1)pi1 . Hence, on these large scales, the system
looks like a Markov chain of order one, which is a property of the white noise
driven Ornstein-Uhlenbeck process.

A closer look at Fig.4(c) reveals additional details. The ε-entropies for α = 2
show two different stochastic regimes: on length scales ε > 0.05 one finds the
Ornstein-Uhlenbeck behavior (superposition of all curves for m > 0), whereas
for smaller ε, we see a stochastic process with some longer memory (no clear
evidence for a low order Markov chain due to lack of perfect superposition of the
curves, see the discussion following Eq.(9)). The crossover to the deterministic
behavior hm(ε) ≈ hKS cannot be reached numerically and would be around
ε = 5 · 10−4. Hence, the loss of correlations in the Ornstein-Uhlenbeck regime
is a nontrivial feature and not simply related to the fact that entropies have a
trivial upper bound ∝ − ln ε.

In summary, by studying scale dependent dynamical entropies, we have been
able to establish several facts which are relevant for the following section: The
ε-entropy of a high entropic but deterministic signal converges to a finite value
in the limit of small ε and large m. On length scales ε which are large compared
to σ exp(−hKS∆) (σ2 denotes the variance of the data), instead the behavior
typical of stochastic data is found: h(ε) ∝ − ln ε. Moreover, it is intuitively
clear that the effective noise introduced by the high entropic chaos is in good
approximation white noise, as seen by the lack of correlations in Fig.4(c) for
large ε, since the large value of the entropy was reached through an implicit
compression of time, which renders the exponential decay of the auto-correlation
function of the mixing, chaotic signals almost δ-shaped in time. However, the
fact that already for finite time scale separation correlations are absent on the
large scales is a nontrivial observation.
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3 A Fokker-Planck equation for the slow degrees
of freedom

In the last section we have reported some observations which strongly and in a
quantitative way suggest that high entropic chaos acts, at least on a well defined
range of length scales, as white noise. In fact, our linearly filtered Lorenz system
together with our way of sampling is a system with time scale separation, since
by rescaling the time in Eq.(14) by t→ αt, we end up in the class of the following
two time scale systems, to which our analysis will be restricted:

We assume that we can decompose the set of phase space variables into two
groups of dimensionality dx and dy, where x are called the slow variables and y
the fast ones (from now on, vectors will not any more be denoted by particular
symbols, and in order to avoid heavy indexing, we will write the expressions
for the slow dynamics for dx = 1; the generalization is straightforward). If we
assume that the right hand sides of the following differential equations, f and
g, are of the order of unity, the time scale separation can be mediated by a
parameter κ through:

ẋ = f(x, y) (15a)

ẏ =
1

κ
g(x, y) , (15b)

where 0 < κ� 1.
The ultimate goal of this section will be to derive a stochastic differential

equation for x alone,
ẋ = f̃ (x, ξ) , (16)

where ξ is a multidimensional white noise process. Instead of continuing the
line of thought of the preceding section, we will derive an evolution equation
for the phase space density of the slow variables. This will supply the relevant
answer to three questions which could not be generally answered in the last
section, namely, how the deterministic part of the evolution equation for the
slow variables should look like, which distribution the effective noise process
on the large scales will assume, and with which amplitude it will be coupled
to the slow variables. Previous studies have proven [4, 6] that for a particular
realization of the fast chaotic process in terms of time discrete maps a modeling
of the fast motion by Gaussian white noise becomes possible in certain scaling
limits. Within our approach we are able to deal with quite general systems.
We will estimate the validity of our perturbation expansions by comparison of
different approximation schemes. Since we do not focus on a particular model
we can contribute to the question which properties of the slow vector field f and
of the fast motion g determine the diffusion matrix and how the renormalization
of the slow vector field by fast fluctuations looks like.

The time evolution of phase space densities ρt(x, y) corresponding to the
trajectory-wise description of Eq.(15) is given by the corresponding Liouville–
like equation

∂ρt
∂t

= −Lρt , (17)

where

L :=
1

κ
L(0) + L(1) :=

1

κ

∂

∂y
g(x, y) +

∂

∂x
f(x, y) (18)
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denotes the generator of the dynamics. We assume for simplicity that all densi-
ties are smooth and can be treated like ordinary functions1. We are interested
in the distribution of the slow variables

ρ̄t(x) =

∫
dy ρt(x, y) . (19)

It is the goal to derive a closed equation of motion for this distribution (19)
from the full equation of motion (17). The spirit of such a procedure consists
in replacing the distribution ρ(x, y) by a relevant density

ρrelt (x, y) = ρ̃(y|x)ρ̄t(x) . (20)

Regardless of the special form of ρ̃(y|x) it is possible to write down an exact
equation of motion for ρ̄t by using well established projection operator tech-
niques [17]. The usefulness and the evaluation of such equations in terms of a
perturbation expansion depends crucially on the particular choice for ρ̃.

Two different choices of ρ̃ are appealing. One would guess that as long as
y is fast enough it adjusts almost instantaneously according to the invariant
distribution of the fast equation (15b) with x being considered as a fixed para-
meter. Thus the fast variables are modeled by the invariant density of eq.(15b),
ρad(y;x), with x being considered as a fixed parameter. Such a choice has the
advantage that averages with respect to y can be computed as time averages
provided certain ergodic properties are met. If ηx[t, y] denotes the solution of
eq.(15b) with initial condition ηx[0, y] = y, then

〈h〉ad :=

∫
dy h(x, y)ρad(y;x) = lim

T→∞
1

T

∫ T

0

dt h(x, ηx[t, y]) (21)

holds for typical initial conditions and for observables h(x, y).
On the other hand one may choose for ρ̃(y|x) the stationary conditional

distribution

ρcond(y|x) :=
ρ∗(x, y)
ρ̄∗(x)

, (22)

where ρ∗(x, y) and ρ̄∗(x) denote the corresponding stationary densities. Surpris-
ingly, this choice leads to formally consistent results. To be able to distinguish
the two ways of computing averages with respect to y, we define

〈h〉cond :=

∫
dy h(x, y)ρcond(y|x) . (23)

We will first employ ρ̃(y|x) = ρcond(y|x) and averages according to Eq.(23).
If we apply the standard projection operator technique to Eq.(17) we obtain
finally a closed equation of motion for the density (19). In lowest order pertur-
bation theory such an equation reduces to (cf.[18])

∂ρ̄t
∂t

= − ∂

∂x
〈f〉condρ̄t(x) +

∂

∂x
D

(2)
cond(x)ρ̄∗(x)

∂

∂x

ρ̄t(x)

ρ̄∗(x)
. (24)

1One may add a small diffusive like contribution to Eq.(18) to ensure smoothness and
consider the limit of vanishing diffusion at the end. In addition, a generalization in terms
of corresponding measures seems to be possible, but would increase the amount of notation
considerably.
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Here the diffusion coefficient is determined by the fluctuation of the vector field

δcondf(x, y) = f(x, y) − 〈f〉cond (25)

in terms of the autocorrelation function as

D
(2)
cond(x) =

∫ ∞

0

dt〈δcondf(x, ηx[t, y])δcondf(x, y)〉cond . (26)

As long as the dynamics of Eq.(15b) is (exponentially) mixing, the diffusion
coefficient is well defined since the correlations decay sufficiently fast.

Thus, in lowest order perturbation expansion the deterministic equations of
motion reduce to a stochastic system with the Fokker–Planck equation being
given by Eq.(24). We rewrite the rightmost term of Eq.(24) in a form compatible
with standard notation (e.g.[19]):

∂ρ̄t
∂t

= − ∂

∂x
D

(1)
cond(x)ρ̄t(x) +

∂2

∂x2
D

(2)
cond(x)ρ̄t(x) . (27)

where

D
(1)
cond = 〈f〉cond +D

(2)
cond(x)

∂

∂x
ln ρ̄∗(x) (28)

denotes the drift coefficient. Hence, the drift term not only consists of the
y-averaged slow vector field, but we find an additional term involving the slow
invariant density ρ̄∗(x). The diffusion term now represents a white noise process
with suitable amplitude, given by the autocorrelations of the fluctuations of the
vector field, acting on the variable x. It is straightforward to rewrite this as a
Langevin equation for x.

When we employ the adiabatic density ρad(y;x) in the projection, we en-
counter more difficulties in our perturbation expansion. As we were able to
derive in [20], the resulting Fokker Planck equation which is formally correct up
to first order in κ reads as follows:

∂ρ̄t
∂t

= − ∂

∂x
D

(1)
ad (x)ρ̄t(x) +

∂2

∂x2
D

(2)
ad (x)ρ̄t(x) (29)

with the drift term

D
(1)
ad (x) = 〈f〉ad +

∫ ∞

0

dt′
〈
f(x, y)

∂δadf(x, ηx[t′/κ, y])
∂x

〉

ad

(30)

Here, we used δadf(x, y) = f(x, y) − 〈f〉ad . The diffusion matrix D
(2)
ad (x) is

determined as in Eq.(26) except for replacing 〈. . .〉cond by 〈. . .〉ad throughout.
Hence, the results of the two different projection schemes seemingly differ in

their structure since eqs.(28) and (30) contain different drift renormalisations.
As our example in the next section will reveal, the seemingly structurally similar
parts, the averages of the vector field 〈f〉cond and 〈f〉ad, can differ even more.
But one has to keep in mind that for a meaningful comparison of the two Fokker–
Planck equations (24) and (29), i.e. of the associated stochastic systems, only
the comparison of the corresponding drift and diffusion coefficients is relevant.
In fact, the disussion of the example in the next section reveals that the two

drift coefficients D
(1)
cond and D

(1)
ad as well as the diffusion coefficients D

(2)
cond and

D
(2)
ad coincide in the leading order of the perturbation expansion. Thus both
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expansion schemes yield consistent results, and such a feature is a first hint
for the validity of our expansion schemes. As already mentioned the scheme
using adiabatic densities may be simpler to evaluate since it boils down to the
computation of plain time averages in the fast system (cf. eq.(21)).

4 Two-scale Ornstein-Uhlenbeck process

We consider the following linear system, where mixing of y is enforced by an
explicit noise process right away:

ẋ = −αx+ y (31a)

ẏ = − β̃
κ
y +

√
δ̃

κ
ξ , (31b)

where 〈ξ(t)ξ(t′)〉 = 2δ(t−t′) is Gaussian white noise. Formally the noise is scaled
by κ−1/2 in order to ensure that the evolution operator (cf. eq.(18)), which is
already an operator of Fokker–Planck type, shows a suitable decomposition in
a fast and a slow part. For a moment, we ignore the κ-dependence and write
β = β̃/κ, δ = δ̃/κ.

It is easy to verify that the invariant density of Eq.(31) is

ρ∗(x, y) = N exp
(
−(m11x

2 + 2m12xy + m22y
2)
)

(32)

with

m11 =
α(α+ β)2

2δ
m12 = −α(α+ β)

2δ
m22 =

α+ β

2δ

with a proper normalization factor N . Every level line of this distribution is
an ellipse centered at zero and with semi-axes which, since m12 6= 0, are not
aligned with the axes of the coordinate system.

The invariant density of the x-variable is obtained by integration over y and
reads:

ρ̄∗(x) =

√
(α+ β)αβ√

2πδ
exp

(
−αβ(α + β)

2δ
x2

)
, (33)

so that we obtain the conditional density

ρcond(y|x) :=
ρ∗(x, y)
ρ̄∗(x)

=

√
α+ β√
2πδ

exp

(
−α + β

2δ
(y − αx)2

)
. (34)

The conditioned mean value of y depends on x, in contrast to intuition when
considering the skew nature of Eq.(31).

We can now compute 〈f〉cond, for which we find:

〈f〉cond :=

∫
ρcond(y|x)f(x, y)dy = −αx+ αx ≡ 0 . (35)

Hence, in this example the effective drift D
(2)
cond(x) ∂

∂x
ln ρ̄∗(x) is the only drift

in the Fokker Planck equation (27). Glancing back at Eq.(24), shows that this
in fact has to be the case in order for ρ̄∗(x) to be the invariant density for which
the right hand sides of Eqs.(24) and (27) have to vanish.
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For the computation of the effective drift we need the diffusion term D
(2)
cond(x),

which we obtain from Eq.(26), the integral over the fluctuations of the vector
field. Since 〈f〉cond = 0, we have δcondf(x, y) ≡ f(x, y) = −αx + y. The in-
tegration over paths ηx[t, y] is in this example the mean with respect to the
white noise ξ, which leads to exponentially decaying correlations e−βt. Since
the variance of the conditional average of y is given by 〈y2〉cond = δ/(β + α),
one finds:

D
(2)
cond(x) =

δ

β(α + β)
(36)

Hence, Eq.(24) for this example reads

∂ρ̄t
∂t

=
∂

∂x
αxρ̄t(x) +

δ

β(α + β)

∂2

∂x2
ρ̄t(x) . (37)

The invariant density Eq.(33) is the exact stationary solution of this equation
for any values of κ. This is not surprising, since the system Eq.(31) fulfils
already the basic approximations of our formalism: Gaussian distributions and
exclusively linear correlations.

¿From a practical point of view our result may be unsatisfactory: In order to
obtain Eq.(37) form Eq.(24), we need the complete solution of the full system.
Moreover, the drift term of Eq.(24) vanishes identically. Since by construction
the rightmost term of Eq.(24) vanishes for every system if ρ̄t(x) = ρ̄∗(x), the
vector field 〈f(x)〉condρ∗(x) has to be divergence free. Hence, the drift term
which counter-balances the diffusion such that the invariant density is in fact

invariant is the term D
(2)
cond(x) ∂

∂x
ln ρ̄∗(x), which is still dominant when the sys-

tem is close to its stationary solution. In summary, in order to exploit Eq.(24),
one always needs the solution of the full system, otherwise ρ̄∗(x) is unknown
and so is the dominant part of the equation.

The way out is to return to the other natural choice of the relevant density
with ρ̃(y|x) = ρad(y;x). For the Ornstein-Uhlenbeck system Eq.(31) it is easy
to verify that

〈f(x, y)〉cond + D
(2)
cond(x)

∂

∂x
ln ρ̄∗(x) = 〈f(x, y)〉ad = −αx . (38)

Thus the drift terms of Eqs. (24) and (29) coincide in the order κ. Computing

the diffusion coefficient according to Eq.(26) with 〈.〉ad yields D
(2)
ad (x) = δ/β2.

We now re-introduce the parameter κ and find

D
(2)
ad (x) = D

(2)
cond(x)(1 +O(κ)) . (39)

Hence, the example shows that the Fokker Planck equation (29) is the more
useful one, since it can be specified for a given problem without beforehand
knowing its invariant distribution. However, the Fokker Planck equations (24)
and (29) coincide in the lowest nontrivial order of κ.

In order to test the accuracy of our analytic expressions numerically, we re-
turn to the Ornstein-Uhlenbeck-like system Eq.(14) of Sec.2.3. The specification
of the terms involved in Eq.(29) is straightforward. Due to the fact that this
is a skew system, we need a single long run of the Lorenz system in order to
perform all necessary averages according to ρad(y;x). Its numerically computed

auto-correlation yields the diffusion constant D
(2)
ad , whereas 〈f〉ad = −αx. In
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Figure 5: Numerically obtained rescaled standard deviation Σ =
�
〈x2〉/κ and cor-

relation coefficient a, 〈x(t)x(t− ∆)〉 ∝ exp(−a∆), of the observable x of the system
Eq.(14) for α = 3 as a function of the time scale separation parameter κ, together
with the theoretically predicted asymptotic values (horizontal lines) obtained with the
averages according to Eq.(21). For small κ, numerical values are affected by finite
sample errors.

Fig.5 we show, for different values of κ, the numerically obtained standard devi-
ation and correlation time of the observable x of the system Eq.(14). They are

to be compared to

√
D

(2)
ad /α and to α. We see that for κ < 10−3 the agreement

is indeed very good.
A slightly more complex example was presented in Ref.[18], where the sto-

chastic resonance scenario was mimicked by a driving Lorenz system instead
of white noise. Also in this case, making use of Eq.(29) the agreement was
excellent for κ < 0.01.

5 Summary

A length scale dependent dimension and entropy analysis of systems with a fast
chaotic component revealed that on large scales, fast chaos is indistinguishable
from noise. Even more, in situations where the slow dynamics is sufficiently sim-
ple, this analysis shows a quantitative agreement between the full deterministic
process and a suitable stochastic process driven by white noise, which includes
a verification that long range memory effects do not exist, when only large scale
properties are of interest. These results motivate the work presented in Section
3. There, we have presented two Fokker Planck equations, Eq.(24) and Eq.(29),
for the slow variables, where the diffusion term models fast chaotic motion. Both
results are formally exact of order κ in perturbation theory and therefore have
to agree in this order, even though their structure is very different. This shows
the possibility to replace fast chaos by noise and gives the optimal evolution
equations of the slow variables. Eq.(29) is more useful in practical applications,
since it contains only terms which can be computed when the fast system alone
is analyzed, for frozen values of the slow variables. The examples that have been
treated here in a quantitative way have been skew systems. If the slow vari-
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able itself couples to the fast dynamics then we will in general obtain effective
diffusion coefficients which are not constant but depend on the slow variables
themselves.

If the fast variables are (quasi-)periodic, the theoretical derivation of our
results does apply only after a careful treatment of the correlations in the dif-
fusion terms. Nonetheless, there is some evidence that in this case the diffusion
vanishes and the result reduces to the result from the averaging principle. In
agreement with numerical experiments, our treatment then predicts effects of
the fast (quasi-)periodic variables of order κ.

As a side remark, this theory supplies an answer to the issue of whether it
is better to run a car fast or slowly over a rough road paved with cobblestones.
If we assume the vertical position of the center of mass of the car to be the
slow variable, the amplitude of vibrations felt from the cobblestones will be
the smaller the faster the car moves. Thus, the influence of the fast degrees
of freedom on the slow ones becomes smaller as the speed of the fast variables
increases.
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