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Seven different time-reversible deterministic thermostats are considered here and applied to a

simple particle-based nonequilibrium heat-flow problem. This approach is robust. Results for all

these different thermostats agree rather well for system widths of ten particle diameters or more. The

simplest of the thermostats is the Gauss-Nosé-Hoover thermostat, based on kinetic-energy control.

Higher moments of the particle momenta can be controlled by extensions of this idea involving as

many as three additional thermostat variables. Generalizations of the deterministic thermostats

suited to simulating “stochastic” and “Brownian” dynamics are discussed here too.
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I. INTRODUCTION

The traditional Hamiltonian approach to classical particle mechanics has no explicit tie to temperature, but the

temperature concept is required for a thermodynamic description of mechanical simulations. At a minimum the

temperature concept requires averaging, either over an ensemble or over time. It is a statistical concept. One could

imagine elaborate mechanical models of thermostats—models involving many degrees of freedom coupled together

with “realistic” forces. It is fortunate that such detailed complicated models of thermostats are unnecessary. Thirty

years of particle simulations have shown that very simple models, with only a few degrees of freedom, can fill the need

for temperature control in mechanical systems. With a little care even very simple systems—a single hard disk or a

single harmonic oscillator—can be coerced into the ergodic behavior which makes their long-time-averaged behavior

independent of initial conditions.

Maxwell and Boltzmann’s kinetic theory implies that the kinetic-theory temperature TKT is necessarily defined by

the average kinetic energy of any typical Cartesian degree of freedom, relative to a comoving corotating frame:

TKT ≡ 〈p2〉/mk .

The average need not be carried out over a large number of particles. Sometimes, as in the oscillator example worked

out in Sec. VII, a single particle, or even a single degree of freedom, can be held to a time-averaged temperature by

chosing an appropriate thermostatting force. Mechanics can be generalized, to “thermomechanics,” by incorporating

this time-averaged kinetic-energy mechanical definition directly into the equations of motion [1–3]. There have been

corresponding fruitful efforts for quantum systems [4,5].

During the last thirty years thermomechanics, with the kinetic-theory temperature TKT included, has been used to

simulate and analyze hydrodynamic nonequilibrium processes. Here we explore and compare representative compu-

tational “thermostats” based on this concept. These thermostats have been used to constrain or control the kinetic

temperatures of mechanical systems.

The investigations one pursues and the conclusions one reaches depend very much on one’s perspective. Compu-

tational thermostats can play either of two important rôles, (i) providing smooth boundary conditions on flows, or

(ii) providing models for the complexity of real-world heat transfer. Though we stress the first of these applications

here, we certainly agree that the second, models for real-world heat transfer, is ripe for exploration. The subject of

thermostats has not only æsthetic, philosophical, and pedagogical aspects, but also practical ones. The simplicity,
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efficiency, and the number dependence of numerical simulations, particularly in systems far from equilibrium, all hinge

on making a good thermostat choice.

We begin by reviewing the simplest temperature definition, that based on the mean squared momentum [6]. Gibbs’

entropy, and the canonical ensemble are discussed next. We then consider several more complicated types of com-

putational thermostats [7–11], all of them deterministic and time-reversible. We focus on their relative success in

imposing smooth thermal boundary conditions on prototypical nonequilibrium systems.

We do not choose to belabor here the required ergodicity of the underlying mechanics, without which the results

would depend on the initial conditions. We also do not reproduce the analyses necessary to show that the thermostats

considered here are all compatible with corresponding Gibbs’ ensembles. These topics are addressed in the references,

among which Ref. 8 provides a particularly thorough and readable treatment. See also the contributions of Ebeling,

Evans, Isbister, and Klages to these Proceedings.

We point out that the conventional stochastic approaches to modeling the Langevin equation or Brownian dynamics

could just as well be based in deterministic chaos. To illustrate the variety of deterministic thermostats considered

here we follow Holian and Evan’s lead [12] in applying several representative types to a single far-from-equilibrium

problem. Holian and Evans studied the viscosity of a dense fluid. Here we study heat conduction in an idealized

two-dimensional solid. Our conclusions make up the final section.

II. IDENTIFYING TEMPERATURE WITH KINETIC ENERGY

Temperature is the state variable which distinguishes thermodynamics and hydrodynamics from mechanics. In

thermodynamics temperature is typically, and most usefully, defined in terms of the average pressure 〈P 〉 exerted by

an N -body ideal-gas thermometer (which defines the ideal-gas temperature TIG) confined within a volume V [6]:

TIG ≡ 〈P 〉V/Nk.

An elementary kinetic-theory calculation computes the rate of momentum transfer from a gas to a fixed container

wall. Because the collision rate and the momentum transfer per collision are both proportional to the velocity normal

to the wall, the average pressure can thus be simply related to the mean squared momentum.

Although this derivation envisions a large number of particles interacting with their container, the same expression

can make sense even for a single particle. See for instance the two doubly-thermostatted oscillator models elaborated
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in Sec. VII. Though “temperature” has been characterized by kinetic energy from the earliest days of kinetic theory,

the reasons why are seldom articulated. Briefly, the thermal equilibration of a single degree of freedom, brought

about by collisions with a Maxwell-Boltzmann ideal gas (the ideal-gas thermometer), can be analyzed with kinetic

theory. The single degree of freedom eventually attains the Maxwell-Boltzmann velocity distribution appropriate for

its mass. The kinetic-theory temperature TKT of this degree of freedom (based on the long-time-averaged kinetic

energy) reaches the ideal-gas temperature TIG, so that

〈p2
x〉/mk ≡ TKT = TIG .

This mechanical ideal-gas kinetic-theory definition of temperature is far better than an alternative based on ther-

modynamic entropy,

Tbad ≡ (∂E/∂S)V ,

because entropy, at least the Gibbs’ entropy SGibbs accessible through statistical mechanics, is a problematic concept

far from equilibrium. This is because the nonequilibrium phase-space distributions are typically strange-attractor

fractal distributions, with singular probability densities f [1–3,11,13,14] rather than the smooth canonical distributions

which describe equilibrium. As a result, the usual statistical-mechanical formulation of the equilibrium entropy,

expressed in terms of the phase-space probability density,

SGibbs ≡ −k〈ln f〉 ,

can give a divergent value for the entropy, in nonequilibrium steady states [13–15]:

SNoneq/k −→ −∞ .

In practice the “long-time-limit” averages that “steady states” require converge relatively rapidly. The heat-flow

problem discussed in Sec. IX illustrates this rapid convergence.

The kinetic-theory temperature definition, which corresponds also to an ideal-gas thermometer, TKT = 〈p2
x〉/mk,

carries over to any equilibrium classical system, gas, liquid, solid, or a multiphase mixture. Kinetic-theory temperature
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can be used both at and away from equilibrium. At equilibrium, where entropy is a valid concept, the maximization

of entropy invariably leads to the Maxwell-Boltzmann “Gaussian” distribution of momenta,

f(p) ∝ e−p2/2mkT .

Equilibrium is expected to result whenever the number of degrees of freedom is large, or whenever the system in

question—even a single molecule—interacts with a suitable heat reservoir.

In Hamiltonian mechanics the time-dependent variables are the generalized coordinates {q} and their conjugate

momenta {p}. The motion of an isolated system, given by the set of first-order differential equations:

{ q̇ = +∂H
∂p ; ṗ = −∂H∂q } ,

is isoenergetic,

Ḣ =
∑

[q̇∂H∂q + ṗ∂H∂p ] =
∑

[∂H∂p
∂H
∂q − ∂H

∂q
∂H
∂p ] ≡ 0 ,

rather than isothermal, and temperature does not enter the motion equations explicitly.

At thermal equilibrium, with the system no longer isolated, it is traditional to imagine a weak coupling of system

to thermostat. The coupling is sufficiently weak that the thermostat’s Maxwell-Boltzmann momentum distribution

is undisturbed. In the absence of such an equilibrium, the momentum distribution is seldom known in advance

and the system “temperature,” if it still defined in terms of 〈p2〉, can easily deviate from the temperature T of the

external reservoir to which the system is coupled. “Temperature jumps,” are typical at the boundaries of strongly

nonequilibrium systems [16,17].

In the early days of molecular dynamics it was natural to rescale the particle momenta sufficiently often, in order

to keep the “kinetic temperature” constant. At the end of a computational timestep dt, where the particle momenta

{p(t)} have become {p(t + dt)}, each of the new momenta is multiplied by a rescaling constant to give the new set

{p′(t + dt)} with the same kinetic energy as at the previous time t:

p′ ∝ p(t+ dt) −→
∑

p′2/m =
∑

p2(t)/m = #kTKT ,
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where # is the number of thermostatted degrees of freedom. Certainly this constrained “isokinetic dynamics” con-

stitutes the simplest deterministic and time-reversible (for a sufficiently small timestep dt) “thermostat.” Although

neither determinism nor reversibility is strictly required, both are advantageous in simplifying the interpretation of

results and in making simulations reproducible. With the natural tendency toward more elaborate approaches there

are by now many different thermostat types in use [7–11]. Flexibility in thermostatting is highly desirable when it is

necessary to model complicated experimental situations with, for example,

Telectronic 6= Tnuclear 6= Tradiation .

On the other hand, our interest here is simplicity, so that the models we consider are more limited in scope. All of

them have been developed in order to describe the thermal properties of classical point particles.

III. IDENTIFYING ENTROPY WITH PHASE VOLUME

Gibbs’ and Boltzmann’s equilibrium statistical mechanics can be based on the identification of the macroscopic

entropy with the accessible microscopic phase volume:

S/k = −〈ln f〉 = −
∫ ∫

f(q, p) ln f(q, p)
∏

[dqdp] .

This bridge between the macroscopic and microscopic points of view establishes their equivalence for equilibrium

situations. Numerical simulations have shown that extending this same relation to nonequilibrium stationary states

is not possible because those states are characterized by fractal distributions, corresponding to divergent entropies

[13–15,17,18]. A long range goal of the present research effort is to establish, as clearly as possible, the general

characteristics of nonequilibrium steady states and their phase-space distributions.

IV. GAUSS’ INSTANTANEOUS THERMOSTATS

It has been known for more than twenty years that the instantaneous momentum-scaling isokinetic thermostat is

exactly the same as that derived from mechanics according to Gauss’ Principle. Gauss’ Principle (of Least Constraint,

1828) states that the least possible constraint force should be used, with “least” construed in the sense of minimizing
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the summed-up squares of all constraint forces affecting the system:

δ
∑

F 2
c /2m ≡ 0 .

The δ indicates an infinitesimal variation over all nearby sets of constraint forces which satisfy the desired constraints.

The variation vanishes for the “least” constraint in this sense. According to Gauss’ Principle, an instantaneous

constraint on the kinetic energy,
∑
p2/2m, is “best” accomplished by adding a constraint force −ζp which is linear

in the momenta. Constraint forces which additionally tend to rotate, rather than just stretch or shrink, the momenta

give a larger sum
∑
F 2
c /2m. If the fourth or sixth moment were constrained instead, then a cubic or quintic constraint

force would result. In the cubic case, Gauss’ Principle gives

ṗ = F (q)− ζp3 ; ζ =
∑

F (q)p3/
∑

p6 .

Why is controlling the second moment 〈p2〉 the best choice? In addition to simplicity, the second moment is the

best choice because
∑
p2 is precisely constant for the ideal-gas thermometer in the absence of external interactions.

For the ideal gas the energy is completely kinetic. Other moments of the gas fluctuate, with the fluctuations dying

away only in the infinite-system limit. Thus alternative thermostats, which fix 〈p4〉 or 〈p6〉 rather than 〈p2〉 are not

so desirable on physical grounds. We will compare only the two simplest moment-based examples here, those based

on 〈p2〉 and on 〈p4〉.

V. GIBBS’ CANONICAL DISTRIBUTION:

NOSÉ-HOOVER THERMOSTATS

Gibbs showed (as did also Boltzmann, and at about the same time, 1883) that the Maxwell-Boltzmann distribution

of the momenta applies to all classical systems at equilibrium, to dense gases, to liquids, and to solids, just as the

distribution applies to the dilute gases studied in kinetic theory. Gibbs approached the problem from the statistical

point of view, where the ensemble-averaged entropy of Sec. III,

S/k = −〈ln f(q, p)〉 ,
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plays a central rôle because its maximum defines equilibrium.

Just a century later, in 1984, Nosé [7] discovered that Gibbs’ canonical distribution can be obtained directly from

dynamics, without any mention of entropy. Nosé’s canonical-ensemble dynamics follows from a Hamiltonian based on

the conventional one (with kinetic energy K and potential energy Φ), but includes an additional pair of canonically-

conjugate variables, s and ps. The desired temperature T appears as a parameter in Nosé’s Hamiltonian. The

new variables can then impose the canonical distribution characteristic of the temperature T on the dynamics. The

simplest derivation of Nosé’s new dynamics can be found, almost buried, in one of Nosé’s 1984 papers [7]. Start with

the special Hamiltonian HNosé:

HNosé ≡ (K/s) + s[Φ +
p2
s

2#kTτ2 + #kT ln s] ≡ 0 .

Here K is the thermostatted kinetic energy, T is the constant “target” temperature, # is the number of thermostatted

degrees of freedom, and τ is a relaxation time, which determines the frequency of temperature fluctuations. Although

one could omit the # in the denominator of the thermostat kinetic energy we feel it is advantageous to include it.

This choice shows explicitly how the influence of the thermostat, ∝ 1/
√

#, decreases as the number of degrees of

freedom thermostatted increases.

The Hamiltonian equations of motion which follow by differentiating H(q, p, s, ps) can be simplified by making the

replacements

{p/s −→ p} ; ṡ/s −→ ζ ,

with the result:

{ q̇ = p/m ; ṗ = −∇Φ− ζp } ;

ζ̇ ≡ ṗs
#τ2kT =

∑
[ p2

mkT − 1]/#τ 2.

The equation of motion for the friction coefficient ζ is an example of “integral feedback.” It has a simple interpretation.

Whenever the kinetic energy exceeds the target value of 1
2kT (for each thermostatted degree of freedom) the friction
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is increased, so as to extract more energy. Whenever the kinetic energy is less than the target value, the friction

becomes more negative. Negative friction causes the system to heat while positive friction causes it to cool off. For

systems sufficiently chaotic as to fill their energy shells, the additional “friction-coefficient” forces {−ζp} generate the

complete generalized canonical distribution:

f(q, p, ζ) ∝ e−H/kT e−#τ2ζ2/2 .

Otherwise, they generate only a portion of it.

Here Nosé’s friction coefficient ζ has units of inverse time. Because, in what follows, we will use a variety of

power-law thermostats, it is a little simpler to choose a dimensionless friction coefficient;

(ζ → τζ) −→ ζ̇ ≡ ṗs
#τkT

.

The corresponding equations of motion and distribution function then become:

{ q̇ = p/m ; ṗ = −∇Φ − ζp/τ } ; ζ̇ =
∑

[ p2

mkT
− 1]/#τ .

f(q, p, ζ) ∝ e−H/kT e−#ζ2/2 ,

assuming that the dynamics is sufficiently mixing for ergodicity. With this dimensionless choice for ζ it is noteworthy

that the phase-space distribution function f(q, p, ζ) is independent of the relaxation time τ . The simplest system with

continuous forces which fills all the requirements for ergodicity is probably the one-body cell-model problem whose

solution is shown in Fig. 1.

VI. OTHER DETERMINISTIC THERMOSTATS

Once temperature is defined in terms of the second moment, T ≡ 〈p2
x〉/mk, it is evident that a “good” thermostat

must impose this value on the velocity distribution. At equilibrium a variety of thermostats can do this. The

oldest of them is probably Langevin’s, which adds both a drag force, −γp, and a “random fluctuating force” to the

equations of motion. In Langevin’s equation the friction coefficient γ is a phenomenological constant. By choosing
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the corresponding amplitude of the random force properly the drag can be offset, on the average, resulting in the

correct second-moment temperature. Away from equilibrium the Langevin approach fails to constrain the temperature

∝ 〈p2〉 to the target value. It lacks the necessary “feedback” to respond to irreversible heating. Nosé’s integral-feedback

approach has the distinct advantage that it provides the desired second moment exactly, even far from equilibrium.

There have been many generalizations of Nosé’s ideas. This work has now spanned two decades [8,12,19]. When

three or more thermostat variables “demons” are added to the free-particle equations of motion it is even possible to

reproduce Brownian motion, with normal diffusion, and with an equilibrium Maxwell-Boltzmann velocity distribution:

〈r2〉 ∝ t ; 〈f(p)〉 ∝ e−p2/2mkT .

A family of thermostats using higher powers of the friction coefficient leads, at equilibrium, to Gaussian distributions

of the corresponding friction variables [1,8]:

ṗ = F − z3p
τ

; ż = [ p2

mkT
− 1]/τ → f(z) ∝ e−z4/4 ;

ṗ = F − z5p
τ ; ż = [ p2

mkT − 1]/τ → f(z) ∝ e−z6/6 .

For simplicity we continue to choose the friction coefficients to be dimensionless. We include a characteristic relaxation

time τ which governs the rate at which control is applied. This combination of choices gives a phase-space distribution

function independent of τ , though useful simulations require a good choice of the response time τ .

It is easy to show, by making a change of variable,

z4 or z6 ∝ ζ2 ,

that all these alternatives give an equilibrium phase-space distribution identical to that obtained with Nosé’s second-

moment control. Nevertheless, because the dynamical equations are different, the various power-law thermostats can

produce different predictions away from equilibrium, as we see explicitly in Sec. IX.

Nosé’s thermostat controls the difference between the instantaneous and target values of the temperature. Addi-
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tional feedback variables can be added, as in the simplest of Tuckerman’s chain-thermostat schemes [10,19]:

ṗ = F (q)− ζp
τ ; ζ̇ = [( p2

mkT − 1)− ξζ]/τ ; ξ̇ = ζ2−1
τ .

This scheme can provide an ergodic Gaussian distribution for the harmonic oscillator. If we choose the mass and

force constant equal to unity, for example, the phase-space distribution function is a Gaussian in the four-dimensional

“extended” phase space which includes the friction coefficients ζ and ξ:

F (q) = −q → f(q, p, ζ, ξ) ∝ e−[(q2+p2)/2kT ]e−(ζ2+ξ2)/2 .

Longer chains of thermostat variables can be used too [10].

Friction coefficients can be used to control other velocity moments. In Sec. IV we pointed out that the fourth

moment could be controlled using Gauss’ Principle, giving a cubic constraint force. Another possibility, closely

resembling Nosé’s integral feedback and replicating the canonical momentum distribution, is

ṗ = F (q)− ξ[ p3

mkT
]/τ ; ξ̇ = [ p4

(mkT )2 ]/τ − 3[ p2

(mkT )
]/τ .

It is quite practical to combine this fourth-moment control with conventional Nosé-Hoover thermostatting so as to

control both the second and fourth moments simultaneously [9].

A variety of other thermostats can be tried out. Other moments can be controlled, but, because the second moment

is uniquely conserved by an ideal-gas thermometer, it seems preferable to use the second. Before embarking on a

comparison of the methods let us briefly consider stochastic thermostats too.

VII. LANGEVIN EQUATION THERMOSTATS

The Langevin Equation [20,21] provides a phenomenological model of thermal equilibration. It is a relic predating

both computers and our current knowledge of deterministic chaos. The Langevin equation is still implemented

today, by using deterministic random number generators to model the “stochastic forces” which are a necessary

ingredient. The Langevin equation includes a somewhat unæsthetic mixture of deterministic forces, both irreversible

and reversible, along with a random statistical (or “stochastic”) force. Both the “drag” force, linear in the velocity,
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and the stochastic force are irreversible, while the systematic force F (q) is time-reversible.

The Langevin Equation:

ṗ = F (q)− (p/τ ) + Frandom(t, dt) ,

requires some interpretation in order that the random forces be well defined in numerical simulations. In a simulation

with a finite timestep dt the effect of constant drag and random forces during a step can be modeled by an adjustment

of the momentum at the end of the timestep:

p(t+ dt) = p(t)e−dt/τ + Frandom(t, dt)dt .

The argument below can be used to show that the contribution of F (q)dt can be omitted relative to the singular

contribution ∝
√
dt from the random force. Ignoring F (q) and imposing the requirements that (i) the mean value of

p2 be stationary and that (ii) the mean value of the random force vanish gives an identity (for dt << τ ):

〈p(t+ dt)2〉 = 〈[p(t)(1− dt
τ

) + Frandomdt]
2〉 =

〈p(t)2〉(1− 2 dtτ ) + dt2〈F 2
random〉 −→

mkT ≡ 〈p2〉 = 〈F 2
random〉τdt/2 .

Thus the random forces must diverge (as
√

1/dt), and must consequently give rise to vanishing impulses (proportional

to
√
dt) as the computational timestep dt is reduced. There is a voluminous history of simulations of this kind in

which the random forces are selected from a Gaussian distribution consistent with both the assumed drag force −p/τ

and the assumed temperature. If the drag force is omitted then some other mechanism (a harmonic restoring force is

the simplest example) is required to localize the diffusion in velocity and coordinate space.

At the Dresden Workshop Holger Kantz’ presentation, “Replacing Fast Chaotic Degrees of Freedom by Random

Noise: a Formally Exact Approach”, demonstrated that the Lorenz attractor, with a distribution far from Gaussian,
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can be used as a stochastic noise source for the Langevin equation.

Rather than use Gaussian random numbers we could model the Langevin random forces with a single oscillator

coordinate q generated with the minimum number of differential equations required for an ergodic Gaussian distrib-

ution. Let us choose all the free parameters describing the controlled oscillator equal to unity. One convenient set of

equations generating Gaussian distributions for (q, p, ζ, ξ) is based on Tuckerman’s chain idea [10]:

q̇ = p ; ṗ = −q − ζp ; ζ̇ = p2 − 1− ξζ ; ξ̇ = ζ2 − 1 .

These oscillator equations, like those of the system immediately following and detailed in Ref. 18, are compatible

with Gibbs’ canonical distribution [1,8]. Computation reveals that the two sets are also ergodic, so that the results

obtained do not depend on initial conditions.

The oscillator coordinate is not the only possibility for “random” forces. The oscillator momentum p or either of

the two friction coefficients, ζ and ξ, could also be used as surrogate forces. Any of these choices will guarantee that

the ensemble-averaged Langevin coordinate obeys a diffusion equation. The diffusion rate can be controlled by a

proper scale choice of the surrogate forces. In the simplest case, an equilibrium Gaussian distribution with unit mean

squared values of all the variables, the average time rates of change of the four variables are different:

〈q̇2〉 = 〈p2〉 = 1 ;

〈ṗ2〉 = 〈q2 + ζ2p2〉 = 2 ;

〈ζ̇2〉 = 〈p4 − 2p2 + 1 + ζ2ξ2〉 = 3 ;

〈ξ̇2〉 = 〈ζ4 − 2ζ2 + 1〉 = 2 ;
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The doubly-thermostatted oscillator of Ref. 18:

q̇ = p ; ṗ = −q − ζp− ξp3 ; ζ̇ = p2 − 1 ; ξ̇ = p4 − 3p2 ,

though it has exactly the same phase-space distribution, provides very different time-averaged rates of change:

〈q̇2〉 = 〈p2〉 = 1 ;

〈ṗ2〉 = 〈q2 + ζ2p2 + ξ2p6〉 = 17 ;

〈ζ̇2〉 = 〈p4 − 2p2 + 1〉 = 2 ;

〈ξ̇2〉 = 〈p8 − 6p6 + 9p4〉 = 42 .

VIII. OTHER STOCHASTIC THERMOSTATS, AND MAPS

Other types of statistical simulations can be based on occasional selections of thermostatted momenta from a suitable

equilibrium thermal distribution. This replacement is usually carried out at some fixed geometric “boundary” of the

simulated system. This procedure is, like the Langevin equation itself, somewhat unæsthetic because the corresponding

forces are impulsive, giving discontinuities in the velocities of the thermostatted particles. The additional drawback

of adopting a boundary dynamics which is not time-reversible can be avoided by using a time-reversible deterministic

map (the Baker Map has been used) to determine the post-collision momenta [11]. A defect of this map approach is

the apparent loss of connection between entropy production and phase-space volume due to ambiguities in defining the

“reservoir temperature” away from equilibrium. See Rainer Klages’ very interesting contribution to this workshop.

In the usual stochastic approach, a particle reaching the boundary is reinjected with a momentum chosen from

the one-sided distribution proportional to pe−p
2/2mkT . This scheme is somewhat unphysical in that the incoming

temperature has no influence on the outgoing one. The Langevin equation and such a stochastic dynamics share the

twin disadvantages of (i) time-irreversible microscopic equations along with (ii) trajectories which are discontinuous
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in momentum space. The latter difficulty complicates differential stability analyses. Another consequence of forsaking

feedback is that the “thermostatted particle” described by Langevin or stochastic dynamics exhibits a temperature

intermediate between the desired one and that of the nonequilibrium system with which the particle interacts.

IX. NUMERICAL COMPARISON OF THERMOSTATS

Let us compare a variety of thermostats in simulating a strongly nonequilibrium system. We use the thermostats

to constrain the temperatures of four boundary particles on the left (cold) and four boundary particles on the right

(hot) where the two boundaries enclose a model 4× 4 Newtonian system sandwiched between them. The boundary

particles obey special thermostatted equations of motion, as summarized below, while the particles in the Newtonian

region obey standard conservative classical mechanics.

See Fig. 2 for an illustration of a complete thermostatted 6×4 two-dimensional system with boundary temperatures

of kTC = 0.005 and kTH = 0.015. The model shown in the figure is a tethered square 4 × 4 lattice which reacts to

the a temperature gradient provided by two similarly-tethered, but thermostatted, 1 × 4 reservoir regions. “Free”

boundaries are used on all four sides of the system. All 4 + 16 + 4 = 24 particles have unit mass and are tethered to

lattice sites separated from their nearest neighbors sites by unit distance. The equations of motion for the 16 interior

conventional Hamiltonian particles are

{q̇ = p/m ; ṗ = −∇Φ} ,

where the potential energy Φ contains all 38 (20 “horizontal” and 18 “vertical”) nearest-neighbor Hooke’s-Law terms

(|∆rij|−1)2/2 as well as the 24 individual-particle tethering terms of the form δr4
i /4. This particular heat-flow model

is notable for demonstrating very clearly that the phase-space dimensionality loss—relative to the equilibrium phase-

space dimensionality—of its nonequilibrium phase-space strange attractors can greatly exceed the dimensionality

associated with the thermostatted boundary particles [18].

Here we compare seven distinct deterministic and time-reversible treatments of the eight thermostatted particles

on the two sides of the system. To simplify notation here we use 〈 ... 〉 to indicate an average over the four cold or hot

particles making up one of the two thermostats. Here are two examples—note that the sums, over four thermostatted
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particles, include contributions from eight Cartesian degrees of freedom each:

〈Fp3〉 ≡ 1
8

∑
[Fx(i)px(i)3 + Fy(i)py(i)3] ;

〈p4〉 ≡ 1
8

∑
[px(i)4 + py(i)4] .

Using this 〈 ... 〉 notation the seven thermostat treatments have the following forms:

(i) Gauss’ instantaneous p2 control:

ṗ = F − ζ1p; ζ1 =
〈Fp〉
〈p2〉 ;

(ii) Gauss’ instantaneous p4 control:

ṗx = Fx − ζ2p3
x ; ṗy = Fy − ζ2p3

y ;

ζ2 = 〈Fp3〉
〈p6〉 ;

(iii) Nosé-Hoover p2 control:

ṗ = F − ζ3p
τ

; ζ̇3 = [ 〈p
2〉

mkT
− 1]/τ ;

(iv) Cubic p4 control:

ṗx = Fx − ζ4 p3
x

mkT
/τ ; ṗy = Fy − ζ4 p3

y

mkT
/τ ;

ζ̇4 = [ 〈p
4〉

(mkT )2 − 3 〈p
2〉

mkT ]/τ ;
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(v) Hoover-Holian p2 and p4 control:

ṗx = Fx − [ζ5px + ξ5
p3
x

mkT ]/τ ;

ṗy = Fy − [ζ5py + ξ5
p3
y

mkT ]/τ ;

ζ̇5 = [ 〈p
2〉

mkT − 1]/τ ;

ξ̇5 = [
〈p4〉

(mkT )2 − 3
〈p2〉
mkT ]/τ ;

(vi) Tuckerman p2 chain control:

ṗ = F − ζ6p
τ ;

ζ̇6 = [ 〈p
2〉

mkT − 1−#ζ6ξ6]/τ ; ξ̇6 = [#ζ2
6 − 1]/τ ;

(vii) Cubic (ζ3) p2 control:

ṗx = Fx − [ζ3
7px/τ ] ; ṗy = Fy − [ζ3

7py/τ ] ;

ζ̇7 = [ 〈p
2〉

mkT − 1]/τ .

The last five of these thermostats incorporate one or more relaxation times {τ}. For simplicity we have chosen all

these times equal to unity in the numerical work. To avoid prejudicing the results we have also chosen for investigation

a problem in which the mean temperature values, 〈p2
x〉 ' 〈p2

y〉, are of order unity throughout the system. The Tables
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correspond to specified boundary temperatures of kTC = 0.5 and kTH = 1.5. They show the mean values of the

kinetic temperatures, 〈p2
x/mk〉 and 〈p2

y/mk〉, the overall heat flux, and the boundary values for the dimensionless

ratio R = 〈p4〉/〈p2〉2 for each of the seven thermostat choices and for three different system sizes. R has the value

R = 3 for a Gaussian distribution.

We have chosen the run times long enough that the results quoted are accurate, with an uncertainty of order ±1 in

the last digit quoted. In addition to the results given in the Tables we have investigated the dependence of the heat

flow on the transverse width. The width dependence is quite regular, with the overall heat flux increasing with the

system width, Q ∝ W , as would be expected for any material obeying Fourier’s Law of heat conduction.

The appearance of the number of thermostatted degrees of freedom, #, in the chain control equations (vi) deserves

special comment. It is dictated by Liouville’s Theorem [1,8,13], and is required even in the equilibrium case, for

consistency with the generalized canonical distribution:

feq ∝ e−H/kT e−#ζ2/2e−#ξ2/2 .

Both friction coefficients, ζ and ξ, have fluctuations of order 1/
√

#, so that both the combinations #ζξ and #ζ2 are

of order unity at equilibrium.

The nonequilibrium results in the Tables show that the Gaussian fourth-moment thermostat (ii) delivers temper-

atures relatively far from the target values (0.5 and 1.5 in all seven examples). Only four of the seven thermostat

choices, (i), (iii), (v), and (vii), reproduce the target temperatures,

{ TC = 1
2 ; TH = 3

2 } ,

exactly. The chain thermostat provides good transverse temperature control while missing the target temperature

in the flow direction. The Nosé-Hoover thermostat (iii) produces nearly the same results as does the more elaborate

simultaneous control of both the second and fourth moments (v). The more elaborate thermostats, (v) and (vi),

provide very little tangible return for their additional complexity. The flow of heat varies by only a few percent from

one thermostat type to another once the Newtonian part of the system is sufficiently long. See Table III.

In addition to the simulations summarized in the Tables we have carried out many others. A variant of the
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Nosé-Hoover form:

ṗ = F − ζ3p− ξp3 ,

provides temperatures and heat fluxes similar to those found using the approaches (iii), (v), and (vii) above. Because

each of the feedback-based thermostats incorporates one or more characteristic relaxation times (here all chosen equal

to unity) it is possible to “tune” them—even separately for the x and y directions—to reduce fluctuations or to

improve their moments. The good agreement of the various choices shown in the Tables indicates that the thermostat

approach to nonequilibrium simulations is robust.

It is important to note that Tuckerman’s original motion equations [10] are based on the difference, p2−mkT , rather

than the ratio p2

mkT
− 1, and so give slightly different results away from equilibrium. Tuckerman’s original equations

also contain extraneous coordinates {qζ, qξ} associated with the friction coefficients and analogous to Nosé’s s variable.

Like s these extraneous coordinates diverge in nonequilibrium steady states and so are best avoided completely.

X. CONCLUSIONS AND OUTLOOK

The precomputer stochastic thermostats can be replaced by a variety of simple and efficient deterministic ther-

mostats, making precise reproducible time-reversible simulations possible, both at and away from equilibrium. The

good agreement of the feedback thermostats, without any attempt to tune the many free parameters, indicates the

overall usefulness or the thermostat approach. These results, for stationary heat flow, complement Holian and Evans

analogous investigation of shear flow [12].

The simplicity of thermostats based on the second moment of the velocity distribution and simply connected to

irreversible thermodynamics recommend the use of Nosé-Hoover thermostats whenever possible. If the more elaborate

multi-parameter thermostats are used it is necessary to check for consistency with Liouville’s Theorem. If it is desired

to carry out Brownian dynamics a doubly-thermostatted oscillator (two “demons” in the terminology of Bulgac and

Kusnezov) can furnish a deterministic and reversible source of “stochastic” momenta.
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[10] G. J. Martyna, M. L. Klein, and M. Tuckerman, “Nosé-Hoover Chains—the Canonical Ensemble via Continuous Dynamics,”

J. Chem. Phys. 97, 2635-2643 (1992).

[11] K. Rateitschak and R. Klages, “Lyapunov Instability of Two-Dimensional Many-Body Systems,” Phys. Rev. E. 65, 036209

(2002).
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FIG. 1. Isoenergetic trajectory of a single chaotic ergodic particle in a periodic cell with fixed particles at the cell corners.

The interparticle pair potential is a smooth repulsive potential, φ(r) = 100(1 − r2)4, for r < 1, which has three continuous

derivatives, and is shown here.

FIG. 2. Geometry of a 24-particle two-dimensional steady-state system. The leftmost four particles are cold and the rightmost

four hot. The remaining 16 particles obey conventional Hamiltonian mechanics. For clarity in illustrating the trajectories, the

cold and hot temperatures of the thermostatted particles for this Figure were imposed using Nosé-Hoover dynamics with

TC = 0.005 and TH = 0.015, two orders of magnitude smaller than those used to generate the data in Table I.

TABLE I. Cold and Hot temperatures, the overall heat transfer rate Q̇H = −Q̇C , and fourth-moment ratios 〈p4〉
〈p2〉2 for the

seven deterministic time-reversible thermostatted heat flows described in Sec. IX. These data are for 24-particle (6×4) systems

with 4 cold particles, 16 Newtonian particles, and 4 hot particles, as is illustrated in Fig. 1. 50 million fourth-order Runge-Kutta

timesteps (dt = 0.002) were used.

type TCx TCy THx THy Q̇H RCx RCy RHx RHy

(i) 0.52 0.48 1.48 1.52 0.14 2.41 2.48 2.42 2.40

(ii) 0.59 0.56 1.70 1.70 0.13 2.20 2.27 2.33 2.32

(iii) 0.52 0.48 1.49 1.51 0.18 2.96 3.06 3.40 3.38

(iv) 0.55 0.53 1.36 1.39 0.15 2.73 2.82 3.29 3.24

(v) 0.52 0.48 1.49 1.51 0.19 2.93 3.07 3.01 2.98

(vi) 0.55 0.50 1.45 1.49 0.20 3.04 3.13 3.09 3.06

(vii) 0.52 0.48 1.49 1.51 0.19 2.99 3.11 3.26 3.22
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TABLE II. Cold and Hot temperatures, the overall heat transfer rate Q̇H = −Q̇C , and fourth-moment ratios 〈p4〉
〈p2〉2 for the

seven deterministic time-reversible thermostatted heat flows described in Sec. IX. These data are for 40-particle (10×4) systems

with 4 cold particles, 32 Newtonian particles, and 4 hot particles. 100 million fourth-order Runge-Kutta timesteps (dt = 0.002)

were used.

type TCx TCy THx THy Q̇H RCx RCy RHx RHy

(i) 0.52 0.48 1.49 1.51 0.12 2.40 2.47 2.41 2.39

(ii) 0.60 0.56 1.72 1.70 0.12 2.20 2.28 2.31 2.32

(iii) 0.52 0.48 1.50 1.50 0.14 2.95 3.03 3.25 3.22

(iv) 0.55 0.52 1.42 1.42 0.13 2.77 2.85 3.18 3.17

(v) 0.52 0.48 1.49 1.51 0.14 2.95 3.06 3.01 2.99

(vi) 0.54 0.50 1.47 1.49 0.14 2.99 3.08 3.04 3.03

(vii) 0.52 0.48 1.49 1.51 0.14 2.96 3.07 3.16 3.13

TABLE III. Cold and Hot temperatures, the overall heat transfer rate Q̇H = −Q̇C , and fourth-moment ratios 〈p4〉
〈p2〉2 for

the seven deterministic time-reversible thermostatted heat flows described in Sec. IX. These data are for 72-particle (18 × 4)

systems with 4 cold particles, 64 Newtonian particles, and 4 hot particles. 200 million fourth-order Runge-Kutta timesteps

(dt = 0.002) were used.

type TCx TCy THx THy Q̇H RCx RCy RHx RHy

(i) 0.51 0.49 1.50 1.50 0.089 2.39 2.44 2.40 2.39

(ii) 0.59 0.56 1.72 1.70 0.092 2.21 2.28 2.30 2.31

(iii) 0.51 0.49 1.49 1.51 0.092 2.96 3.01 3.13 3.13

(iv) 0.53 0.52 1.44 1.45 0.086 2.82 2.87 3.12 3.10

(v) 0.51 0.49 1.49 1.51 0.090 2.95 3.05 3.01 2.99

(vi) 0.52 0.50 1.48 1.49 0.094 2.98 3.05 3.02 3.01

(vii) 0.51 0.49 1.49 1.51 0.092 2.96 3.03 3.09 3.07
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